

Lane Detection, Calibration, and Attitude Determination with a Multi-Layer Lidar for Vehicle Safety Systems

> Jordan Britt Dr. John Hung Dr. David Bevly Dr. Thaddeus Roppel

:Auburn University :Auburn University :Auburn University :Auburn University

Overview

- Problem Introduction
- Motivation
- Background
- Calibration and Attitude determination
- Lane Detection
- Testing
- Results
- Conclusions

- Attempt to detect lane markings using a 3D lidar to prevent unintended lane departures
- Should be capable of adapting to changing road conditions
- This requires a calibrated lidar
 - Often requires known excitation, surveyed points, or precise structures

- We can save lives.
 - In 2008 52% of all highway fatalities occurred from unintended lane departure
 - Nearly 20,000 deaths
 - In 2006 it was 58%, comprising nearly 25,000 deaths
 - In short: more fatalities than any other crash type occur due to single vehicle road departures

Background: Previous Work (LDW)

- [23] J. Kibbel, W. Justus, and K. Furstenberg.
 - Uses Ibeo, Large ROI 10-30m and ±12m, and uses histogram for detection. No truth metric provided, but provides detection rates varying from 16-100%, Averaging at 87%.
- [13] K. Dietmayer, N. Kämpchen, K. Fürstenberg, J. Kibbel, W. Justus, and R. Schulz.
 - Once again uses a large ROI 0-30m and ±12m.
 Truth metric was driving straight for short periods of time and estimating lane width, accurate to 0.25m
- [24] P. Lindner, E. Richter, G. Wanielik, K. Takagi, and A. Isogai.
 - 6-layer lidar, uses a polar histogram. No truth data, but notes it works best on asphalt, and worst on concrete. Rain has an adverse affect on detection

- Development of a novel lane extraction method, that is based on a MMSE to an ideal lane
- Measure of LiDAR position compared to RTK GPS and surveyed lane markings

Background: Previous Work (Att)

- [37] Toshihiro Tsumura, Hiroshi Okubo, and Nobuo Komatsu.
 - Calibrate uses prior surveyed points
- [5] Matthew Antone and Yuli Friedman.
- [7] Frank S. Barickman.
 - Calibrate using known geometric structures
- [38] Zhenqi Zhu, Qing Tang, Jinsong Li, and Zhongxue Gan.
 - Calibrates using known motion of robotic arm

- Development of a 3D LiDAR calibration and attitude determination scheme.
- Capable of calibrating "quickly"
- Capable of determining attitude with subdegree accuracy.

Background : What is a LiDAR ?

- LiDAR : Light Detection and Ranging
- Similar in concept to sonar or radar, but uses light instead of sound or electromagnetic waves

Samuel Ginn College of Engineering

- LiDAR provides distance as well as reflectivity, known as echo width
- Lines are detected on the premise that they are of high reflectivity than the road's surface

Samuel Ginn College of Engineering

Hardware Overview

- 3D LiDAR
 - 4 layers
 - 3.2° vertical field of view
- Mounted on roof rack of vehicle
 - Resolution of 1.6 inches at lane markings
- Operates at 10Hz with 0.25° resolution

Calibrating the Lidar

- Calibrate the height, yaw, pitch, and roll of the LiDAR.
- Allows us to compensate for LiDAR mounting
- Determine resolution at lane markings

- Vehicle is on a planar surface
 - Road, Garage, Hanger, Factory Floor
- Vehicle is capable of performing a pure pitch maneuver
- Vehicle is equipped with forward looking 3D LiDAR that can measure the planar surface
- LiDAR remains fixed on the vehicle once calibrated

Assumptions Continued

- All LiDAR measurements originate at the same physical location
- Operating in the NED frame
- Standard SAE YPR rotation order

- Develop an equation to describe the Euler angles relating the LiDAR measurements to a vehicle on a level plane.
- LiDAR data will be collected on a static vehicle in steady state.
- LiDAR data will then be taken on a dynamic vehicle and compared to the steady state data to estimate vehicle motion and/or calibration parameters

Determination of Yaw

- Rotation about Z-axis
- Yaw cannot be determined directly
- Must have additional dynamic

Determination of LiDAR Pitch

Rotation about Y-axis

Samuel Ginn College of Engineering

Determination of LiDAR Roll

Rotation about X-axis

Determination of LiDAR Pitch & Roll :: Calibration Phase

- Because all points originate at the same location, we have an over determined system.
 - Note: pitch and roll are not a function of yaw.

 $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & \sin(\phi) \\ 0 & -\sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\psi) & \sin(\psi) & 0 \\ -\sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \\ z_n \end{bmatrix}$

$$D_{\text{n,lidar}} = -\sin(\theta) x_{\text{n}} + \sin(\phi) \cos(\theta) y_{\text{n}} + \cos(\phi) \cos(\theta) z_{\text{n}}$$

$$\theta_{12} = \tan^{-1} \left(\frac{\sin(\phi) y_2 + \cos(\phi) z_2 - \sin(\phi) y_1 - \cos(\phi) z_1}{x_2 - x_1} \right)$$
$$\theta_{12} = \tan^{-1} \left(\frac{\sin(\phi) y_3 + \cos(\phi) z_3 - \sin(\phi) y_1 - \cos(\phi) z_1}{x_3 - x_1} \right)$$

$$\phi_{1213} = \tan^{-1} \left(\frac{(z_3 - z_1)(x_2 - x_1) + (z_1 - z_2)(x_3 - x_1)}{(y_1 - y_2)(x_3 - x_1) + (y_1 - y_3)(x_2 - x_1)} \right)$$

Samuel Ginn College of Engineering

- The yaw is the relative yaw between the vehicle and LiDAR not global yaw.
- Vehicle must undergo a pure pitch dynamic.
 - Hence if the LiDAR and vehicle's axes are aligned with the vehicle's there should be no change in roll during this maneuver.
- We compare a pitched scan and static scan to determine this relative yaw

Determination of Vehicle Pitch & Roll

Perform some math

0 $\cos(\lambda)$ $0 = \sin(\lambda) T^{T}$ 0 $\frac{N_n}{B_n}$ $\sin(\zeta)$ $\cos(\zeta)$ 0 $\operatorname{Lsin}(\lambda) = 0$ D., $0 = \sin(\xi) \cos(\xi)$ $\cos(\lambda)$ $\frac{x_n}{y_n}$ $0 \quad |\cos(\theta)|$ $-\sin(\theta)$ $\cos(\psi)$ sin (pst) $\cos(\phi) = \sin(\phi)$ 0 0 -sin (\$) $\cos(\psi)$ $-\sin(\phi) \cos(\phi) \sin(\theta) = 0$ $D_n = \sin(\lambda) \left(\sin(\psi) \left(-z_n \sin(\phi) + y_n \cos(\phi) \right) \right)$ $D_2 = -z_{22}\sin(\phi) + y_{22}\cos(\phi) + z_{11}\sin(\phi) - y_{11}\cos(\phi)$ + $\cos(\psi) \left(-x_n \cos(\theta) - y_n \sin(\phi) \sin(\theta) - z_n \cos(\phi) \sin(\theta)\right)$ + $\cos(\lambda) (\sin(\zeta) (y_n \sin(\phi) \sin(\theta) \sin(\psi) + x_n \cos(\theta) \sin(\psi))$ $E_{11} = -z_{33}\sin(\phi) + z_{11}\sin(\phi) + y_{33}\cos(\phi) - y_{11}\cos(\phi)$ + $y_n \cos(\phi) \cos(\psi) + z_n \cos(\phi) \sin(\theta) \sin(\psi) - z_n \sin(\phi) \cos(\psi)$ + $\cos(\zeta) (y_n \sin(\phi) \cos(\theta) - x_n \sin(\theta) + z_n \cos(\phi) \cos(\theta)))$ $A_1 = -y_1 \sin(\phi) \cos(\theta) + x_1 \sin(\theta) - z_1 * \cos(\phi) * \cos(theta) + z_2 \cos(\phi) \cos(\theta)$ + $y_2 \sin(\phi) \cos(\theta) - x_2 \sin(\theta)$ $B_1 = y_2 \sin(\phi) \cos(\theta) - x_2 \sin(\theta) + z_2 \cos(\phi) * \cos(\theta) - y_1 \sin(\phi) \cos(\theta) + x_1 \sin(\theta)$ $-z_1\cos(\phi)\cos(\theta)$ $G_{2} = -x_{11}\cos(\theta) + z_{22}\cos(\phi)\sin(\theta) - y_{11}\sin(\phi)\sin(\theta) + y_{22}\sin(\phi)\sin(\theta) + x_{22}\cos(\theta)$ $D_1 = -z_2 \sin(\phi) + y_2 \cos(\phi) + z_1 \sin(\phi) - y_1 \cos(\phi)$ $-z_{11}\cos(\phi)\sin(\theta)$ $E_{1} = -z_{3}\sin(\phi) + z_{1}\sin(\phi) + y_{3}\cos(\phi) - y_{1}\cos(\phi) \qquad H_{2} = z_{33}\cos(\phi)\sin(\theta) + y_{33}\sin(\phi)\sin(\theta) + x_{33}\cos(\theta) - z_{11}\cos(\phi)\sin(\theta)$ $G_1 = -x_1 \cos(\theta) + x_2 \cos(\phi) \sin(\theta) - y_1 \sin(\phi) \sin(\theta) + y_2 \sin(\phi) \sin(\theta) + x_2 \cos(\theta) \sin(\theta) - x_{11} \cos(\theta)$ $-z_1\cos(\phi)\sin(\theta)$ $A_{2} = -y_{11} \sin(\phi) \cos(\theta) + x_{11} \sin(\theta) - z_{11} * \cos(\phi) * \cos(theta) + z_{22} \cos(\phi) \cos(\theta)$ + $y_{22} \sin(\phi) \cos(\theta) - x_{22} \sin(\theta)$ $B_2 = y_{33}\sin(\phi)\cos(\theta) - x_{33}\sin(\theta) + z_{33}\cos(\phi) * \cos(\theta) - y_{11}\sin(\phi)\cos(\theta) + x_{11}\sin(\theta)$ $= z_{11} \cos{(\phi)} \cos{(\theta)}$

Determination of Vehicle Pitch & Roll

- Note: Function of LiDAR yaw
- Use similar procedure.

21

$$a_{122} = \tan^{-1} \left(\frac{\cos(\zeta) A_{11} + \sin(\zeta) (\cos(\psi) D_{11} + \sin(\psi) G_{11})}{\cos(\psi) G_{11} - \sin(\psi) D_{11}} \right)$$

$$\lambda_{1133} = \tan^{-1} \left(\frac{\cos(\zeta) B_{11} + \sin(\zeta) (\cos(\psi) E_{11} + \sin(\psi) H_{11})}{\cos(\psi) H_{11} - \sin(\psi) E_{11}} \right)$$

$$\zeta_{11221133} = \tan^{-1} \left(\frac{\cos(\psi) \left(B_2 G_2 - A_2 H_2 \right) + \sin(\psi) \left(-B_2 D_2 + A_2 E_2 \right)}{\cos(\psi)^2 \left(D_2 H_2 - E_2 G_2 \right) + \sin(\psi)^2 \left(-G_2 E_2 + H_2 D_2 \right)} \right)$$

Determination of relative yaw

- Note: yaw is now reduced to LiDAR pitch and roll measurements.
- Setting the static vehicle roll calculation and the pitched vehicle roll calculation equal to one another, yields:

$$\tan^{-1}\left(\frac{(B_2G_2 - A_2H_2)(D_1H_1 - E_1G_1) - (B_1G_1 - A_1H_1)(D_2H_2 - E_2G_2)}{(-B_1D_1 + A_1E_1)(D_2H_2 - E_2G_2) - (-B_2D_2 + A_2E_2)(D_1H_1 - E_1G_1)}\right)$$

- Singularities
 - Cannot report meaningful data if pointed straight down
- Larger separation the better
 - Due to numerical issues and noise, the LiDAR measurements should have a large separation to guarantee the best results

- Unscented Transform used for error propagation estimation and propagation.
 – See thesis for details
- Kalman filter used for determining the final result.

Calibration: (same for static and dynamic)

- 50 Static Scans taken
- Vehicle was then driven and the brakes applied to induce vehicle pitch
- 50 static and one pitched scan of the brake test compared

Attitude Testing:

- Vehicle Position on flat level ground
- Vehicle underwent induced pitch and roll maneuvers.
 - Vehicle change in pitch = 1.46°
 - Vehicle change in roll = 2.75 °

Truth & Comparative system :: Septentrio

- 3-antenna GPS system
- Provides vehicle pitch, roll, and yaw in Euler angle form.
- Accurate to ~0.6 ° for our given baseline

Comparison to Septentrio: Static

Results Vehicle: Static

2

1

Test Procedure: Dynamic

Attitude Testing:

- Vehicle put through a series of dynamic maneuvers to induce vehicle pitch and roll
- Data analyzed only when in the maneuver

Comparison to Septentrio: Dynamic

Results Vehicle: Dynamic

- MSE Pitch = 2.054°
- MSE Roll = 0.4617°
- Avg Error Pitch =0.78°
 Avg Error Roll = 0.31°
- Average Processing time per scan = 0.06s
 Average Calibration time = 2.26s

- Data was post processed
- No truth method used for determination of calibration success
- Error is merely comparative not absolute
 Septentrio only accurate to ~0.6°
 - No test performed to determine the accuracy of the Septentrio's mounting on the vehicle

Detection Overview

- Bound the Search
 Area
- Generate an ideal scan to match actual lane markings
- Find the MMSE between the ideal scan and an actual scan

- Window the data
- Filter the data

LiDAR Data Overview

- Ideal scan has distinct peaks, and consistent road surface
- Data to side of road noisy, but resembles lane markings

Creating an Ideal Scan

- Spikes represent the increase in reflectivity of the lane markings
- Flat area represents road's surface
- Window found lanes

NCAT Testing

- Lane extraction algorithm does not appear to be effected by changes in lighting.
- Error prone to grass and rain.
- Accurate to within the width of a lane marking

- Capable of determining vehicle pitch and roll to within sub-degree accuracy
- For meaningful calibration : vehicle's axes must be aligned with plane
- Highly non-linear problem
- Computationally complex
- Larger change in pitch dynamics the better for calibration

 Determine how non uniform plane can be to yield accurate results

Questions or Comments?

BUT IN THE OCEAN OF REALITY.

Images Courtesy of Despair.com

Samuel Ginn College of Engineering