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MECH 5970/6970
Fundamentals of GPS

Differential GPS



Relative Positioning

• Determination of the baseline vector between a 
known receiver location and arbitrary receiver 
location
– If receivers are in close proximity (50km), they are 

subjected to very similar errors
– Differencing measurements from receivers removes 

errors, providing accurate baseline measurement
• Single differencing – removes atmospheric errors and satellite 

clock biases
• Double differencing – additionally removes receiver clock bias
• Carrier triple differencing – removes cycle slip effects



GPS Measurement Models
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𝜌𝜌𝐴𝐴
𝑗𝑗 = 𝑟𝑟𝐴𝐴

𝑗𝑗 + 𝑐𝑐 𝛿𝛿𝛿𝛿𝐴𝐴 − 𝛿𝛿𝛿𝛿𝑗𝑗 + 𝐼𝐼𝑗𝑗 + 𝑇𝑇𝑗𝑗 + 𝑣𝑣𝜌𝜌
𝑗𝑗

Φ𝐴𝐴
𝑗𝑗 = 𝑟𝑟𝐴𝐴

𝑗𝑗 + 𝑐𝑐 𝛿𝛿𝛿𝛿𝐴𝐴 − 𝛿𝛿𝛿𝛿𝑗𝑗 + 𝜆𝜆𝑁𝑁𝐴𝐴
𝑗𝑗 − 𝐼𝐼𝑗𝑗 + 𝑇𝑇𝑗𝑗 + 𝑣𝑣Φ

𝑗𝑗

Δ𝑟𝑟𝑗𝑗 = 𝜌𝜌𝐴𝐴
𝑗𝑗 − 𝜌𝜌𝐵𝐵

𝑗𝑗 = Δ𝜌𝜌𝐴𝐴𝐴𝐴
𝑗𝑗



Single Differencing
• Involves differencing receiver measurements from two 

receivers, A and B, using a common satellite, j

L

Measurement model:

Differencing measurements from two receivers yields:

Single differenced solution:

Δ𝜌𝜌𝑎𝑎𝑎𝑎
𝑗𝑗 = Δ𝑟𝑟𝑗𝑗 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌 = 𝑟𝑟𝑎𝑎𝑎𝑎

𝑗𝑗 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌
ΔΦ𝑎𝑎𝑎𝑎

𝑗𝑗 = Δ𝑟𝑟𝑗𝑗 + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎
𝑗𝑗 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖ΔΦ = 𝑟𝑟𝑎𝑎𝑎𝑎

𝑗𝑗 + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎
𝑗𝑗 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖ΔΦ

𝜌𝜌𝐴𝐴
𝑗𝑗 = 𝑟𝑟𝐴𝐴

𝑗𝑗 + 𝑐𝑐 𝛿𝛿𝛿𝛿𝐴𝐴 − 𝛿𝛿𝛿𝛿𝑗𝑗 + 𝐼𝐼𝑗𝑗 + 𝑇𝑇𝑗𝑗 + 𝑣𝑣𝜌𝜌
𝑗𝑗

𝜌𝜌𝐵𝐵
𝑗𝑗 = 𝑟𝑟𝐵𝐵

𝑗𝑗 + 𝑐𝑐 𝛿𝛿𝛿𝛿𝐵𝐵 − 𝛿𝛿𝛿𝛿𝑗𝑗 + 𝐼𝐼𝑗𝑗 + 𝑇𝑇𝑗𝑗 + 𝑣𝑣𝜌𝜌
𝑗𝑗

Φ𝐴𝐴
𝑗𝑗 = 𝑟𝑟𝐴𝐴

𝑗𝑗 + 𝑐𝑐 𝛿𝛿𝛿𝛿𝐴𝐴 − 𝛿𝛿𝛿𝛿𝑗𝑗 + 𝜆𝜆𝑁𝑁𝐴𝐴
𝑗𝑗 − 𝐼𝐼𝑗𝑗 + 𝑇𝑇𝑗𝑗 + 𝑣𝑣Φ

𝑗𝑗

Φ𝐵𝐵
𝑗𝑗 = 𝑟𝑟𝐵𝐵

𝑗𝑗 + 𝑐𝑐 𝛿𝛿𝛿𝛿𝐵𝐵 − 𝛿𝛿𝛿𝛿𝑗𝑗 + 𝜆𝜆𝑁𝑁𝐵𝐵
𝑗𝑗 − 𝐼𝐼𝑗𝑗 + 𝑇𝑇𝑗𝑗 + 𝑣𝑣Φ

𝑗𝑗

∆𝜌𝜌𝐴𝐴𝐴𝐴
𝑗𝑗 = 𝜌𝜌𝐴𝐴

𝑗𝑗 − 𝜌𝜌𝐵𝐵
𝑗𝑗 = 𝑟𝑟𝐴𝐴

𝑗𝑗 − 𝑟𝑟𝐵𝐵
𝑗𝑗 + 𝑐𝑐 𝛿𝛿𝛿𝛿𝐴𝐴 − 𝛿𝛿𝛿𝛿𝐵𝐵 + Δ𝑣𝑣𝜌𝜌

𝑗𝑗

∆Φ𝐴𝐴𝐵𝐵
𝑗𝑗 = 𝑟𝑟𝐴𝐴

𝑗𝑗 − 𝑟𝑟𝐵𝐵
𝑗𝑗 + 𝑐𝑐 𝛿𝛿𝛿𝛿𝐴𝐴 − 𝛿𝛿𝛿𝛿𝐵𝐵 + 𝜆𝜆(𝑁𝑁𝐴𝐴

𝑗𝑗 − 𝑁𝑁𝐵𝐵
𝑗𝑗)  + Δ𝑣𝑣Φ

𝑗𝑗



Double Differencing

• Involves differencing single difference measurements 
from two receivers, A and B, between two common 
satellites, j and k

L

Two single differences are calculated:

Differencing two single differences yields:

∇Δ𝜌𝜌𝑎𝑎𝑎𝑎
𝑗𝑗𝑗𝑗 = 𝑟𝑟𝑎𝑎𝑎𝑎

𝑗𝑗𝑗𝑗 + 𝜖𝜖∇Δ𝜌𝜌
∇ΔΦ𝑎𝑎𝑎𝑎

𝑗𝑗𝑘𝑘 = 𝑟𝑟𝑎𝑎𝑎𝑎
𝑗𝑗𝑘𝑘 + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎

𝑗𝑗𝑗𝑗 + 𝜖𝜖∇ΔΦ

Δ𝜌𝜌𝑎𝑎𝑎𝑎
𝑗𝑗 = ∆𝑟𝑟𝑗𝑗 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌

Δ𝜌𝜌𝑎𝑎𝑎𝑎𝑘𝑘 = ∆𝑟𝑟𝑘𝑘 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌
ΔΦ𝑎𝑎𝑎𝑎

𝑗𝑗 = ∆𝑟𝑟𝑗𝑗 + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎
𝑗𝑗 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖ΔΦ

ΔΦ𝑎𝑎𝑎𝑎
𝑘𝑘 = ∆𝑟𝑟𝑘𝑘 + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎𝑘𝑘 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖ΔΦ



Carrier Triple Differencing

• Differences the double differences at multiple epochs of 
time

L

Two double differences are calculated at different periods:

The differenced double differences are:

Therefore (assuming no cycle slip):

∇Δ𝜌𝜌𝑎𝑎𝑎𝑎
𝑗𝑗𝑗𝑗(𝑡𝑡0) = 𝑟𝑟𝑎𝑎𝑎𝑎

𝑗𝑗𝑗𝑗(𝑡𝑡0) + 𝜖𝜖∇Δ𝜌𝜌
∇Δ𝜌𝜌𝑎𝑎𝑎𝑎

𝑗𝑗𝑗𝑗(𝑡𝑡1) = 𝑟𝑟𝑎𝑎𝑎𝑎
𝑗𝑗𝑗𝑗(𝑡𝑡1) + 𝜖𝜖∇Δ𝜌𝜌

∇ΔΦ𝑎𝑎𝑎𝑎
𝑗𝑗𝑘𝑘 (𝑡𝑡0) = 𝑟𝑟𝑎𝑎𝑎𝑎

𝑗𝑗𝑘𝑘(𝑡𝑡0) + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎
𝑗𝑗𝑗𝑗(𝑡𝑡0) + 𝜖𝜖∇ΔΦ

∇ΔΦ𝑎𝑎𝑎𝑎
𝑗𝑗𝑘𝑘 (𝑡𝑡1) = 𝑟𝑟𝑎𝑎𝑎𝑎

𝑗𝑗𝑘𝑘(𝑡𝑡1) + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎
𝑗𝑗𝑗𝑗(𝑡𝑡1) + 𝜖𝜖∇ΔΦ

∇Δ𝜌𝜌𝑎𝑎𝑎𝑎
𝑗𝑗𝑗𝑗 𝑡𝑡1 − ∇Δ𝜌𝜌𝑎𝑎𝑎𝑎

𝑗𝑗𝑗𝑗 𝑡𝑡0 = Δ𝑟𝑟𝑎𝑎𝑎𝑎
𝑗𝑗𝑗𝑗

∇ΔΦ𝑎𝑎𝑎𝑎
𝑗𝑗𝑘𝑘 𝑡𝑡1 − ∇ΔΦ𝑎𝑎𝑎𝑎

𝑗𝑗𝑘𝑘 (𝑡𝑡0) = Δ𝑟𝑟𝑎𝑎𝑎𝑎
𝑗𝑗𝑘𝑘

Δ∇∆ Φ𝑎𝑎𝑎𝑎
𝑗𝑗𝑗𝑗 = ∆∇Δ𝜌𝜌𝑎𝑎𝑎𝑎

𝑗𝑗𝑗𝑗



Single Difference Position Equations

• Single Difference
• Δ𝑟𝑟𝑗𝑗 = 𝑢𝑢𝑣𝑣𝑥𝑥

𝑗𝑗 Δ𝑥𝑥𝑎𝑎𝑎𝑎 + 𝑢𝑢𝑢𝑢𝑦𝑦
𝑗𝑗 Δ𝑦𝑦𝑎𝑎𝑎𝑎 + 𝑢𝑢𝑢𝑢𝑧𝑧

𝑗𝑗 Δ𝑧𝑧𝑎𝑎𝑎𝑎

• Δ𝑟𝑟𝑗𝑗 = 𝑟𝑟𝑎𝑎𝑎𝑎
𝑗𝑗 = 𝑢𝑢𝑣𝑣𝑥𝑥

𝑗𝑗 𝑢𝑢𝑣𝑣𝑦𝑦
𝑗𝑗 𝑢𝑢𝑣𝑣𝑧𝑧

𝑗𝑗
𝑥𝑥
𝑦𝑦
𝑧𝑧 𝑎𝑎𝑎𝑎

• Single Difference Position Solution:
– Requires 4 common SVs to solve

Δ𝜌𝜌𝑎𝑎𝑎𝑎
𝑗𝑗 = 𝑢𝑢𝑣𝑣𝑥𝑥

𝑗𝑗 𝑢𝑢𝑣𝑣𝑦𝑦
𝑗𝑗 𝑢𝑢𝑣𝑣𝑧𝑧

𝑗𝑗
𝑥𝑥
𝑦𝑦
𝑧𝑧 𝑎𝑎𝑎𝑎

+ 𝑐𝑐𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌

ΔΦ𝑎𝑎𝑎𝑎
𝑗𝑗 = 𝑢𝑢𝑣𝑣𝑥𝑥

𝑗𝑗 𝑢𝑢𝑣𝑣𝑦𝑦
𝑗𝑗 𝑢𝑢𝑣𝑣𝑧𝑧

𝑗𝑗
𝑥𝑥
𝑦𝑦
𝑧𝑧 𝑎𝑎𝑎𝑎

+ 𝑐𝑐𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎
𝑗𝑗 + 𝜖𝜖ΔΦ
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Double Difference Position Equations

• Double Difference
Δ𝑟𝑟𝑗𝑗 − Δ𝑟𝑟𝑘𝑘 = 𝑢𝑢𝑣𝑣𝑥𝑥

𝑗𝑗 𝑢𝑢𝑣𝑣𝑦𝑦
𝑗𝑗 𝑢𝑢𝑣𝑣𝑧𝑧

𝑗𝑗
𝑥𝑥
𝑦𝑦
𝑧𝑧 𝑎𝑎𝑎𝑎

− 𝑢𝑢𝑢𝑢𝑥𝑥𝑘𝑘 𝑢𝑢𝑢𝑢𝑥𝑥𝑘𝑘 𝑢𝑢𝑢𝑢𝑥𝑥𝑘𝑘
𝑥𝑥
𝑦𝑦
𝑧𝑧 𝑎𝑎𝑎𝑎

• Double Difference Position Solutions:
– Still requires 4 common SVs to solve (need one 

common SV to form 3 DD measurements):

∇Δ𝜌𝜌𝑎𝑎𝑎𝑎
𝑗𝑗𝑘𝑘= ∆𝑢𝑢𝑣𝑣𝑥𝑥

𝑗𝑗𝑘𝑘 ∆𝑢𝑢𝑣𝑣𝑦𝑦
𝑗𝑗𝑘𝑘 ∆𝑢𝑢𝑣𝑣𝑧𝑧

𝑗𝑗𝑘𝑘
𝑥𝑥
𝑦𝑦
𝑧𝑧 𝑎𝑎𝑎𝑎

+ 𝜖𝜖∇Δ𝜌𝜌

∇ΔΦ𝑎𝑎𝑎𝑎
𝑗𝑗𝑘𝑘= ∆𝑢𝑢𝑣𝑣𝑥𝑥

𝑗𝑗𝑗𝑗 ∆𝑢𝑢𝑣𝑣𝑦𝑦
𝑗𝑗𝑗𝑗 ∆𝑢𝑢𝑣𝑣𝑧𝑧

𝑗𝑗𝑗𝑗
𝑥𝑥
𝑦𝑦
𝑧𝑧 𝑎𝑎𝑎𝑎

+ 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎
𝑗𝑗𝑘𝑘 + 𝜖𝜖∇ΔΦ
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Time Difference Carrier Phase (TDCP)

• Somewhat related to the triple difference is 
what is known as the time difference carrier 
phase
– This can be done from multiple measurements

• Original Signal
– Contains drift due to change in atmospheric errors

• Single Difference
– Contains clock drift

• Double Difference

9



Carrier Phase DGPS (RTK)

• local reference station 
required

• solve for integer 
ambiguity

• track carrier phase
• phase at reference 

antenna is broadcast 
to user

• positioning software 
calculates 

• 3-D accuracy*  = 2 cm

User
Reference
Antenna

R

N+φ

),( φNfR
Up

North
East

==

















R


*Actual depends on baseline length (1 cm + 1 ppm)
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More on RTK
• RTK – Real Time Kinematic GPS
• RTK GPS calculates the relative position, R, between a 

rover and fixed base station to centimeter accuracy
• Integer ambiguity (IA), N, must be calculated

– Many published algorithms available
– Can take 20 minutes
– New techniques utilizing L1 and L2 (wide laning) are nearly 

instantaneous

λθθ








°
−

+=
360

12NR

19 cm
θ1 θ2

L1 Signal

R

L1for  cm 19==
f
cλ

L1  f=1.5 GHz
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Dynamic base RTK (DRTK)
• A Real-Time Kinematic (RTK) system is a form of differential GPS 

(DGPS)
– A roving receiver in close proximity to a static base receiver (<50 km) 

differences measurements from both to cancel out common errors and 
estimate a high accuracy relative position vector (RPV) 

– The RPV is added to the known location of the base to produce a high 
accuracy global position

• Dynamic base RTK (DRTK) removes the constraint of having a 
static base station
– An accurate RPV can be obtained, but global position accuracy is lost

12



Integer Ambiguity

• The number of whole carrier cycles between a 
receiver and satellite
– Carrier based DGPS technique utilizing the accuracy 

of a receiver’s phase measurement
– Estimates number of carrier cycles, N

• Single frequency – Employs estimation scheme, can take up 
to 30 minutes

• Dual frequency – A wide lane approach can limit the 
possibilities of N, drastically reducing search time

• Triple frequency – N can be nearly instantaneously solved 
using a third frequency, such as L5, GLONASS, or GALILEO

– Cycle slip is a sudden shift in the value of N when 
communication between satellite and receiver is 
compromised

• Causes errors in RTK position fix



Differenced Code-Carrier Smoothing

• Since Ionosphere has been removed 
from single difference (SD), the SD 
pseudoranges and SD carrier 
measurements can be combined
– No fear of code-carrier divergence (since 

Ionosphere has been removed)
• Similar to dual frequency ionosphere-free 

pseudorange/carrier smoothing

14



Carrier Model

15

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜃𝜃𝑖𝑖
𝜆𝜆

− 𝑁𝑁𝑎𝑎𝑎𝑎 = Δ𝜙𝜙𝑖𝑖

𝜙𝜙𝑎𝑎𝑎𝑎 𝑡𝑡0 = 𝜙𝜙𝑎𝑎 𝑡𝑡0 − 𝜙𝜙𝑎𝑎 𝑡𝑡0 = Δ𝜙𝜙0 + 𝑁𝑁𝑎𝑎𝑎𝑎

d

Δ𝑟𝑟1

Δ𝑟𝑟0 Δ𝜃𝜃

𝜃𝜃0
𝜃𝜃1

𝑆𝑆𝑆𝑆𝑗𝑗 𝑡𝑡0 𝑆𝑆𝑆𝑆𝑗𝑗 𝑡𝑡0

𝑆𝑆𝑆𝑆𝑗𝑗 𝑡𝑡1 𝑆𝑆𝑆𝑆𝑗𝑗 𝑡𝑡1

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜃𝜃0 = 𝜆𝜆 Δ𝜙𝜙0 + 𝑁𝑁𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜃𝜃1 = 𝜆𝜆 Δ𝜙𝜙1 + 𝑁𝑁𝑎𝑎𝑎𝑎



Carrier Model

• Can use the carrier model to attempt to estimate the 
integer ambiguity and distance between receivers:

Δ𝜙𝜙𝑖𝑖 = cos(𝜃𝜃𝑖𝑖)
𝜆𝜆

−1
𝑑𝑑
𝑁𝑁𝑖𝑖

ΔΦ𝑖𝑖 = cos(𝜃𝜃𝑖𝑖) −𝜆𝜆 𝑑𝑑
𝑁𝑁𝑖𝑖

• Therefore, assuming d and N are constant, we can 
use least squares:

𝑑̂𝑑
�𝑁𝑁𝑖𝑖

= 𝐻𝐻𝑇𝑇𝐻𝐻 −1ΔΦ𝑖𝑖

16



Carrier Model

• Can predict the accuracy of the estimates using 
our covariance matrix:

𝑃𝑃 = 𝜎𝜎ΔΦ2 𝐻𝐻𝑇𝑇𝐻𝐻 −1 =
𝜎𝜎�𝑑𝑑
2 #

# 𝜎𝜎�𝑁𝑁𝑖𝑖
2

• If we look at the integer ambiguity estimation error 
term in the covariance matrix:

𝜎𝜎�𝑁𝑁𝑖𝑖
2  = 𝜎𝜎ΔΦ2 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2

• Can show that:

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2 =
𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃1 + 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃0
cos 𝜃𝜃1 − cos 𝜃𝜃0 2

17



Carrier Model

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2 =
𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃1 + 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃0
cos 𝜃𝜃1 − cos 𝜃𝜃0 2

• For small IDOP, need 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃0  to 
be large
– Must wait for SV motion

• Baseline distance effects time to get sufficient Δθ
– Alternatively, can artificially induce with 

“antenna swap”

18



General Integer Ambiguity (N) Estimation

• Could just compare pseudorange with carrier 
measurement
– However as discussed earlier in the class you 

have code-carrier divergence
– Could utilize dual frequency to get ionosphere free 

psuedorange and carrier measurement
• Measurements are more noisy

– With DGPS, can compare the single (or double) 
differenced psuedorange & carrier measurements:

Δ𝜌𝜌𝑎𝑎𝑎𝑎
𝑗𝑗 = 𝑟𝑟𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌

ΔΦ𝑎𝑎𝑎𝑎
𝑗𝑗 = 𝑟𝑟𝑎𝑎𝑎𝑎 + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎

𝑗𝑗 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌
19



Estimating Integer Ambiguity (N)

20

• Comparing the pseudorange & carrier 
measurements:

Δ𝜌𝜌𝑎𝑎𝑎𝑎
𝑗𝑗 = Δ𝑟𝑟𝑗𝑗 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌

ΔΦ𝑎𝑎𝑎𝑎
𝑗𝑗 = Δ𝑟𝑟𝑗𝑗 + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎

𝑗𝑗 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌
• Therefore:

�𝑁𝑁𝑎𝑎𝑎𝑎
𝑗𝑗 =

ΔΦ𝑎𝑎𝑎𝑎
𝑗𝑗 − Δ𝜌𝜌𝑎𝑎𝑎𝑎

𝑗𝑗

𝜆𝜆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

• What is the problem?
– The error (1σ) on Δρ is 0.5-1 meters

• Corresponds to over 5 cycles of N (or 15 cycles at 3σ)
– No Ionosphere divergence

• Could average down over time



Estimating Integer Ambiguity (N)

21

• Could attempt to estimate N as part of the 
position solution

• Have 5 unknowns (𝑟𝑟𝑎𝑎𝑎𝑎 , 𝑡𝑡𝑎𝑎𝑎𝑎 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑎𝑎𝑎𝑎
𝑗𝑗 ) and 2 

equations
– Each additional SV adds 2 equations and 1 more 

unknown (N)
• With 4 common SVs (8 equations, 8 unknowns) 
• With 5 common SVs (10 equations, 9 unknowns)
• With 6 common SVs (12 equations, 10 unknowns)

Δ𝜌𝜌𝑎𝑎𝑎𝑎
𝑗𝑗 = 𝑟𝑟𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌

ΔΦ𝑎𝑎𝑎𝑎
𝑗𝑗 = 𝑟𝑟𝑎𝑎𝑎𝑎 + 𝜆𝜆𝑁𝑁𝑎𝑎𝑎𝑎

𝑗𝑗 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌



Estimating Integer Ambiguity (N)

• What about using additional frequencies?
Δ𝜌𝜌𝐿𝐿𝐿 = 𝑟𝑟 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌

ΔΦ𝐿𝐿𝐿 = 𝑟𝑟 + 𝜆𝜆𝑁𝑁𝐿𝐿1 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌

Δ𝜌𝜌𝐿𝐿𝐿 = 𝑟𝑟 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌
 ΔΦ𝐿𝐿𝐿 = 𝑟𝑟 + 𝜆𝜆𝑁𝑁𝐿𝐿𝐿 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌

• So we add 2 measurements and only one 
additional unknown
– Obviously more equations with less unknowns 

helps in estimation
• With 4 common SVs (16 equations and 12 unknowns)

22



Estimating Integer Ambiguity (N)

• What about “codeless” frequencies (i.e., legacy 
L2)

Δ𝜌𝜌𝐿𝐿𝐿 = 𝑟𝑟 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌
ΔΦ𝐿𝐿𝐿 = 𝑟𝑟 + 𝜆𝜆𝑁𝑁𝐿𝐿1 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌

 ΔΦ𝐿𝐿𝐿 = 𝑟𝑟 + 𝜆𝜆𝑁𝑁𝐿𝐿𝐿 + 𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 + 𝜖𝜖Δ𝜌𝜌

• Doesn’t seem to be useful since adding one 
more unknown and only one more equation.
– With 4 common SVs (12 equations and 12 

unknowns)
– However…

23



Frequency Combining

• Recall what happens when you multiply two sine 
waves:

sin 𝜔𝜔𝐿𝐿𝐿𝑡𝑡 × sin 𝜔𝜔𝐿𝐿2𝑡𝑡 = 1
2

sin 𝜔𝜔𝐿𝐿𝐿 + 𝜔𝜔𝐿𝐿2 𝑡𝑡 + 1
2

sin 𝜔𝜔𝐿𝐿𝐿 − 𝜔𝜔𝐿𝐿2 𝑡𝑡

• Therefore you get two new carrier frequencies (and 
two new resulting wavelengths)
– The smaller wavelength is called the narrow-lane
– The larger wavelength is called the wide-lane

• Interestingly, you don’t actually have to physically 
multiply the signals
– You get the same mathematical advantage simply by using 

both frequencies in the estimation process

24



Multi-Frequency Benefits

25

• Dual frequency L1-L2 combination provides a wide 
lane near the accuracy of the single difference 
pseudorange (0.5-1 meter)
– Just requires a few measurements to average to 

determine N
• Dual frequency L2-L5 provides instantaneous 

determination of N

Combination Wide Lane Wavelength 
(cm)

Narrow Lane Wavelength 
(cm)

L1-L2 86 10.70
L1-L5 75 10.89
L2-L5 586 12.47



RTK Integer Ambiguity Resolution

• Additional frequency drastically improves 
time to estimate N
– Results shown are L1 vs L1-L2 codeless

26



RTK Position Accuracy

• Additional frequency doesn’t drastically 
improve accuracy (some averaging)

27



GPS Position Accuracy (1σ)

• Military Stand Alone (No SA) ~3m,
– global coverage

• Civil Stand Alone (w/ SA) ~30m,
– global coverage

• Code Phase Differential (DGPS) ~0.1m-1m
– not all are global, but almost full US coverage

• local reference station ~0.3m
• Coast Guard differential corrections ~ 0.5m
• WAAS ~1-3m
• Nation Wide DGPS (NDGPS) ~ 1-3m
• OmniStar VBS (~1m) & Omnistar HP (~10cm)
• JohnDeere Starfire ~10cm

• Carrier Phase Differential (RTK) ~2cm,
– local (~10km) coverage

• High Accuracy (HA) NDGPS ~10 cm

28



Precise Point Positioning (PPP)

• Attempt to get carrier like position 
accuracy without base station

• Correct several source of error first:
– Ideally, use dual frequency to remove 

ionosphere error
– Use more precise ephemeris

• https://igs.org/products/
– Estimate troposphere error

• Estimate as Tz*m
– Where m is the elevation mapping

29
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Precise Point Positioning (PPP)

• Generate Ionosphere Free Pseudorange:

𝜌𝜌𝐼𝐼𝐼𝐼 = 𝑓𝑓𝐿𝐿𝐿
2

𝑓𝑓𝐿𝐿𝐿
2 −𝑓𝑓𝐿𝐿2

2  𝜌𝜌𝐿𝐿𝐿 −
𝑓𝑓𝐿𝐿2
2

𝑓𝑓𝐿𝐿𝐿
2 −𝑓𝑓𝐿𝐿𝐿

2  𝜌𝜌𝐿𝐿𝐿 = 2.546𝜌𝜌𝐿𝐿𝐿 − 1.546𝜌𝜌𝐿𝐿2

– Noisier measurement:

𝜎𝜎𝜌𝜌𝐼𝐼𝐼𝐼 = 2.546 2𝜎𝜎𝜌𝜌𝐿𝐿𝐿
2 + 1.546 2𝜎𝜎𝜌𝜌𝐿𝐿2

2 ≈ 3𝜎𝜎𝜌𝜌

• Similarly, generate Ionosphere free carrier 
measurement:

Φ𝐼𝐼𝐼𝐼 = 𝑓𝑓𝐿𝐿𝐿
2

𝑓𝑓𝐿𝐿𝐿
2 −𝑓𝑓𝐿𝐿2

2  Φ𝐿𝐿𝐿 −
𝑓𝑓𝐿𝐿2
2

𝑓𝑓𝐿𝐿𝐿
2 −𝑓𝑓𝐿𝐿𝐿

2  Φ𝐿𝐿𝐿 = 2.546Φ𝐿𝐿𝐿 − 1.546Φ𝐿𝐿2

30



Precise Point Positioning (PPP)
• Use the Ionosphere free pseudorange and carrier 

measurements:
𝜌𝜌𝐼𝐼𝐼𝐼 = 𝑟𝑟 + 𝑐𝑐𝛿𝛿𝑡𝑡𝑢𝑢 + 𝑇𝑇𝑧𝑧 � 𝑚𝑚 𝑒𝑒𝑒𝑒 + 𝜖𝜖𝜌𝜌

Φ𝐼𝐼𝐼𝐼 = 𝑟𝑟 + 𝑐𝑐𝛿𝛿𝑡𝑡𝑢𝑢 + 𝑇𝑇𝑧𝑧 � 𝑚𝑚 𝑒𝑒𝑒𝑒 + 𝜆𝜆𝑁𝑁𝐼𝐼𝐼𝐼 + 𝜖𝜖Φ

• Must estimate position (x,y,z), clock bias, NIF, and Tz
– Need at least 5 SVs (10 equations and 10 unknowns)
– If static, Tz changes a few cm/hour
– Note: NIF  is no longer an integer

• Can achieve cm-level accuracy (~10 cm)
– May require 15-30 minutes to converge in static mode

• Single frequency PPP is decimeter accurate (10-50 
cm) with similar convergence rates 31



Samuel Ginn College of Engineering

GPS RTK for Attitude

32

• With 3 antennas (mounted rigidly on a body) can 
resolve roll, pitch, and yaw

• Accuracy is 𝜎𝜎 ≈ 𝜎𝜎∆𝐸𝐸
𝐿𝐿

• Can use one common clock for all three receivers
– Still have a line bias (however it is constant)

𝜓𝜓 = 𝑡𝑡𝑡𝑡𝑡𝑡−1
∆𝐸𝐸
∆𝑁𝑁

 

𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑠𝑠−1
∆ℎ
𝐿𝐿

E

N

𝑟𝑟
ψ

θ

h Convert 𝑟𝑟  to ENU



GPS Attitude

33

∆Φ = 𝑏𝑏𝑇𝑇𝐴𝐴𝑠̂𝑠 + 𝜆𝜆𝑁𝑁 + 𝐵𝐵 + 𝜈𝜈

B ⇒ Line Bias
A ⇒ Direction Cosine Matrix from ENU to body frame
N ⇒ Integer Ambiguity
v ⇒ Noise/Error
b ⇒ Baseline vector (in body frame)
𝑠̂𝑠 ⇒ Known unit vector in ENU frame

• Solve for A using cost function
– Requires iterative search technique
– Known as Wahba’s Problem
– Obtain roll, pitch, yaw ( 𝜙𝜙,𝜃𝜃,𝜓𝜓) from A

λ

b



GPS Attitude

3 antennas ⇒ roll, pitch, yaw

accuracy = 0.1° (w/ 2m baseline)

No Reference Station Required
Accuracy Depends on Antenna Spacing

GPS Wave Front

34




GPS Wave Front
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