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1 Introduction

Since the early 1980s, the transmission speed of the optical
networks has doubled almost every two years. When
10-Gigabits-per-second �Gb/s� optical networks were de-
bated in the mid-1990s, many predicted that the
10-Gb/s-format would never become reality due to various
obstacles. Similar debates now exist about the higher data
rate at 40-Gb/s and the daring new concepts such as the
agile optical network. The agile optical network is a re-
configurable optical network and is more resilient and more
efficient compared to the traditional fixed point-point net-
works. However, in order to dynamically route an optical
channel, an agile optical network requires dynamical dis-
persion management and adaptive dispersion compensa-
tion. One of the main concerns for high-data-rate agile op-
tical networks is the dispersion effect in the optical fibers.

Modal, chromatic, and polarization mode dispersions are
the major sources of transmission impairments in high-
data-rate fiber communications. Without proper compensa-
tion, the performance of the fiber communication systems
will be severely limited. The available dispersion compen-
sation fiber is static in nature and therefore does not support
agile optical networks. Other optical solutions are only ca-
pable of compensating one form of the dispersions with
very high cost, high insertion loss, and slow tuning speed if
they are tunable at all. The electronic equalizer can be dy-
namically tuned and has much smaller form factor and
much lower cost.1–4 An electronic equalizer can be inte-
grated into a single chip using the high-speed silicon ger-
manium �SiGe�, indium phosphorus, or CMOS technolo-
gies. Further cost reduction is possible if the electronic
equalizer and other receiver circuitry such as clock data
recovery are integrated on the same die.

Blind channel identification and equalization approaches
have received increasing attention in recent years because
of their applications in wire line and wireless communica-
i0091-3286/2007/$25.00 © 2007 SPIE
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ions. Traditionally, a training sequence is transmitted dur-
ng the acquisition mode to enable the receiver to program
n equalizer or estimate the channel. For a time-varying
ispersive channel, the training sequences may have to be
ransmitted periodically. The drawback of conventional
qualizer algorithms lies on the fact that they all need the
ssistance of a training sequence. When the eye pattern of
he channel output is initially closed, the conventional
qualizer requires reference signals for channel estimation.
n the other hand, blind equalization provides a reference-

ree equalization algorithm, which meets the current fiber
ommunication transmission standard. Blind equalization is
hus critical for agile optical networks with a time-varying
hannel environment.

Fiber dispersion includes both static chromatic disper-
ion �CD� and time-varying polarization mode dispersion
PMD� effects. In fiber networks with PMD, the channel
ispersion characteristics constantly vary due to effects
uch as temperature variation and fiber stress and vibration.
raditional equalization methods using training patterns are

hus not suitable for fiber polarization mode dispersion
ompensations. The impact of the modal dispersion and the
rst-order PMD on system performance in fiber networks is
ery similar to multipath interference in wireless systems,
here blind equalization has been a common practice.
herefore, the blind equalization algorithm used in wireless
ystems can be applied to compensation of the modal dis-
ersion and the first-order PMD. The second-order PMD is
combination of depolarization �DPLZ� and polarization-

ependent chromatic dispersion �PCD�. The second-order
MD is thus a wavelength-dependent dispersion, which
oes not have a similar countereffect in wireless communi-
ations. We will thus extend the prior art blind equalization
echniques to include effects such as wavelength-dependent
hromatic dispersion for high-data-rate fiber networks.

An electronic equalizer module is superior considering
ts cost, size, reliability, flexibility, and speed. A theoretical
odel of PMD compensation using digital signal process-
ng was presented in Ref. 1 in which analog equalization
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Dai: Electronic equalizations for optical fiber dispersion compensation
was not discussed. An integrated analog and digital signal
processing technique implemented using both SiGe and
CMOS technologies was presented in Ref. 2 for compen-
sating dispersion in 10 Gb/s fiber networks. A seven-tap
distributed transversal equalizer was implemented in a
0.18-�m SiGe BiCMOS process for 10-Gb/s multimode
fiber optic links.3 Both references were focused on inte-
grated circuit designs without detailed equalization feed-
back algorithms. A hybrid opto-electronic equalizer opti-
mized jointly using a least-mean-square algorithm was
briefly presented in Ref. 4 The algorithm needs a training
sequence and thus is not suitable for agile fiber networks.
This paper presents adaptive electronic equalization means
for the compensation of all forms of fiber dispersions, in-
cluding modal, chromatic, and polarization mode disper-
sions. The proposed electronic equalizer employs a novel
constant-modulus-adaptive-based blind equalization tech-
nique to achieve adaptive dispersion compensation without
training sequence. Simulations demonstrate excellent dis-
persion compensations for various fiber dispersions such as
CD and PMD. We will also discuss the adaptive fiber trans-
ceiver implementations for agile high-speed fiber networks.

The paper will start with a tutorial discussion on various
fiber dispersions in Sec. 2. In Secs. 3, fiber channel emula-
tion models with various dispersions will be developed.
The proposed adaptive electronic equalization techniques
with blind feedback algorithms are presented in Secs. 4 and
5. Finally, fiber dispersion compensations using the pro-
posed electronic equalization approach will be demon-
strated in simulation in Sec. 6.

2 Dispersion in Optical Fiber
Dispersion limits the bit-rate and transmission distance of
fiber networks. Newly developed nonzero dispersion
shifted fibers �LEAF and TrueWave� are mainly used in
improving power and reducing fiber nonlinear effects. They
fail to reduce dispersion in each separate channel, since
dispersion is wavelength-dependent and accumulates at dif-
ferent rates. There are three main dispersion effects in op-
tical fibers: �1� the modal dispersion; �2� the chromatic dis-
persion; and �3� the polarization mode dispersion.

2.1 Modal Dispersion
Modal dispersion occurs when light travels in multimode
fibers that have core diameters of about 50 to 80 �m. In
multimode fibers, each mode travels at a different speed for
a given fiber length. The modal dispersion of a multimode
fiber limits the signal transmission rate to about 100 Mbs/s
over several kilometers. Due to the low cost and ease of
connection, the multimode fiber is still the choice for short-
reach optical connection. If cost is not a concern, single-
mode fibers can be used to eliminate the modal dispersion.

2.2 Chromatic Dispersion (CD)
CD occurs in single-mode fibers due to the wavelength de-
pendence of the light velocity. CD is inherent in fiber due to
material refractive index and waveguide dispersion. Both
the refractive index and group index vary with wavelength.
Modern fiber exhibits both normal and anomalous disper-
sion regimes. For normal dispersion, blue wavelengths

travel slower than red wavelengths. Anomalous dispersion �
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everses this order. An optical pulse is comprised of a range
f wavelengths. CD impacts the pulse by retarding one
olor with respect to the other, causing pulse envelope
pread.

Data modulation of a single-wavelength laser causes the
odulated laser spectrum to spread. An optical pulse in

0-Gbs/s format consists of a collection of photons with
avelength distribution spans over about 10 GHz and will

ravel along the fiber at different speeds. After some dis-
ance, the difference in speed will cause noticeable pulse
pread in time and result in possible wrong detection at an
ptical receiver. Assuming electrical field of a linearly po-
arized light wave in a single mode-fiber is given by E
E0ei�����z−�t�, where ����=n���� /c is the propagation
onstant at angular frequency � and the group velocity vg
s defined as vg

−1=�1=d� /d�. The frequency-dependent
roup velocity, i.e., the group velocity dispersion �GVD�,
eads to pulse broadening of

T =
dT

d�
�� =

d

d�
� L

vg
��� = L

d2�

d�2�� = LD�� �1�

here D=dvg
−1 /d�=−�2�c /�2��d2� /d�2� is defined as the

ispersion parameter in units of ps/km/nm. In the absence
f non-linearity, pulse propagation and dispersion can be
escribed with the first few terms of the Taylor series of
��� at the interested frequency �0 as

��� � �0 + �1�� − �0� + �2�� − �0�2/2 + �3�� − �0�3/6

�2�

here �0 /�0 is the phase velocity, 1 /�1 is the group veloc-
ty, �2=d2� /d�2 is the GVD parameter, and �3=d3� /d�3

s related to the dispersion slope. CD is caused by the varia-
ion in the group velocity with respect to the frequency. �2
nd �3, in practice, describe the measurable CD in an op-
ical fiber.

CD limits the maximum distance of a signal transmitted
ithout regeneration. The estimated chromatic dispersion

imit of a signal with data rate of B and bandwidth of �� is
iven by LD=1/ �BD���. The CD limited maximum trans-
ission distance at �=1550 nm for two most popular opti-

al fibers from Corning are listed in Table 1.
To overcome CD, dispersion compensation fiber �DCF�

s normally used. DCF can introduce signal power loss. For
xample, to compensate the CD of 50 km of SMF-28 fiber

able 1 Maximum transmission distance limited by chromatic dis-
ersion at �=1550 nm.

iber type
2.5 Gbs/s

��=0.025 nm
10 Gbs/s

��=0.1 nm
40 Gbs/s

��=0.4 nm

MF-28 930 km 58 km 3.5 km

�17 ps/nm/km

EAF 4000 km 250 km 15 km

�4 ps/nm/km
the standard single mode fiber�, the compensation module

March 2007/Vol. 46�3�



P
C
h
H
p
T
l
p
m
�
i
s
1
l
d
t
w

v
s
n
b
P
P
P
t
l
a

T
m

Dai: Electronic equalizations for optical fiber dispersion compensation
consists of 15 km of DCF and introduces about 7-dB inser-
tion loss. To recover that loss, extra-expensive optical am-
plifiers have to be used. DCF is static in nature. It cannot
compensate the dynamically changing dispersion associ-
ated with re-configurable fiber networks. Moreover, DCF
can only compensate one type of dispersion, namely, the
chromatic dispersion.

A few tunable optical means such as free-space resonant
cavity device5 and fiber Bragg grating �FBG�-based
devices6 have been reported for CD compensation. The
free-space resonant cavity device has insertion loss larger
than 10 dB, and the tuning is performed via mechanical
method that potentially can be a reliability concern. All of
the FBG-based devices are channel-dependent. For a
DWDM system, there could be up to 200 optical channels
assigned to a single fiber; it is clearly a logistic problem to
manage that many different FBG components, not to men-
tion the high cost required by FBG devices on a per-
wavelength basis. The FBG-based compensators do not al-
low the dynamic allocation of optical channels and hence
they do not support re-configurable �-switched networks.
Although it is possible to produce optical fiber with near-
zero CD, the large loss associated with zero dispersion fiber
makes it almost useless in long-haul fiber networks. On the
other hand, a DWDM system actually demands a certain
amount of CD to minimize the fiber nonlinear effects such
as the stimulated Brillouin scattering.

2.3 Polarization Mode Dispersion
An ideal optical fiber has a circular cross section such that
an optical field propagating in a fiber would experience the
same propagation characteristics regardless of the orienta-
tion of the incoming optical field. Unfortunately, real fibers
are noncircular and take on a slightly elliptical shape due to
either imperfect manufacturing process or unavoidable non-
symmetrical stress in deployed environment. Even worse,
the elliptical shape varies along the fiber and is also af-
fected by the environmental temperature and vibration.
Such a condition produces two different polarization modes
with different phase/group velocities even in a single-mode
fiber. The accumulated result to the first order is a relative
time delay for two orthogonal polarizations at the fiber out-
put.

PMD is caused by an optical fiber’s randomly varying
birefringence. To the first order, PMD can be represented
by a differential group delay �DGD� between two principal
states of polarization �PSP� of the optical fiber. Group ve-
locity dispersion due to PMD can be expressed as

�T = �L/vg1 − L/vg2� = L��1� − �2�� = L��� �3�

where �����=�n���� /c comes from the fiber birefrin-
gence. Due to the random nature of manufacturing process
and the stress field, polarization mode dispersion in a long
fiber has a square root of length dependence. Polarization
mode dispersion is proportional to DPMD

	L, where L is the
length of the fiber, and DPMD is the dispersion parameter for
the fiber in unit ps/	km. Unlike the chromatic dispersion,
the PMD dispersion parameter is dependent upon not only
the quality of fiber but also the installation environment and
may vary when ambient temperature changes or vibration

occurs. With the improvement of fiber manufacturing, fiber
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MD has been greatly reduced in recent deployed fibers.
orning SMF-28 standard single-mode fiber made in 2001
as a maximum PMD of 0.2 ps/	km for individual fibers.
owever, about 30% of the total fiber networks were de-
loyed before 1993, which has high PMD of 1 ps/	km. In
able 2, the maximum optical transmission distance �km�

imited by PMD is listed, where the EDFA and CDC dis-
ersion parameter is assumed to be 0.141 ps/	km and the
aximum tolerable PMD without PMD compensation

PMDC� is assumed to be 15% of the data period. Accord-
ng to Table 2, at 10 Gb/s, the transmission distance is
everely limited by PMD for old fibers laid out before
993. At 40 Gb/s, the transmission distance is severely
imited by PMD for any fibers manufactured based on to-
ay’s technology. PMD compensation devices are still at
he early research and development stage, with most teams
orking on various expensive optical solutions.
As illustrated in Fig. 1, PMD can be represented as a

ector �� =� · p̂, where the magnitude of the PMD vector
tands for DGD, which is the time delay between orthogo-
al pulses. The direction of the PMD vector is represented
y the unit Stokes vector p̂ in the direction of PSP. The
MD vector cannot, in general, be represented on the
oincaré sphere, as its length is other than unity. As the
SPs change the pointing direction with frequency, so does

he PMD vector. Also, as the frequency changes, the vector
ength can change as well. Expanding the PMD vector
round the interested frequency �0, we have

able 2 Maximum transmission distance limited by polarization
ode dispersion.

Fiber Type/Data Rate 2.5 Gbs/s 10 Gbs/s 40 Gbs/s

Bad fiber �made before
1993� DPMD�1 ps/	km

2763 km 173 km 11 km

Good fiber �made after 1993�
DPMD�0.5 ps/	km

8750 km 547 km 34 km

Best fiber �made after 2000�
DPMD�0.25 ps/	km

23,497 km 1469 km 92 km
Fig. 1 Vector representation of first-order and second-order PMD.

March 2007/Vol. 46�3�
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Dai: Electronic equalizations for optical fiber dispersion compensation
����� = ����0� + 
��p̂ + �p̂����0 − �� + . . . , �4�

where ���i
=�� · p̂ represents polarization-dependent chro-

matic dispersion �PCD� and �p̂� denotes the frequency-
dependent PSP, namely, depolarization �DPLZ� compo-
nents since the direction of DPLZ is perpendicular to the
original PSP. The combined first-order and second-order
PMD vector representation is given in Fig. 1. Mean DGD
of the first-order PMD increases as square root of length.
However, the mean of second-order PMD �SOPMD� is pro-
portional to length. In case of high DGD, second-order im-
pairment is relatively higher. SOPMD effect is enhanced in
case of prechirped sources or high residual chromatic dis-
persion. Among the second-order component, PSP change
with respect to frequency �depolarization� is dominant.

Recall that DGD is the length of the PMD vector and
indicates the temporal delay between “fast” and “slow” in-
put pulses. A large ensemble of fibers exhibiting birefrin-
gence will show a range of DGD values for a particular
optical frequency. The histogram of those DGD values fol-
lows a Maxwellian distribution.7,8 The original of Maxwell-
ian distribution is where there are three Gaussian distribu-
tions along three orthogonal coordinates. The PMD vector
is projected onto the three coordinates. The origin of
Gaussian distributions comes from the “random walk” the
PMD vector takes over the length of a long PMD fiber. For
a fixed PMD, DGD is a random variable that has a Max-
wellian probability density function �PDF� as follows:

pdfPMD1�x� = � 8

�2�
��2x

�
�2

exp�−
�2x/��2

�

 . �5�

The statistics of magnitude second-order PMD
�SOPMD� are derived in a similar manner to DGD statis-
tics. The component PDFs for SOPMD follows the soliton
amplitude, a “sech” function.8 The magnitude SOPMD is
the magnitude of the three components and is presented as
a scalar. The PDF of the SOPMD can be expressed as a
“sech tanh” form as

pdfPMD2�x� = � 8

��2��4x

�2 �tanh�4x

�2 �sech�4x

�2 � . �6�

Associated with SOPMD are the component vectors.
That is, the SOPMD vector can be resolved onto the origi-
nal PMD vector. The parallel component is the change of
DGD with frequency, namely, the PCD. The perpendicular
component is the change of PSP direction with frequency
scaled by the local DGD, namely, the depolarization. De-
polarization is the more deleterious effect of SOPMD.
When the pointing direction of the PMD changes with fre-
quency, it is difficult to anti-align an optical PMD compen-
sator to the PMD vector. There is no analytic expression for
the depolarization PDF.9 However, the PDF of polarization-
dependent chromatic dispersion can be expressed as

pdfPCD�x� = � 4

��2�sech2�4x

�2 � , �7�

which is shaped like the soliton amplitude.8 The statistics of
various fiber dispersions can be considered in the blind

equalization algorithm. r
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Fiber Dispersive Channel Models
n order to establish a simulation environment for disper-
ion compensation analysis, we need to truthfully emulate
ber channel dispersive performance.

.1 Emulation of Chromatic Dispersion
D is caused by the wavelength dependence of the light
ropagation constant. For Corning SMF-28 standard single-
ode fibers, the wavelength dependence of the dispersion

arameter D in unit �ps/ �nm*km�� is given as

=
S0�� − �ZD

4 /�3�
4

, �8�

here �ZD is the zero dispersion wavelength and S0 is the
ispersion slope at the zero dispersion wavelength �ZD. The
ispersion slope for SMF-28 fiber can be determined as

=
dD

d�
=

S0�1 + 3�ZD
4 /�4�

4
. �9�

he second order and third order propagation constants are
iven as follows:

2 =
− D

�2�c/�2�
, �3 =

S − 4�c�2/�3

�2�c/�2�2 . �10�

Neglecting wavelength-independent �1, the light propaga-
ion distorted by chromatic dispersion can be modeled as

�z,t� =
1

2�
�

−�

�

Ã�0,��exp� i

2
�2z�2 +

i

6
�3z�3 − i�t
d� ,

�11�

here Ã�0,��� is the spectrum of the undistorted input
ignal A�0, t�.

In the CD emulator for SMF28 single-mode fibers, the
ero dispersion wavelength �0=1312 nm; typical disper-
ion slope at �ZDS0 is 0.092 �ps/ �nm∧2*km��. Figure 2
hows the eye diagrams distorted by chromatic dispersions
or SMF-28 fiber with fiber lengths of 75 km and 100 km,
espectively. Light wavelength �=1550 nm. We can see
hat the longer the fiber is, the more severe the dispersion
s. For a fiber length of 100 km, the eye opening magnitude
s only about 0.25, assuming the undistorted eye opening is
.

.2 Emulation of the First-Order PMD
he first-order PMD is wavelength-independent and is
aused by different propagation speed along principal po-
arization directions. Emulation of the first-order PMD can
e modeled in Matlab Simulink as shown in Fig. 3. The
nput signal is split into two principal polarization states
ith a relative power splitting ratio of gamma �	�. The

ignal with amplitude 		 is delayed by DGD seconds,
hile another signal with amplitude 	1−	 has zero delay.
oth signals are then recombined based on vector addition.
utput 
Out1� is the intensity of the recombined signal. By
andomizing 	, the effect of polarization scrambling can

March 2007/Vol. 46�3�
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Dai: Electronic equalizations for optical fiber dispersion compensation
also be emulated. To emulate the first-order PMD, we
choose the relative power ratio 	=50%, which represents
the worst-case PMD.

Figure 4 shows the simulated eye diagrams of the
40-Gb/s random signal after the first-order PMD emulator
with �1� DGD=15 ps, and �2� DGD=25 ps, which equals
the period of 40-Gb/s date. A fourth-order Bessel low-pass
filter with cutoff frequency at data rate �40 GHz� is used
after the emulator. For different DGD values, the simulated
distorted eye diagrams are compared with the measured eye
patterns generated under the same PMD conditions
�40 Gb/z NRZ 231-1 PRBS�. The simulated PMD dis-
torted eye patterns agree with the measured eyes quite well.
Note that no Gaussian noise has been added in the simula-
tion. Thus, the simulated eye patterns appear as smooth
curves. Gaussian ASE noise can also be added based on the
different noise variances for ON and OFF signals.

3.3 Emulation of the Second-Order PMD
As discussed, the second-order PMD is wavelength-
dependent. It has first-order PMD components and is af-
fected by CD as well. To model the distributed random
effect of the PMD, Monte Carlo simulations using a fiber
waveplate model are used to generate the PMD impaired
fiber. A waveplate is a birefringent medium that propagates
various incoming polarizations with various time delays.

Fig. 2 Eye diagrams distorted by

Fig. 3 The first-order PMD emulator with powe

�DGD� as input parameters.

Optical Engineering 035006-5
he maximum and minimum time delays are expressed by
he eigenstates of the waveplate. The emulator consists of N
umber of waveplates that have a fixed DGD ��p. The
odel can also be extended to include a birefringent sec-

ion with varying DGD. The optical axes of the waveplates
re rotated randomly relative to each other, as shown in
ig. 5. The resultant PMD emulator has an average DGD of
�=	8N /3���p, with the appropriate first- and second-
rder PMD statistics.8

The concatenated birefringent waveplates can be math-
matically expressed by a complex two-dimensional uni-
ary matrix, known as the Jones matrix. The input and out-
ut optical signals can also be expressed using Jones
omplex vectors. The unitary propagation matrix and the
omplex vectors are dependent on wavelength and can thus
odel the second-order PMD. In addition, other fiber im-

airments such as loss, linear dispersion, and nonlinearities
an also be added into the model. The second-order PMD is
odeled in the frequency domain. The resulting field com-

onents are then transformed back to the time domain. Sig-
al propagation is accomplished by multiplying the result-
ng Jones matrix for the concatenated birefringent sections
nd operating on an incoming input optical field at each
requency, as expressed by

atic dispersions for SMF-28 fiber.

ing ratio �gamma� and differential group delay
chrom
r splitt
March 2007/Vol. 46�3�
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�Ex
o��k�

Ey
o��k�


 = � u1��k� u2��k�
− u2

*��k� u1
*��k�


�Ex
i ��k�

Ey
i ��k�


 , �12�

where u* represents the complex conjugate of the matrix
element u. The total propagation matrix at frequency �k is
obtained by multiplying the Jones matrixes of individual
waveplates as

� u1��k� u2��k�
− u2

*��k� u1
*��k�


 = �
i=1

N

Ri
TDiRi = �

i=1

N �cos�
i� − sin�
i�
sin�
i� cos�
i�



��ej�i��k�/2 0

0 e−j�i��k�/2

�� cos�
i� sin�
i�

− sin�
i� cos�
i�

 , �13�

where index i=1,2 , . . . ,N represents different waveplate;
���k�=��k for k=1,2 , . . . ,M frequencies; � is the DGD;
and 
i is the rotation angle of the ith waveplate.

PMD parameters such as differential group delay
�DGD�, polarization-dependent chromatic dispersion
�PCD� are related to the Jones matrix components as
follows:10,11

DGD = 2	�u1�����2 + �u2�����2, or

DGD= �Arg�
1 /
2���i+1−�i �,

Fig. 4 Simulated eye diagrams of 40-Gb/s ran
=0.5 and DGD=15 ps, �b� 	=0.5 and DGD=25
Fig. 5 Waveplate model for emulation of fiber PMD. =

Optical Engineering 035006-6
CD �
DGD��i+1� − DGD��i�

�i+1 − �i
, �14�

here 
1 and 
2 are the eigenvalues of the matrix product
��i+1� ·T−1��i�. The last equation represents the derivative
f DGD with respect to frequency. The total second-order
MD vector magnitude �SOPMD� is determined by first
nding the output PMD vector �� as a function of frequency
or the resultant system expressed by the Jones matrix and

ignal after first-order PMD emulator with �a� 	

ig. 6 Eye diagrams distorted by second-order PMD with DGD
70.568 ps, PCD=304.16 ps2, DPLZ=2004.15 ps2, SOPMD

2

dom s
ps.
2027.1 ps .

March 2007/Vol. 46�3�



i
f
a
d
t
N
t
a
m
t
t
c
f
s
n
c
i
a
p
n

t
p
a
r

Dai: Electronic equalizations for optical fiber dispersion compensation
then its variation rate, i.e., the derivative with respect to
frequency can be found by

SOPMD �
��i+1 − ��i

�i+1 − �i
. �15�

Note that the two orthogonal components of the total
SOPMD vector are the PCD and the depolarization
�DPLZ�. The depolarization can thus be obtained by

DPLZ = 	�SOPMD�2 − �PCD�2. �16�

Figure 6 gives a simulated eye diagram distorted by
second-order PMD with DGD=70.568 ps, PCD=
−304.16 ps2, DPLZ=2004.15 ps2, and SOPMD
=2027.1 ps2. In the simulation, 10,000 fibers are used to
emulate the random statistics of fiber PMD. Each fiber sec-
tion consists of 12 waveplates with 10-ps delay to model
the distributed dispersion effect of the fiber.

4 Adaptive Electronic Equalizations
As shown, fiber communication is limited by transmission
impairments due to fiber dispersions. Optical devices are
only capable of compensating one form of the dispersions
with very high cost, high insertion loss, and slow tuning

Fig. 7 Schematic diagram of an integrated ada
dispersion compensation.
speed if they are tunable at all. In contrast, electronic equal- s

Optical Engineering 035006-7
zers are low cost, tunable, and capable of compensating all
orms of fiber dispersions. Figure 7 shows an integrated
daptive fiber transceiver with analog equalizers for fiber
ispersion compensation.12 During operation, data transmit-
ed at lower rates can be fed in a parallel fashion into an
:1 multiplexer, which generates a relatively high-

ransmission-rate data stream. The data stream can then be
mplified by a modulator driver for driving external optical
odulator. Polarization scrambler can be inserted after op-

ical modulator to randomize the polarization direction of
he transmitted light. When light intensities along the prin-
ipal polarization directions are the same, the system suf-
ers a maximum power penalty due to PMD. Thus, by
crambling the polarization of the transmitted optical sig-
al, the average PMD related power penalty is reduced be-
ause of a lower probability that the system will be locked
n states with large power penalties. Erbium doped fiber
mplifier �EDFA� can be inserted after the scrambler to
rovide sufficient power for transmission of the optical sig-
al along a standard single-mode fiber �SSMF�.

On the receiver side of the circuit, another EDFA is used
o compensate for gain lost during transmission and also
rovides an overall gain control so that photo-detector �PD�
nd front-end amplifier can operate in their proper dynamic
anges. The received optical signal is converted to electrical

ber transceiver with analog equalizers for fiber
ptive fi
ignal using a PD. A trans-impedance amplifier �TIA� is
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Dai: Electronic equalizations for optical fiber dispersion compensation
used to convert the electrical current mode signal to voltage
mode signal. After the decision stage, the data stream can
be used to recover the clock, which is synchronized with
the data. Clock and data recovery circuitry can be embed-
ded in an adaptive receiver. The receiver IC preferably de-
tects errors occurring during data detection and adjusts the
decision thresholds adaptively. Error detection can include
top and bottom error detectors, and respective top and bot-
tom error counters. Error detection can also include left and
right error detectors, and respective left and right error
counters. The detected error signals indicate the degree of
eye opening and are processed by a digital signal process-
ing chip embedded with the equalization algorithms. A
DAC provides the analog feedback control signals needed
for adaptive thresholds and equalizer tap coefficients.

The high-speed analog electronic equalizers can be
implemented in SiGe and CMOS technologies.2,12 Figure 8
further illustrates analog electronic equalizers including a
feed forward equalizer �FFE� and decision feedback equal-
izer �DFE�. The voltage signal output from the TIA is fed to
the data input of the FFE, which performs the dispersion
compensation for the distorted voltage signal. The output of
the FFE is experienced additional compensation at the
DFE. The compensated signal is then fed into a clock data
recovery block to recover the data clock. FFE, a linear
equalizer, is used to compensate for moderate amplitude
distortion. On the other hand, a decision feedback equalizer
is used to improve receiver performance in the presence of
moderate to severe amplitude distortion. A DFE is intrinsi-
cally nonlinear as it feeds back to the input a sequence of
hard decisions made at the equalizer output. The feedback
section removes the lagging intersymbol interference that is
beyond the reach of the forward section. However, the DFE
suffers from the problem of error propagation since hard
decisions may destroy information: once a wrong decision
is made, errors are fed back to the equalizer input, which in
turn leads to a higher probability of error on subsequent
decisions. The end result is a burst of errors. Moreover, like
any feedback system, a DFE design involves stability
analysis, while an FFE is always stable.

The performance of an analog electronic equalizer is
limited by the circuit linearity and bandwidth. The equal-
izer circuit should have minimum group delay in order to
minimize the additional dispersion due to the equalizer. The
implementation of the high-speed equalizer is not easy even
at 10 Gb/s, and it is very challenging at 40 Gb/s.13 Even if

Fig. 8 An analog electronic
the equalizer itself can be implemented for high-data-rate A
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pplications, the feedback circuits cannot operate at the
ata rate, since complicated calculations need to be done
ithin one clock cycle. Fortunately, fiber dispersion is ei-

her a time-invariant �e.g., CD� or slow time-variant �e.g.,
MD� process. The feedback circuit thus needs only oper-
te at a much slower frequency than the data rate. The input
o the feedback block can be an accumulated averaged data,
s illustrated in Fig. 7. The tap coefficients of the equalizer
re thus updated at a much slower frequency as well. An
lternate approach is to sample the input distorted signal
sing a high-speed analog-to-digital converter �ADC�, if
uch as a converter is available. Thus, all the equalizations,
nd error corrections plus equalization feedback algorithms
an be implemented digitally, providing a more accurate
nd higher performance alternative to analog equalizers.
he digital equalization approach is illustrated in Fig. 9.

Feedback Algorithm for Electronic Equalizers
arious adaptive equalizer algorithms have been developed

or digital signal processing. LMS maximum likelihood al-
orithms are widely used in equalizer designs. Recursive
east-squares �RLS� algorithm achieves faster convergence,
ut is computationally more complex than LMS since ma-
rix inversion is required. The reference signal required by
he LMS algorithm can be either provided by a transmitted
raining sequence or estimated by the detected bits.
ecision-directed tap adaptation uses the output of the

licer/decision circuit as an estimation of the transmitted
equence. LMS is simple and can be implemented for FFE
nd DFE equalizations.17–19 For higher data rates, the steep-
st descent algorithm can be used, which consecutively
ithers the equalizer taps to achieve the optimized signal
uality. As a simplified variant of LMS, sign-sign LMS

zer including TE and DFE.

ig. 9 A digital electronic equalizer with assistance of a high-speed
equali
DC.
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Dai: Electronic equalizations for optical fiber dispersion compensation
algorithm evaluates only the signal signs, which has greatly
reduced computation time, yet with very “noisy” gradient
estimate. The biggest advantages of sign-sign LMS algo-
rithm is that it does not require any high-speed ADC and
thus can be implemented at high speed.

The drawback of conventional equalization algorithms
lies on the fact that they need the assistance of a training
sequence, which is not suitable for applications with a vary-
ing channel environment. On the other hand, blind equal-
ization provides a reference-free equalization algorithm,
which meets the current fiber communication transmission
standard. Blind equalization is thus critical for agile optical
networks, where the channel environment varies constantly.
Since binary ON-OFF key modulation with constant enve-
lope is used in fiber communication system, constant-
modulus adaptive algorithm �CMA� is proposed for fiber
dispersion compensation using blind equalization.14 The
key to the success of a blind equalization is the efficient
error estimation through built-in eye-open detection circuits
such as the one proposed in the previous section.

5.1 LMS Equalization
If a reference training sequence is transmitted during a pre-
assigned time slot, the equalizer coefficients can be adapted
by using the LMS adaptive algorithm so that the output of
the equalizer closely matches the training sequence. The
LMS reference can also be estimated by the detected bits.
In this case, a blind equalization is implemented with the
goal of widening the eye-open for improved BER. If rk is
the reference signal and yk is the equalizer output at time
instance k, respectively, the error signal of LMS is defined
as

ek = rk − yk = rk − Wk
TXk, �17�

where Xk is the equalizer input signal and Wk is the equal-
izer tap coefficients at time instance k, respectively. The
cost function to be minimized is defined as

Jk = ek
2 = �rk − Wk

TXk�2. �18�

Fig. 10 PMD compensation using a 7-tap analo
with power splitting ratio=0.5 and DGD=0.8 per
feedback. �c� Compensated eye diagram with fi
In each iteration, the gradient is estimated by

Optical Engineering 035006-9
Jk =
�Jk

�Wk
= 2ek

�ek

�Wk
= − 2ekXk. �19�

ith the steepest descent adaptive algorithm and a bounded
tep size �, the equalizer tap coefficients can thus be
dapted as follows:

able 3 TAP coefficients of 3-, 5-, and 7-tap LMS FFE for first-order
MD compensation with DGD=0.25%, 0.5%, and 0.75% symbol
eriod.

GD 25% 50% 75%

1 of 3-tap FFE 0.001295 −0.03202 −0.3023

2 of 3-tap FFE 1.185 1.2 1.515

3 of 3-tap FFE −0.2147 −0.1914 −0.2791

1 of 5-tap FFE 0.00003686 0.001223 0.06619

2 of 5-tap FFE 0.0009815 −0.03445 −0.3336

3 of 5-tap FFE 1.187 1.204 1.532

4 of 5-tap FFE −0.2232 −0.197 −0.3061

5 of 5-tap FFE 0.04044 0.03116 0.05649

1 of 7-tap FFE 0.0001306 −0.0002302 −0.0153

2 of 7-tap FFE 0.0001521 0.001364 0.07292

3 of 7-tap FFE 0.0009156 −0.03417 −0.3367

4 of 7-tap FFE 1.187 1.204 1.543

5 of 7-tap FFE −0.2236 −0.1972 −0.3088

6 of 7-tap FFE 0.042 0.03221 0.06169

7 of 7-tap FFE −0.007656 −0.005136 −0.01132

. �a� Eye diagram distorted by first-order PMD
Compensated eye diagram with LMS adaptive
coefficients.
g FFE
iod. �b�
March 2007/Vol. 46�3�
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Dai: Electronic equalizations for optical fiber dispersion compensation
Wk+1 = Wk − � � Jk = Wk + 2�ekXk. �20�

5.2 CMA Blind Equalization
Inclusion of the training sequence with the transmitted in-
formation adds an overhead and thus reduces the through-
put of the system. Therefore, to reduce the system over-
head, adaptation schemes are preferred that do not require
training, i.e., blind adaptation schemes.15 In blind equaliza-
tion, instead of using the training sequence, one or more
properties of the transmitted signal are used to estimate the
inverse of the dispersive channel. Unlike the LMS algo-
rithm, which assumes a reference rk, the error ek in Eq. �17�
cannot be used to define the cost function in blind equal-
ization. Since the transmitted signal in fiber communication
is of the constant amplitude, we can assume constant am-
plitude A in the absence of signal degradations. Then, the
error signal in blind equalization can be defined as

ek = �yk�2 − A2. �21�

The cost function can be further defined as16

Jk = E
ek
2� = E
�yk

2 − A2�2� . �22�

The true gradient of J at time step k can be approximated
by its instantaneous value as

�Jk =
�Jk

�Wk
= 2ek

�ek

�Wk
= 4ekykXk = 4�yk

2 − A2�ykXk. �23�

The CMA recursion expression becomes

Wk+1 = Wk − � � Jk = Wk − ��yk
2 − A2�ykXk, �24�

T

Fig. 11 CD compensation using a 7-tap analog
sion in a 75-km SMF-28 fiber at wavelength
adaptive feedback.
where the equalizer output is yk=WkXk. �

Optical Engineering 035006-1
Simulation Results

.1 LMS Equalizer
o demonstrate the effect of an electronic equalizer on fiber
ispersion compensation, we simulated a 7-tap analog feed
orward equalizer �FFE� with LMS feedback algorithm for
MD compensation �Fig. 10� and chromatic dispersion
ompensation �Fig. 11�. Note that the severely distorted
ignal can be compensated using just 7 taps in an analog
ransversal equalizer. With the adaptive feedback, the tap
oefficients are constantly adjusted based on the error sig-
al. Even without feedback, the fixed coefficient equalizer
an still open the distorted eye. For a fixed network, we can
hus predetermine the equalizer tap coefficients and load
hem into the equalizer at the field, which is very attractive
rom a cost reduction point of view. For chromatic disper-
ion, tap coefficients can be programmed based on the
ength and type of the fiber, providing a much more eco-
omic way than the current solution using dispersion com-
ensation fiber �DCF�, which is static and also wavelength-
ependent. As a reference for practical designs, we
ummarize in Table 3 the tap coefficients of 3-, 5-, and
-tap LMS transversal equalizers for first-order PMD com-
ensation with DGD=0.25%, 0.5%, and 0.75% of the sym-
ol period, respectively.

.2 CMA Blind Equalizer
n simulation for blind equalization, we set signal ampli-
ude A to 1 and normalized the input signal to the range of
−1,1�. Baud-Spaced CMA �sampling period equal to the
ymbol period� is used, and tap coefficient W0 is initialized
o be “Single-Spike”15 �one nonzero tap coefficient, and all
ther to 0�. Three scenarios with different settings of DGD
re investigated. Symbol period is set to be 0.025 nsec

a� Eye diagram distorted by CD after transmis-
m. �b� Compensated eye diagram with LMS
FFE. �
1550 n
25e−12 seconds�. Simulation results for DGD of 80% of

March 2007/Vol. 46�3�0
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Dai: Electronic equalizations for optical fiber dispersion compensation
the symbol period are shown in Fig. 12. In all scenarios,
feedback gain � is set to 0.005. In Fig. 12�a� and 12�b�,
show the eye diagrams before and after the compensation;
�c� gives the initial and adapted tap coefficients; and �d�
plots the eye opening and the cost function J, which is
defined in �22� and ideally converges to 0. Assuming the
eye is constant along the horizontal direction, the eye-open
is then measured as the vertical height between the mean of
peak amplitudes and the mean of valley amplitudes, which
converges to value 2 ideally. Note that when DGD is 80%
of the symbol period, it takes more than 100 nsec for the
coefficients to converge, and the cost function J cannot
fully converge to 0 and it stays around 0.1, but the eye is
opened much wider than the distorted one.

We then applied our CMA equalizer to CD compensa-
tion, and the compensated eyes are shown in Fig. 13 for a
7-tap FFE. We investigated two fiber lengths of 75 km and

Fig. 12 CMA blind equalization for first-order
Fig. 13 CD compensation using a 7-tap

Optical Engineering 035006-1
00 km with their distorted eyes given in Fig. 2. As a quan-
itative comparison, the CD distorted eye opening for
5-km fiber is from −0.75 to 0.4, while the CMA compen-
ated eye opening is from −0.9 to 0.75, with 143% im-
rovement. For 100-km fiber, the CD distorted eye opening
s from −0.5 to 0.25, while the CMA compensated eye
pening is from −0.9 to 0.6, with 200% improvement.

Conclusions
his paper presented rigorous channel models for various
ber dispersions and investigated their mitigations using
igital and analog electronic equalizers. A novel CMA-
ased blind electronic equalization technique is proposed.
hile LMS feedback algorithm requires a training se-

uence to obtain the equalizer coefficients, the blind equal-
zation automatically finds the optimal tap coefficients uti-

ompensation with DGD=80% symbol period.
PMD c
FFE with blind CMA algorithm.

March 2007/Vol. 46�3�1
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Dai: Electronic equalizations for optical fiber dispersion compensation
lizing the constant amplitude features in binary fiber
transmissions. As a reference for LMS-based transversal
equalizer design, the optimal tap coefficients for first-order
PMD compensation have been summarized in Table 3. For
CMA blind equalization, PMD compensation with DGD
=80% symbol period and CD compensation with 200%
eye-opening improvement were demonstrated. Also dis-
cussed is the adaptive fiber transceiver architecture with
eye-open detectors that can be used to provide the feedback
control for high-speed analog equalizers.
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