
Simple Yaw Vehicle Model (DRAFT)
In order to derive the yaw dynamics model, you need to sum forces in the lateral direction and sum
moments about the center of gravity of the vehicle to find equations of motion for yaw accerelation
(𝜓̈𝜓) and lateral acceleration (𝑉𝑉𝑦̇𝑦). Then combine the equations to develop a transfer function with
input steer angle (𝛿𝛿) and output yaw (𝜓𝜓), or alternatively you can place the equations into a state
space format. Use the notes below to develop your model. Derive the system model for the
autopilot system using the modeling steps and Newton’s laws of motion.

The tire force is related to the lateral velocity at the tire through the following approximation:

𝐹𝐹𝐹𝐹 =
−𝐶𝐶
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐

× 𝑉𝑉𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

You must include centripetal acceleration when applying Newton’s lateral equations:

Σ𝐹𝐹𝑦𝑦 = 𝑚𝑚𝑦̈𝑦 = 𝑚𝑚�𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝜓̇𝜓 + 𝑉𝑉𝑦̇𝑦�

Note that 𝑉𝑉𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the lateral velocity in the tire frame (as shown in the figure below):

The velocity at the tire (𝑉𝑉𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) can be found by recalling that 𝑉𝑉�⃗𝐵𝐵 = 𝑉𝑉�⃗𝐴𝐴 + 𝜔𝜔��⃗ x 𝑟𝑟𝐴𝐴/𝐵𝐵.

A new “run_car” script has been developed for testing your controllers in simulation for either the
Lincoln MKZ or the Indianapolis Autonomous Challenge (IAC) Dallara Indy Lights vechicle. The
new script will allow you to select predefine routes used for testing the controller. You can also
test your control capability with constant and sinusoidal desired headings or lateral position
references.

Note – run_car.p includes an inner loop steering feedback control system that you can decide to
include or not. Should you decide to include it, you will need to identify the inner loop steering
dynamics (running the steering system while stopped, i.e. Vel=0, is a good way to do this). You
may also use the homogeneous response (i.e. 𝛿𝛿 = 0) to isolate the lateral vehicle response from
the steering response to validate your vehicle yaw dynamics.

The table below contains the approximate values for the parameters needed to model the yaw
dynamics of the car.

 Table 1: Parameters for the Dallara Indy Lights Model

Parameter Name Units Value
a Front CG distance M 1.72
b Rear CG distance M 1.25
Cf Front Tire Cornering Stiffness N/rad 143,000
Cr Rear Tire Cornering Stiffness N/rad 143,000
Iz Yaw Mass Moment of Inertia Kgm2 1200
m Vehicle Mass Kg 720
N Steering Column Gear Ratio 12

 Table 2: Parameters for the Lincoln MKZ Model

Parameter Name Units Value
a Front CG distance m 1.257
b Rear CG distance m 1.593
Cf Front Tire Cornering Stiffness N/rad 120,000
Cr Rear Tire Cornering Stiffness N/rad 184,600
Iz Yaw Mass Moment of Inertia Kgm2 4292
m Vehicle Mass kg 1856
N Steering Column Gear Ratio 14.8

Note that the combination of rack and pinion as well as the steering kinematics for the wheel
results in an overall steering ratio of N for the car (i.e. the motors turns N degrees for 1 degree
the tires turn). The steer angle at the tire is measured by using a quadrature optical encoder
(similar to the data sheet provide) that has 500 pulses per revolution. Reading both the high and
low transitions of the A and B channels of the encoder results in a resolution of 2000
counts/revolution and when combined with the steering ratio results in a measure resolution of
the steering wheel of 24,000 counts/revolution (or 0.015 deg). The angle reported by
run_IAC_car.p is the steer angle at the tire. Be sure to apply the correct scaling if analyzing the
motor/steering wheel angle.

You may also use run_car.p to evaluate the performance of your control on real-world scenarios.
You can choose a trajectory by entering 1, 2, or 3 as the last input to run_IAC_car.p (example
code). The function will return a “waypoint” for you to steer the vehicle towards to track a path.
The figure below shows a series of waypoints that the vehicle will attempt to drive to follow a
path. The red X is the waypoint that the vehicle should drive towards now (this is the point returned
by run_car.p). The heading error (𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒) is the difference between the current heading and the
desired heading towards the red X. The heading error can be calculated as shown in the equation
below.

𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒 = tan−1 �
𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐸𝐸
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑁𝑁

� − 𝜓𝜓

Note: for the arctan, use atan2. Also, this heading error, 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒, needs to be wrapped (i.e. limited) to
± 180 degrees using wrap_angle.m function provided on canvas or the class website. Be sure to
record the vehicle position returned by run_car.p to evaluate the effectiveness of the controller.
Using the instructions provided you may want to plot the vehicle position on Google Earth.

Note that lateral position can be defined from North or from any arbitrary line by rotating the car
into that frame by the desired heading (ψdes) as shown below. The GPS heading provided will be
measured from North in radians.

Alternatively you can measure the lateral error to the waypoints and control lateral vehicle position
knowing that:

𝑦̇𝑦𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑥𝑥 sin(𝜓𝜓) + 𝑉𝑉𝑦𝑦cos (𝜓𝜓)

x

N

ѱdes

	Σ,𝐹-𝑦.=𝑚,𝑦.=𝑚,,𝑉-𝑐𝑎𝑟.,𝜓.+,,𝑉-𝑦...

