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Abstract—Finding tests for hard-to-detect (HTD) faults in com-
plex designs is challenging. Researchers use testability measures
to guide automatic test pattern generation (ATPG) programs to
improve fault detection efficiency. However, each measure favors
the detection of specific faults in the same circuit. Principal
component analysis (PCA), an unsupervised learning technique,
has been used to combine several algorithmic testability mea-
sures. Guidance from the PCA measure was found to uniformly
improve the ATPG efficiency with fewer backtracks, lower
ATPG CPU time, detection of many HTD faults, fewer aborted
faults, and increased fault coverage. The present work shows
that these benefits continue further when we also included
topological factors like fan-in and fanout cone base widths, fanout
reconvergence data, and even-odd inversions on reconverging
paths in a new-PCA measure. This work opens the venue for
ongoing improvements.

I. INTRODUCTION

Digital automatic test pattern generation (ATPG) has seen
over half a century of developments of algorithms and CAD
systems. ATPG is proven to be NP-complete [1], implying
the worst-case time complexity to find a test for a fault to be
exponential in terms of the circuit size. Practical approaches
involve setting time limits and using intuitive heuristics to
prioritize search options. To program heuristics, testability
measures have been used [2]–[10]. However, no single testa-
bility measure is known to work best for all faults [11].

Recent work avoids the dilemma of choosing a testability
measure by combining multiple measures by a statistical tech-
nique called principal component analysis (PCA) [12]. Any
set of testability measures may be combined through PCA.
The principal component is then used to guide a PODEM
ATPG program’s choices at signal nodes during backtraces and
forward drives. Our recent work combined several of the well-
known measures mentioned in Section II and showed notable
improvement in ATPG performance.

The present work examines the questions: Can we keep
adding more measures? Is there a limit to the improvement
in ATPG performance? In Section IV, the previous results
combining the known testability measures are marked as
“PCA” and those with additional topological measures as
“new-PCA.” Conclusions can be found in Section V.

II. PRIOR WORK

Testability analysis identifies test bottlenecks in a circuit. It
may determine the controllability and observability of signals,
in some approximate form to keep computing complexity
low. Various measures such as distance through the circuit,
TMEAS [3], SCOAP [4], CAMELOT [10], and COP [6]
have been used to improve digital circuit design. However,

algorithms like SCOAP and COP have inaccuracies in pre-
dicting fault detectability due to their assumption of signal
independence. Other methods rely on signal probability com-
putation algebraically [13], or by graph partitioning [8], [9], or
by cutting algorithm [14]. Fault detection probability can be
computed using probabilistic controllability and observability.

Machine intelligence (MI) applications in this area have
begun to emerge [15]–[29]. MI has two key phases: learning
from problem-specific data and utilizing that knowledge to
solve problems. These phases may be called Artificial Neural
Network (ANN) training and ANN guidance in supervised
learning. In unsupervised learning, statistical tools like princi-
pal component analysis (PCA) [12], [30] are used instead.

The MI tool analyzes the problem-specific data during the
first phase to extract relevant characteristics. These character-
istics are then leveraged in the second phase to solve problems
directly. In other words, the knowledge gained from the data
is used to devise solutions to the problems.

Using PCA as the statistical tool, we have applied unsuper-
vised learning to the ATPG problem. This technique extracts
the most relevant features from the circuit structure and uses
them to guide the test pattern generation. By utilizing this
approach, we can efficiently generate test patterns and achieve
results superior to those from traditional methods.

A. Dimensionality Reduction

Data is a valuable resource in the digital era, but its storage
and computation pose challenges. PCA [12] is a statistical
technique that reduces dimensionality by characterizing data
into few principal components (PC). The PCs hold the same
information as the original data in consolidated form.

We use a singular value decomposition (SVD) method to
obtain PCs [31]. A parameter known as the explained variance
for a subset of PCs depends on the number of PCs and the
individual variance of each PC. Adding up the individual
variances of the PCs in the subset gives the total variance,
which can be expressed as a percentage of the total explained
variance. Often, only the first few PCs are necessary, but in
some situations, the last few PCs may be interesting, such as
in outlier detection or image analysis.

III. BACKGROUND AND PRESENT WORK

1) Putting Together Testability Measures: We generate a
composite testability measure using PCA [21] by combining
testability measures listed in Section II. Details of this amal-
gamation process may be found in a recent publication [21].
The present work also includes the addition of primary inputs
and outputs (PI and PO) widths, node reconvergences, and
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even/odd parity of reconvergent fanouts to the list of the
conventional testability measures.

For each signal node of the circuit, ten measures
and circuit topologies are defined: distance [32], COP-
controllability-1 (CC1) [6], COP-observability (CO) [6],
SCOAP-controllability-0 (SC0) [4], SCOAP-controllability-
1(SC1) [4], SCOAP-observability (SCO) [4], transitive-fan-in
affecting PIs (nPIs), transitive-fan-out affecting POs (nPOs),
node reconvergence (ReConvNode), and even/odd parity of
reconvergent fanouts (parity).

Data initialization sets the values of all testability measures
in the same phase to be combined. This is accomplished by a
single-pass, linear time complexity procdure:

• Calculate the minimum distance of the circuit node “N”
from PI, i.e., distance.

• Calculate CC1 for ”N” that determines the probability of
setting ”N” to 1. Since it is a probability, the complement
of this value can determine the probability of setting ”N”
to 0. Also, calculate CO to determine the observability
of ”N” at the circuit PO.

• Calculate SC0 and SC1, the effort of setting the node ”N”
to 0 and 1, respectively. Also, calculate SCO to determine
the effort required to observe the node ”N” at the circuit
PO.

• From the fan-in and fanout cones of “N” determine the
PIs and POs connected to “N” as nPIs and nPOs, respec-
tively. They are then normalized by dividing, respectively,
by the total number of PIs and POs.

• Determine whether or not “N” is a convergent node
by tracing all its fanouts to explore whether or not
they reconverge (ReConvNode). If they do, the value of
“ReConvNode” is set to 1; otherwise, it is kept as 0.

• Examine the numbers of inversions on pairs of fanout
paths to determine whether both are even or odd, and se-
lect the minimum offset bound reconvergence point. The
minimum offset is taken since the impact of backtracking
in ATPG is stronger on the minimum offset reconvergence
path, and this conflict further ripples toward PIs and
POs, making the backtracing and forward tracing more
time-expensive due to sky-rocketing undoing of decisions
while choosing backtrace path and D-Frontier (see, D-
algorithm [33]) in the circuit. If the number of inversions
is odd, “parity” is set to 1; otherwise, it is kept as 0. The
details of this algorithm are discussed in Section III-A.

Once the relevant values have been computed, they are
normalized to 0 to 1 range, and a phase correction is applied as
explained in [21]. Finding these values is not computationally
intensive. A one-time computation through the circuit can de-
termine all these values, eliminating the need for recalculation
during ATPG. This normalization enables the values to be
compared and combined meaningfully, avoiding any bias or
disproportionate influence of any particular value.

Finally, all measures are combined using PCA, a statistical
technique that identifies patterns and correlations in the data.
If n measures are combined, then PCA computes n values for
each node in the circuit.

In this study, we have two amalgamation tables: a back-
tracing table (distance, CC1, SC0, SC1, nPIs, ReconvNode,
parity) and a forward tracing table (distance, CO, SCO,
nPOs, ReconvNode, parity). The largest of these values is the

principal component, used as the combined measure for setting
the signal values to 0 and 1, respectively.

A. Algorithm for calculating even/odd parity of reconverging
fanout

Firstly, we will delve into reconverging fanouts in a circuit
node. These are the points where multiple signals converge
after branching out from a single source. Next, we will focus
on a node in the circuit with several reconverging fanouts.

For each combination of two signals, A and B, we will:
• Identify multiple reconverging points (represented by N

= n1, n2, n3,...N) where the two signals converge.
• Select a reconverging point closest to the node according

to minimum distance (d) between the node and N.
• Calculate the parities (even/odd) for both reconverging

fanouts while traversing from the node to N.
• Evaluate the XOR of the two parity for the reconverging

fanouts (represented by X).
• Store the results in a look-up table that comprises d, X.
Finally, we will sort the look-up table in ascending order and

choose the parity for the minimum value of ”d.” In this study,
we used the minimum distance to calculate the even/odd parity
of the reconvergence fanout. This choice was made to account
for the impact of odd inversion that a signal may encounter
within the reconverging fanouts.

Odd inversion occurs when a signal is inverted an odd
number of times as it passes through a circuit. This can
cause the signal to change polarity, significantly impacting the
system’s performance. If the reconverging point is closest to
the reconverging fanout stem, this odd inversion has a more
catastrophic effect on the signal than an even inversion.

By using the minimum distance, the number of backtracks
is expected to reduce, improving the performance of test
generation about CPU time. Backtracks occur when a signal
has to retrace its steps to avoid conflicts within the circuit.
This can slow down the overall system performance; thus,
reducing the number of backtracks is highly desirable. Overall,
the choice of minimum distance helps optimize the system’s
performance by minimizing the impact of odd inversion and
reducing the number of backtracks.

IV. ATPG EXPERIMENTS: RESULTS AND DISCUSSION

The absence of access to the internal details of commercial
CAD software necessitated using a home-grown program to
compare algorithmic improvements. Our experiments were
performed on an Intel-i7-10610U processor with 16 GB
RAM. An ATPG system was implemented in C++ using
MSVC++14.15 compiler with due emphasis on optimizing
performance. The PCA algorithm was executed using Python
programming language, whereas PODEM ATPG [32] was
implemented with an event-driven fault simulator [34] in
C++. The PODEM algorithm was programmed to enable
the application of any testability measure including, but not
limited to, distance [32], COP [6], SCOAP [4], or PCA, to
various benchmark circuits [35], [36].

As the ATPG process is computationally expensive, some
faults may be aborted. Nonetheless, it was observed that a
comparable fault coverage could be accomplished with each
testability measure by setting a suitable per-fault time limit.
The proposed ATPG system employed in the present study
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Fig. 1. Total ATPG CPU time for finding a test or proving redundancy for
all checkpoint faults left undetected by the random ATPG phase applied to a
subset of ISCAS’85 [35] and ITC’99 [36] benchmark circuits.
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Fig. 2. Total backtracks used while finding a test or proving redundancy for
all checkpoint faults left undetected after the random ATPG phase applied to
a subset of ISCAS’85 [35] and ITC’99 [36] benchmark circuits.

can identify all checkpoint single stuck-at faults. Furthermore,
the system initiates a random pattern detection (RPD) phase
to eliminate faults that can be detected using random pat-
terns. The remaining faults are then tested using PODEM
ATPG [32], guided successively by a single testability mea-
sure, such as distance, COP or SCOAP, or by a combined
measure from PCA. Also, a suitable per-fault time limit pro-
duces fault coverage similar to all heuristics. The effectiveness
of the PCA algorithm was tested in three sets of experiments.

A. Test generation with no aborted faults
This experiment evaluates the performance of the PODEM

ATPG algorithm when using various testability measures such
as “Distance”, “COP”, “SCOAP”, “PCA [21]”, and “new-
PCA”. The ATPG was applied to nine circuits from IS-
CAS’85 [35] and ITC’99 [36] benchmarks, b06, b03, b09, b08,
b10, b13, c880, b11, b12 (arranged in ascending order of their
number of nodes as shown in figures) to test all checkpoint
stuck-at faults, using no per-fault time limit across all the
testability measures under consideration.

Results of ATPG CPU time and number of backtracks are
shown in Figures 1 and 2. Note that circuit b06 has no
backtracks for all testability measures. Moreover, the new-
PCA guided ATPG outperformed other testability-measure-
based methods regarding quality. This is evident as the new-
PCA-based ATPG reduced the backtracks (even to 0 for
b03) compared to other testability measure-based ATPG and
substantially reduced the ATPG CPU time.

The results also show that the new-PCA guided ATPG
required lower ATPG CPU time across circuits b09, b08,
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Fig. 3. Total aborted faults after the random and deterministic ATPG phase
applied to ISCAS’85 [35] and ITC’99 [36] benchmark circuits.
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Fig. 4. Total backtracks used while finding a test or proving redundancy for
all checkpoint faults left undetected after the random ATPG phase applied to
ISCAS’85 [35] and ITC’99 [36] benchmark circuits.

b10, b13, c880, b11, and b12, with a substantial reduction
in backtracks except for b09, b10, b11, b12, and b13 where
the reduction in backtracks was not substantial but still not
higher than the other testability measure-based ATPG.

This study demonstrates that the PCA-based ATPG method
is an effective and efficient way to perform ATPG and im-
prove the quality of backtracing. This could be a significant
breakthrough in testing methodology, as it may detect all faults
without any aborted faults or backtracks for specific circuits.

It is worth noting that the improvement in backtracing
quality is a significant achievement in itself. Other testability-
measure-based ATPG methods can lead to backtracks for
faults, even in circuits with no redundant faults. However, this
study’s PCA-based ATPG method ensures that all faults can
be detected with no aborted and unidentified redundant faults
and with zero backtracks for specific circuits, making it an
essential method for any testing methodology.

B. Test generation with per-fault time limit

In an ATPG run, aborted faults often appear when a per-
fault CPU time limit is set. For these faults test generation
is aborted because within the set time limit neither a test is
found not the fault is proven redundant.

A typical ATPG tool may not target aborted faults by
default. However, it could retarget them using dynamic learn-
ing the second time. Such a strategy would significantly
increase run times. Our experiment evaluates the performance
of PODEM ATPG [32] using various testability measures such
as “Distance”, “COP”, “SCOAP”, “PCA [21]”, and “new-
PCA” to observe the impact on the detection of aborted faults,
ATPG CPU time, and number of backtracks, and most impor-
tantly impact on fault coverages as illustrated, respectively, in
Figures 3, 4, 5 and 6.
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Fig. 5. Total ATPG CPU time for finding a test or proving redundancy for
all checkpoint faults left undetected after the random ATPG phase applied to
ISCAS’85 [35] and ITC’99 [36] benchmark circuits.
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Fig. 6. Total fault coverages while finding a test or proving redundancy for
all checkpoint faults of ISCAS’85 [35] and ITC’99 [36] benchmark circuits.

The ATPG was applied to fourteen circuits from the IS-
CAS’85 [35] and ITC’99 [36] benchmarks, c432, c499, b07,
c1355, b04, c1908, b05, c2670, c3540, c6288, c5315, c7552,
b15, b14 (arranged from left to right according to the number
of nodes) to test all checkpoint stuck-at faults.

We observe a constant reduction in ATPG CPU time and
substantially smaller numbers of backtracks and aborted faults,
as well as a significant increase in fault coverages, with
few exceptions. More prominence can be found in circuits
comprising more nodes, shown on extreme right. In a circuit
like b07, the new-PCA reduced the number of aborted faults
to zero but at the cost of more backtracks and ATPG CPU
time with a lesser impact on the tool efficiency. Also, in a
circuit like b04, fault coverage is not improved; however, it has
reduced backtracks and CPU time (not a visually promising
reduction).

C. Test Generation for hard-to-detect faults in larger circuits
This experiment examines the effectiveness of the new-PCA

method in detecting difficult-to-detect faults in more complex
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Fig. 7. Total aborted faults after the deterministic ATPG phase applied to
100 hard-to-detect faults in three ITC’99 [36] benchmark circuits.
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Fig. 8. Total ATPG CPU time for finding a test or proving redundancy for
100 hard-to-detect faults in three ITC’99 [36] benchmark circuits.
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Fig. 9. Total backtracks used while finding a test or proving redundancy for
100 hard-to-detect faults in three ITC’99 [36] benchmark circuits.

and extensive circuits. We ran a third-party ATPG tool on three
circuits, b20, b21, and b22, to obtain lists of aborted faults.
Then we extracted 100 hard-to-detect faults for each circuit
based on COP probabilities [6]. Next, we applied our PODEM
ATPG system using various testability measures, “Distance”,
“COP”, “SCOAP”, “PCA [21]”, and “new-PCA” to observe
the impact on the detection of aborted faults, ATPG CPU time,
number of backtracks, and most importantly, the impact on
fault coverages. The results are illustrated in Figures 7, 8, 9,
and 10, respectively.

Our study finds that using new-PCA reduced backtracks,
ATPG CPU time, and aborted faults, and all together increased
the fault coverage. This indicates that the method discussed in
this study can detect much harder faults in larger circuits that
a third-party (commercial) tool with preset (default) bounds
and limits may not detect.

V. CONCLUSION AND FUTURE DIRECTIONS

This study investigates whether a PCA-based combination
of testability measures and circuit topological features can en-
hance the efficiency of ATPG programs. Clearly, this approach
can significantly reduce the number of backtracks, reduce
the ATPG CPU time, and improve the detection of hard-to-
detect faults. It increased the fault coverages for the ISCAS’85
and ITC’99 benchmarks and provided more robust detection
of aborted faults than traditional heuristic-based ATPG. The
new method is likely to be scalable when applied on larger
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Fig. 10. Total fault coverages while finding a test or proving redundancy for
100 hard-to-detect faults in three ITC’99 [36] benchmark circuits.
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industrial circuits or applied to other fault models, detect
user-defined faults, transition faults, cell-aware stuck-at faults
more efficiently, and provide greater fault coverages with raster
ATPG runs.

This research can be the driving force behind developing
silent data error detection and can be an incremental upgrade
to any current third-party ATPG tool. Hence, this method can
be an excellent addition to current third-party ATPG tools,
improving their quality.

The study has demonstrated that the PCA-based ATPG
method is a reliable and efficient way to improve the quality
of backtracing followed by a reduction in ATPG CPU time,
detection of otherwise aborted faults, and providing higher
fault coverage. These are a significant step forward in testing
various NP-hard methodologies that can help create more ro-
bust and efficient testing methods for electronic systems. This
research can be the foundation for future testing methodologies
and provide a more reliable and efficient way to ensure the
quality of various electronic systems.

We should address the questions posed in Section I, ”Can
we keep adding more measures?” For now, the answer is ”yes”,
as new-PCA guidance reduced CPU time and increased fault
coverage. The question of the limit to ATPG performance is
still not answered. Will the performance increase continue or
asymptotically reach a plateau? May need investigation on
what new measures? Perhaps an answer could be found in
a closer examination of backtracks.

This paper shows that ATPG performance improves when
topological factors are added to backtrace guidance. Can such
improvement continue with more data about the circuit? What
type of data? Will backtracks continue to drop? To zero?
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