
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:659–677
https://doi.org/10.1007/s10836-023-06086-3

Efficient Fault Detection by Test Case Prioritization via Test Case Selection

J. Paul Rajasingh1 · P. Senthil Kumar2 · S. Srinivasan3

Received: 2 August 2023 / Accepted: 29 September 2023 / Published online: 22 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
One of the significant features of software quality is software reliability. In the testing phase, faults are identified and cor-
rected by integrating them into software development, thus obtaining better reliability. Here, by utilizing the Elliptical
Distributions-centric Emperor Penguins Colony Algorithm (ED-EPCA)-based Test Case Prioritization (TCP), an effectual
Fault Detection (FD) technique is proposed using Fishers Yates Shuffled Shepherd Optimization Algorithm (FY-SSOA)-
based Test Case Selection (TCS). Initially, for the incoming source code, the Test Case (TC) is created. Then, the significant
factors needed for TCS and prioritization are identified. Next, by utilizing the Log Scaling-centered Generalized Discriminant
Analysis (LS-GDA) model, the estimated factors are abated further to enhance the TCS along with prioritization for the
Fault Detection Process (FDP). Then, using the FY-SSOA, the optimized TCs are selected. Subsequently, with the help of
ED-EPCA, the TCs being selected are ranked as well as prioritized. Finally, to validate the proposed system’s effectiveness,
the model’s performance is evaluated in the working platform of Java and analogized with the traditional methodologies.
The results indicate that the test case prioritization-based fault detection method is robust with a 99.23% fault detection rate
and a small amount of memory usage, which is only 8245475 kb by generating a large number of test cases.

Keywords  Software testing · Test case · Prioritization · Selection · Entropy · Fault detection

1  Introduction

In the modern era, being an emerging paradigm, Information
Technology (IT) acts as a backbone of the software indus-
try. For software industrial growth, developing good quality
software and maintaining its prominence is highly essential
[9]. Software testing is a crucial but effort-intensive activ-
ity. In the software development life cycle, testing is a vital

part. Moreover, mainly to enhance the quality, performance,
reliability, and efficacy of the software, the testing process
is performed [18]. Furthermore, in addition to maintaining
product quality, testing certifies the proper functioning of
the software’s extended version. In the entire testing process,
test cases are deliberated as the basic mechanisms. It is also
prioritized to uncover a number of faults simultaneously
or to detect severe faults at an early stage for achieving an
objective function.

Permitting software testers to detect more crucial TCs
is one of the effective strategies for handling risky com-
ponents. Thus, certain faults related to those components
are revealed. Faults pertinent to those hazardous compo-
nents are also identified faster after detecting the TCs [20].
To gauge the program execution of a test on the program
under test, the code coverage is utilized. Usually, with the
aid of computer programming codes, which are already
written to perform the required task, software applications
are developed [22]. Generally, certain faulty instances
might exist in these predefined codes. Thus, owing to soft-
ware defects, it resulted in buggy software development.
Next, several factors related to the software Fault Correc-
tion Process (FCP) are identified [10]. For developing the

Responsible Editor: B. Arasteh

 *	 J. Paul Rajasingh
	 paulrajasingh2912@gmail.com

	 P. Senthil Kumar
	 drsenthilkumar2010@gmail.com

	 S. Srinivasan
	 ssn.cse@rmd.ac.in

1	 Information and Communication Engineering, Anna
University, Chennai, India

2	 Information Technology, P. B. College of Engineering,
Irungattukottai, Chennai 602117, India

3	 CSE, RMD Engineering College, Kavaraipettai,
Tiruvallur District 601206, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06086-3&domain=pdf

660	 Journal of Electronic Testing (2023) 39:659–677

1 3

Software Reliability Growth Model (SRGM), the FDP is
included in the FCP [27]. For an effectual TCP in mini-
mum time, optimization methodologies are needed to be
attained whilst retaining the software quality.

Conventionally, all activities of software testing are
conducted by human testers (test engineers) manually. For
every System Under Test (SUT), a set of test specifica-
tions is generated in the manual testing process. To prior-
itize the test cases, numerous nature-inspired algorithms,
such as genetic algorithm, particle swarm optimization,
ant colony optimization, et cetera are espoused [25]. For
evaluating the fitness of varied models, various method-
ologies subsuming Factor analysis (FA) and regression are
also employed [12]. To aid different classification tasks,
Neural networks (NN) are also implemented in numerous
software systems [28]. The former TCP was performed
utilizing codes. On the contrary, for TCP, model-based
mutation testing was employed in which valid information
in terms of the objective function along with an automatic
fault seeding system is desired [30].

In spite of all the efforts of researchers to enhance
software testing quality, software testing’s efficiency and
effectiveness are still an open challenge and remain below
the marginal line of customer's expectations. Testing is
still largely ad hoc, expensive, and unpredictably effective
even after being a widespread and mainstream validation
technique in the software industry. In addition, the test case
prioritization execution and analysis possess numerous
challenges and problems. It is not just a simple reordering
of the test cases; it needs deep insights and analysis pro-
cedures for getting the fruits of prioritization approaches.

The test suites were ordered on their fault detection abil-
ity with the costs of test suites by the prior works. However,
they ignored the code coverage and other features of cost,
such as test suite size and code size of the application under
testing. A few methods incorporated the code-coverage TCP
techniques, which may treat all faults equally. However, it
is believed that one of the challenges faced by these tech-
niques is the ability to monitor needs covered in the system
test. In other words, prioritization must be cost-effective for
testing. In most of the methods, problems like time com-
plexity and low memory usage that might be utilized for
tackling issues, such as selection-prioritization and selec-
tion across collections of test cases are not concentrated. It
is possible that executing test cases that have more potential
to cover the maximum possible paths of SUT first can alle-
viate the time complexity and low memory usage issues in
test case selection and prioritization. Under this motivation,
an effectual FD system by utilizing the ED-EPCA-based
TCP has been proposed here utilizing FY-SSOA-based TCS
to avoid the aforementioned issues.

1.1 � Problem Statement

Even though there are various benefits in the prevailing method-
ologies, there exist certain disadvantages, which are listed below:

•	 TCP is a process, where to maximize certain conditions
like the test cases’ FD Rate, the TCs are ordered within the
test suite of a SUT.

•	 The generated test cases were mitigated by the conventional
TCP algorithm. Thus, a time complexity problem is caused
whilst running the TCs being engendered.

•	 Poor computation efficacy was possessed by the risk-centric
TCP utilizing a fuzzy expert system strategy.

•	 Handling larger input datasets was a complicated task for
the input-based adaptive randomized TCP. In addition, it
could not achieve cost-effective outcomes.

•	 Only a fixed strength was considered by the traditional TCP
methodologies, which did not consider multiple strengths
whilst selecting every single test case.

Thus, via an effectual FD system, the proposed model
deterred the aforementioned drawbacks with the following
contributions as,

•	 To augment the fault detection rate, the more significant
test cases have been performed first via the ordering of test
cases for prioritization.

•	 To minimize the time complexity of TCP, the prioritization is
carried out only for the selected test cases using the FY-SSOA
algorithm rather than running all the test cases generated.

•	 To improve the computation efficiency, the maximization
criteria-based prioritization using the ED-EPCA method
is employed.

•	 To accomplish more cost-effective results and to deal with
large input data, factor identification and factor reduction
using LS-GDA are utilized.

•	 Unlike conventional TCP methodologies, the test case selection
under multiple strengths is carried out in the proposed method.

The paper’s remaining parts are arranged as: some of the
primitive works regarding the TCS and prioritization are
reviewed in Section 2; the proposed technique is explicated
in Fig. 3; the proposed model’s superiority measure is dem-
onstrated in Section 4; finally, the paper is winded up with the
future work in Section 5.

2 � Literature Survey

Gao [11] developed an SRGM framework via heterogene-
ous debuggers consideration. Here, to optimize the testing
process, a cost analysis technique was employed. The FD

661Journal of Electronic Testing (2023) 39:659–677	

1 3

and fault correction were deemed to be a departure as well
as an arrival process. Moreover, via a queuing system,
these processes were illustrated. The simulation outcomes
proved the presented model’s effectiveness regarding per-
formance metrics. However, the model was ineffective
whilst working in a complex environment.

Xiao et al. [29] elaborated on a stepwise prediction
system for the FDP and the FCP regarding the Artificial
Neural Network (ANN). In the presented model, the great-
est impact was possessed by the testing effort on FDP as
well as the FCP. Thus, regarding software reliability along
with total cost, the optimal release technique was attained.
Conversely, the model’s superiority measure was affected
by a higher Mean Square Error (MSE).

Gokilavani and Bharathi [13] recommended a Princi-
ple Component Analysis (PCA) extraction along with a
K-Means clustering-centric ranking model to investigate
faults in the software. Here, for an effectual FDP, the
model underwent (i) pre-processing, (ii) feature selection,
(iii) clustering, and (iv) ranking process. Therefore, using
the adjacency matrix betwixt the TCs and FDR, the sum of
the faults was detected superiorly. However, information
about the basic needs along with risks related to bugs was
not provided by this model.

Lin et al. [19] presented a systematic mechanism to
determine the FD and Diagnosis (FDD) model’s suprem-
acy. Here, from the dataset wielded, input scenarios as well
as the input data samples were extricated. Additionally,
by utilizing a condition-centric conventional system, the
ground truth fault operational stage was proffered. Conse-
quently, the model deterred unintentional lighting runtime
complications. However, owing to fault intensities together
with seasonal diversities, the dataset utilized was limited.

Cui et al. [8] modeled a fault localization methodol-
ogy by the amalgamated usage of the spectrum as well
as mutation. Regarding the program spectrum, the faults
were localized by the Spectrum-Based Fault Localiza-
tion (SBFL). Alternatively, concerning the mutant, faults
were localized by the Mutation-Based Fault Localization
(MBFL). At last, the ranking was performed. Hence, the
utilization of the adopted ranking methodology enhanced
the fault localization accuracy. However, the programs
with multiple faults were not considered by this model.

Jahan et al. [15] proffered a semi-automatic risk-centric
TCP model regarding software modification information
together with the invocation relationship. Here, for risk
analysis, the factors considered were complexity, the
desired modification information, along with the model’s
size. The experiential outcomes demonstrated that when
compared with the prevailing methodologies, the pre-
sented one spotted defects earlier with higher efficacy.
Nevertheless, the potential errors were increased owing to

the number of modified requirements, complexity, along
with size.

Nagaraju et al. [23] developed a covariate SRGM along
with formulating the optimal test activity allocation aimed
at the maximization of FD. Here, regarding the discrete cox
hazards methodology, a Poisson process was employed for
SRGM. Therefore, by utilizing limited testing resources,
the optimal test activity allocation problem was addressed.
However, the presented covariate model’s practical usage
was not successful.

Nithya et al. [24] presented a gradient-centric meth-
odology for the semi-automated selection of the software
TC. For the TCS, a simulated annealing model was uti-
lized. Similarly, for an effectual testing process, optimi-
zation methodologies were employed. Thus, the unwanted
and redundant data were removed and more faults were
detected. However, the convergence rate was affected by
the usage of random permutations.

Choudhary et al. [7] introduced an effort-centered SRGM
model for detecting along with correcting faults in software
test cases by employing Multi-Attribute Utility Theory
(MAUT). Furthermore, to estimate software failures, a
Non-Homogenous Poisson Process (NHPP) was employed.
Therefore, the total incurred cost was mitigated by the reduc-
tion in the launch time. However, the fault correction com-
plexity was increased owing to the addition of faults in the
fault removal process.

Mahdieh et al. [21] presented the coverage-centric TCP
model aimed at fault proneness estimations. For defect pre-
diction, the software’s bug history was utilized. After that,
fault-proneness regions of every single source code were
analyzed as well as induced in the coverage-based TCP tech-
niques. The experiential outcomes confirmed the presented
model’s effectiveness over the traditional methodologies.
Nevertheless, the model provided an inaccurate prediction
of faults due to the utilization of the lower number of bugs.

Bagherzadeh et al. [5] proffered a Reinforcement Learn-
ing (RL)-based model for TCP. Here, 3 alternative ranking
methodologies were utilized since the TCP was regarded as
the ranking problem. Therefore, higher ranking accuracy of
the testing process was obtained from the analysis and the
extraction of TC data as well as source code history. How-
ever, the model was time-consuming. Moreover, it provided
potentially out-of-date models.

Chi et al. [6] defined an Additional Greedy method-
centric Call sequence (AGC) framework for the regression
testing process. Here, the first priority was given to the TCs
with more call sequences. Then, it was deemed as a calling
network regarding the program behaviors. Using the removal
of redundant test cases, the test suite size was reduced by the
TC minimization model. However, here, the testing process
ceased prematurely at a certain arbitrary point.

662	 Journal of Electronic Testing (2023) 39:659–677

1 3

Ali et al. [1, 2] developed Change Test cases and
Failed Frequency (CTFF) based prioritization methodolo-
gies. Regarding the highest failure frequency, this model
included 2 phases, comprising clustering along with the
prioritization of parameters. Initially, using clustering, the
TCs were prioritized. By employing the coverage condi-
tion, the test cases were prioritized if the test cases inter-
fered with each other. Therefore, the model effectively
detected more faults. However, the outcomes were not
validated statistically.

Ali et al. [1, 2] suggested a pattern-centered verification
model aimed at TCP. Here, by utilizing the observer patterns,
the test cases were accessed often. Moreover, sorting, execu-
tion rate, and fault history were certain strategies via which
the test cases were prioritized. Therefore, the presented
model augmented the FDR together with random priority.
However, reliability along with ambiguity issues occurred
owing to multiple test cases with the same frequency.

Huang et al. [14] engendered Regression TCP (RTCP)
model to test the developed software. The model was highly
grounded on the combination coverage along with the code
coverage concept. Furthermore, adaptive random, additional,
total, and search-centric test prioritization RTCP sorts were
also utilized. Consequently, when analogized with the tra-
ditional models, the presented model obtained comparable
testing efficacy. However, the model was affected by the
time overhead problem.

Arasteh et al. [3] intended to reduce the mutation test
process’s time and cost. The model identified the most
fault-prone paths of a program using the Artificial Bee
Colony algorithm and injected the mutation operators
on the recognized fault-prone instructions and data. The
experimental outcomes indicated that the method reduced
generated mutants and the cost of mutation testing. Due to
the improper exploitation ability of the algorithm, there
occurred inaccurate identification of fault-prone paths.

Arasteh et al. [4] automated test data generation by devel-
oping a method Tracxtor using Imperialist Competitive
Algorithms (ICA). The test data were generated under maxi-
mum branch coverage in a limited amount of time. As per
the outcomes acquired from the experiments, the algorithm
outperformed the other algorithms. However, the memory
usage during test case generation was not considered.

Khari et al. [16] established an automated testing tool
using the components of software testing. The test suit was
generated utilizing the test suite generation approaches for
the flow graph of the software under test. Further, this gen-
erated test suite was optimized utilizing the cuckoo search
algorithm or artificial bee colony algorithm. When analo-
gized to other algorithms, this technique can render a set of
minimal test cases with maximum path coverage. But, due
to the generation of test cases regardless of path, the path
coverage achieved by the model was less.

Khari et al. [17] concentrated on heuristic algorithms’
performance assessment to select the best-suited algorithm
for path coverage-centric optimization. The algorithms were
deployed to create test suites for the program under test and
optimize them under path coverage and branch coverage gen-
erated by the test data. Results showed that the algorithms
were well suited for path coverage-centric optimization
techniques. As the heuristics were developed for the same
problems, generating comprehensive test suites was difficult.

3 � Proposed Efficient Fault
Detection Methodology

In recent days, software has become highly significant in
the daily routine of human life. Owing to complexity along
with longevity, modern software systems encompass a larger
set of requirements. Therefore, in a software engineering
project, by utilizing the proposed FD model, the program’s
behavior is analyzed in the crucial stage of software testing.
Figure 1 exhibits the proposed model’s framework.

3.1 � Test Case Generation

The process of generating test cases for the corresponding
system from the model, which describes the system, is called
test case generation. The generation of these test cases can’t
be executed manually, which increases the need for auto-
mating test case generation. Initially, for the selected source
codes, the TC is created in the FDP. In the proposed model,
the source code and test cases are collected from publicly
available open source. When the test case is not available
for the corresponding source code, the test cases are derived
from the development of source code and requirements spec-
ifications manually.

Initially, for the selected source codes, the TC is created
in the FDP. Information like the name of the individual

(
ni
)

who generated the TC along with conducted the testing

Fig. 1   Baseline Structure of proposed work

663Journal of Electronic Testing (2023) 39:659–677	

1 3

process, tested time
(
tt
)
 , test case id

(
tid
)
 , tested software

version (version) , expected result
(
Er

)
 , and actual result

(
Ar

)

are encompassed in the test cases that are generated. Here,
the input source code is specified as Isc , and the TCs created
are expressed as Tcase . Since the generated test cases may or
may not have a 100% fault detection rate, the test case selec-
tion has been done by factors identification and reduction.

3.2 � Factors Identification

To maintain the software quality, certain significant factors
[26] are detected or extracted for prioritizing the test cases
after generating the test cases. The factors being identified
are explicated below:

•	 Code coverage
(
Cc

)
	  The ratio of the program element by tests, which are

engendered manually or automatically in source code, is
proffered as code coverage. Line coverage, branch cover-
age, and method coverage are encompassed in program
elements. It is expressed as,

•	 Data flow
(
Df

)
	  The test case coverage of interactions betwixt the data

items employed for software development purposes is
defined as data flow. It is formulated as,

•	 Fault Proneness
(
FP

)
	  It is utilized to evaluate the error-prone requirement.

Regarding the number of field failures and in-house sys-
tem test failures, which are already detected in the code,
the Fp is measured as,

where, the number of test cases that are correctly pre-
dicted as faulty modules is specified as nc , and the total
number of predicted faulty modules is signified as np.

•	 Customer Assigned Priority
(
Cprior

)
	  The priority assigned by the customer to the test case

regarding the customer’s need or necessity of the soft-
ware being developed is termed customer-assigned prior-
ity. For every single requirement, the customer assigns
a value betwixt 1 to 10. The higher customer priority is
specified by 10.

•	 Implementation Complexity (Ic)

(1)Cc =
lines of codes covered by tests

total number of code
∗ 10

(2)Df =
test data utilized

Total number of test cases

(3)Fp =
nc

np
× 10

	  The model’s implementation complexity is measured
by the total number of requirements. The methodol-
ogy becomes more complicated with a larger number
of requirements, thus leading to the production of the
wrong product. It is expressed as,

	  Here, the number of requirements or conditions in the
proposed methodology is notated as Nm.

•	 Changes in requirement (Rc)

	  The frequency of modification required in the develop-
ment of the software project from the date of onset of the
project is evaluated by Rc , which is formulated as,

where, the number of requirements is specified as v , and
the requirement changes are signified as u.

•	 Fault Impact of requirements (Ifault)
	  The process of discovering the number of failed

requirements in the development of the project as well
as the number of in-house failures is defined as the fault
impact of requirements. It is expressed as,

where, the total number of requirements is notified as
b and the number of in-house failures is signified as a.

•	 Completeness (�)
	  The condition for execution (g) , the degree of success

(ℵ) , and the limitations (h) in attaining the probable solu-
tion are explicated here. It is formulated as,

•	 Traceability
(
Tr
)

	  The measure of the graphical representation (mapping)
of the requirements (R) and test (T) is termed traceability.
In this, it is verified whether the requirements are com-
pleted and tested or not. It is modeled as,

•	 Execution time
(
Te
)

	  The execution time is proffered as the time needed
to accomplish the particular code (task). Therefore, the
factors identified

(
FI

)
 are expressed as,

where, the number of factors identified is denoted as
I = 1, 2, 3, ..., f .

(4)Ic =
Nm

max∀m⟨Nm⟩

(5)Rc =
(
u

v

)
× 10

(6)Ifault =
(
a

b

)
× 10

(7)𝜍 =
{
1

ℵ
,
g

h

}

(8)Tr ↔ {R, T}

(9)
FI =

{
Tcase(l),Cc,Df ,Fp,Cprior, Ic,Rc, Ifault, �, Tr, Te

}

664	 Journal of Electronic Testing (2023) 39:659–677

1 3

3.3 � Factor Reduction Using LS‑GDA

Here, without the loss of vital information, the identified fac-
tors are mitigated further to augment the accuracy of ranking
test cases subsumed in the FDP. Generalized Discriminant
Analysis (GDA), the most frequently utilized model, is uti-
lized effectively for feature reduction. Here, via the estimation
of eigenvalues by Eigen Value Decomposition (EVD) meth-
odology, higher dimensional features are mitigated into lower
dimensional ones. Nevertheless, the eigenvalue computation
is quite complicated. Moreover, it is impossible to handle a
larger number of datasets. The Log Scaling (LS) normaliza-
tion model, which is termed LS-GDA, is utilized to abate the
error rate. The steps included in the LS-GDA are given below:

Initially, the factors identified
(
FI

)
 are inputted into the

LS-GDA algorithm in m-dimensional search space. The
LS-GDA maps the input vector

(
FI

)
 in space (m) into the

input vector �(Ls) in space f  . In the feature transformation
process, the LS-GDA aims to minimize the between-class
scatter due to the non-linearity of data. The wither class
matrix (ℑw) and between-class scatter matrix

(
ℑb

)
 for the

mapped factors are formulated as,

Here, the mean value of the i − th factor identified is speci-
fied as �I , and the mean of all factors identified is symbolized
as � . The LS-GDA finds the projection matrix

(
Rf

)
 that maxi-

mizes the optimization criteria defined as,

The vector (�) for
(
Rf

)
 is identified by solving the eigen-

value problem. LS-GDA finds the eigen values (�) and eigen
vectors (�) to maximize the optimized solution attained as,

As eigen vectors lie in the span of �(Ls) , the eigen values
are calculated as,

Here, the span co-efficient is denoted as �Il , and the LS
criterion is indicated as log(Ls) . The solution to eigen value
problem is obtained by solving,

(10)

⎧⎪⎪⎨⎪⎪⎩

ℑb =
D∑
I=1

FI

�
�I − �

��
�I − �

�T

ℑw =
FI∑
I=1

�
�(Ls) − �I

��
�(Ls) − �I

�T

(11)Rf = argmax

(
RT ℑb R

RT ℑo R

)

(12)� =
�Tℑb�

�Tℑo�

(13)� =

D∑
I=1

FI∑
l=1

�Il log(L
s)

where, � is the vector of weights, Q is the symmetrical
matrix, and � is the gram matrix. To compute the gram
matrix, the dot product betwixt the mapped factors by uti-
lizing the positive definite kernel function is estimated.
The gram matrix (�(�(⋅))) composed of dot products is
described as,

Solving the eigenvalue problem yields (�) that define the
projection vectors (�) ∈ Rf  . For this, the matrix � undergoes
decomposition, which is then replaced in the Eq. (14) to
compute eigenvectors as,

Here, the normalized eigenvectors’ identity matrix is
specified as I , and � is the normalized eigen vectors. The
flowchart of the LSGDA is shown in Fig. 2.

Concurrently, the matrix ITQI endures Eigen decomposi-
tion; thus, the reduced non-linear discriminant factors are
formulated as,

Here, the N number of reduced factors is represented as
f = 1, 2, 3,,N . For better optimal TCS, the factors being
reduced are fed into the FY-SSOA system.

3.4 � Test Case Selection by FY‑SSOA

Here, by employing the FY-SSOA, the optimal TCs are
selected. The shuffled Shepherd Optimization Algorithm
(SSOA), developed to solve optimization problems, is a
metaheuristic population-based algorithm. The shepherd’s
behavior is the concept behind this algorithm. In this, sheep
are generated randomly. Then, regarding the previously cre-
ated herd, they are put into a herd. Till forming all herds via
the shuffling process, which ameliorates the herds’ surviv-
ability, the process is continued. Nevertheless, for guiding
the sheep toward the horse, more waiting time is required to
compute step size regarding the shepherd’s movement. Thus,
for shuffling, the Fishers Yates (FY) technique is utilized,
which mitigates the waiting and enhances the shuffling pro-
cess. This FY-centered shuffling of SSOA is termed FY-
SSOA. The following are the steps involved in FY-SSOA:

•	 Initially, the shepherds’ initial population also known as
the community (here, the population indicates the num-

(14)�(�) =
�T �Q ��T

�T ���T

(15)�(�(⋅)) = �
(
�(Ls)T�(Ls)

)

(16)� =
�T

(
IT QI

)
�T

�T
(
IT I

)
�T

(17)Rf =
{
R1,R2,⋯⋯ ,RN

}

665Journal of Electronic Testing (2023) 39:659–677	

1 3

ber of test cases generated) is generated randomly. It is
expressed as,

where, the variable’s lower bound is specified as Rmin
f

 , the
variable’s upper bound is signified as Rmax

f
 , and a random

variable betwixt 0 and 1 is notified as rand . Also, the N−
number of communities is notated as f = 1, 2, ...,N , and
the M− number of members belonging to every single
community is represented as g = 1, 2, ...,M.

(18)Rf ,g = Rmin
f ,g

+ rand ×
(
Rmax − Rmin

)

•	 The fitness value ( � ) of every single member in the
community is computed after generating the commu-
nity members (sheep and horse), which is measured as,

	  The fitness criterion is to select test cases that can
cover uncovered paths via assessing the fault detection
ability based on the reduced factors from Section 3.3.
Hence, the fitness function considering the factors
selected is employed in this paper. Considering these
factors would enable more effective identification of
faults earlier in the software process. According to the
fitness function, the test cases that contain the required
selected factors are selected for fault detection. It can
be expressed as,

•	 After calculating the fitness value, in accordance with
the fitness value, all the members are shuffled along
with sorted in descending order by utilizing the FY
algorithm.

•	 The FY algorithm randomizes the community as well as
reordered them in decreasing order.

–	 Write down every single member of the community
population as of 1 to �.

–	 Select a random member s betwixt one and the num-
ber of unstruck members (�).

–	 In the community that has not been crossed out, the
sth member is crossed out by counting from the lower
end. Subsequently, write it at the end of the separate
list. Here, the shuffled list of community members
is represented.

–	 These steps are repeated until all the community
members have been struck out.

•	 After that, by performing the step size estimation process (
Sf ,g

)
 , the movement of every single member of the com-

munity is estimated. Under the diversification strategy (
Sdiverse
f ,g

)
 , the members having the ability to visit new

regions in space are enclosed. But, under the intensification
strategy

(
S
intensify

f ,g

)
 , the members having the capacity to

visit the regions that have already been visited are encom-
passed. The step size estimation process is expressed as,

	  Here, Sdiverse
f ,g

 and Sint ensify
f ,g

 are formulated as,

(19)� = N ∗ M

(20)�N×M = argminmax
(N,M)

(
Rf

)

(21)Sf ,g = Sdiverse
f ,g

+ S
int ensify

f ,g

(22)Sdiverse
f ,g

= � × c ×
(
Rf ,d − Rf ,g

)

Fig. 2   Flowchart of the LSGDA

666	 Journal of Electronic Testing (2023) 39:659–677

1 3

where, the random integers are symbolized as c and c1 , the
best member (horse) is indicated as Rf ,d , the worst members
(sheep) of the community are denoted as Rf ,in , and the con-
trol parameters for exploration and exploitation are given as
� and �∗ . The control parameters are represented as,

	  Thus, it is evident that as iteration (T) increases, �∗ increases
with mitigation in � value. In this, �∗

0
 specifies the reduction in

� value and �∗
MAX

 symbolizes the maximum value.

(23)S
int ensify

f ,g
= �∗ × c1 ×

(
Rf ,in − Rf ,g

)

(24)� = �0 − �0 × T

(25)�∗ = �∗
0
+
(
�∗
MAX

− �∗
0

)
× T

•	 The new position of every single member in the commu-
nity

(
Rnew
f ,g

)
 is attained after estimating the movement of

every single member in the community. It is computed as,

Thus, till gratifying the stop condition, the position upda-
tion process is repeated. Or else, return to step 3 and con-
tinue the phases. Hence, the test cases selected

(
Stcs

)
 via

FY-SSOA are expressed as,

where, the number of test cases selected is notified as
tcs = 1, 2, 3, ..., p . The FY-SSOA’s pseudocode is cited below,

(26)Rnew
f ,g

= Rf ,g + Sf ,g

(27)Stcs = S1, S2,, Sp

667Journal of Electronic Testing (2023) 39:659–677	

1 3

The pseudo-code of the FY-SSOA algorithm includes the
fundamental steps used for the optimization process. Firstly,
the algorithm divides the population into a number of com-
munities from which the best members are selected for the
herding behavior. The selection process is done by evaluat-
ing the fitness of each sheep and sorting the population using
Fisher-Yates Shuffling. Finally, the sub-population generated
by recording the best solutions gives the optimal test cases
selected for the testing process.

3.5 � Ranking with Entropy

The ranking methodology is implemented after complet-
ing the TCS process. Generally, to prioritize the test cases
being selected, the ranking is employed. Here, by adopting
the entropy-centered ranking (�p) model, the test cases are
prioritized. It is formulated as,

3.6 � Test Case Prioritization via ED‑EPCA

Here, to achieve the test cases’ complete reordering, the
more crucial TCs are selected regarding their priority
information. After choosing appropriate test cases, an
algorithm should be determined for ordering test cases
such that the fault detection rate by executing the test cases
in the prioritized sequence is maximized. The problem
of prioritizing test cases to attain such a maximum fault
detection rate and enabling earlier or less costly detection
of errors is an NP-hard problem. The migration behavior
of emperor penguins from cold to warmer domains in the
colony is the basis for the development of the Emperor
Penguin Colony (EPC) optimization algorithm. EP is
uniformly distributed as well as experiences spiral-like
movement in the colony. Moreover, temperature and
distance are the factors on which the huddling behavior
of the emperor penguins solely relies. Nevertheless, the
convergence speed is affected by the randomness vector
enclosed in the movement of the uniformly distributed
penguins, thus resulting in a local optimum problem. The
EP is Elliptical Distributed (ED) in the dimensional search
space to deter the aforementioned issues. The induction of
ED in the traditional EPCA is termed ED-EPCA. The steps
included in the ED-EPCA algorithm are explicated below:

Stage 1: Primarily, the population of the penguins in
the colony (�p) is initialized as,

(28)�p = −
∑

Stcs ⋅ log

(
1

Stcs

)

where, the C− number of penguins in the colony is
indicated as p = 1, 2, 3, ...,C . Here, the population of
the penguins in the colony is the selected test cases in
software testing.
Stage 2: After initializing the population, the fitness
value of every single penguin

(
f (�p)

)
 in the population

is computed as,

Stage 3: Here, the penguins’ movement toward the
objective function (warmer region) is determined.
In this estimation, the heat radiation transfer (ℏpen) is
evaluated as,

Here, the penguin’s total surface area is specified as ℏtot ,
the bird’s plumage emissivity is signified as O , the Stefan–
Boltzman constant is notified as � , and the absolute tem-
perature is symbolized as t . Furthermore, the penguin’s
total surface area ℏtot is formulated as,

where, the surface area of the trunk is specified as ℏu , the
beak area is signified as ℏv , the area of the penguin’s head
is notated as ℏw , and the flipper area is symbolized as ℏx.

Here, the semi-length of the body is notified as c , minor
axes length is indicated as d, the body length is denoted
as b , the cross-sectional area and hypotenuse are rep-
resented as R and S , the height of the penguin’s head is
exhibited as D , and the length and width of the flippers
are illustrated as L and M.
Stage 4: After evaluating the heat radiation transfer,
the attractiveness of two penguins (ℏ) in the colony is
measured as,

where, the coefficient of attenuation is proffered as � and
the linear distance betwixt the penguins is depicted as .

(29)�p = �1, �2, �3, ..., �C

(30)f (�p) = f
(
�1, �2, ..., �C

)

(31)ℏpen = ℏtotO𝛾t
4

(32)ℏtot = ℏu + ℏv + ℏw + ℏx

(33)ℏu = 2𝜋
cd

b
sin−1b + 2𝜋d2

(34)ℏv = 𝜋RS

(35)ℏw = 𝜋(D − R)2

(36)ℏx = L ×M

(37)ℏ = ℏtotO𝛾t
4e−𝜗𝜆

668	 Journal of Electronic Testing (2023) 39:659–677

1 3

Stage 5: A spiral path was formed by the movement of
the penguin toward the warmer one. Thus, the logarith-
mic spiral formula is expressed as,

Here, the distance from the origin is signified as ℜ ,
the arbitrary angle is modeled as � , and � and � ′′ are
the constants.
Stage 6: Next, owing to the penguins’ attractive nature,
they get distracted during their movement. Thus, the
destination is not attained; it also stops after a long dis-
tance. Consequently, by estimating the distance between
the two penguins, the updated position of the penguin
is estimated. It is formulated as,

where, the distance betwixt penguins m and n is symbolized
as Dmn , the constants are denoted as e and f  , and the spiral
angle of the penguins m and n are notified as �m and �n . To
attain the distance from m and n′ , the obtained outcomes
are multiplied by the attractiveness value. It is computed as,

Cartesian and polar co-ordinate relation is utilized for
angle � , which is expressed as,

At the position n′ , the logarithmic spiral’s parameters x′′′
and y′′′ are expressed as,

(38)ℜ = �e�
��
�

(39)Dmn =
e

f

√
f 2 + 1

�
ef�n − e�m

�

(40)Dmn� = ℏ
e

f

√
f 2 + 1

�
ef𝜑n� − e𝜑m

�

(41)� = tan−1
x���

y���

(42)

x��� = ee

f
1

f
ln

⎧⎪⎨⎪⎩
(1−ℏ)ef tan

−1
y���n
x���n +ℏef tan

−1
y���n
x���n

⎫⎪⎬⎪⎭

cos

�
1

f
ln

�
(1 − ℏ)ef tan

−1
y���n
x���n

+ ℏef tan
−1

y���n
x���n

��

(43)

y��� = ee

f
1

f
ln

⎧⎪⎨⎪⎩
(1−ℏ)ef tan

−1
y���n
x���n +ℏef tan

−1
y���n
x���n

⎫⎪⎬⎪⎭

sin

�
1

f
ln

�
(1 − ℏ)ef tan

−1
y���n
x���n

+ ℏe
f tan−1

y���n

x���n

��

The logarithmic spiral movement turns monotonous
owing to the earlier estimation of information about the
angle. Therefore, to increase population diversity, the
elliptical distribution is adopted. It is expressed as,

where, the mutation factor in path change is represented
as � and the elliptical distribution parameter is specified
as � , which is illustrated as,

where, ℵ denotes the elliptic distribution.
Step 7: After achieving either of the required optimiza-
tions, the algorithm will be ceased. With varied initial
positions, the steps have to run numerous times to get
better optimization. Thus, the prioritized TCs, which are
notated as TCSpriori , are the outcomes of this algorithm.
Moreover, they are then wielded for FD purposes.

3.6.1 � Fitness Function

In order to adapt ED-EPCA to test case selection, it should
be converted to the optimization problem, where the opti-
mized solutions can be obtained by a reasonable fitness
function. According to ED-EPCA, candidate solutions in
the search space indicate the test cases selected, and the
ordered solutions in the search process are obtained with
the fitness function.

Hence, for the efficiency and success of optimization, a
better fitness function is a significant factor. For test data
arrangement, the good fitness function value should be
returned for those test data, which nearly meet the fault
detection criteria. Fault detection criteria are crucial in
software testing to cover 100% of the source code by run-
ning the selected test cases in the ordered manner. With
the assistance of the fitness function, the ED-EPCA algo-
rithm should arrange the test cases, which have the ability
to meet the target testing coverage through a maximum
fault detection rate. It can be expressed as,

Here, the test coverage’s derivative is signified as dCc .
The pseudo-code of the ED-EPCA is elucidated below:

(44)y��� + ��

(45)𝜔 = ℵ

√
1 −

(
2e

f

)2

(46)f (�p) = max

(∑
N,M

(
dCc − Cc

))

669Journal of Electronic Testing (2023) 39:659–677	

1 3

The steps used for prioritizing the test cases using LD-
EPCA are shown in the above pseudocode. The LD-EPCA
algorithm represents the huddling behavior of penguins,
where body temperature and heat radiation are the crucial
factors. By defining these two factors in the LD-EPCA,
the distance between each search agent is updated. Then,
the prioritized test cases are obtained by considering the
fitness value nearer to fault detection. The flowchart of the
LD-EPCA algorithm is shown in Fig. 3,

4 � Results and Discussion

Here, to validate the proposed FD model’s efficacy, the
outcomes attained by the proposed system are contrasted
with the baseline techniques. The proposed methodology
is executed utilizing JAVA programming.

4.1 � Case Study

Can the factors related to the software Fault-based prioritiza-
tion improve the fault detection rate of test cases is the basic
problem used to demonstrate the implementation of pro-
posed FY-SSOA and ED-EPCA methods. The user require-
ments of the SUT have been taken as the input from which
the test cases are generated manually. From the generated

test cases, the factors related to software faults are identified
and used for test case optimization using the FY-SSOA algo-
rithm. The experiments were conducted under two levels,
namely statement level and the functions level. Statement
level experiment includes checking for the correctness of
statements and the function considers the number of condi-
tions used in the model.

In the implementation of FY-SSOA, all the test cases are
selected based on their objective values attained for the fac-
tors. The values of all factors for each test case were inves-
tigated and the main test cases that have the defined fac-
tor values were selected. Then, the selected test cases were
prioritized using the ED-EPCA algorithm. In ED-EPCA
implementation, the factors that cause significant differ-
ences in APFD values are considered, where there were a
number of levels with each factor and 100 test cases per
program. Then, the selected test cases undergo a mutation
testing process to ensure the effectiveness of the generated
test cases. The mutation testing is carried out by using the
mutation testing tool called MuClipse for Eclipse. The muta-
tion testing involves statement mutation, which replaces the
statements with various kinds of statements, value mutation,
which alters the values to identify the errors, and decision
mutation, which modifies the arithmetic or logical operators
to detect the errors. Thus, mutation testing helps to reach an
efficient model performance. After mutation testing is done,

670	 Journal of Electronic Testing (2023) 39:659–677

1 3

the test cases are subjected to the test prioritization phase.
Here, four prioritization techniques along with the proposed
ED-EPCA were employed per experiment. The factors
within each program generating a maximum of observa-
tions, each including an APFD value per experiment were
obtained. Under these values, the test cases are prioritized.

4.2 � Benchmark Programs and Evaluation Criteria

For this work, a sample healthcare application from the
internet has been selected. This healthcare application con-
tains phases, such as Patient Registration, Patient Login,
Doctor Registration, Doctor Login, Book Appointment,

Consultation, Medical Record upload, Bill payment, Phar-
macy details, Discharge summary details form, etc. Each
and every form has several operations. Next, the test cases
are manually generated based on the model test cases avail-
able on the internet for all operations in the forms. Next, the
healthcare application is run, and simultaneously, the created
test cases are checked with the predicted output. Based on
that, the test case result is mentioned as Pass or Fail. This
completed test case is considered as the input to our frame-
work to evaluate the system.

Based on the factors, the optimal test cases are selected
and prioritized using the modified techniques and compared
with existing techniques. Software bugs are categorized into
various kinds of bugs according to their distinct nature and
influence. Some of the software bugs include functional
bugs, logical bugs, workflow bugs, unit-level bugs, system-
level integration bugs, out-of-bound bugs, and security
bugs that arise during the process of software testing. A
functional bug indicates a defect in software applications,
which may occur during coding errors, insufficient testing,
and other factors related to hardware limitations. A logical
bug happens when the code does not provide the expected
results. The malfunctions, fault, and bottleneck issue within
the working procedure refers to the workflow bug. During
testing, if the tiniest element is affected by such errors, then
it is considered as a unit-level bug. System-level integra-
tion bugs arise when the number of systems collaborate
and reach failure or errors. Out-of-bound bugs is defined
as the occurred error, which crosses the limit of the specific
operation. The flaws or risks in the software and hardware
are resulted in security bugs. The evaluation indicators like
Average Percentage of Faults Detected (APFD), time, and
memory usage are the parameters espoused for measuring
all the algorithms’ performance (Table 1).

The configuration and implementation parameters used
in the ED-EPCA heuristic algorithm are shown in Table 2.

4.3 � Performance Measurement of Proposed
FY‑SSOA

Glowworm Swarm Optimization (GSO), Shuffled Frog
Leaping Algorithm (SFLA), Seagull Optimization Algo-
rithm (SOA), and SSOA are the baseline techniques with
which the proposed FY-SSOA model is compared regarding
memory usage in Fig. 2.

To make a cost-effective test case selection, the proposed
method’s effectiveness is evaluated based on memory usage.

(47)Memory usage = Total memory − FreeMemory

(48)

APFD = 1 −
sum of test cases

set of test cases ∗ set of faults
+

1

2 ∗ set of test cases
Fig. 3   Flowchart of LD-EPCA

671Journal of Electronic Testing (2023) 39:659–677	

1 3

Ta
bl

e 
1  

A
na

ly
si

s o
f L

ite
ra

tu
re

 S
ur

ve
y

R
es

ea
rc

he
r

O
bj

ec
tiv

e
M

et
ho

do
lo

gy
A

dv
an

ta
ge

s
Li

m
ita

tio
ns

G
ao

 [1
1]

To
 co

nt
rib

ut
e t

o
di

ffe
re

nt
 fa

ul
t c

or
re

ct
io

n
ra

te
s,

fa
ul

t d
et

ec
tio

n
ra

te
s,

an
d

di
ffe

re
nt

fa

ul
t i

nt
ro

du
ct

io
n

ra
te

s.

A
 c

os
t c

al
cu

la
tio

n
m

et
ho

d,

en
co

m
pa

ss
in

g
th

e
de

bu
gg

er

as
si

gn
m

en
t a

nd
 so

ftw
ar

e
re

le
as

e
tim

e.

A
cc

or
di

ng
 to

 th
e

m
od

el
, O

pt
im

al

te
sti

ng
 re

so
ur

ce
 a

llo
ca

tio
n

an
d

th
e

op
tim

al
 re

le
as

e
tim

e
ca

n
be

 a
tta

in
ed

.

In
eff

ec
tiv

e
w

hi
lst

 w
or

ki
ng

 in
 a

 c
om

pl
ex

en

vi
ro

nm
en

t.

X
ia

o
et

 a
l.

[2
9]

C
os

t-e
ffe

ct
iv

e
pr

ed
ic

tio
n

sy
ste

m
 fo

r
th

e
FD

P
an

d
th

e
FC

P.
A

N
N

Re
ga

rd
in

g
so

ftw
ar

e
re

lia
bi

lit
y

al
on

g
w

ith
 to

ta
l c

os
t,

th
e

op
tim

al
 re

le
as

e
te

ch
ni

qu
e

w
as

 a
tta

in
ed

.

H
ig

he
r M

ea
n

Sq
ua

re
 E

rr
or

 (M
SE

).

G
ok

ila
va

ni
 a

nd
 B

ha
ra

th
i [

13
]

To
 in

ve
sti

ga
te

 fa
ul

ts
 in

 th
e

so
ftw

ar
e.

Pr
in

ci
pl

e
C

om
po

ne
nt

 A
na

ly
si

s (
PC

A
)

ex
tra

ct
io

n
al

on
g

w
ith

 a
 K

-M
ea

ns

cl
us

te
rin

g-
ce

nt
ric

 ra
nk

in
g

m
od

el
.

Th
e

su
m

 o
f t

he
 fa

ul
ts

 w
as

 d
et

ec
te

d
su

pe
rio

rly
.

La
ck

s t
he

 in
fo

rm
at

io
n

re
ga

rd
in

g
ba

si
c

ne
ed

s a
lo

ng
 w

ith
 ri

sk
s r

el
at

ed
 to

 b
ug

s.

Li
n

et
 a

l.
[1

9]
To

 d
et

er
m

in
e

th
e

FD
 a

nd
 D

ia
gn

os
is

(F

D
D

) m
od

el
’s

 su
pr

em
ac

y.
C

on
di

tio
n-

ce
nt

ric
 c

on
ve

nt
io

na
l

sy
ste

m
.

Th
e

m
od

el
 d

et
er

re
d

un
in

te
nt

io
na

l
lig

ht
in

g
ru

nt
im

e
co

m
pl

ic
at

io
ns

.
Th

e
da

ta
se

t u
til

iz
ed

 w
as

 li
m

ite
d.

C
ui

 e
t a

l.
[8

]
C

om
bi

ni
ng

 sp
ec

tru
m

 a
nd

 m
ut

at
io

n
fo

r e
nh

an
ci

ng
 th

e
fa

ul
t l

oc
al

iz
at

io
n

ac
cu

ra
cy

.

Sp
ec

tru
m

-c
en

tri
c

fa
ul

t l
oc

al
iz

at
io

n
(S

B
FL

),
m

ut
at

io
n-

ce
nt

ric
 fa

ul
t

lo
ca

liz
at

io
n

(M
B

FL
),

an
d

ra
nk

in
g.

Th
e

ad
op

te
d

ra
nk

in
g

m
et

ho
do

lo
gy

en

ha
nc

ed
 th

e
fa

ul
t l

oc
al

iz
at

io
n

ac
cu

ra
cy

.

Th
e

pr
og

ra
m

s w
ith

 m
ul

tip
le

 fa
ul

ts
 w

er
e

no
t c

on
si

de
re

d.

Ja
ha

n
et

 a
l.

[1
5]

R
is

k-
ce

nt
ric

 te
sti

ng
 b

y
au

to
m

at
in

g
th

e
ris

k
as

se
ss

m
en

t p
ro

ce
ss

, a
lo

ng
 w

ith

fin
di

ng
 h

ig
h-

ris
k

fa
ul

ts
 e

ar
ly

.

Se
m

i-a
ut

om
at

ic
 ri

sk
-c

en
tri

c
te

st
ca

se

pr
io

rit
iz

at
io

n
te

ch
ni

qu
e.

Th
e

te
ch

ni
qu

e
im

pr
ov

ed
 te

st
effi

ci
en

cy

by
 sp

ot
tin

g
de

fe
ct

s e
ar

ly
 o

ve
ra

ll
an

d
ev

en
 e

ar
lie

r i
n

th
e

hi
gh

-r
is

k
m

od
ul

es
.

Po
te

nt
ia

l e
rro

rs
 w

er
e

in
cr

ea
se

d
ow

in
g

to

th
e

nu
m

be
r o

f m
od

ifi
ed

 re
qu

ire
m

en
ts,

co

m
pl

ex
ity

, a
lo

ng
 w

ith
 si

ze
.

N
ag

ar
aj

u
et

 a
l.

[2
3]

To
 fo

rm
ul

at
e

th
e

te
st

al
lo

ca
tio

n
pr

ob
le

m

th
at

 m
ax

im
iz

es
 fa

ul
t d

isc
ov

er
y.

D
is

cr
et

e
C

ox
 h

az
ar

ds
 m

et
ho

do
lo

gy
.

Th
e

op
tim

al
 te

st
ac

tiv
ity

 a
llo

ca
tio

n
pr

ob
le

m
 w

as
 a

dd
re

ss
ed

.
Pr

ac
tic

al
 u

sa
ge

 w
as

 n
ot

 su
cc

es
sf

ul
.

N
ith

ya
 a

nd
 C

hi
tra

 [2
4]

To
 e

lim
in

at
e

un
w

an
te

d
an

d
re

du
nd

an
t

te
st

da
ta

 a
pa

rt
fro

m
 m

ax
im

iz
in

g
fa

ul
t

de
te

ct
io

n.

G
ra

di
en

t-b
as

ed
 a

pp
ro

ac
he

s.
U

nw
an

te
d

an
d

re
du

nd
an

t d
at

a
w

er
e

re
m

ov
ed

 a
nd

 m
or

e
fa

ul
ts

 w
er

e
de

te
ct

ed
.

Th
e

co
nv

er
ge

nc
e

ra
te

 w
as

 a
ffe

ct
ed

 b
y

th
e

us
ag

e
of

 ra
nd

om
 p

er
m

ut
at

io
ns

.

C
ho

ud
ha

ry
 e

t a
l.

[7
]

O
pt

im
iz

in
g

th
e

so
ftw

ar
e’

s l
au

nc
h

tim
e

by
 m

in
im

iz
in

g
th

e
to

ta
l c

os
t

an
d

co
ns

id
er

in
g

fa
ul

t d
et

ec
tio

n
an

d
co

rr
ec

tio
n

se
pa

ra
te

ly
.

Te
sti

ng
 e

ffo
rt-

ba
se

d
so

ftw
ar

e
re

lia
bi

lit
y

gr
ow

th
 sy

ste
m

.
Th

e
to

ta
l i

nc
ur

re
d

co
st

w
as

 m
iti

ga
te

d
by

 th
e

re
du

ct
io

n
in

 th
e

la
un

ch
 ti

m
e.

In
cr

ea
se

d
fa

ul
t c

or
re

ct
io

n
co

m
pl

ex
ity

.

M
ah

di
eh

 e
t a

l.
[2

1]
To

 im
pr

ov
e

co
ve

ra
ge

-c
en

tri
c

TC
P

te
ch

ni
qu

es
 b

y
co

nc
er

ni
ng

 th
e

fa
ul

t-
pr

on
en

es
s d

ist
rib

ut
io

n
ov

er
 c

od
e

un
its

.

C
ov

er
ag

e-
ba

se
d

TC
P

te
ch

ni
qu

es
.

A
pp

lic
ab

le
 to

 d
iff

er
en

t c
ov

er
ag

e-
ce

nt
ric

 T
C

P
te

ch
ni

qu
es

.
In

ac
cu

ra
te

 p
re

di
ct

io
n

of
 fa

ul
ts

 d
ue

 to

th
e

ut
ili

za
tio

n
of

 th
e

lo
w

er
 n

um
be

r
of

 b
ug

s.

B
ag

he
rz

ad
eh

 e
t a

l.
[5

]
Fo

r c
on

tin
uo

us
ly

 a
nd

 a
ut

om
at

ic
al

ly

le
ar

ni
ng

 a
 te

st
ca

se
 p

rio
rit

iz
at

io
n

str
at

eg
y.

Re
in

fo
rc

em
en

t L
ea

rn
in

g
(R

L)
.

H
ig

he
r r

an
ki

ng
 a

cc
ur

ac
y

of
 th

e
te

sti
ng

pr

oc
es

s w
as

 o
bt

ai
ne

d.
Th

e
m

od
el

 w
as

 ti
m

e-
co

ns
um

in
g.

C
hi

 e
t a

l.
[6

]
To

 im
pr

ov
e

bu
g

de
te

ct
io

n
ca

pa
bi

lit
y

by
 re

m
ov

in
g

re
du

nd
an

t t
es

t c
as

es
.

A
dd

iti
on

al
 G

re
ed

y
m

et
ho

d-
ce

nt
ric

C

al
l s

eq
ue

nc
e

(A
G

C
).

Th
e

TC
 m

in
im

iz
at

io
n

m
od

e
re

du
ce

d
th

e
te

st
su

ite
 w

ith
 th

e
el

im
in

at
io

n
of

re

du
nd

an
t t

es
t c

as
es

.

Th
e

te
sti

ng
 p

ro
ce

ss
 c

ea
se

d
pr

em
at

ur
el

y
at

 a
 c

er
ta

in
 a

rb
itr

ar
y

po
in

t.

A
li

et
 a

. [
1,

 2
]

To
 e

nh
an

ce
 fa

ul
t d

et
ec

tio
n

ab
ili

ty
 b

y
te

st
ca

se
 p

rio
rit

iz
at

io
n

an
d

se
le

ct
io

n.
Ch

an
ge

 T
es

t c
as

es
 an

d
Fa

ile
d

Fr
eq

ue
nc

y
(C

TF
F)

 b
as

ed
 p

rio
rit

iz
at

io
n

m
et

ho
do

lo
gi

es
.

Th
e

m
od

el
 e

ffe
ct

iv
el

y
de

te
ct

ed
 m

or
e

fa
ul

ts
.

Th
e

ou
tc

om
es

 w
er

e
no

t v
al

id
at

ed

st
at

ist
ic

al
ly

.

672	 Journal of Electronic Testing (2023) 39:659–677

1 3

The evaluation of memory usage indicates the level of
memory demand required for the entire process of test case
selection. The memory usage is evaluated by subtracting the
available memory after the test case selection process from
the total memory of the system. Here, to select 500 TCs, the
proposed model utilized a memory space of 6689554 kb.
Conversely, the conventional GSO occupied 8245475 kb,
which is greater than the proposed one. Similarly, for select-
ing various numbers of TCs, the memory space occupied by
certain other methodologies like SOA, SFLA, and SSOA is
also higher than in the proposed system. Thus, it is clear that
the TCs are selected more apparently by the proposed system
than the other methodologies. The comparative analysis of
the proposed FY-SSOA is tabulated in the below table:

From Table 3, it is clear that the proposed FY-SSOA tech-
nique achieves better fitness value than the prevailing meth-
odologies. Thus, for 100 iterations, the proposed method
attains a fitness value of 6048, whereas the prevailing meth-
odologies like GSO, SOA, SFLA, and SSOA attained 2054,
3087, 4024, and 5087 fitness values, which are considerably
lower. Similarly, for certain other iterations, the fitness value
differs. Thereby, the proposed model outperforms the other
prevailing methodologies. Figure 3 illustrates the perfor-
mance analysis based on the selection time (Fig. 4).

As per Fig. 5, to select 200 test cases, the proposed
FY-SSOA takes 6475 ms, whereas the traditional SFLA
model takes 8054 ms. Similarly, to select 300 test cases, the
proposed one and the prevailing SFLA take 8245 ms and
10457 ms, respectively. Likewise, the selection time differs
(higher) for other methodologies also. Therefore, it is clear

Ta
bl

e 
1  

(c
on

tin
ue

d)

R
es

ea
rc

he
r

O
bj

ec
tiv

e
M

et
ho

do
lo

gy
A

dv
an

ta
ge

s
Li

m
ita

tio
ns

A
li

et
 a

l.
[1

, 2
]

To
 d

ev
el

op
 a

 te
st

ca
se

 se
le

ct
io

n
an

d
pr

io
rit

iz
at

io
n

te
ch

ni
qu

e
fo

r
in

cr
ea

si
ng

 th
e

fa
ul

t d
et

ec
tio

n
ra

te
s.

Pa
tte

rn
-c

en
te

re
d

ve
rifi

ca
tio

n
m

od
el

.
A

ug
m

en
te

d
th

e
FD

R
 to

ge
th

er
 w

ith

ra
nd

om
 p

rio
rit

y.
Re

lia
bi

lit
y

al
on

g
w

ith
 a

m
bi

gu
ity

 is
su

es

oc
cu

rr
ed

.

H
ua

ng
 e

t a
l.

[1
4]

To
 in

cr
ea

se
 fa

ul
t d

et
ec

tio
n

ra
te

 b
y

th
e

co
m

bi
na

tio
n

of
 c

od
e

co
ve

ra
ge

 a
nd

co

m
bi

na
tio

n
co

ve
ra

ge
.

Re
gr

es
si

on
 T

C
P

(R
TC

P)
.

Th
e

m
od

el
 o

bt
ai

ne
d

co
m

pa
ra

bl
e

te
sti

ng
 e

ffi
ca

cy
.

A
ffe

ct
ed

 b
y

th
e

tim
e

ov
er

he
ad

 p
ro

bl
em

.

A
ra

ste
h

et
 a

l.
[3

]
To

 m
in

im
iz

e
th

e
tim

e
an

d
co

st
of

 th
e

m
ut

at
io

n
te

st.
A

rti
fic

ia
l B

ee
 C

ol
on

y
al

go
rit

hm
.

Re
du

ce
d

ge
ne

ra
te

d
m

ut
an

ts
 a

nd
 th

e
m

ut
at

io
n

te
sti

ng
’s

 c
os

t.
Th

e
m

od
el

 a
tta

in
ed

 su
b-

op
tim

al
 re

su
lts

ow

in
g

to
 th

e
im

pr
op

er
 e

xp
lo

ita
tio

n
ca

pa
bi

lit
y

of
 th

e
al

go
rit

hm
.

A
ra

ste
h

et
 a

l.
[4

]
To

 a
ut

om
at

ic
al

ly
 g

en
er

at
e

te
st

ca
se

s
w

ith
 m

ax
im

um
 b

ra
nc

h
co

ve
ra

ge
 in

 a

lim
ite

d
am

ou
nt

 o
f t

im
e.

Im
pe

ria
lis

t C
om

pe
tit

iv
e

A
lg

or
ith

m
s

(I
CA

).
Th

e
al

go
rit

hm
 o

ut
pe

rfo
rm

ed
 th

e
ot

he
r

al
go

rit
hm

s.
Th

e
m

em
or

y
us

ag
e

du
rin

g
te

st
 c

as
e

ge
ne

ra
tio

n
w

as
 n

ot
 c

on
si

de
re

d.

K
ha

ri
et

 a
l.

[1
6]

To
 im

pr
ov

e t
he

 effi
cie

nc
y

of
 au

to
m

ate
d

so
ftw

ar
e t

es
tin

g
us

in
g

tes
t s

ui
te

ge

ne
ra

tio
n

an
d

tes
t s

ui
te

 o
pt

im
iza

tio
n.

A
ut

om
at

ed
 te

sti
ng

 to
ol

.
A

 se
t o

f m
in

im
al

 te
st

ca
se

s w
ith

m

ax
im

um
 p

at
h

co
ve

ra
ge

 is
 p

ro
vi

de
d.

A
cc

om
pl

is
he

d
le

ss
 p

at
h

co
ve

ra
ge

.

K
ha

ri
et

 a
l.

[1
7]

To
 ev

al
ua

te
 si

x
m

et
ah

eu
ris

tic
 al

go
rit

hm
s

fo
r o

pt
im

iz
in

g
th

e p
at

h
co

ve
ra

ge
 al

on
g

w
ith

 b
ra

nc
h

co
ve

ra
ge

.

Si
x

H
eu

ris
tic

 A
lg

or
ith

m
s.

D
em

on
str

at
ed

 th
e a

lg
or

ith
m

s’

eff
ec

tiv
en

es
s f

or
 p

at
h

co
ve

ra
ge

-c
en

tri
c

op
tim

iz
at

io
n.

Th
e

nu
m

be
r o

f t
es

t c
as

es
 g

en
er

at
ed

 w
as

lim

ite
d.

Table 2   Configuration and
implementation parameters of
ED-EPCA

Parameters Values

b 0.34 m
c 0.16 m
R 0.02 m
S 0.11 m
L 0.28 m
M 0.065 m

Table 3   Comparative measure of the proposed FY-SSOA based on
fitness vs iteration

Iteration Fitness

GSO SOA SFLA SSOA Proposed
FY-SSOA

100 2054 3087 4024 5087 6048
200 2147 3130 4158 5138 6178
300 2236 3246 4258 5248 6238
400 2348 3358 4387 5348 6395
500 2487 3478 4486 5418 5432

673Journal of Electronic Testing (2023) 39:659–677	

1 3

that when compared with the baseline techniques, the pro-
posed one achieved good performance.

4.4 � Performance Evaluation of Proposed ED‑EPCA

Cat Swarm Optimization (CSO), Emperor Penguins Colony
Algorithm (EPCA), and Penguin Search Optimization Algo-
rithm (PeSOA) are the prevailing techniques with which the
proposed model is contrasted based on memory usage in
Table 2. The proposed system implemented the CSO, EPCA,
and PeSOA methods in the working platform of Java using
the Java programming language.

Regarding memory usage, the proposed ED-EPCA mod-
el’s performance is demonstrated in Table 4. Depending
on the number of test cases, the memory usage differs. For

prioritizing, the memory utilized by the proposed model is
5421775 kb for 100 test cases. But, for the same number of
TCs, the prevailing methodologies occupied a larger mem-
ory of 6578452 kb (CSO), 6345782 kb (LOA), 6134886 kb
(PeSOA), and 5822387 kb (EPCA), respectively. Similarly,
for 500 test cases, a minimum memory of 7077865 kb was
utilized by the proposed model. However, a higher memory
space of 80458723 kb was attained by the traditional CSO
model. Correspondingly, the other prevailing methodologies
also utilize more memory than the proposed system.

Figure 6 clearly shows the supremacy of the proposed
ED-EPCA model in FD. Accordingly, for 10% of TCs, the
APFD attained by the proposed model was 67%. Conversely,
for the same percentage of TCs, the prevailing PeSOA
obtained merely 57%, which is less than the proposed one.

Fig. 4   Performance measure
based on memory usage

Fig. 5   Performance analysis
based on selection time

674	 Journal of Electronic Testing (2023) 39:659–677

1 3

Alternatively, the proposed system detected 78% of faults for
30% of TCs, whereas the prevailing PeSOA attained 66%.
The percentage of faults detected by the proposed model
increases (99.23%) as the number of TCs increases (70%).
Thus, it is clear that when contrasted with the existing meth-
odologies, the proposed system detected more faults with
higher percentages of APFD.

Figure 7 graphically represents the proposed ED-EPCA
model’s performance regarding fitness vs iteration. The
performance will be better with a higher fitness value.

Table 4   Performance comparison of the proposed ED-EPCA based
on memory usage

No. of
test
cases

CSO LOA PeSOA EPCA Proposed
ED-
EPCA

100 6578452 6345782 6134886 5822387 5421775
200 6955214 6745888 6455783 6044683 5732321
300 7584653 7326558 7133674 6520500 6033761
400 7745896 7566324 7355673 7065100 6422786
500 80458723 7865447 7755284 7540340 7077865

Fig. 6   Performance investiga-
tion based on APFD

Fig. 7   Superiority measure
based on fitness vs. iteration

675Journal of Electronic Testing (2023) 39:659–677	

1 3

Consequently, for 200 iterations, the proposed model
attained the fitness value of 6187, whereas the traditional
CSO, LOA, PeSOA, and EPCA methodologies obtained
4157, 4687, 5145, and 5684, which are lower than the pro-
posed one. Similarly, for varying iterations like 100, 300,
400, and 500, the proposed model attained higher fitness
values than the prevailing methodologies.

Regarding prioritization time, the comparative evalu-
ation of the proposed approach is illustrated in Table 5.
Here, to prioritize 100, 200, 300, 400, and 500 tasks,
the proposed ED-EPCA takes a prioritization time of
5847 ms, 9635 ms, 13457 ms, 23564 ms, and 28647 ms,
respectively. On the other hand, for 100, 200, 300, 400,
and 500 tasks, the prevailing EPCA model takes the prior-
itization time of 7124 ms, 12457 ms, 17845 ms, 27658 ms,
and 34657 ms, respectively, which are greater than the
proposed model. Therefore, the proposed system shows
superior performance than the other traditional algorithms.

Table 6 shows the comparative analysis of the proposed
fault detection technique with the existing methods devel-
oped by Gokilavani and Bharathi [13], Jahan e al. [15],
Mahdieh et al. [21], Bagherzadeh et al. [5], and Ali et al.
[1, 2] in Section 2. The analysis was conducted based on
APFD. Table 6 indicates that the proposed approach is
more efficient compared to the existing techniques, with
99.23% of fault detection capability. Although the system
introduced by [15] attained 98% of APFD, it lacks when
considering the parameters, such as requirements, com-
plexity, along with size. Hence, by making a cost-effective
test case prioritization, selecting the most significant test

cases, and incorporating more strength factors, the pro-
posed method advances the fault detection process com-
pared to the existing methods.

5 � Conclusion

By employing ED-EPCA-based TCP, an effectual FD sys-
tem has been proposed here via FY-SSOA-based TCS.
For an efficient FD in the software test cases, numerous
operations have been encompassed in this model. Next,
to endorse the proposed model’s efficiency, the experien-
tial analysis is conducted, where the performance along
with a comparative evaluation of the proposed framework
is performed. Various uncertainties were handled by the
developed model, thus rendering highly promising out-
comes. For the assessment, an openly accessible dataset is
utilized. In this work, the proposed model attained 99.23%
APFD. In the proposed model, for 500 TCs, the selec-
tion process is completed within 12471 ms. In addition,
it occupied a memory space of 6689554 kb. Moreover,
for prioritizing 500 tests, the proposed technique, which
occupies 7077865 kb of memory space, takes 28647 ms.
However, utilizing an optimization model to select as well
as prioritize test cases leads to higher computation time.
The proposed model can be contributed as a checklist
guideline for the identification of faults in software test-
ing. The technique renders a way for scheduling and run-
ning test cases, which possess the highest priority, earlier
for rendering earlier feedback to software testing engi-
neers. As the model was developed to support projects
that are developed using the Java programming language,
it has not been applied to any other programs. Hence, the
model can be extended to be applicable to the programs
developed using other technologies. Thus, with some
modified deep learning methodologies, the work would
be extended in the future to ameliorate the FD with the
historical test case dataset. In addition, the work would
subsume the modified optimization process aimed at opti-
mal factor selection.

Acknowledgements  We thank the anonymous referees for their useful
suggestions.

Author’s Contributions  All authors contributed to the study conception
and design. Material preparation, data collection and analysis were
performed by *1J Paul Rajasingh, 2P.Senthil Kumar, 3S.Srinivasan. The
first draft of the manuscript was written by1J Paul Rajasingh and all
authors commented on previous versions of the manuscript. All authors
read and approved the final manuscript.

Funding  This work has no funding resource.

Data Availability Statement  Data sharing is not applicable to this arti-
cle as no datasets were generated or analyzed during the current study.

Table 5   Comparative measurement of the proposed ED-EPCA based
on the Prioritization time

Number of
test cases

CSO LOA PeSOA EPCA Proposed
ED-
EPCA

100 9846 9124 8745 7124 5847
200 19475 17632 15423 12457 9635
300 28473 26548 20154 17845 13457
400 37485 35412 31548 27658 23564
500 46841 41235 37652 34657 28647

Table 6   Comparative Analysis

Methods APFD (%)

Proposed method 99.23
Gokilavani and Bharathi [13] 95.26
Jahan et al. [15] 98
Mahdieh et al. [21] 60.5
Bagherzadeh et al. [5] 77.2
Ali et al. [1, 2] 93

676	 Journal of Electronic Testing (2023) 39:659–677

1 3

Declarations 

Ethical Approval  This article does not contain any studies with human
participants or animals performed by any of the authors.

Consent of Publication  Not applicable.

Competing Interests  The authors declare that they have no competing
interests.

References

	 1.	 Ali S, Hafeez Y, Hussain S, Yang S (2020) Enhanced regression
testing technique for agile software development and continuous
integration strategies. Software Qual J 28(2):397–423. https://​doi.​
org/​10.​1007/​s11219-​019-​09463-4

	 2.	 Ali S, Hafeez Y, Jhanjhi NZ, Humayun M, Imran M, Nayyar A,
Singh S, Ra I (2020) HTowards Pattern-Based Change Verifi-
cation Framework for Cloud-Enabled Healthcare Component-
Based. IEEE Access 8:148007–148020. https://​doi.​org/​10.​1109/​
ACCESS.​2020.​30146​71

	 3.	 Arasteh B, Imanzadeh P, Arasteh K, Gharehchopogh FS, Zarei B
(2022) A source-code aware method for software mutation testing
using artificial bee colony algorithm. J Electron Test 38(3):289–302

	 4.	 Arasteh B, Hosseini SMJ (2022) Traxtor: an automatic software
test suit generation method inspired by imperialist competitive
optimization algorithms. J Electron Test 38(2):205–215

	 5.	 Bagherzadeh M, Kahani N, Briand L (2021) Reinforcement
Learning for Test Case Prioritization. IEEE Trans Softw
Eng 5589(c):1–21. https://​doi.​org/​10.​1109/​TSE.​2021.​30705​49

	 6.	 Chi J, Qu Y, Zheng Q, Yang Z, Jin W, Cui D, Liu T (2020)
Relation-based test case prioritization for regression testing. J
Syst Softw 163. https://​doi.​org/​10.​1016/j.​jss.​2020.​110539

	 7.	 Choudhary C, Kapur PK, Khatri SK, Muthukumar R, Shrivastava
AK (2020) Effort based release time of software for detection
and correction processes using MAUT. International Journal of
System Assurance Engineering and Management 11:367–378.
https://​doi.​org/​10.​1007/​s13198-​020-​00955-2

	 8.	 Cui Z, Jia M, Chen X, Zheng L, Liu X (2020) Improving software
fault localization by combining spectrum and mutation. IEEE Access
8:172296–172307. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30254​60

	 9.	 Dadkhah M, Araban S, Paydar S (2020) A systematic literature
review on semantic web enabled software testing. J Syst Softw
162:110485. https://​doi.​org/​10.​1016/j.​jss.​2019.​110485

	10.	 Danglot B, Monperrus M, Rudametkin W, Baudry B (2020) An
approach and benchmark to detect behavioral changes of com-
mits in continuous integration. Empir Softw Eng 25(4):2379–
2415. https://​doi.​org/​10.​1007/​s10664-​019-​09794-7

	11.	 Gao K (2021) Simulated Software Testing Process and Its Opti-
mization Considering Heterogeneous Debuggers and Release
Time. IEEE Access 9:38649–38659. https://​doi.​org/​10.​1109/​
ACCESS.​2021.​30642​96

	12.	 Garousi V, Bauer S, Felderer M (2020) NLP-assisted software
testing: A systematic mapping of the literature. Inf Softw Tech-
nol 126:106321. https://​doi.​org/​10.​1016/j.​infsof.​2020.​106321

	13.	 Gokilavani N, Bharathi B (2021) Test case prioritization to
examine software for fault detection using PCA extraction and
K-means clustering with ranking. Soft Comput 25(7):5163–
5172. https://​doi.​org/​10.​1007/​s00500-​020-​05517-z

	14.	 Huang R, Zhang Q, Towey D, Sun W, Chen J (2020) Regression
test case prioritization by code combinations coverage. J Syst
Softw 169:110712. https://​doi.​org/​10.​1016/j.​jss.​2020.​110712

	15.	 Jahan H, Feng Z, Mahmud SMH (2020) Risk-Based Test Case
Prioritization by Correlating System Methods and Their Associ-
ated Risks. Arab J Sci Eng 45(8):6125–6138. https://​doi.​org/​10.​
1007/​s13369-​020-​04472-z

	16.	 Khari M, Kumar P, Burgos D, Crespo RG (2018) Optimized
test suites for automated testing using different optimization
techniques. Soft Comput 22:8341–8352

	17.	 Khari M, Sinha A, Verdu E, Crespo RG (2020) Performance
analysis of six meta-heuristic algorithms over automated test
suite generation for path coverage-based optimization. Soft
Comput 24(12):9143–9160

	18.	 Lima JAP, Vergilio SR (2022) A Multi-Armed Bandit Approach
for Test Case Prioritization in Continuous Integration Environ-
ments. IEEE Trans Software Eng 48(2):453–465. https://​doi.​
org/​10.​1109/​TSE.​2020.​29924​28

	19.	 Lin G, Kramer H, Granderson J (2020) Building fault detec-
tion and diagnostics: Achieved savings, and methods to evaluate
algorithm performance. Build Environ 168:106505. https://​doi.​
org/​10.​1016/j.​build​env.​2019.​106505

	20.	 Ma P, Cheng H, Zhang J, Xuan J (2020) Can this fault be
detected: A study on fault detection via automated test gen-
eration. J Syst Softw 170:110769. https://​doi.​org/​10.​1016/j.​jss.​
2020.​110769

	21.	 Mahdieh M, Mirian-Hosseinabadi SH, Etemadi K, Nosrati A,
Jalali S (2020) Incorporating fault-proneness estimations into
coverage-based test case prioritization methods. Inf Softw Tech-
nol 121(January):106269. https://​doi.​org/​10.​1016/j.​infsof.​2020.​
106269

	22.	 Mukherjee R, Patnaik KS (2021) A survey on different approaches
for software test case prioritization. J King Saud Univ Comput Inf
Sci 33(9):1041–1054. https://​doi.​org/​10.​1016/j.​jksuci.​2018.​09.​005

	23.	 Nagaraju V, Jayasinghe C, Fiondella L (2020) Optimal test
activity allocation for covariate software reliability and security
models. J Syst Softw 168:110643. https://​doi.​org/​10.​1016/j.​jss.​
2020.​110643

	24.	 Nithya TM, Chitra S (2020) Soft computing-based semi-
automated test case selection using gradient-based techniques.
Soft Comput 24(17):12981–12987. https://​doi.​org/​10.​1007/​
s00500-​020-​04719-9

	25.	 Prado LJ, A & Vergilio S. R. (2020) Test Case Prioritization in
Continuous Integration environments: A systematic mapping
study. Inf Softw Technol 121:106268. https://​doi.​org/​10.​1016/j.​
infsof.​2020.​106268

	26.	 Raju S, Uma GV (2012) Factors oriented test case prioritization
technique in regression testing using genetic algorithm. Eur J
Sci Res 74(3):389–402

	27.	 Santos I, Melo SM, Lopes De Souza PS, Souza SRS (2020)
Towards a unified catalog of attributes to guide industry in soft-
ware testing technique selection. Proceedings - 2020 IEEE 13th
International Conference on Software Testing, Verification and
Validation Workshops, ICSTW 2020 pp. 398–407. https://​doi.​
org/​10.​1109/​ICSTW​50294.​2020.​00071

	28.	 Shrivastava AK, Kumar V, Kapur PK, Singh O (2020) Software
release and testing stop time decision with change point. Int
J Syst Assur Eng Manag 11:196–207. https://​doi.​org/​10.​1007/​
s13198-​020-​00988-7

	29.	 Xiao H, Cao M, Peng R (2020) Artificial neural network based
software fault detection and correction prediction models con-
sidering testing effort. Appl Soft Comput J 94:106491. https://​
doi.​org/​10.​1016/j.​asoc.​2020.​106491

	30.	 Yucalar F, Ozcift A, Borandag E, Kilinc D (2020) Multiple-
classifiers in software quality engineering: Combining predic-
tors to improve software fault prediction ability. Eng Sci Technol
23(4):938–950. https://​doi.​org/​10.​1016/j.​jestch.​2019.​10.​005

https://doi.org/10.1007/s11219-019-09463-4
https://doi.org/10.1007/s11219-019-09463-4
https://doi.org/10.1109/ACCESS.2020.3014671
https://doi.org/10.1109/ACCESS.2020.3014671
https://doi.org/10.1109/TSE.2021.3070549
https://doi.org/10.1016/j.jss.2020.110539
https://doi.org/10.1007/s13198-020-00955-2
https://doi.org/10.1109/ACCESS.2020.3025460
https://doi.org/10.1016/j.jss.2019.110485
https://doi.org/10.1007/s10664-019-09794-7
https://doi.org/10.1109/ACCESS.2021.3064296
https://doi.org/10.1109/ACCESS.2021.3064296
https://doi.org/10.1016/j.infsof.2020.106321
https://doi.org/10.1007/s00500-020-05517-z
https://doi.org/10.1016/j.jss.2020.110712
https://doi.org/10.1007/s13369-020-04472-z
https://doi.org/10.1007/s13369-020-04472-z
https://doi.org/10.1109/TSE.2020.2992428
https://doi.org/10.1109/TSE.2020.2992428
https://doi.org/10.1016/j.buildenv.2019.106505
https://doi.org/10.1016/j.buildenv.2019.106505
https://doi.org/10.1016/j.jss.2020.110769
https://doi.org/10.1016/j.jss.2020.110769
https://doi.org/10.1016/j.infsof.2020.106269
https://doi.org/10.1016/j.infsof.2020.106269
https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/10.1016/j.jss.2020.110643
https://doi.org/10.1016/j.jss.2020.110643
https://doi.org/10.1007/s00500-020-04719-9
https://doi.org/10.1007/s00500-020-04719-9
https://doi.org/10.1016/j.infsof.2020.106268
https://doi.org/10.1016/j.infsof.2020.106268
https://doi.org/10.1109/ICSTW50294.2020.00071
https://doi.org/10.1109/ICSTW50294.2020.00071
https://doi.org/10.1007/s13198-020-00988-7
https://doi.org/10.1007/s13198-020-00988-7
https://doi.org/10.1016/j.asoc.2020.106491
https://doi.org/10.1016/j.asoc.2020.106491
https://doi.org/10.1016/j.jestch.2019.10.005

677Journal of Electronic Testing (2023) 39:659–677	

1 3

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

J. Paul Rajasingh   received his BE in Computer Science and
Engineering from Thiagarajar College of Engineering, Madurai and
ME in Software Engineering from College of Engineering, Guindy
campus, Anna University. He is pursuing his PhD in Information and
Communication Engineering in Anna University. His current research
interests include Software Engineering and Big Data analytics.

P. Senthil Kumar  holds his PhD in Computer Networks and is currently
a professor in the Department of Information Technology at P. B. College
of Engineering, Irungattukottai, Chennai-602117. He has 20 years of
experience in teaching and research. His research interests include Net-
works, Software Engineering, Internet of Things and Cloud Computing.

S. Srinivasan  holds his PhD in Information and Communication Engi-
neering and is currently working as a professor in the Department of
Computer Science and Engineering at R.M.D. Engineering College,
Kavaraipettai, Tiruvallur District, India. He has 20 years of experience
in teaching and research. His research interests include Mobile Com-
puting, Software Engineering and Image Processing.

	Efficient Fault Detection by Test Case Prioritization via Test Case Selection
	Abstract
	1 Introduction
	1.1 Problem Statement

	2 Literature Survey
	3 Proposed Efficient Fault Detection Methodology
	3.1 Test Case Generation
	3.2 Factors Identification
	3.3 Factor Reduction Using LS-GDA
	3.4 Test Case Selection by FY-SSOA
	3.5 Ranking with Entropy
	3.6 Test Case Prioritization via ED-EPCA
	3.6.1 Fitness Function

	4 Results and Discussion
	4.1 Case Study
	4.2 Benchmark Programs and Evaluation Criteria
	4.3 Performance Measurement of Proposed FY-SSOA
	4.4 Performance Evaluation of Proposed ED-EPCA

	5 Conclusion
	Acknowledgements
	References

