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Abstract
One of the significant features of software quality is software reliability. In the testing phase, faults are identified and cor-
rected by integrating them into software development, thus obtaining better reliability. Here, by utilizing the Elliptical 
Distributions-centric Emperor Penguins Colony Algorithm (ED-EPCA)-based Test Case Prioritization (TCP), an effectual 
Fault Detection (FD) technique is proposed using Fishers Yates Shuffled Shepherd Optimization Algorithm (FY-SSOA)-
based Test Case Selection (TCS). Initially, for the incoming source code, the Test Case (TC) is created. Then, the significant 
factors needed for TCS and prioritization are identified. Next, by utilizing the Log Scaling-centered Generalized Discriminant 
Analysis (LS-GDA) model, the estimated factors are abated further to enhance the TCS along with prioritization for the 
Fault Detection Process (FDP). Then, using the FY-SSOA, the optimized TCs are selected. Subsequently, with the help of 
ED-EPCA, the TCs being selected are ranked as well as prioritized. Finally, to validate the proposed system’s effectiveness, 
the model’s performance is evaluated in the working platform of Java and analogized with the traditional methodologies. 
The results indicate that the test case prioritization-based fault detection method is robust with a 99.23% fault detection rate 
and a small amount of memory usage, which is only 8245475 kb by generating a large number of test cases.
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1  Introduction

In the modern era, being an emerging paradigm, Information 
Technology (IT) acts as a backbone of the software indus-
try. For software industrial growth, developing good quality 
software and maintaining its prominence is highly essential 
[9]. Software testing is a crucial but effort-intensive activ-
ity. In the software development life cycle, testing is a vital 

part. Moreover, mainly to enhance the quality, performance, 
reliability, and efficacy of the software, the testing process 
is performed [18]. Furthermore, in addition to maintaining 
product quality, testing certifies the proper functioning of 
the software’s extended version. In the entire testing process, 
test cases are deliberated as the basic mechanisms. It is also 
prioritized to uncover a number of faults simultaneously 
or to detect severe faults at an early stage for achieving an 
objective function.

Permitting software testers to detect more crucial TCs 
is one of the effective strategies for handling risky com-
ponents. Thus, certain faults related to those components 
are revealed. Faults pertinent to those hazardous compo-
nents are also identified faster after detecting the TCs [20]. 
To gauge the program execution of a test on the program 
under test, the code coverage is utilized. Usually, with the 
aid of computer programming codes, which are already 
written to perform the required task, software applications 
are developed [22]. Generally, certain faulty instances 
might exist in these predefined codes. Thus, owing to soft-
ware defects, it resulted in buggy software development. 
Next, several factors related to the software Fault Correc-
tion Process (FCP) are identified [10]. For developing the 
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Software Reliability Growth Model (SRGM), the FDP is 
included in the FCP [27]. For an effectual TCP in mini-
mum time, optimization methodologies are needed to be 
attained whilst retaining the software quality.

Conventionally, all activities of software testing are 
conducted by human testers (test engineers) manually. For 
every System Under Test (SUT), a set of test specifica-
tions is generated in the manual testing process. To prior-
itize the test cases, numerous nature-inspired algorithms, 
such as genetic algorithm, particle swarm optimization, 
ant colony optimization, et cetera are espoused [25]. For 
evaluating the fitness of varied models, various method-
ologies subsuming Factor analysis (FA) and regression are 
also employed [12]. To aid different classification tasks, 
Neural networks (NN) are also implemented in numerous 
software systems [28]. The former TCP was performed 
utilizing codes. On the contrary, for TCP, model-based 
mutation testing was employed in which valid information 
in terms of the objective function along with an automatic 
fault seeding system is desired [30].

In spite of all the efforts of researchers to enhance 
software testing quality, software testing’s efficiency and 
effectiveness are still an open challenge and remain below 
the marginal line of customer's expectations. Testing is 
still largely ad hoc, expensive, and unpredictably effective 
even after being a widespread and mainstream validation 
technique in the software industry. In addition, the test case 
prioritization execution and analysis possess numerous 
challenges and problems. It is not just a simple reordering 
of the test cases; it needs deep insights and analysis pro-
cedures for getting the fruits of prioritization approaches.

The test suites were ordered on their fault detection abil-
ity with the costs of test suites by the prior works. However, 
they ignored the code coverage and other features of cost, 
such as test suite size and code size of the application under 
testing. A few methods incorporated the code-coverage TCP 
techniques, which may treat all faults equally. However, it 
is believed that one of the challenges faced by these tech-
niques is the ability to monitor needs covered in the system 
test. In other words, prioritization must be cost-effective for 
testing. In most of the methods, problems like time com-
plexity and low memory usage that might be utilized for 
tackling issues, such as selection-prioritization and selec-
tion across collections of test cases are not concentrated. It 
is possible that executing test cases that have more potential 
to cover the maximum possible paths of SUT first can alle-
viate the time complexity and low memory usage issues in 
test case selection and prioritization. Under this motivation, 
an effectual FD system by utilizing the ED-EPCA-based 
TCP has been proposed here utilizing FY-SSOA-based TCS 
to avoid the aforementioned issues.

1.1 � Problem Statement

Even though there are various benefits in the prevailing method-
ologies, there exist certain disadvantages, which are listed below:

•	 TCP is a process, where to maximize certain conditions 
like the test cases’ FD Rate, the TCs are ordered within the 
test suite of a SUT.

•	 The generated test cases were mitigated by the conventional 
TCP algorithm. Thus, a time complexity problem is caused 
whilst running the TCs being engendered.

•	 Poor computation efficacy was possessed by the risk-centric 
TCP utilizing a fuzzy expert system strategy.

•	 Handling larger input datasets was a complicated task for 
the input-based adaptive randomized TCP. In addition, it 
could not achieve cost-effective outcomes.

•	 Only a fixed strength was considered by the traditional TCP 
methodologies, which did not consider multiple strengths 
whilst selecting every single test case.

Thus, via an effectual FD system, the proposed model 
deterred the aforementioned drawbacks with the following 
contributions as,

•	 To augment the fault detection rate, the more significant 
test cases have been performed first via the ordering of test 
cases for prioritization.

•	 To minimize the time complexity of TCP, the prioritization is 
carried out only for the selected test cases using the FY-SSOA 
algorithm rather than running all the test cases generated.

•	 To improve the computation efficiency, the maximization 
criteria-based prioritization using the ED-EPCA method 
is employed.

•	 To accomplish more cost-effective results and to deal with 
large input data, factor identification and factor reduction 
using LS-GDA are utilized.

•	 Unlike conventional TCP methodologies, the test case selection 
under multiple strengths is carried out in the proposed method.

The paper’s remaining parts are arranged as: some of the 
primitive works regarding the TCS and prioritization are 
reviewed in Section 2; the proposed technique is explicated 
in Fig. 3; the proposed model’s superiority measure is dem-
onstrated in Section 4; finally, the paper is winded up with the 
future work in Section 5.

2 � Literature Survey

Gao [11] developed an SRGM framework via heterogene-
ous debuggers consideration. Here, to optimize the testing 
process, a cost analysis technique was employed. The FD 
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and fault correction were deemed to be a departure as well 
as an arrival process. Moreover, via a queuing system, 
these processes were illustrated. The simulation outcomes 
proved the presented model’s effectiveness regarding per-
formance metrics. However, the model was ineffective 
whilst working in a complex environment.

Xiao et al. [29] elaborated on a stepwise prediction 
system for the FDP and the FCP regarding the Artificial 
Neural Network (ANN). In the presented model, the great-
est impact was possessed by the testing effort on FDP as 
well as the FCP. Thus, regarding software reliability along 
with total cost, the optimal release technique was attained. 
Conversely, the model’s superiority measure was affected 
by a higher Mean Square Error (MSE).

Gokilavani and Bharathi [13] recommended a Princi-
ple Component Analysis (PCA) extraction along with a 
K-Means clustering-centric ranking model to investigate 
faults in the software. Here, for an effectual FDP, the 
model underwent (i) pre-processing, (ii) feature selection, 
(iii) clustering, and (iv) ranking process. Therefore, using 
the adjacency matrix betwixt the TCs and FDR, the sum of 
the faults was detected superiorly. However, information 
about the basic needs along with risks related to bugs was 
not provided by this model.

Lin et al. [19] presented a systematic mechanism to 
determine the FD and Diagnosis (FDD) model’s suprem-
acy. Here, from the dataset wielded, input scenarios as well 
as the input data samples were extricated. Additionally, 
by utilizing a condition-centric conventional system, the 
ground truth fault operational stage was proffered. Conse-
quently, the model deterred unintentional lighting runtime 
complications. However, owing to fault intensities together 
with seasonal diversities, the dataset utilized was limited.

Cui et al. [8] modeled a fault localization methodol-
ogy by the amalgamated usage of the spectrum as well 
as mutation. Regarding the program spectrum, the faults 
were localized by the Spectrum-Based Fault Localiza-
tion (SBFL). Alternatively, concerning the mutant, faults 
were localized by the Mutation-Based Fault Localization 
(MBFL). At last, the ranking was performed. Hence, the 
utilization of the adopted ranking methodology enhanced 
the fault localization accuracy. However, the programs 
with multiple faults were not considered by this model.

Jahan et al. [15] proffered a semi-automatic risk-centric 
TCP model regarding software modification information 
together with the invocation relationship. Here, for risk 
analysis, the factors considered were complexity, the 
desired modification information, along with the model’s 
size. The experiential outcomes demonstrated that when 
compared with the prevailing methodologies, the pre-
sented one spotted defects earlier with higher efficacy. 
Nevertheless, the potential errors were increased owing to 

the number of modified requirements, complexity, along 
with size.

Nagaraju et al. [23] developed a covariate SRGM along 
with formulating the optimal test activity allocation aimed 
at the maximization of FD. Here, regarding the discrete cox 
hazards methodology, a Poisson process was employed for 
SRGM. Therefore, by utilizing limited testing resources, 
the optimal test activity allocation problem was addressed. 
However, the presented covariate model’s practical usage 
was not successful.

Nithya et al. [24] presented a gradient-centric meth-
odology for the semi-automated selection of the software 
TC. For the TCS, a simulated annealing model was uti-
lized. Similarly, for an effectual testing process, optimi-
zation methodologies were employed. Thus, the unwanted 
and redundant data were removed and more faults were 
detected. However, the convergence rate was affected by 
the usage of random permutations.

Choudhary et al. [7] introduced an effort-centered SRGM 
model for detecting along with correcting faults in software 
test cases by employing Multi-Attribute Utility Theory 
(MAUT). Furthermore, to estimate software failures, a 
Non-Homogenous Poisson Process (NHPP) was employed. 
Therefore, the total incurred cost was mitigated by the reduc-
tion in the launch time. However, the fault correction com-
plexity was increased owing to the addition of faults in the 
fault removal process.

Mahdieh et al. [21] presented the coverage-centric TCP 
model aimed at fault proneness estimations. For defect pre-
diction, the software’s bug history was utilized. After that, 
fault-proneness regions of every single source code were 
analyzed as well as induced in the coverage-based TCP tech-
niques. The experiential outcomes confirmed the presented 
model’s effectiveness over the traditional methodologies. 
Nevertheless, the model provided an inaccurate prediction 
of faults due to the utilization of the lower number of bugs.

Bagherzadeh et al. [5] proffered a Reinforcement Learn-
ing (RL)-based model for TCP. Here, 3 alternative ranking 
methodologies were utilized since the TCP was regarded as 
the ranking problem. Therefore, higher ranking accuracy of 
the testing process was obtained from the analysis and the 
extraction of TC data as well as source code history. How-
ever, the model was time-consuming. Moreover, it provided 
potentially out-of-date models.

Chi et al. [6] defined an Additional Greedy method-
centric Call sequence (AGC) framework for the regression 
testing process. Here, the first priority was given to the TCs 
with more call sequences. Then, it was deemed as a calling 
network regarding the program behaviors. Using the removal 
of redundant test cases, the test suite size was reduced by the 
TC minimization model. However, here, the testing process 
ceased prematurely at a certain arbitrary point.
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Ali et  al. [1, 2] developed Change Test cases and 
Failed Frequency (CTFF) based prioritization methodolo-
gies. Regarding the highest failure frequency, this model 
included 2 phases, comprising clustering along with the 
prioritization of parameters. Initially, using clustering, the 
TCs were prioritized. By employing the coverage condi-
tion, the test cases were prioritized if the test cases inter-
fered with each other. Therefore, the model effectively 
detected more faults. However, the outcomes were not 
validated statistically.

Ali et al. [1, 2] suggested a pattern-centered verification 
model aimed at TCP. Here, by utilizing the observer patterns, 
the test cases were accessed often. Moreover, sorting, execu-
tion rate, and fault history were certain strategies via which 
the test cases were prioritized. Therefore, the presented 
model augmented the FDR together with random priority. 
However, reliability along with ambiguity issues occurred 
owing to multiple test cases with the same frequency.

Huang et al. [14] engendered Regression TCP (RTCP) 
model to test the developed software. The model was highly 
grounded on the combination coverage along with the code 
coverage concept. Furthermore, adaptive random, additional, 
total, and search-centric test prioritization RTCP sorts were 
also utilized. Consequently, when analogized with the tra-
ditional models, the presented model obtained comparable 
testing efficacy. However, the model was affected by the 
time overhead problem.

Arasteh et al. [3] intended to reduce the mutation test 
process’s time and cost. The model identified the most 
fault-prone paths of a program using the Artificial Bee 
Colony algorithm and injected the mutation operators 
on the recognized fault-prone instructions and data. The 
experimental outcomes indicated that the method reduced 
generated mutants and the cost of mutation testing. Due to 
the improper exploitation ability of the algorithm, there 
occurred inaccurate identification of fault-prone paths.

Arasteh et al. [4] automated test data generation by devel-
oping a method Tracxtor using Imperialist Competitive 
Algorithms (ICA). The test data were generated under maxi-
mum branch coverage in a limited amount of time. As per 
the outcomes acquired from the experiments, the algorithm 
outperformed the other algorithms. However, the memory 
usage during test case generation was not considered.

Khari et al. [16] established an automated testing tool 
using the components of software testing. The test suit was 
generated utilizing the test suite generation approaches for 
the flow graph of the software under test. Further, this gen-
erated test suite was optimized utilizing the cuckoo search 
algorithm or artificial bee colony algorithm. When analo-
gized to other algorithms, this technique can render a set of 
minimal test cases with maximum path coverage. But, due 
to the generation of test cases regardless of path, the path 
coverage achieved by the model was less.

Khari et al. [17] concentrated on heuristic algorithms’ 
performance assessment to select the best-suited algorithm 
for path coverage-centric optimization. The algorithms were 
deployed to create test suites for the program under test and 
optimize them under path coverage and branch coverage gen-
erated by the test data. Results showed that the algorithms 
were well suited for path coverage-centric optimization 
techniques. As the heuristics were developed for the same 
problems, generating comprehensive test suites was difficult.

3 � Proposed Efficient Fault  
Detection Methodology

In recent days, software has become highly significant in 
the daily routine of human life. Owing to complexity along 
with longevity, modern software systems encompass a larger 
set of requirements. Therefore, in a software engineering 
project, by utilizing the proposed FD model, the program’s 
behavior is analyzed in the crucial stage of software testing. 
Figure 1 exhibits the proposed model’s framework.

3.1 � Test Case Generation

The process of generating test cases for the corresponding 
system from the model, which describes the system, is called 
test case generation. The generation of these test cases can’t 
be executed manually, which increases the need for auto-
mating test case generation. Initially, for the selected source 
codes, the TC is created in the FDP. In the proposed model, 
the source code and test cases are collected from publicly 
available open source. When the test case is not available 
for the corresponding source code, the test cases are derived 
from the development of source code and requirements spec-
ifications manually.

Initially, for the selected source codes, the TC is created 
in the FDP. Information like the name of the individual 

(
ni
)
 

who generated the TC along with conducted the testing 

Fig. 1   Baseline Structure of proposed work
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process, tested time 
(
tt
)
 , test case id 

(
tid
)
 , tested software 

version (version) , expected result 
(
Er

)
 , and actual result 

(
Ar

)
 

are encompassed in the test cases that are generated. Here, 
the input source code is specified as Isc , and the TCs created 
are expressed as Tcase . Since the generated test cases may or 
may not have a 100% fault detection rate, the test case selec-
tion has been done by factors identification and reduction.

3.2 � Factors Identification

To maintain the software quality, certain significant factors 
[26] are detected or extracted for prioritizing the test cases 
after generating the test cases. The factors being identified 
are explicated below:

•	 Code coverage 
(
Cc

)
	   The ratio of the program element by tests, which are 

engendered manually or automatically in source code, is 
proffered as code coverage. Line coverage, branch cover-
age, and method coverage are encompassed in program 
elements. It is expressed as,

•	 Data flow 
(
Df

)
	   The test case coverage of interactions betwixt the data 

items employed for software development purposes is 
defined as data flow. It is formulated as,

•	 Fault Proneness 
(
FP

)
	   It is utilized to evaluate the error-prone requirement. 

Regarding the number of field failures and in-house sys-
tem test failures, which are already detected in the code, 
the Fp is measured as,

where, the number of test cases that are correctly pre-
dicted as faulty modules is specified as nc , and the total 
number of predicted faulty modules is signified as np.

•	 Customer Assigned Priority 
(
Cprior

)
	   The priority assigned by the customer to the test case 

regarding the customer’s need or necessity of the soft-
ware being developed is termed customer-assigned prior-
ity. For every single requirement, the customer assigns 
a value betwixt 1 to 10. The higher customer priority is 
specified by 10.

•	 Implementation Complexity (Ic)

(1)Cc =
lines of codes covered by tests

total number of code
∗ 10

(2)Df =
test data utilized

Total number of test cases

(3)Fp =
nc

np
× 10

	   The model’s implementation complexity is measured 
by the total number of requirements. The methodol-
ogy becomes more complicated with a larger number 
of requirements, thus leading to the production of the 
wrong product. It is expressed as,

	   Here, the number of requirements or conditions in the 
proposed methodology is notated as Nm.

•	 Changes in requirement (Rc)

	   The frequency of modification required in the develop-
ment of the software project from the date of onset of the 
project is evaluated by Rc , which is formulated as,

where, the number of requirements is specified as v , and 
the requirement changes are signified as u.

•	 Fault Impact of requirements (Ifault)
	   The process of discovering the number of failed 

requirements in the development of the project as well 
as the number of in-house failures is defined as the fault 
impact of requirements. It is expressed as,

where, the total number of requirements is notified as 
b and the number of in-house failures is signified as a.

•	 Completeness (�)
	   The condition for execution (g) , the degree of success 

(ℵ) , and the limitations (h) in attaining the probable solu-
tion are explicated here. It is formulated as,

•	 Traceability 
(
Tr
)

	   The measure of the graphical representation (mapping) 
of the requirements (R) and test (T) is termed traceability. 
In this, it is verified whether the requirements are com-
pleted and tested or not. It is modeled as,

•	 Execution time 
(
Te
)

	   The execution time is proffered as the time needed 
to accomplish the particular code (task). Therefore, the 
factors identified 

(
FI

)
 are expressed as,

where, the number of factors identified is denoted as 
I = 1, 2, 3, ..., f .

(4)Ic =
Nm

max∀m⟨Nm⟩

(5)Rc =
(
u

v

)
× 10

(6)Ifault =
(
a

b

)
× 10

(7)𝜍 =
{
1

ℵ
,
g

h

}

(8)Tr ↔ {R, T}

(9)
FI =

{
Tcase(l),Cc,Df ,Fp,Cprior, Ic,Rc, Ifault, �, Tr, Te

}
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3.3 � Factor Reduction Using LS‑GDA

Here, without the loss of vital information, the identified fac-
tors are mitigated further to augment the accuracy of ranking 
test cases subsumed in the FDP. Generalized Discriminant 
Analysis (GDA), the most frequently utilized model, is uti-
lized effectively for feature reduction. Here, via the estimation 
of eigenvalues by Eigen Value Decomposition (EVD) meth-
odology, higher dimensional features are mitigated into lower 
dimensional ones. Nevertheless, the eigenvalue computation 
is quite complicated. Moreover, it is impossible to handle a 
larger number of datasets. The Log Scaling (LS) normaliza-
tion model, which is termed LS-GDA, is utilized to abate the 
error rate. The steps included in the LS-GDA are given below:

Initially, the factors identified 
(
FI

)
 are inputted into the 

LS-GDA algorithm in m-dimensional search space. The 
LS-GDA maps the input vector 

(
FI

)
 in space (m) into the 

input vector �(Ls) in space f  . In the feature transformation 
process, the LS-GDA aims to minimize the between-class 
scatter due to the non-linearity of data. The wither class 
matrix (ℑw) and between-class scatter matrix 

(
ℑb

)
 for the 

mapped factors are formulated as,

Here, the mean value of the i − th factor identified is speci-
fied as �I , and the mean of all factors identified is symbolized 
as � . The LS-GDA finds the projection matrix 

(
Rf

)
 that maxi-

mizes the optimization criteria defined as,

The vector (�) for 
(
Rf

)
 is identified by solving the eigen-

value problem. LS-GDA finds the eigen values (�) and eigen 
vectors (�) to maximize the optimized solution attained as,

As eigen vectors lie in the span of �(Ls) , the eigen values 
are calculated as,

Here, the span co-efficient is denoted as �Il , and the LS 
criterion is indicated as log(Ls) . The solution to eigen value 
problem is obtained by solving,

(10)

⎧⎪⎪⎨⎪⎪⎩

ℑb =
D∑
I=1

FI

�
�I − �

��
�I − �

�T

ℑw =
FI∑
I=1

�
�(Ls) − �I

��
�(Ls) − �I

�T

(11)Rf = argmax

(
RT ℑb R

RT ℑo R

)

(12)� =
�Tℑb�

�Tℑo�

(13)� =

D∑
I=1

FI∑
l=1

�Il log(L
s)

where, � is the vector of weights, Q is the symmetrical 
matrix, and � is the gram matrix. To compute the gram 
matrix, the dot product betwixt the mapped factors by uti-
lizing the positive definite kernel function is estimated.  
The gram matrix (�(�(⋅))) composed of dot products is 
described as,

Solving the eigenvalue problem yields (�) that define the 
projection vectors (�) ∈ Rf  . For this, the matrix � undergoes 
decomposition, which is then replaced in the Eq. (14) to 
compute eigenvectors as,

Here, the normalized eigenvectors’ identity matrix is 
specified as I , and � is the normalized eigen vectors. The 
flowchart of the LSGDA is shown in Fig. 2.

Concurrently, the matrix ITQI endures Eigen decomposi-
tion; thus, the reduced non-linear discriminant factors are 
formulated as,

Here, the N number of reduced factors is represented as 
f = 1, 2, 3, ....,N . For better optimal TCS, the factors being 
reduced are fed into the FY-SSOA system.

3.4 � Test Case Selection by FY‑SSOA

Here, by employing the FY-SSOA, the optimal TCs are 
selected. The shuffled Shepherd Optimization Algorithm 
(SSOA), developed to solve optimization problems, is a 
metaheuristic population-based algorithm. The shepherd’s 
behavior is the concept behind this algorithm. In this, sheep 
are generated randomly. Then, regarding the previously cre-
ated herd, they are put into a herd. Till forming all herds via 
the shuffling process, which ameliorates the herds’ surviv-
ability, the process is continued. Nevertheless, for guiding 
the sheep toward the horse, more waiting time is required to 
compute step size regarding the shepherd’s movement. Thus, 
for shuffling, the Fishers Yates (FY) technique is utilized, 
which mitigates the waiting and enhances the shuffling pro-
cess. This FY-centered shuffling of SSOA is termed FY-
SSOA. The following are the steps involved in FY-SSOA:

•	 Initially, the shepherds’ initial population also known as 
the community (here, the population indicates the num-

(14)�(�) =
�T �Q ��T

�T ���T

(15)�(�(⋅)) = �
(
�(Ls)T�(Ls)

)

(16)� =
�T

(
IT QI

)
�T

�T
(
IT I

)
�T

(17)Rf =
{
R1,R2,⋯⋯ ,RN

}
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ber of test cases generated) is generated randomly. It is 
expressed as,

where, the variable’s lower bound is specified as Rmin
f

 , the 
variable’s upper bound is signified as Rmax

f
 , and a random 

variable betwixt 0 and 1 is notified as rand . Also, the N− 
number of communities is notated as f = 1, 2, ...,N , and 
the M− number of members belonging to every single 
community is represented as g = 1, 2, ...,M.

(18)Rf ,g = Rmin
f ,g

+ rand ×
(
Rmax − Rmin

)

•	 The fitness value ( � ) of every single member in the 
community is computed after generating the commu-
nity members (sheep and horse), which is measured as,

	   The fitness criterion is to select test cases that can 
cover uncovered paths via assessing the fault detection 
ability based on the reduced factors from Section 3.3. 
Hence, the fitness function considering the factors 
selected is employed in this paper. Considering these 
factors would enable more effective identification of 
faults earlier in the software process. According to the 
fitness function, the test cases that contain the required 
selected factors are selected for fault detection. It can 
be expressed as,

•	 After calculating the fitness value, in accordance with 
the fitness value, all the members are shuffled along 
with sorted in descending order by utilizing the FY 
algorithm.

•	 The FY algorithm randomizes the community as well as 
reordered them in decreasing order.

–	 Write down every single member of the community 
population as of  1 to �.

–	 Select a random member s betwixt one and the num-
ber of unstruck members  (�).

–	 In the community that has not been crossed out, the 
sth member is crossed out by counting from the lower 
end. Subsequently, write it at the end of the separate 
list. Here, the shuffled list of community members 
is represented.

–	 These steps are repeated until all the community 
members have been struck out.

•	 After that, by performing the step size estimation process (
Sf ,g

)
 , the movement of every single member of the com-

munity is estimated. Under the diversification strategy (
Sdiverse
f ,g

)
 , the members having the ability to visit new 

regions in space are enclosed. But, under the intensification 
strategy 

(
S
intensify

f ,g

)
 , the members having the capacity to 

visit the regions that have already been visited are encom-
passed. The step size estimation process is expressed as,

	   Here, Sdiverse
f ,g

 and Sint ensify
f ,g

 are formulated as,

(19)� = N ∗ M

(20)�N×M = argminmax
(N,M)

(
Rf

)

(21)Sf ,g = Sdiverse
f ,g

+ S
int ensify

f ,g

(22)Sdiverse
f ,g

= � × c ×
(
Rf ,d − Rf ,g

)

Fig. 2   Flowchart of the LSGDA
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where, the random integers are symbolized as c and c1 , the 
best member (horse) is indicated as Rf ,d , the worst members 
(sheep) of the community are denoted as Rf ,in , and the con-
trol parameters for exploration and exploitation are given as 
� and �∗ . The control parameters are represented as,

	   Thus, it is evident that as iteration (T) increases, �∗ increases 
with mitigation in � value. In this, �∗

0
 specifies the reduction in 

� value and �∗
MAX

 symbolizes the maximum value.

(23)S
int ensify

f ,g
= �∗ × c1 ×

(
Rf ,in − Rf ,g

)

(24)� = �0 − �0 × T

(25)�∗ = �∗
0
+
(
�∗
MAX

− �∗
0

)
× T

•	 The new position of every single member in the commu-
nity 

(
Rnew
f ,g

)
 is attained after estimating the movement of 

every single member in the community. It is computed as,

Thus, till gratifying the stop condition, the position upda-
tion process is repeated. Or else, return to step 3 and con-
tinue the phases. Hence, the test cases selected 

(
Stcs

)
 via 

FY-SSOA are expressed as,

where, the number of test cases selected is notified as 
tcs = 1, 2, 3, ..., p . The FY-SSOA’s pseudocode is cited below,

(26)Rnew
f ,g

= Rf ,g + Sf ,g

(27)Stcs = S1, S2, ...., Sp
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The pseudo-code of the FY-SSOA algorithm includes the 
fundamental steps used for the optimization process. Firstly, 
the algorithm divides the population into a number of com-
munities from which the best members are selected for the 
herding behavior. The selection process is done by evaluat-
ing the fitness of each sheep and sorting the population using 
Fisher-Yates Shuffling. Finally, the sub-population generated 
by recording the best solutions gives the optimal test cases 
selected for the testing process.

3.5 � Ranking with Entropy

The ranking methodology is implemented after complet-
ing the TCS process. Generally, to prioritize the test cases 
being selected, the ranking is employed. Here, by adopting 
the entropy-centered ranking (�p) model, the test cases are 
prioritized. It is formulated as,

3.6 � Test Case Prioritization via ED‑EPCA

Here, to achieve the test cases’ complete reordering, the 
more crucial TCs are selected regarding their priority 
information. After choosing appropriate test cases, an 
algorithm should be determined for ordering test cases 
such that the fault detection rate by executing the test cases 
in the prioritized sequence is maximized. The problem 
of prioritizing test cases to attain such a maximum fault 
detection rate and enabling earlier or less costly detection 
of errors is an NP-hard problem. The migration behavior 
of emperor penguins from cold to warmer domains in the 
colony is the basis for the development of the Emperor 
Penguin Colony (EPC) optimization algorithm. EP is 
uniformly distributed as well as experiences spiral-like 
movement in the colony. Moreover, temperature and 
distance are the factors on which the huddling behavior 
of the emperor penguins solely relies. Nevertheless, the 
convergence speed is affected by the randomness vector 
enclosed in the movement of the uniformly distributed 
penguins, thus resulting in a local optimum problem. The 
EP is Elliptical Distributed (ED) in the dimensional search 
space to deter the aforementioned issues. The induction of 
ED in the traditional EPCA is termed ED-EPCA. The steps 
included in the ED-EPCA algorithm are explicated below:

Stage 1: Primarily, the population of the penguins in 
the colony (�p) is initialized as,

(28)�p = −
∑

Stcs ⋅ log

(
1

Stcs

)

where, the C− number of penguins in the colony is 
indicated as p = 1, 2, 3, ...,C . Here, the population of 
the penguins in the colony is the selected test cases in 
software testing.
Stage 2: After initializing the population, the fitness 
value of every single penguin 

(
f (�p)

)
 in the population 

is computed as,

Stage 3: Here, the penguins’ movement toward the 
objective function (warmer region) is determined. 
In this estimation, the heat radiation transfer (ℏpen) is 
evaluated as,

Here, the penguin’s total surface area is specified as ℏtot , 
the bird’s plumage emissivity is signified as O , the Stefan–
Boltzman constant is notified as � , and the absolute tem-
perature is symbolized as t . Furthermore, the penguin’s 
total surface area ℏtot is formulated as,

where, the surface area of the trunk is specified as ℏu , the 
beak area is signified as ℏv , the area of the penguin’s head 
is notated as ℏw , and the flipper area is symbolized as ℏx.

Here, the semi-length of the body is notified as c , minor 
axes length is indicated as d, the body length is denoted 
as b , the cross-sectional area and hypotenuse are rep-
resented as R and S , the height of the penguin’s head is 
exhibited as D , and the length and width of the flippers 
are illustrated as L and M.
Stage 4: After evaluating the heat radiation transfer, 
the attractiveness of two penguins (ℏ) in the colony is 
measured as,

where, the coefficient of attenuation is proffered as � and 
the linear distance betwixt the penguins is depicted as .

(29)�p = �1, �2, �3, ..., �C

(30)f (�p) = f
(
�1, �2, ..., �C

)

(31)ℏpen = ℏtotO𝛾t
4

(32)ℏtot = ℏu + ℏv + ℏw + ℏx

(33)ℏu = 2𝜋
cd

b
sin−1b + 2𝜋d2

(34)ℏv = 𝜋RS

(35)ℏw = 𝜋(D − R)2

(36)ℏx = L ×M

(37)ℏ = ℏtotO𝛾t
4e−𝜗𝜆
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Stage 5: A spiral path was formed by the movement of 
the penguin toward the warmer one. Thus, the logarith-
mic spiral formula is expressed as,

Here, the distance from the origin is signified as ℜ , 
the arbitrary angle is modeled as � , and � and � ′′ are 
the constants.
Stage 6: Next, owing to the penguins’ attractive nature, 
they get distracted during their movement. Thus, the 
destination is not attained; it also stops after a long dis-
tance. Consequently, by estimating the distance between 
the two penguins, the updated position of the penguin 
is estimated. It is formulated as,

where, the distance betwixt penguins m and n is symbolized 
as Dmn , the constants are denoted as e and f  , and the spiral 
angle of the penguins m and n are notified as �m and �n . To 
attain the distance from m and n′ , the obtained outcomes 
are multiplied by the attractiveness value. It is computed as,

Cartesian and polar co-ordinate relation is utilized for 
angle � , which is expressed as,

At the position n′ , the logarithmic spiral’s parameters x′′′ 
and y′′′ are expressed as,

(38)ℜ = �e�
��
�

(39)Dmn =
e

f

√
f 2 + 1

�
ef�n − e�m

�

(40)Dmn� = ℏ
e

f

√
f 2 + 1

�
ef𝜑n� − e𝜑m

�

(41)� = tan−1
x���

y���

(42)

x��� = ee

f
1

f
ln

⎧⎪⎨⎪⎩
(1−ℏ)ef tan

−1
y���n
x���n +ℏef tan

−1
y���n
x���n

⎫⎪⎬⎪⎭

cos

�
1

f
ln

�
(1 − ℏ)ef tan

−1
y���n
x���n

+ ℏef tan
−1

y���n
x���n

��

(43)

y��� = ee

f
1

f
ln

⎧⎪⎨⎪⎩
(1−ℏ)ef tan

−1
y���n
x���n +ℏef tan

−1
y���n
x���n

⎫⎪⎬⎪⎭

sin

�
1

f
ln

�
(1 − ℏ)ef tan

−1
y���n
x���n

+ ℏe
f tan−1

y���n

x���n

��

The logarithmic spiral movement turns monotonous 
owing to the earlier estimation of information about the 
angle. Therefore, to increase population diversity, the 
elliptical distribution is adopted. It is expressed as,

where, the mutation factor in path change is represented 
as � and the elliptical distribution parameter is specified 
as � , which is illustrated as,

where, ℵ denotes the elliptic distribution.
Step 7: After achieving either of the required optimiza-
tions, the algorithm will be ceased. With varied initial 
positions, the steps have to run numerous times to get 
better optimization. Thus, the prioritized TCs, which are 
notated as TCSpriori , are the outcomes of this algorithm. 
Moreover, they are then wielded for FD purposes.

3.6.1 � Fitness Function

In order to adapt ED-EPCA to test case selection, it should 
be converted to the optimization problem, where the opti-
mized solutions can be obtained by a reasonable fitness 
function. According to ED-EPCA, candidate solutions in 
the search space indicate the test cases selected, and the 
ordered solutions in the search process are obtained with 
the fitness function.

Hence, for the efficiency and success of optimization, a 
better fitness function is a significant factor. For test data 
arrangement, the good fitness function value should be 
returned for those test data, which nearly meet the fault 
detection criteria. Fault detection criteria are crucial in 
software testing to cover 100% of the source code by run-
ning the selected test cases in the ordered manner. With 
the assistance of the fitness function, the ED-EPCA algo-
rithm should arrange the test cases, which have the ability 
to meet the target testing coverage through a maximum 
fault detection rate. It can be expressed as,

Here, the test coverage’s derivative is signified as dCc . 
The pseudo-code of the ED-EPCA is elucidated below:

(44)y��� + ��

(45)𝜔 = ℵ

√
1 −

(
2e

f

)2

(46)f (�p) = max

(∑
N,M

(
dCc − Cc

))
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The steps used for prioritizing the test cases using LD-
EPCA are shown in the above pseudocode. The LD-EPCA 
algorithm represents the huddling behavior of penguins, 
where body temperature and heat radiation are the crucial 
factors. By defining these two factors in the LD-EPCA, 
the distance between each search agent is updated. Then, 
the prioritized test cases are obtained by considering the 
fitness value nearer to fault detection. The flowchart of the 
LD-EPCA algorithm is shown in Fig. 3,

4 � Results and Discussion

Here, to validate the proposed FD model’s efficacy, the 
outcomes attained by the proposed system are contrasted 
with the baseline techniques. The proposed methodology 
is executed utilizing JAVA programming.

4.1 � Case Study

Can the factors related to the software Fault-based prioritiza-
tion improve the fault detection rate of test cases is the basic 
problem used to demonstrate the implementation of pro-
posed FY-SSOA and ED-EPCA methods. The user require-
ments of the SUT have been taken as the input from which 
the test cases are generated manually. From the generated 

test cases, the factors related to software faults are identified 
and used for test case optimization using the FY-SSOA algo-
rithm. The experiments were conducted under two levels, 
namely statement level and the functions level. Statement 
level experiment includes checking for the correctness of 
statements and the function considers the number of condi-
tions used in the model.

In the implementation of FY-SSOA, all the test cases are 
selected based on their objective values attained for the fac-
tors. The values of all factors for each test case were inves-
tigated and the main test cases that have the defined fac-
tor values were selected. Then, the selected test cases were 
prioritized using the ED-EPCA algorithm. In ED-EPCA 
implementation, the factors that cause significant differ-
ences in APFD values are considered, where there were a 
number of levels with each factor and 100 test cases per 
program. Then, the selected test cases undergo a mutation 
testing process to ensure the effectiveness of the generated 
test cases. The mutation testing is carried out by using the 
mutation testing tool called MuClipse for Eclipse. The muta-
tion testing involves statement mutation, which replaces the 
statements with various kinds of statements, value mutation, 
which alters the values to identify the errors, and decision 
mutation, which modifies the arithmetic or logical operators 
to detect the errors. Thus, mutation testing helps to reach an 
efficient model performance. After mutation testing is done, 
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the test cases are subjected to the test prioritization phase. 
Here, four prioritization techniques along with the proposed 
ED-EPCA were employed per experiment. The factors 
within each program generating a maximum of observa-
tions, each including an APFD value per experiment were 
obtained. Under these values, the test cases are prioritized.

4.2 � Benchmark Programs and Evaluation Criteria

For this work, a sample healthcare application from the 
internet has been selected. This healthcare application con-
tains phases, such as Patient Registration, Patient Login, 
Doctor Registration, Doctor Login, Book Appointment, 

Consultation, Medical Record upload, Bill payment, Phar-
macy details, Discharge summary details form, etc. Each 
and every form has several operations. Next, the test cases 
are manually generated based on the model test cases avail-
able on the internet for all operations in the forms. Next, the 
healthcare application is run, and simultaneously, the created 
test cases are checked with the predicted output. Based on 
that, the test case result is mentioned as Pass or Fail. This 
completed test case is considered as the input to our frame-
work to evaluate the system.

Based on the factors, the optimal test cases are selected 
and prioritized using the modified techniques and compared 
with existing techniques. Software bugs are categorized into 
various kinds of bugs according to their distinct nature and 
influence. Some of the software bugs include functional 
bugs, logical bugs, workflow bugs, unit-level bugs, system-
level integration bugs, out-of-bound bugs, and security 
bugs that arise during the process of software testing. A 
functional bug indicates a defect in software applications, 
which may occur during coding errors, insufficient testing, 
and other factors related to hardware limitations. A logical 
bug happens when the code does not provide the expected 
results. The malfunctions, fault, and bottleneck issue within 
the working procedure refers to the workflow bug. During 
testing, if the tiniest element is affected by such errors, then 
it is considered as a unit-level bug. System-level integra-
tion bugs arise when the number of systems collaborate 
and reach failure or errors. Out-of-bound bugs is defined 
as the occurred error, which crosses the limit of the specific 
operation. The flaws or risks in the software and hardware 
are resulted in security bugs. The evaluation indicators like 
Average Percentage of Faults Detected (APFD), time, and 
memory usage are the parameters espoused for measuring 
all the algorithms’ performance (Table 1).

The configuration and implementation parameters used 
in the ED-EPCA heuristic algorithm are shown in Table 2.

4.3 � Performance Measurement of Proposed 
FY‑SSOA

Glowworm Swarm Optimization (GSO), Shuffled Frog 
Leaping Algorithm (SFLA), Seagull Optimization Algo-
rithm (SOA), and SSOA are the baseline techniques with 
which the proposed FY-SSOA model is compared regarding 
memory usage in Fig. 2.

To make a cost-effective test case selection, the proposed 
method’s effectiveness is evaluated based on memory usage. 

(47)Memory usage = Total memory − FreeMemory

(48)

APFD = 1 −
sum of test cases

set of test cases ∗ set of faults
+

1

2 ∗ set of test cases
Fig. 3   Flowchart of LD-EPCA
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The evaluation of memory usage indicates the level of 
memory demand required for the entire process of test case 
selection. The memory usage is evaluated by subtracting the 
available memory after the test case selection process from 
the total memory of the system. Here, to select 500 TCs, the 
proposed model utilized a memory space of 6689554 kb. 
Conversely, the conventional GSO occupied 8245475 kb, 
which is greater than the proposed one. Similarly, for select-
ing various numbers of TCs, the memory space occupied by 
certain other methodologies like SOA, SFLA, and SSOA is 
also higher than in the proposed system. Thus, it is clear that 
the TCs are selected more apparently by the proposed system 
than the other methodologies. The comparative analysis of 
the proposed FY-SSOA is tabulated in the below table:

From Table 3, it is clear that the proposed FY-SSOA tech-
nique achieves better fitness value than the prevailing meth-
odologies. Thus, for 100 iterations, the proposed method 
attains a fitness value of 6048, whereas the prevailing meth-
odologies like GSO, SOA, SFLA, and SSOA attained 2054, 
3087, 4024, and 5087 fitness values, which are considerably 
lower. Similarly, for certain other iterations, the fitness value 
differs. Thereby, the proposed model outperforms the other 
prevailing methodologies. Figure 3 illustrates the perfor-
mance analysis based on the selection time (Fig. 4).

As per Fig. 5, to select 200 test cases, the proposed 
FY-SSOA takes 6475 ms, whereas the traditional SFLA 
model takes 8054 ms. Similarly, to select 300 test cases, the 
proposed one and the prevailing SFLA take 8245 ms and 
10457 ms, respectively. Likewise, the selection time differs 
(higher) for other methodologies also. Therefore, it is clear 
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Table 2   Configuration and 
implementation parameters of 
ED-EPCA

Parameters Values

b 0.34 m
c 0.16 m
R 0.02 m
S 0.11 m
L 0.28 m
M 0.065 m

Table 3   Comparative measure of the proposed FY-SSOA based on 
fitness vs iteration

Iteration Fitness

GSO SOA SFLA SSOA Proposed 
FY-SSOA

100 2054 3087 4024 5087 6048
200 2147 3130 4158 5138 6178
300 2236 3246 4258 5248 6238
400 2348 3358 4387 5348 6395
500 2487 3478 4486 5418 5432
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that when compared with the baseline techniques, the pro-
posed one achieved good performance.

4.4 � Performance Evaluation of Proposed ED‑EPCA

Cat Swarm Optimization (CSO), Emperor Penguins Colony 
Algorithm (EPCA), and Penguin Search Optimization Algo-
rithm (PeSOA) are the prevailing techniques with which the 
proposed model is contrasted based on memory usage in 
Table 2. The proposed system implemented the CSO, EPCA, 
and PeSOA methods in the working platform of Java using 
the Java programming language.

Regarding memory usage, the proposed ED-EPCA mod-
el’s performance is demonstrated in Table 4. Depending 
on the number of test cases, the memory usage differs. For 

prioritizing, the memory utilized by the proposed model is 
5421775 kb for 100 test cases. But, for the same number of 
TCs, the prevailing methodologies occupied a larger mem-
ory of 6578452 kb (CSO), 6345782 kb (LOA), 6134886 kb 
(PeSOA), and 5822387 kb (EPCA), respectively. Similarly, 
for 500 test cases, a minimum memory of 7077865 kb was 
utilized by the proposed model. However, a higher memory 
space of 80458723 kb was attained by the traditional CSO 
model. Correspondingly, the other prevailing methodologies 
also utilize more memory than the proposed system.

Figure 6 clearly shows the supremacy of the proposed 
ED-EPCA model in FD. Accordingly, for 10% of TCs, the 
APFD attained by the proposed model was 67%. Conversely, 
for the same percentage of TCs, the prevailing PeSOA 
obtained merely 57%, which is less than the proposed one. 

Fig. 4   Performance measure 
based on memory usage

Fig. 5   Performance analysis 
based on selection time
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Alternatively, the proposed system detected 78% of faults for 
30% of TCs, whereas the prevailing PeSOA attained 66%. 
The percentage of faults detected by the proposed model 
increases (99.23%) as the number of TCs increases (70%). 
Thus, it is clear that when contrasted with the existing meth-
odologies, the proposed system detected more faults with 
higher percentages of APFD.

Figure 7 graphically represents the proposed ED-EPCA 
model’s performance regarding fitness vs iteration. The 
performance will be better with a higher fitness value. 

Table 4   Performance comparison of the proposed ED-EPCA based 
on memory usage

No. of 
test 
cases

CSO LOA PeSOA EPCA Proposed 
ED-
EPCA

100 6578452 6345782 6134886 5822387 5421775
200 6955214 6745888 6455783 6044683 5732321
300 7584653 7326558 7133674 6520500 6033761
400 7745896 7566324 7355673 7065100 6422786
500 80458723 7865447 7755284 7540340 7077865

Fig. 6   Performance investiga-
tion based on APFD

Fig. 7   Superiority measure 
based on fitness vs. iteration
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Consequently, for 200 iterations, the proposed model 
attained the fitness value of 6187, whereas the traditional 
CSO, LOA, PeSOA, and EPCA methodologies obtained 
4157, 4687, 5145, and 5684, which are lower than the pro-
posed one. Similarly, for varying iterations like 100, 300, 
400, and 500, the proposed model attained higher fitness 
values than the prevailing methodologies.

Regarding prioritization time, the comparative evalu-
ation of the proposed approach is illustrated in Table 5. 
Here, to prioritize 100, 200, 300, 400, and 500 tasks, 
the proposed ED-EPCA takes a prioritization time of 
5847 ms, 9635 ms, 13457 ms, 23564 ms, and 28647 ms, 
respectively. On the other hand, for 100, 200, 300, 400, 
and 500 tasks, the prevailing EPCA model takes the prior-
itization time of 7124 ms, 12457 ms, 17845 ms, 27658 ms, 
and 34657 ms, respectively, which are greater than the 
proposed model. Therefore, the proposed system shows 
superior performance than the other traditional algorithms.

Table 6 shows the comparative analysis of the proposed 
fault detection technique with the existing methods devel-
oped by Gokilavani and Bharathi [13], Jahan e al. [15], 
Mahdieh et al. [21], Bagherzadeh et al. [5], and Ali et al. 
[1, 2] in Section 2. The analysis was conducted based on 
APFD. Table 6 indicates that the proposed approach is 
more efficient compared to the existing techniques, with 
99.23% of fault detection capability. Although the system 
introduced by [15] attained 98% of APFD, it lacks when 
considering the parameters, such as requirements, com-
plexity, along with size. Hence, by making a cost-effective 
test case prioritization, selecting the most significant test 

cases, and incorporating more strength factors, the pro-
posed method advances the fault detection process com-
pared to the existing methods.

5 � Conclusion

By employing ED-EPCA-based TCP, an effectual FD sys-
tem has been proposed here via FY-SSOA-based TCS. 
For an efficient FD in the software test cases, numerous 
operations have been encompassed in this model. Next, 
to endorse the proposed model’s efficiency, the experien-
tial analysis is conducted, where the performance along 
with a comparative evaluation of the proposed framework 
is performed. Various uncertainties were handled by the 
developed model, thus rendering highly promising out-
comes. For the assessment, an openly accessible dataset is 
utilized. In this work, the proposed model attained 99.23% 
APFD. In the proposed model, for 500 TCs, the selec-
tion process is completed within 12471 ms. In addition, 
it occupied a memory space of 6689554 kb. Moreover, 
for prioritizing 500 tests, the proposed technique, which 
occupies 7077865 kb of memory space, takes 28647 ms. 
However, utilizing an optimization model to select as well 
as prioritize test cases leads to higher computation time. 
The proposed model can be contributed as a checklist 
guideline for the identification of faults in software test-
ing. The technique renders a way for scheduling and run-
ning test cases, which possess the highest priority, earlier 
for rendering earlier feedback to software testing engi-
neers. As the model was developed to support projects 
that are developed using the Java programming language, 
it has not been applied to any other programs. Hence, the 
model can be extended to be applicable to the programs 
developed using other technologies. Thus, with some 
modified deep learning methodologies, the work would 
be extended in the future to ameliorate the FD with the 
historical test case dataset. In addition, the work would 
subsume the modified optimization process aimed at opti-
mal factor selection.
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