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1. Scope 
In an open environment, GPS provides a good estimation of vehicle position.  Numerous 
improvements over the basic GPS framework have provided accuracies in the centimeter 
range.  However, blockages of the GPS signal create significant problems for the 
positioning solution.  In so-called “urban canyons”, GPS signals are blocked by the 
presence of tall buildings.  Similarly, heavy foliage in forests can block line-of-sight to 
the satellites.  Because of these problems, a broader approach is needed that does not rely 
exclusively on GPS.  This project takes into account three key technology areas which 
have each been individually shown to improve positioning solutions where GPS is not 
available or is hampered in a shadowed environment.  First, terrain-based localization can 
be readily used to find the vehicle’s absolute longitudinal position within a pre-mapped 
highway segment – compensating for drift which occurs in dead-reckoning system in 
long longitudinal stretches of road.  Secondly, visual odometry keys upon visual 
landmarks at a detailed level to correlate position to a (visually) premapped road segment 
to find vehicle position along the roadway. Both of these preceding techniques rely on 
foreknowledge of road features – in essence, a feature-enhanced version of a digital map. 
This becomes feasible in the “connected vehicle” future, in which tomorrow’s vehicles 
have access to quantities of data orders of magnitude greater than today’s cars, as well as 
the ability to share data at high data rates. The third technology approach relies on radio 
frequency (RF) ranging based on DSRC radio technology. In addition to pure RF ranging 
with no GPS signals, information from RF ranging can be combined with GPS range 
measurements (which may be inadequate on their own) to generate a useful position. 
Based on testing and characterization of these technologies individually in a test track 
environment, Auburn will define a combined Integrated Positioning System (IPS) for 
degraded GPS environments, which will also incorporate ongoing FHWA EAR work at 
Auburn in fusion of GPS and on-board sensors. This integrated approach will blend the 
strengths of each technique for greater robustness and precision overall. This research is 
expected to be a major step forward towards exceptionally precise and reliable 
positioning by taking advantage of long-term trends in on-board computing, connected 
vehicles, and data sharing. 

1.1 Sarnoff Corporation Contribution 

The scope of Sarnoff’s work under Year One of this project is the evaluation of their 
Visual Aided Navigation System for providing highly accurate positioning for vehicles.  
As such there are 3 major tasks: 

(1) Evaluate and provide a survey of Sarnoff’s existing Visual Navigation results 

(2) Integrate Visual Navigation system on Auburn Engineering’s Sonata vehicle 
test platform and collect test data using the integrated system. 

(3) Process and analyze the data from the tests and evaluate the performance and 
recommend any improvements and optimizations. 
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1.2 The Pennsylvania State University Contribution 

Previous work at Penn State has shown that particle filters can be used for terrain-based 
localization, and the approach has proven to work offline for defense-grade sensors on 
specific road sections. The scope of Penn State’s contribution to the project involves an 
extension of the above algorithms. Specifically, Penn State’s contribution in the current 
project consists of the following three tasks: 

(1) Developing the proven approach so that it can be used for localization with 
commercial-grade sensors, rather than defense-grade sensors, 

(2) Modifying and optimizing the particle filter algorithm, and exploring alternative 
approaches, so that localization can take place online (in real-time) rather than 
offline, and 

(3) Modifying and optimizing the algorithms as well as terrain map representation, so 
that the localization algorithms work over a large network of roads, rather than a 
small section of a single road alone. 

1.3 Kapsch TrafficCom Inc. Contribution 

Kapsch will investigate the accuracy of close proximity calculations available from the 
5.9 GHz DSRC communications channel.  A great deal of information related to 
positioning can be inferred from the DSRC communications channel.  Basic calculations 
may provide a location region achieved through the channel ranging calculations to more 
precise lane based proximity determinations through advanced analysis of the 
communications channel.  Kapsch will research a combination of both approaches 
through available data defined in the IEEE 802.11p standard for 5.9 GHz communication 
and through scientific Radio Frequency (RF) analysis. 

Kapsch will support Auburn for the characterization of the ability to utilize the 5.9 GHz 
DSRC communication channel for next generation non-GPS localization services.  The 
Received Signal Strength Indication (RSSI) in-conjunction with other aspects of the 
DSRC communications channel will be analyzed and a method developed for signal 
ranging. Kapsch does not believe RSSI ranging techniques will fully meet the desired 
localization needs.  Year 2 will yield more advanced algorithms and DSRC equipment 
capable of providing lane level localization from the DSRC communications channel.  
This task includes the following sub-tasks: 

(1) System Engineering and Deployment of DSRC Infrastructure at the Auburn Test 
Track 

(2) Lab testing of DSRC signal ranging solution 

(3) On-site testing of DSRC signal ranging solution 

(4) Analysis of DSRC signal ranging test results 

2. Current Progress 
Auburn University has hosted a kick off meeting in which Sarnoff, Kapsch, Penn State, 
and Auburn gave an overview of their respective systems and technology.  Since that 
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time, Auburn students have been delegated to interface specifically with those partners.  
Chris Rose will be interfacing with Sarnoff, John Allen with Kapsch, and Jordan Britt 
with Penn State.  Each partner has been contacted by their corresponding Auburn student 
lead, and contact information has been exchanged to facilitate in quick and effective 
communication.  Additionally, Auburn has provided Penn State with Xbow IMU440 data 
so that Penn State can begin work on sensor characterization. 

2.1 Sarnoff Progress 

2.1.1 Distributed Aperture Visual Odometry 

The localization software utilizes Sarnoff’s Multi-Camera Visual Odometry technology 
to provide precise estimates of the vehicle’s location and orientation in the world. The 
principle of operation is as follows. Distinctive image features are matched between the 
left and right images of a stereo pair at each frame time.  Triangulation provides 3D range 
estimates to the corresponding points in the scene. These features are tracked over time, 
and their motion relative to one another is measured. From these 2D image features and 
corresponding 3D scene points the system calculates a precise estimate of the cameras’ 
own location and pose, in 6 degrees of freedom. Sarnoff’s system uses two or more stereo 
cameras to observe a wide extent of the scene in 3D.  While some of the cameras may be 
occluded, the others maintain visual odometry. Pose estimation algorithms try to 
minimize the errors across all the distributed aperture camera views simultaneously. 

2.1.2 Local Kalman Filter 

A Kalman filter combines these solutions with rotation and acceleration readings from 
the IMU. Our approach uses MEMS grade low-cost IMUs for integration. Using the 
results of visual odometry Sarnoff is able to accurately model the bias of the 
accelerometers and the gyro readings enabling successful inclusion of this information 
within the localization system. When fused with GPS (if available), the result is a geo-
located position and pose. Sarnoff has shown experimentally that the visual odometry has 
a drift rate of 0.1% of distance traveled in GPS denied environments. 

2.1.3 Landmark Matching  

Sarnoff’s Landmark Matching technology is used for correcting long-term drift in the 
absence of GPS.  As the vehicle navigates complex terrain, a set of distinctive image 
features, visual landmarks, and their 3D locations are stored in a database [7]. In this 
system, Sarnoff defines a landmark as a feature point in the scene. Specifically, it is 
extracted from the image using a Harris corner detector. For each landmark, it is 
associated with three elements: (1) a 3D-coordinates vector representing its 3D location, 
(2) a 2D-coordinates vector representing its 2D location in the image and (3) a feature 
descriptor that characterizes its appearance. Here, the Histogram of Oriented Gradients 
(HOG) descriptor is used.  If the vehicle returns to the same area in the course of the 
exercise, the software attempts to match the stored feature set with a newly observed set 
by first matching the features and then verifying the 3D geometry of the scene. A 
successful match results in a global pose correction. This gives the system the ability to 
maintain the robot’s absolute location for extended periods of time even without GPS.  
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The landmark database is built in real time and the system opportunistically provides 
matches for 6DOF pose correction. 
Two images are shown in Figure 1.  Both images show an overhead view of a road which enters into a patch of trees.  The image on 
the left shows the red ground survey points on the exterior of the road.  More sporadic yellow and blue lines from a GPS/INS solution 
follow the red survey points.  Under the patch of trees, the GPS/INS solution becomes much more sporadic and indistinguishable as 
following the road due to GPS blockage.  The image on the right shows the same red ground survey points.  Blue and purple lines, 
which represent the visual odometry and IMU solution, follow the survey points much more closely on both the open road and under 
the canopy of the trees, which shows the benefit of the vision/INS solution in a difficult GPS environment. 

 
Figure 1. (Left) Track (yellow) estimated by fusing low cost MEMs IMU data with Satellite corrected GPS 
data shows unreliability of GPS near a tall tree cluster in contrast to ground survey points shown in red.  
(Right) Shows the results achievable when the same unreliable GPS information is fused with Visual 
Odometry and the low cost MEMs IMU (purple). 

2.1.4 Distributed Multi-Vehicle Localization Filter  

Additionally Sarnoff has the capability to use Inter-Site RF Ranging to further improve 
the results of our GPS-denied localization algorithms.  The Inter-Site Ranging is 
performed by a micro-controller that obtains measurements to other radios in range to the 
system. The controller will simultaneously obtain ranging from other observers to the 
current observers and their locations. This forms the basis for a distributed Kalman filter 
for navigation. In simulations Sarnoff has shown that they can improve the localization 
accuracy by a factor of √N where N is the number of ranging radios in the vicinity. 
Sarnoff has evaluated the use of UWB (ultra-wide-band) and Chirped RF radios for 
ranging in prior implementations. 

 
 

 

 

 

 

 



Quarterly Report 
1/26/09 

Next Generation Vehicle Positioning Techniques for GPS-Degraded Environments to Support 
Vehicle Safety and Automation Systems 

FHWA BAA DTFH61-09-R-00004 

The graph below in Figure 2 shows three plots – visual odometry drift in red and internode range measurements in blue and green.  
The x-axis of the graph is time in seconds ranging from 0-220 s, while the y-axis of the graph is the Averaged relative error in meters 
ranging from 0 to 0.5 meters.  The internode range measurements start around 0.2 m, decrease to less than 0.1 m around 50 s, and 
increase slightly to 0.1 mand 0.2 m each at 220 s.  The visual odometry drift in red is about 0.3 m at time 0 and gradually increases to 
0.5m at time 220 seconds.  The error and drift of the system is shown to be reduced when internode range measurements are available. 

Time (sec)  
Figure 2. Distributed Navigation exploits the collaborative nature of team-oriented operations to provide 
substantial performance improvements.  Error of the system is reduced when Visual Odometry drift (red 
curve) is constrained with inter-node range measurements (blue and green curves).   

2.1.5 Visual Aided GPS-denied Systems 

Sarnoff has implemented the Visual Aided GPS-denied system on a variety of platforms, 
including vehicles, robots and even body worn systems.  With minimal tuning of 
parameters the same algorithms run on all platforms providing accurate localization for a 
variety of projects and circumstances.  As shown in Figure 3, Sarnoff’s large test-bed is 
an instrumented van which can be used to do long range tests as well as test performance 
at higher speeds. 
Two images are shown in Figure 3.  On the left image, a view of the multi-camera system is shown looking up towards the top of the 
van.  Cameras are mounted on a roof rack that extends around the edge of the top of the vehicle.  In the right image, the same van is 
shown but with a view looking from above the van down towards the front mounted cameras located above the driver’s and 
passenger’s seats. 

  
Figure 3: Multi-camera system mounted on a van.  The system include 2 stereo pairs, 4 monocular cameras, 
IMU and GPS 
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2.1.6 Evaluation 

The van system allows Sarnoff to collect long distance sequence in urban environments.  
The sequence showcased in Figure 4 is a mile plus long loop through downtown 
Princeton, NJ, driven several times.  This loop has several GPS challenging areas, 
including an overpass and large trees and buildings.  Unfortunately since this a public 
area Sarnoff does not have this area instrumented and cannot provide accuracy 
measurements.  In this experiment Sarnoff was looking for loop closure and performance 
in the urban environment as well as ensuring their van platform was functioning properly. 
Figure 4 shows two images.  The left image shows an aerial view of downtown Princeton.  On the image are green and red lines 
representing vision odometry + GPS and GPS only, respectively.  The green line forms a rectangular shape as the car is driven around 
a block.  The red line follows a similar shape but is more sporadic than the green line.  In the right image, a plot of the trajectories of 
the van is shown.  The red line forms a rectangular shape with smoothed corners.  The blue lines attempt a similar shape but with 
much greater offset from the red line and form a much more unlikely shape for a road path.  Both images show the benefit of vision 
and odometry with GPS over GPS alone. 

 
Figure 4. (Left) Google Earth map of the trajectory driven by the van. Red is GPS only and Green is 
Visodo + GPS  (Right) Just the trajectories of the van. Blue is GPS only and Red is Visodo + GPS. 

 

2.2 Penn State Progress 

Currently, Penn State is working on Task (1), which involves sensor error 
characterization as well as determination of the relationship between localization 
accuracy and sensor models, with focus on commercial-grade sensors. Milestones for Q1, 
which included sensor characterization and terrain data collection, are well on their way 
to completion.  

Auburn University has collected data from the Xbow IMU 440 as per the test protocol 
requirements given in Appendix 1 for sensor characterization.  

Previous work at Penn State has shown that the limiting value of localization accuracy 
achievable with the developed particle filter algorithms is given by: 

 

where, 
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  = Localization accuracy (in meters), 

 Q = Process noise (i.e. variance in odometry) 

 R = Measurement noise (i.e. inertial sensor variance), and  

 C = Variation in inertial signal (i.e. variations in road pitch) 

 2.2.1 The Need for Sensor Characterization 

One of the primary goals of the current work is to determine the minimum sensor 
accuracy required to obtain a certain level of localization accuracy. In order to do this, it 
is necessary to know the characteristics of the inertial sensors employed for measuring 
the road disturbances such as road pitch, roll and yaw.  The sensor characteristics are 
indicative of the various noise components that corrupt the true measurement data. These 
noise components are errors arising from sources such as bias instability, angle random 
walk, rate ramp, quantization etc. The sensor characterization will allow the 
determination of these individual error components and their contribution towards the 
measurement noise ( ). In this manner, sensor characterization enables the determination 
of inertial sensor variance ( ), which further helps determine the localization accuracy 
( ). Working backwards, the same approach also enables one to use the desired 
localization accuracy to determine the necessary sensor accuracy, and hence the required 
sensor characteristics. 

2.2.2 Methods for Sensor Characterization 

There are numerous ways to perform sensor characterization, i.e. identify the various 
components that cause the measured value to be different from the true value of the 
variable. The sensor model can be characterized using the following steps, which are 
applicable for any generic sensor: 

(1) Literature review to identify potential error sources: Measurements from any sensor 
may typically be affected by a subset of the entire population of possible error sources. 
Consequently, it may be necessary to include only a few specific error sources in their 
sensor noise models, and not others. Literature pertaining to noise modeling of inertial 
measurement units (IMUs) was reviewed [1],[2] and it was found that potential stochastic 
noise sources for IMUs include bias instability, angle random walk, rate random walk, 
and, in some commercial-grade sensors, quantization error. 

(2) Data collection to verify error sources and characterize sensors: Data is collected 
across multiple runs (or alternatively, over long-range measurements) to obtain estimates 
for deterministic noise sources (scale factor, bias etc.) using the least-squares method, as 
well as for stochastic error sources using Allan variance analysis [3]. The Allan variance 
analysis is currently in progress using the data collected at Auburn. 

(3) Generating the sensor noise model using sensor characteristics: It is known that 
various error sources have different power spectral densities. E.g. bias instability is 
essentially flicker noise. The sensor characteristics obtained from the previous step will 
be used to generate the sensor noise models for these error sources. In other words, the 
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sensor characteristics will be used to generate the differential equations that describe the 
behavior of each of the error sources. 

In order to perform sensor characterization, a test protocol has been created at Penn State 
for collecting the requisite data. The test protocol has been utilized at Auburn University 
to collect data for the stochastic error source determination for the Xbow IMU 440 
CA200. The test protocol is included in Appendix 1. Penn State is currently using the 
data to obtain the characteristics of the sensor. 

To summarize, the data collected in these steps is being processed using Allan variance 
methods to determine individual error sources [4]. These steps help in generating the 
noise model for the sensors.  

2.2.3 Noise modeling using sensor characteristics 

Once the sensor characteristics (i.e. bias instability, angle random walk etc.) are known, 
they can be used to generate the noise model for the sensor. The power spectral densities 
(PSD) for the error sources are utilized to determine the differential equations that 
describe the behavior of the error sources. Differential equations for error sources with 
non-rational power spectrums are approximated by other processes [1]. For example, the 
bias instability is essentially flicker noise, so the PSD is a function of . Thus, bias 

instability is modeled as a first order Gauss-Markov process. The differential equation 
describing the behavior of bias instability is given by: 

 

where, 

 b = Bias (as a function of time), 

 Tc = Correlation time 

 B = Sensor characteristic obtained from Allan variance analysis 

  = White noise 

Similarly, differential equations for other error sources have also been determined. 

2.2.4 Determination of localization accuracy based on sensor 
characteristics 

Further, these sensor characteristics can be used to determine the sensor variance ( ), 
thus yielding a way of determining the localization accuracy. The various error sources 
and their corresponding differential equations are used to generate a single differential 
equation whose power spectral density is equivalent to the power spectral density of each 
of the error sources combined. For example the differential equations that describe the 
behavior of flicker noise (bias instability, ), angular rate random walk ( ) and rate 
ramp ( ) can be combined using a single variable as follows: 
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and the differential equation for is generated using the individual differential 
equations of ,  and  to yield: 

 

where  denotes the th derivative with respect to time, the coefficients  and  are 

obtained from the sensor characteristics, and  is white noise [1]. 

2.3 Kapsch TrafficCom Inc. Progress 

This section summarizes the work activities accomplished by Kapsch TrafficCom Inc. in 
support of Year 1 Task 5 activities during the first quarter of the project. 

 

(1) Finalizing sub-contract with Auburn University. Kapsch officer signatures should 
be in place no later than 25 Jan 2010. 

(2) Preparing hardware for task 5 development and testing in anticipation of purchase 
requisition. 

3. Future Work 
Auburn University will continue to work with each partner to equip the test vehicle for 
testing.   

3.1 Sarnoff Future Work 

Future work for Sarnoff includes the completion of the remaining tasks in Year 1: 

(1) Integrate Visual Navigation system on Auburn Engineering’s Sonata vehicle test 
platform and collect test data using the integrated system. 

(2) Process and analyze the data from the tests and evaluate the performance and 
recommend any improvements and optimizations. 

3.2 Penn State Future Work 

Future plans entail the scaling of the current particle filter algorithm to an entire city or 
county and the optimization for these algorithms. Alternative algorithmic approaches 
such as Kalman filter and feature-based localization techniques are currently being 
examined and compared with particle filter approaches. Analysis of the efficiency of 
various approaches will enable the development of algorithms which may be applicable 
for real-time vehicle localization. 

To allow Penn State to continue advancing their localization algorithm, Auburn will 
interface their sensors to their test vehicle, provide a Kalman filter truth solution, as well 
as provide Penn State with the additional data requested in Appendix 1 . 

As was mentioned in the scope of Penn State’s contribution to the project, the overall 
objective of the project is to develop terrain-based localization algorithms which function 
over a large road network and are optimized for induction into real-time systems.  
Further, the project also entails the integration of the terrain-based localization algorithms 
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with other alternative localization techniques. Penn State is simultaneously looking into 
techniques to realize these goals. 

In view of the optimization problem, work is being planned to examine feature-based 
localization techniques [5], in addition to particle filter approaches, which may allow a 
more compact representation of terrain in terms of features. Feature-based localization 
involves preprocessing the road grade information from the terrain map to generate 
feature vectors, which are then grouped under a tree structure.  A vehicle present at any 
location on the map can collect pitch data as a function of distance using onboard sensors 
and process it to obtain feature vectors. The collected feature vectors can then be matched 
efficiently with all the feature vectors in the existing tree data structure.  Each feature 
vector match yields an estimate of the position of the vehicle and these position estimates 
are put together into a “position-estimate” histogram. The position in the histogram with 
the maximum number of votes is output as the best position estimate. This algorithm may 
enable faster convergence as compared to a particle filter-based approach. 

In view of creating an algorithm that is applicable over a large road network, techniques 
such as “windowing” and buffering are being examined. “Windowing” involves 
localizing a vehicle within a large, coarse map and then a finely decimated map once the 
estimate converges [6]. Buffering involves loading a small segment of road that is 
expected to appear next in front of the vehicle before the vehicle actually arrives that 
location. The road network may be stored as a graph in order to facilitate this function. 
These techniques will help alleviate problems associated with branching roads and will 
also help decrease computational load. 

3.3 Kapsch Future Work 

This section summarizes the anticipated project tasks for the Kapsch team during the 
following quarter. 

(1) Requisition of Kapsch 5.9 DSRC hardware by Auburn University 

(2) Develop deployment plan for 5.9 DSRC hardware at the Auburn Test Track. 

(3) Deploy 5.9 DSRC hardware and conduct on-site testing at the Auburn Test Track. 

(4) Design, develop, integrate and test DSRC ranging software interface. Interface 
requirements based on data needs of Auburn system. 
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Appendix 

A. Penn State Test Protocol 

A.1. Test Protocol for characterizing deterministic error sources (or 
calibration) 

The deterministic error sources under consideration are the scale factor error and the bias 
error. To determine the magnitude of these error sources, data for the variable of interest 
(in this case, the pitch of the road) has to be obtained across multiple runs. Since the 
variable of interest is the pitch, the sensors must ideally be co-located and otherwise be 
positioned along the y-axis (lateral axis) of the vehicle. 

(1) Power up the apparatus (tactical-grade integrated IMU/GPS system, and other 
commercial-grade IMUs under consideration) 
[NOTE: The tactical-grade integrated IMU/GPS system is necessary to establish the 
ground truth for position, velocity and attitude measurements.] 

(2) Allow 5 minutes of warm-up time 
(3) Begin driving the vehicle at approximately 30 mph and initiate data logging at a sampling 

rate of 100 Hz. Log position, velocity and attitude data (INSPVA) from the tactical-grade 
IMU/GPS system and from all the commercial-grade IMUs under consideration. 

(4) Log data for 10 minutes on a highway.  
[NOTE: Significant variations in pitch are observed at the scale of about 500 meters, so a 
dataset comprising between 5-10 km (or 3-6 miles) should provide an adequate set of 
measurements for calculating deterministic sources of error, such as scale factor. The 
time it takes to cover 3-6 miles at speeds of 30-60 mph is approximately 6 minutes. For 
ease of data collection and to guard against any erroneous data, it is recommended that 
the data be collected for 10 minutes.] 

(5) Stop data logging and power down the system. 
(6) Wait for 10 minutes and repeat steps (1) to (5) three more times, driving at approximately 

40, 50 and 60 mph over the exact same stretch of highway and in the same direction.  
(7) Repeat the procedure at slow speeds (say 20, 25, 30 and 35 mph) on city roads. 

[NOTE: Collecting data across multiple road surfaces enables the characterization of the 
terrain, whose impact on localization accuracy needs to be studied.] 

(8) Repeat the procedure at slow speeds (say 20, 25, 30 and 35 mph) on rural roads. 

A.2. Test Protocol for characterizing stochastic error sources (or 
noise characterization) 

The stochastic error sources can be characterized from a static test. The stochastic error 
sources include bias instability, angle random walk, rate random walk, rate ramp, 
quantization noise and sinusoidal noise. All or a subset of these error sources may be 
present depending on the type of sensor being investigated. The following steps may be 
performed for collecting the data: 

(1) Place the sensing apparatus in a controlled environment or a closed lab at room 
temperature. It is desirable that extraneous sources of error such as temperature 
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fluctuations be minimized. However, if the sensing apparatus utilizes an integrated 
IMU/GPS system, place the apparatus in a stationary vehicle.  

(2) Power up the apparatus (both the tactical-grade IMU/GPS system, and all other 
commercial-grade IMUs under consideration). 

(3) Allow 5 minutes of warm-up time. 
(4) Initiate data logging for all IMUs. Log position, velocity and attitude data for 5.5 hours at 

a sampling rate of 100 Hz. Do not move the sensors in this duration. 
[NOTE 1: The lowest frequency random error source in an IMU is the rate ramp error. 
Thus the total duration of the test is limited by the time needed to estimate this error 
source. The rate ramp usually varies on the time scale of hours. Assuming that the 
characteristic time for rate ramp error is 1 hour and that one is willing to accept a 33% 
percentage error in determining this error component, the number of samples needed to 
estimate the rate ramp error is calculated using the formula:  

 
where  is the percentage error,  is the total number of data points required, and  is 

the number of data points per cluster. In the limiting case, there must be at least 1 unique 
data point per cluster. In terms of time, this translates to  = 1 hr for estimating rate ramp 

error. Substituting  = 0.33, one obtains  = 5.5 hours. Thus the test should be conducted 

for the duration of 5.5 hours. (To provide a sense of scale, the test duration to obtain a 5% 
percentage error would be approximately 200 hours)] 
 
[NOTE 2: The highest frequency random error source in a digital IMU is the 
quantization error (due to the inherent digital nature of the sensor). Since the error source 
is due to the digital nature of the signal itself, it has no bearing on the sampling rate. The 
random error source with the next highest frequency is the angle random walk. Thus, the 
sampling rate may be determined by: 
(a)  the frequency of the angle random walk error (of the order of 10 Hz), or  
(b) the bandwidth of the sensor itself (in case it is an analog device).  

In order to satisfy the Nyquist Theorem, the sampling rate must be at least twice 
as much as the highest frequency being measured, and preferably three to five 
times as much. A sampling rate of 100 Hz is adequate to capture the 
characteristics of angle random walk error. Similarly, considering a commercial 
analog IMU, MotionPak II, which has a bandwidth of 30 HZ, a sampling rate of 
100 Hz is adequate.] 

 

(5) Power down the system. 


