

Differential GPS

MECH 5970/6970 Fundamentals of GPS

Relative Positioning

- Determination of the baseline vector between a known receiver location and arbitrary receiver location
 - If receivers are in close proximity (50km), they are subjected to very similar errors
 - Differencing measurements from receivers removes errors, providing accurate baseline measurement
 - Single differencing removes atmospheric errors and satellite clock biases
 - Double differencing additionally removes receiver clock bias
 - Carrier triple differencing removes cycle slip effects

GPS Measurement Models

$$\Delta r = |\vec{r}_{ab}| \cos(\theta)$$

$$\Delta r^{j} = \rho_{A}^{j} - \rho_{B}^{j} = \Delta \rho_{AB}^{j}$$

$$\rho_A^j = r_A^j + c\left(\delta t_A - \delta t^j\right) + I^j + T^j + v_\rho^j$$

$$\Phi_A^j = r_A^j + c\left(\delta t_A - \delta t^j\right) + \lambda N_A^j - I^j + T^j + v_\Phi^j$$

Single Differencing

 Involves differencing receiver measurements from two receivers, A and B, using a common satellite, j

Measurement model:

$$\rho_A^j = r_A^j + c(\delta t_A - \delta t^j) + I^j + T^j + v_\rho^j$$

$$\rho_B^j = r_B^j + c(\delta t_B - \delta t^j) + I^j + T^j + v_\rho^j$$

$$\Phi_A^j = r_A^j + c(\delta t_A - \delta t^j) + \lambda N_A^j - I^j + T^j + v_\Phi^j$$

$$\Phi_B^j = r_B^j + c(\delta t_B - \delta t^j) + \lambda N_B^j - I^j + T^j + v_\Phi^j$$

Differencing measurements from two receivers yields: $\Delta \rho_{AB}^{j} = \rho_{A}^{j} - \rho_{B}^{j} = r_{A}^{j} - r_{B}^{j} + c(\delta t_{A} - \delta t_{B}) + \Delta v_{\rho}^{j}$ $\Delta \Phi_{AB}^{j} = r_{A}^{j} - r_{B}^{j} + c(\delta t_{A} - \delta t_{B}) + \lambda(N_{A}^{j} - N_{B}^{j}) + \Delta v_{\Phi}^{j}$

Single differenced solution:

$$\begin{split} &\Delta \rho_{ab}^{j} = \Delta r^{j} + ct_{ab} + \epsilon_{\Delta \rho} = \vec{r}_{ab}^{j} + ct_{ab} + \epsilon_{\Delta \rho} \\ &\Delta \Phi_{ab}^{j} = \Delta r^{j} + \lambda N_{ab}^{j} + ct_{ab} + \epsilon_{\Delta \Phi} = \vec{r}_{ab}^{j} + \lambda N_{ab}^{j} + ct_{ab} + \epsilon_{\Delta \Phi} \end{split}$$

Double Differencing

 Involves differencing single difference measurements from two receivers, A and B, between two common satellites, j and k

Two single differences are calculated:

$$\begin{split} &\Delta \rho_{ab}^{j} = \Delta r^{j} + ct_{ab} + \epsilon_{\Delta \rho} \\ &\Delta \rho_{ab}^{k} = \Delta r^{k} + ct_{ab} + \epsilon_{\Delta \rho} \\ &\Delta \Phi_{ab}^{j} = \Delta r^{j} + \lambda N_{ab}^{j} + ct_{ab} + \epsilon_{\Delta \Phi} \\ &\Delta \Phi_{ab}^{k} = \Delta r^{k} + \lambda N_{ab}^{k} + ct_{ab} + \epsilon_{\Delta \Phi} \end{split}$$

Differencing two single differences yields:

$$\nabla \Delta \rho_{ab}^{jk} = \vec{r}_{ab}^{jk} + \epsilon_{\nabla \Delta \rho}$$
$$\nabla \Delta \Phi_{ab}^{jk} = \vec{r}_{ab}^{jk} + \lambda N_{ab}^{jk} + \epsilon_{\nabla \Delta \Phi}$$

Carrier Triple Differencing

Differences the double differences at multiple epochs of time

Two double differences are calculated at different periods:

$$\begin{split} \nabla \Delta \rho_{ab}^{jk}(t_0) &= \vec{r}_{ab}^{jk}(t_0) + \epsilon_{\nabla \Delta \rho} \\ \nabla \Delta \rho_{ab}^{jk}(t_1) &= \vec{r}_{ab}^{jk}(t_1) + \epsilon_{\nabla \Delta \rho} \\ \nabla \Delta \Phi_{ab}^{jk}(t_0) &= \vec{r}_{ab}^{jk}(t_0) + \lambda N_{ab}^{jk}(t_0) + \epsilon_{\nabla \Delta \Phi} \\ \nabla \Delta \Phi_{ab}^{jk}(t_1) &= \vec{r}_{ab}^{jk}(t_1) + \lambda N_{ab}^{jk}(t_1) + \epsilon_{\nabla \Delta \Phi} \end{split}$$

The differenced double differences are:

$$\nabla \Delta \rho_{ab}^{jk}(t_1) - \nabla \Delta \rho_{ab}^{jk}(t_0) = \Delta \vec{r}_{ab}^{jk}$$
$$\nabla \Delta \Phi_{ab}^{jk}(t_1) - \nabla \Delta \Phi_{ab}^{jk}(t_0) = \Delta \vec{r}_{ab}^{jk}$$

Therefore (assuming no cycle slip):

$$\Delta \nabla \Delta \; \Phi^{jk}_{ab} = \Delta \nabla \Delta \rho^{jk}_{ab}$$

Single Difference Position Equations

7

• Single Difference

•
$$\Delta r^{j} = \left(uv_{x}^{j}\right)\Delta x_{ab} + \left(uv_{y}^{j}\right)\Delta y_{ab} + \left(uv_{z}^{j}\right)\Delta z_{ab}$$

•
$$\Delta r^{j} = \vec{r}_{ab}^{j} = \begin{bmatrix} uv_{x}^{j} & uv_{y}^{j} & uv_{z}^{j} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{ab}$$

- Single Difference Position Solution:
 - Requires 4 common SVs to solve

$$\Delta \rho_{ab}^{j} = \begin{bmatrix} uv_{x}^{j} & uv_{y}^{j} & uv_{z}^{j} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{ab} + c\delta t_{ab} + \epsilon_{\Delta \rho}$$

$$\Delta \Phi_{ab}^{j} = \begin{bmatrix} uv_{x}^{j} & uv_{y}^{j} & uv_{z}^{j} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{ab} + c\delta t_{ab} + \lambda N_{ab}^{j} + \epsilon_{\Delta \Phi}$$

E ac J

Double Difference Position Equations

Double Difference

$$\Delta r^{j} - \Delta r^{k} = \begin{bmatrix} uv_{x}^{j} & uv_{y}^{j} & uv_{z}^{j} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{ab} - \begin{bmatrix} uv_{x}^{k} & uv_{x}^{k} & uv_{x}^{k} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{ab}$$

- Double Difference Position Solutions:
 - Still requires 4 common SVs to solve (need one common SV to form 3 DD measurements):

$$\nabla \Delta \rho_{ab}^{jk} = \begin{bmatrix} \Delta u v_x^{jk} & \Delta u v_y^{jk} & \Delta u v_z^{jk} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{ab} + \epsilon_{\nabla \Delta \rho}$$
$$\nabla \Delta \Phi_{ab}^{jk} = \begin{bmatrix} \Delta u v_x^{jk} & \Delta u v_y^{jk} & \Delta u v_z^{jk} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{ab} + \lambda N_{ab}^{jk} + \epsilon_{\nabla \Delta \Phi}$$

Time Difference Carrier Phase (TDCP)

- Somewhat related to the triple difference is what is known as the time difference carrier phase
 - This can be done from multiple measurements
 - Original Signal
 - Contains drift due to change in atmospheric errors
 - Single Difference
 - Contains clock drift
 - Double Difference

Carrier Phase DGPS (RTK)

- local reference station required
- solve for integer ambiguity
- track carrier phase
- phase at reference antenna is broadcast to user
- positioning software calculates \overline{R}
- 3-D accuracy^{*} = 2 cm

*Actual depends on baseline length (1 cm + 1 ppm)

More on RTK

- RTK Real Time Kinematic GPS
- RTK GPS calculates the relative position, *R*, between a rover and fixed base station to centimeter accuracy
- Integer ambiguity (IA), *N*, must be calculated
 - Many published algorithms available
 - Can take 20 minutes
 - New techniques utilizing L1 and L2 (wide laning) are nearly instantaneous

$$\lambda = \frac{c}{f} = 19 \text{ cm for L1}$$

$$R = \left(N + \frac{\theta_2 - \theta_1}{360^\circ}\right)\lambda$$
L1 f=1.5 GHz

Dynamic base RTK (DRTK)

- A *Real-Time Kinematic* (RTK) system is a form of *differential GPS* (DGPS)
 - A roving receiver in close proximity to a static base receiver (<50 km) differences measurements from both to cancel out common errors and estimate a high accuracy *relative position vector* (RPV)
 - The RPV is added to the known location of the base to produce a high accuracy global position
- *Dynamic base RTK* (DRTK) removes the constraint of having a static base station
 - An accurate RPV can be obtained, but global position accuracy is lost

- The number of whole carrier cycles between a receiver and satellite
 - Carrier based DGPS technique utilizing the accuracy of a receiver's phase measurement
 - Estimates number of carrier cycles, N
 - Single frequency Employs estimation scheme, can take up to 30 minutes
 - Dual frequency A wide lane approach can limit the possibilities of *N*, drastically reducing search time
 - Triple frequency *N* can be nearly instantaneously solved using a third frequency, such as L5, GLONASS, or GALILEO
 - Cycle slip is a sudden shift in the value of N when communication between satellite and receiver is compromised
 - Causes errors in RTK position fix

- Since Ionosphere has been removed from single difference (SD), the SD pseudoranges and SD carrier measurements can be combined
 - No fear of code-carrier divergence (since lonosphere has been removed)
 - Similar to dual frequency ionosphere-free pseudorange/carrier smoothing

Carrier Model

$$\phi_{ab}(t_0) = \phi_a(t_0) - \phi_a(t_0) = \Delta \phi_0 + N_{ab}$$

• Can use the carrier model to attempt to estimate the integer ambiguity and distance between receivers:

$$\Delta \phi_i = \begin{bmatrix} \cos(\theta_i) \\ \lambda \end{bmatrix} \begin{bmatrix} d \\ N_i \end{bmatrix}$$

$$\Delta \Phi_i = \begin{bmatrix} \cos(\theta_i) & -\lambda \end{bmatrix} \begin{bmatrix} d \\ N_i \end{bmatrix}$$

• Therefore, assuming *d* and *N* are constant, we can use least squares:

$$\begin{bmatrix} \hat{d} \\ \hat{N}_i \end{bmatrix} = (H^T H)^{-1} \Delta \Phi_i$$

• Can predict the accuracy of the estimates using our covariance matrix:

$$P = \sigma_{\Delta\Phi}^2 (H^T H)^{-1} = \begin{bmatrix} \sigma_{\hat{d}}^2 & \# \\ \# & \sigma_{\hat{N}_i}^2 \end{bmatrix}$$

• If we look at the integer ambiguity estimation error term in the covariance matrix:

$$\sigma_{\widehat{N}_i}^2 = \sigma_{\Delta\Phi}^2 (IDOP)^2$$

• Can show that:

$$(IDOP)^{2} = \frac{\cos^{2}(\theta_{1}) + \cos^{2}(\theta_{0})}{(\cos(\theta_{1}) - \cos(\theta_{0}))^{2}}$$

$$(IDOP)^{2} = \frac{\cos^{2}(\theta_{1}) + \cos^{2}(\theta_{0})}{(\cos(\theta_{1}) - \cos(\theta_{0}))^{2}}$$

- For small IDOP, need cos(θ₁) cos(θ₀) to be large
 - Must wait for SV motion
 - Baseline distance effects time to get sufficient $\Delta \theta$
 - Alternatively, can artificially induce with "antenna swap"

- Could just compare pseudorange with carrier measurement
 - However as discussed earlier in the class you have code-carrier divergence
 - Could utilize dual frequency to get ionosphere free psuedorange and carrier measurement
 - Measurements are more noisy
 - With DGPS, can compare the single (or double) differenced psuedorange & carrier measurements:

$$\Delta \rho_{ab}^{j} = \vec{r}_{ab} + ct_{ab} + \epsilon_{\Delta \rho}$$
$$\Delta \Phi_{ab}^{j} = \vec{r}_{ab} + \lambda N_{ab}^{j} + ct_{ab} + \epsilon_{\Delta \rho}$$

• Comparing the pseudorange & carrier measurements:

$$\Delta \rho_{ab}^{j} = \Delta r^{j} + ct_{ab} + \epsilon_{\Delta \rho}$$
$$\Delta \Phi_{ab}^{j} = \Delta r^{j} + \lambda N_{ab}^{j} + ct_{ab} + \epsilon_{\Delta \rho}$$

• Therefore:

$$\widehat{N}_{ab}^{j} = \left[\frac{\Delta \Phi_{ab}^{j} - \Delta \rho_{ab}^{j}}{\lambda}\right]_{rounded}$$

- What is the problem?
 - The error (1 σ) on $\Delta \rho$ is 0.5-1 meters
 - Corresponds to over 5 cycles of N (or 15 cycles at 3σ)
 - No lonosphere divergence
 - Could average down over time

• Could attempt to estimate N as part of the position solution

$$\Delta \rho_{ab}^{j} = \vec{r}_{ab} + ct_{ab} + \epsilon_{\Delta \rho}$$
$$\Delta \Phi_{ab}^{j} = \vec{r}_{ab} + \lambda N_{ab}^{j} + ct_{ab} + \epsilon_{\Delta \rho}$$

- Have 5 unknowns $(\vec{r}_{ab}, t_{ab}, and N_{ab}^{j})$ and 2 equations
 - Each additional SV adds 2 equations and 1 more unknown (N)
 - With 4 common SVs (8 equations, 8 unknowns)
 - With 5 common SVs (10 equations, 9 unknowns)
 - With 6 common SVs (12 equations, 10 unknowns)

• What about using additional frequencies? $\Delta \rho_{L1} = \vec{r} + ct_{ab} + \epsilon_{\Delta \rho}$ $\Delta \Phi_{L1} = \vec{r} + \lambda N_{L1} + ct_{ab} + \epsilon_{\Delta \rho}$

$$\Delta \rho_{L2} = \vec{r} + ct_{ab} + \epsilon_{\Delta \rho}$$
$$\Delta \Phi_{L2} = \vec{r} + \lambda N_{L2} + ct_{ab} + \epsilon_{\Delta \rho}$$

- So we add 2 measurements and only one additional unknown
 - Obviously more equations with less unknowns helps in estimation
 - With 4 common SVs (16 equations and 12 unknowns)

 What about "codeless" frequencies (i.e., legacy L2)

$$\Delta \rho_{L1} = \vec{r} + ct_{ab} + \epsilon_{\Delta \rho}$$

$$\Delta \Phi_{L1} = \vec{r} + \lambda N_{L1} + ct_{ab} + \epsilon_{\Delta \rho}$$

$$\Delta \Phi_{L2} = \vec{r} + \lambda N_{L2} + ct_{ab} + \epsilon_{\Delta \rho}$$

- Doesn't seem to be useful since adding one more unknown and only one more equation.
 - With 4 common SVs (12 equations and 12 unknowns)
 - However...

• Recall what happens when you multiply two sine waves:

 $\sin(\omega_{L1}t) \times \sin(\omega_{L2}t) = \frac{1}{2}\sin([\omega_{L1} + \omega_{L2}]t) + \frac{1}{2}\sin([\omega_{L1} - \omega_{L2}]t)$

- Therefore you get two new carrier frequencies (and two new resulting wavelengths)
 - The smaller wavelength is called the narrow-lane
 - The larger wavelength is called the wide-lane
- Interestingly, you don't actually have to physically multiply the signals
 - You get the same mathematical advantage simply by using both frequencies in the estimation process

Multi-Frequency Benefits

Combination	Wide Lane Wavelength (cm)	Narrow Lane Wavelength (cm)
L1-L2	86	10.70
L1-L5	75	10.89
L2-L5	586	12.47

- Dual frequency L1-L2 combination provides a wide lane near the accuracy of the single difference pseudorange (0.5-1 meter)
 - Just requires a few measurements to average to determine N
- Dual frequency L2-L5 provides instantaneous determination of N

RTK Integer Ambiguity Resolution

- Additional frequency drastically improves time to estimate N
 - Results shown are L1 vs L1-L2 codeless

• Additional frequency doesn't drastically improve accuracy (some averaging)

GPS Position Accuracy (1σ)

- Military Stand Alone (No SA) ~3m,
 - global coverage
- Civil Stand Alone (w/ SA) ~30m,
 - global coverage
- Code Phase Differential (DGPS) ~0.1m-1m
 - not all are global, but almost full US coverage
 - local reference station ~0.3m
 - Coast Guard differential corrections ~ 0.5m
 - WAAS ~1-3m
 - Nation Wide DGPS (NDGPS) ~ 1-3m
 - OmniStar VBS (~1m) & Omnistar HP (~10cm)
 - JohnDeere Starfire ~10cm
- Carrier Phase Differential (RTK) ~2cm,
 - local (~10km) coverage
 - High Accuracy (HA) NDGPS ~10 cm

- Attempt to get carrier like position accuracy without base station
- Correct several source of error first:
 - Ideally, use dual frequency to remove ionosphere error
 - Use more precise ephemeris
 - https://igs.org/products/
 - Estimate troposphere error
 - Estimate as Tz*m
 - Where m is the elevation mapping

• Generate Ionosphere Free Pseudorange:

$$\rho_{IF} = \frac{f_{L1}^2}{(f_{L1}^2 - f_{L2}^2)} \rho_{L1} - \frac{f_{L2}^2}{(f_{L1}^2 - f_{L2}^2)} \rho_{L2} = 2.546\rho_{L1} - 1.546\rho_{L2}$$

- Noisier measurement:

$$\sigma_{\rho_{IF}} = \sqrt{(2.546)^2 \sigma_{\rho_{L1}}^2 + (1.546)^2 \sigma_{\rho_{L2}}^2} \approx 3\sigma_{\rho}$$

• Similarly, generate lonosphere free carrier measurement:

$$\Phi_{IF} = \frac{f_{L1}^2}{(f_{L1}^2 - f_{L2}^2)} \Phi_{L1} - \frac{f_{L2}^2}{(f_{L1}^2 - f_{L2}^2)} \Phi_{L2} = 2.546 \Phi_{L1} - 1.546 \Phi_{L2}$$

Precise Point Positioning (PPP)

• Use the lonosphere free pseudorange and carrier measurements:

$$\rho_{IF} = \vec{r} + c\delta t_u + T_z \cdot m(el) + \epsilon_{\rho}$$

$$\Phi_{IF} = \vec{r} + c\delta t_u + T_z \cdot m(el) + \lambda N_{IF} + \epsilon_{\Phi}$$

- Must estimate position (x,y,z), clock bias, N_{IF} , and Tz
 - Need at least 5 SVs (10 equations and 10 unknowns)
 - If static, Tz changes a few cm/hour
 - Note: N_{IF} is no longer an integer
- Can achieve cm-level accuracy (~10 cm)
 - May require 15-30 minutes to converge in static mode
- Single frequency PPP is decimeter accurate (10-50 cm) with similar convergence rates

- With 3 antennas (mounted rigidly on a body) can resolve roll, pitch, and yaw
- Accuracy is $\sigma \approx \frac{\sigma_{\Delta E}}{L}$
- Can use one common clock for all three receivers
 - Still have a line bias (however it is constant)

GPS Attitude

$\Delta \Phi = b^T A \hat{s} + \lambda N + B + \nu$

- $B \Rightarrow$ Line Bias
- $A \Rightarrow$ Direction Cosine Matrix from ENU to body frame
- $N \Rightarrow$ Integer Ambiguity
- $v \Rightarrow Noise/Error$
- $b \Rightarrow$ Baseline vector (in body frame)
- $\hat{s} \Rightarrow$ Known unit vector in ENU frame
- Solve for A using cost function
 - Requires iterative search technique
 - Known as Wahba's Problem
 - Obtain roll, pitch, yaw (ϕ, θ, ψ) from A

GPS Attitude

No Reference Station Required Accuracy Depends on Antenna Spacing

3 antennas \Rightarrow roll, pitch, yaw accuracy = 0.1° (w/ 2m baseline)

Differential GPS

MECH 5970/6970 Fundamentals of GPS