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Abstract
The quantity of bugs that a software test-data finds determines its effectiveness. A useful technique for assessing the effi-
cacy of a test set is mutation testing. The primary issues with the mutation test are cost and time requirements. Close to 
40% of the injected bugs in the mutation test are effect-less (equivalent). Reducing the number of generated total mutants 
by decreasing equivalent mutants and reducing the execution time of the mutation test are the main objectives of this study. 
An error-propagation aware mutation test approach has been suggested in this research. Three steps make up the process. 
To find a collection of instruction-level characteristics effective on the error propagation rate, the data and instructions of 
the input program were evaluated in the first step. Utilizing supervised machine learning techniques, an instruction classi-
fier was developed using the prepared dataset in the second step. After classifying the program instructions automatically 
by the created classifier, the mutation test is performed only on the identified error-propagating instructions; the identified 
non-error-propagating instructions are avoided to mutate in the proposed mutation testing. The conducted experiments on 
the set of standard benchmark programs indicate that the proposed method causes about 19% reduction in the number of 
generated mutants. Furthermore, the proposed method causes a 32.24% reduction in the live mutants. It should be noted 
that the proposed method eliminated only the affectless mutants. The key technical benefit of the suggested solution is that 
mutation of the instructions that don't propagate errors is avoided. These findings can lead to a performance improvement 
in the existing mutation-test methods and tools.
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1  Introduction

Nowadays, software is regarded as an important part of modern 
human life. In fact, software failures in different applications 
may have irreversible financial and humanistic impacts [5, 6]. 
Hence, by using quality assurance methods, software failure 

can be prevented and avoided. Software reliability (as one of 
the quality metrics) is impacted by the number of bugs in the 
software [3]. Software reliability may be remarkably enhanced 
by detecting and removing bugs in each stage of software devel-
opment [2]. Software testing is a primary technique for evaluat-
ing and assuring the reliability of a software product. Software 
bugs made by a developer may lead to errors and finally failure 
during program execution. It should be noted that the cost of 
software testing accounts for 50% of the total software devel-
opment cost [21]. The effectiveness of a test depends on the 
number of detected bugs by it. Ideally, close to 100% of the 
bugs in a program can be detected by effective test data.

Mutation testing is a practical method for evaluating 
the effectiveness of a set of test data (test set). The impetus 
behind mutation testing is to inject bugs, namely mutants, 
into program source code. In this field, a program with an 
injected bug (mutation) is named mutant. Such modifica-
tions (injected bugs) are realized and implemented by means 
of a series of mutation operators. Consequently, the new 
buggy-programs (mutants) are generated during mutation 
testing. Indeed, a mutant simulates the behavior of a buggy 
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program. The main objective of mutation testing is to evalu-
ate the capability of a test set for detecting mutations (injected 
bugs). In Table 1, three mutant programs are created from the 
main program. Line 5 of the original program has changed 
with three mutations. To enhance the efficacy of mutation 
testing, a large number of mutants should be generated sys-
tematically. The number of generated mutants depends on 
the number of lines of the source code. In programs with a 
high number of code lines, a large number of mutants are pro-
duced. Hence, cost and time consumption are two of the main 
problems with the mutation test; this is regarded as one of 
the most serious challenges in the realm of software testing.

According to similar research [25], 40% of the injected 
bugs in the mutation test have no impact (equivalent). As 
a result, just a portion of the bugs that were injected are 
active and causing output in the application. The exist-
ence of effect-less mutations causes the mutation test to 
be less effective, take longer, and cost more money. If 
a mutant program differs syntactically from the original 
program but has the same outcomes, the mutant program 
is equivalent. The behavior of the equivalent mutants is 
the same as that of the original program. One of the major 
challenging problems is equivalent mutants’ identification, 
because identifying the equivalent mutants is an undecid-
able problem. The following are the paper's goals:

•	 Reducing the number of generated mutants by decreasing 
equivalent mutants.

•	 Reducing the execution time of mutation testing by 
decreasing the number of generated mutants.

•	 Reducing the cost of mutation testing by decreasing the 
number of generated mutants.

•	 Reducing the number of generated equivalent mutants 
generated.

In this paper, program data and instructions were ana-
lyzed and the set of syntactic features effective in the 

error-propagation rate of program instructions were identi-
fied. Then, program instructions are classified according to 
the identified features using supervised machine-learning 
algorithms. In fact, by capitalizing on machine learning 
algorithms, program instructions are ranked according to 
error propagation. Finally, mutation operators are applied 
only to the instructions with a higher error propagation rate.

The contributions of the present study are as follows:

•	 Extracting the static and dynamic features effective on 
error-propagation at the level of program instructions.

•	 Producing a dataset (as training-data set) that includes the 
instruction-level features for evaluating the instructions’ 
error-propagation rate.

•	 Generating an instruction classifier to classify the pro-
gram instructions using machine learning algorithms and 
the produced training-data set.

•	 Applying the mutation operators only on the most error-
propagating instructions identified by the classifier and 
eliminating the non-error-propagating instructions in the 
mutation test.

•	 Identifying the equivalent mutants using the instruction 
classifier and eliminating them from the mutant set.

The seven sections of the paper are as follows: The second 
section provides a brief review of important mutant reduc-
tion techniques. Section 3 illustrates Supervised machine 
learning algorithms used in article. Section 4 explains the 
proposed method. The environment and tools that are uti-
lized to evaluate the proposed approach are described in the 
first half of Section 4. Datasets and evaluation criteria are 
also covered in this section. In the second part of Section 4, 
the study's findings are provided and analyzed. Section 5 
presented a review of mutation test environments. Section 6 
is a complete description of the evaluation of the proposed 
system. Eventually in Section 7, the study's conclusion as 
well as future research directions are provided.

Table 1   Original program and 
the generated mutants

Mutant 1Original program

1. Class Class A {
2. public intinc(int a, int b){
3. for(b<10){
4. a++;
5. b=b-2;
6. } 
7. return a;
8. } }

1. class Class A{
2. public intinc(int a, int b){
3. for(b<10){
4. a++;
5. b=b+2;
6. } 
7. return a;
8. } }

Mutant 3Mutant 2
1. class Class A{
2. public intinc(int a, int b){
3. for(b<10){
4. a++;
5. b=b/2;
6. } 
7. return a;
8. } }

1. class Class A{
2. public intinc(int a, int b){
3. for(b<10){
4. a++;
5. b=b*2;
6. } 
7. return a;
8. } }
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2 � Related Works

Mutation testing is applied for evaluating the quality of test 
data. The rationale behind the mutation test is that a series 
of bugs are used so as to simulate real programing bugs. 
Such buggy programs (mutants) are produced as a result 
of making minor syntactic changes in the program source 
code. Equation 1 states that the percentage of discovered 
mutants (killed mutants) in test data determines a test's score 
[31]. All of the inserted bugs are found and eliminated using 
efficient test data. Live mutants are mutations that give the 
same test data results as the original program. The test set 
is deemed sufficient, and the test procedure is terminated if 
the mutation score of the test set is equal to 100 percent. The 
mutation score is influenced by the presence of equivalent 
mutants. The output of the comparable mutants is identical 
to that of the original program. In one of the articles with 
the aim of reducing the number of mutations produced, the 
combination of clustering and sorting methods is used to 
reduce the number of mutations produced [54]. Another 
method has also been proposed in which the combination 
of clustering and sorting methods is used to reduce the num-
ber of mutations produced. Another method has also been 
proposed in which have been sorted mutant branches based 
on their dominance degrees [15, 16].

Researchers have proposed many strategies for lowering 
the cost of mutation testing. Here's a review of several key 
techniques:

Mutant Sampling  It is regarded as one of the simplest meth-
ods for reducing the number of mutations [12]. Mutant sam-
pling involves performing mutations on a limited sample of 
the produced mutants. Numerous studies have examined the  
percentages of various samples, ranging from 10 to 40% 
[52]. The effect of the 10% sample percentage was only 16% 
smaller than the entire set of generated mutants, according to 
the experimental results. As a result, techniques for assess-
ing mutations with a 10% sampling percentage can still be 
a good option. This is consistent with King's research [27]. 
Through tests, Papadakis and Malevris [42] investigated the 
effectiveness of several mutation sampling techniques (from 
10 to 60% in 10% steps).

Mutant Selection  Selective mutation is a rough method for 
lowering the number of mutants. In order to decrease the 
number of executive mutations, authors suggested random 
selection mutation. Randomly, just a tiny portion of the 
mutations are investigated [1]. A method known as limited 
mutation only considers a limited number of mutants while 

(1)Mutation Score =
KilledMutants

AllMutants − Equivalent Mutants

disregarding the majority of them. The method selects just 
some of the mutation operators to make mutants [39]. To 
expand on this strategy, the authors examined the efficacy 
of several mutation operator sets [38]. The results show that 
just five operators out of a total of 22 are needed to measure 
the success of mutation testing. The authors suggested six 
operators for estimating the number of mutation operators 
that are suitable [8]. A set of 10 operators was developed 
by combining these operators, which eliminated 65% of the 
mutations while maintaining the test validity. Other research 
examined the effectiveness of using just one or two muta-
tion operators. In comparison to the dependent mutation 
operator, Authors assessed the effectiveness of utilizing 
mutation with one or two assignment mutation operators 
[52]. According to the experiment results, the number of 
matching mutations can be decreased by up to 67%, while 
only 5% of the test efficacy is lost. In addition, multiple stud-
ies have demonstrated that inserting these mutations has no 
effect on the quality of the test cases generated. Research-
ers looked at the differences between sampling mutation 
and selective mutation [57]. Two sample methodologies 
were compared to three selection procedures. The selective 
mutation was shown to be less effective than the sampling 
mutation. Finally selecting and sampling mutations be used 
in combination to generate promising results [56]. Another 
method has been proposed by researchers, in which certain 
pathways are produced based on unique characteristics, and 
based on this, the production of mutations can be somehow 
controlled This algorithm is an optimization algorithm suit-
able for identifying optimal paths with priority [14].

Minimum Mutant Sets  The results of experiments indicate 
that by concentrating on a minimum set of mutants, a con-
siderable proportion of mutants might be eliminated [32]. 
Researchers have made an effort to determine the fewest 
mutations necessary to fully cover their set, which would 
be adequate for determining the minimum set's ability. The 
experiment that used the fewest changes to program source 
code was originally proposed by another authors [28]. The 
gathered data indicates that even for mutations that are 
scarcely destroyed, just a modest portion of the produced 
mutations (9%) is required to cover the whole set. Other 
researchers investigated this issue both theoretically and 
experimentally [29]. Dynamic sharing was used to lower 
the number of mutations. Given a test set, the x mutation is 
dynamically translated into the y mutation; test cases that kill 
x also kills y. When the dynamic subset was examined using 
the C programming language, it was found that just 12% of 
the generated mutations were necessary to cover the whole 
set. Last but not least, researchers investigated if establishing 
the association between frequent mutations might be done 
using dynamic and static analytic approaches [29, 30]. They 
found that for better results, static and dynamic analysis 
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techniques should be used. Another innovative method pro-
poses an optimized decentralized adaptation logic for mod-
eling Self Adaptive Software Systems (SAS) which exploits 
the multi-agent concept. Each subsystem has an objective 
and uses an Artificial Bee Colony metaheuristic to achieve 
local optimization which in turn leads to the optimization of 
the whole distributed system [9].

Strong, Weak and Hard Mutations  Researchers have devel-
oped a variety of strategies for reducing the cost of the muta-
tion test's application, in addition to limiting the number of 
generated mutants to reduce mutation costs. The weak muta-
tion strategy is one of Howden's strategies [25]. By omitting 
the whole implementation of the main program and its muta-
tions, weak mutation aims to lower the processing cost asso-
ciated with mutation avoidance. To achieve this, the weak 
mutation lays forth the requirements that a mutation must 
meet in order to be labeled as a dead mutation. To compare 
the final output of the main program and the modified pro-
gram, the internal states of the programs are compared imme-
diately after applying the mutation or altered components. It 
should be noted that when compared to a "weak mutation," 
the average mutation is referred to as a "strong mutation. 
Researchers proposed the strong mutation as a middle ground 
between strong and weak mutations [53]. They claimed that 
the internal states of the main program and its mutations at 
any point could be compared. Weak mutations are useful 
in many investigations. Researchers built a structure for the 
FORTRAN77 software and then assessed its effectiveness 
and usefulness [37]. The results showed that weak mutations 
reduced manual effectiveness because fewer related muta-
tions were evaluated. In this article, the authors used a range 

of techniques to examine the efficacy of weak mutations. 
They concluded that weak mutation is more cost-effective. 
Researchers proposed novel mutation test execution methods 
known as higher rank (order) mutation [25, 28, 53]. First 
rank (order) mutations and higher order mutations are the 
two categories used in this technique to classify mutations. 
First order mutation is produced if mutational operators are 
only applied once to the program. Higher level mutations 
will be created if they are applied more than once, though. 
This method's motivation is the discovery of unique and 
rare bugs. Table 2 provides an illustration of a lower-order, 
higher-order, and first-order mutation. Table 3 displays the 
key characteristics, advantages and disadvantages of some of 
the strategies described earlier.

3 � Supervised Machine Learning Algorithms

Machine learning uses programmed algorithms that learn 
and optimize their operations by analyzing input data to 
make predictions within an acceptable range. With the 
feeding of new data, these algorithms tend to make more 
accurate predictions. Although there are some variations 
of how to group machine learning algorithms, they can be 
divided into three broad categories according to their pur-
poses and the way the underlying machine is being taught. 
These three categories are: supervised, unsupervised and 
semi-supervised.

Supervised machine learning algorithms generate a func-
tion that map inputs to desired outputs [41]. Supervised 
learning is fairly common in classification problems because 

Table 2   First, second and higher order mutations

Original program p
result = 0; 
for (int i = 1; i <= 10; i++){
result = result + i; }

FOM1

result = 0; for (int i = 1; i>= 10; i++) {
result = result + i;                   }

FOM2

result = 0; 
for (int i = 1; i <= 10; i++) {

result = result / i; }
SOM

result = 0; 
for (int i = 1; i>= 10; i++) {

result = result / i; }
HOM

result = 0; 
for (int i = 1; i>= 10; i--) {

result = result / i; }
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the goal is often to get the computer to learn a classification 
system that we have created [48]. Supervised machine learn-
ing is the construction of algorithms that are able to produce 
general patterns and hypotheses by using externally supplied 
instances to predict the fate of future instances. Supervised 
machine learning classification algorithms aim at categoriz-
ing data from prior information. Classification is carried out 
very frequently in data science problems. Various successful 
techniques have been proposed to solve such problems viz. 
Rule-based techniques, Logic-based techniques, Instance-
based techniques, stochastic techniques [49].

Decision Tree  Decision tree (DT) is one of the earliest 
and prominent machine learning algorithms. A decision 
tree models the decision logics i.e., tests and corresponds 
outcomes for classifying data items into a tree-like struc-
ture. One of the algorithms used in this paper is DT. Because 
Decision trees does not require scaling of data as well. 
Decision trees were chosen for this case study given their 
ability to convert datasets into easy-to-understand and yet 
information-rich graphical displays. The nodes of a DT tree 
normally have multiple levels where the first or top-most 
node is called the root node. All internal nodes (i.e., nodes 
having at least one child) represent tests on input variables 
or attributes. Depending on the test outcome, the classifi-
cation algorithm branches towards the appropriate child 

node where the process of test and branching repeats until it 
reaches the leaf node [43]. The leaf or terminal nodes cor-
respond to the decision outcomes. DTs have been found easy 
to interpret and quick to learn and are a common component 
to many medical diagnostic protocols [13].

Random Forest  A random forest (RF) is an ensemble clas-
sifier and consisting of many DTs similar to the way a forest 
is a collection of many trees [11]. DTs that are grown very 
deep often cause overfitting of the training data, resulting a 
high variation in classification outcome for a small change in 
the input data. They are very sensitive to their training data, 
which makes them error-prone to the test dataset. The differ-
ent DTs of an RF are trained using the different parts of the 
training dataset. To classify a new sample, the input vector 
of that sample is required to pass down with each DT of the 
forest. Each DT then considers a different part of that input 
vector and gives a classification outcome. The forest then 
chooses the classification of having the most ‘votes’ (for 
discrete classification outcome) or the average of all trees 
in the forest (for numeric classification outcome). Since the 
RF algorithm considers the outcomes from many different 
DTs, it can reduce the variance resulted from the consid-
eration of a single DT for the same dataset Fig. 1 shows an 
illustration of the RF algorithm. Another machine learning 
algorithm used in this paper is RF. Because It is flexible to 

Table 3   The related works which proposed to reduce the number of mutants

The methods Procedure Merits Demerits

Mutation sampling:
 [1, 12, 27, 47, 51, 52] The produced mutations are 

picked as a subset.
The straightforwardness of the 

test execution
lower test effectiveness

Selective mutation, limited 
mutation:

[8, 28, 35, 38, 39, 42, 52, 56, 
57]

choosing a limited number of 
mutation operators

lowering the number of 
mutations by 65%

The necessity to combine this approach 
with mutation sampling due to its poor 
performance when used alone

Minimum mutation sets:
[18, 22, 28–30, 32] Eliminating the covering mutants 

s.
To cover the whole set, only 

a tiny portion of the created 
mutations are needed.

Imprecise

Strong, weak and hard 
mutations: [24, 25, 28, 53]

Weak mutation: By bypassing 
the full execution of the 
program, it lowers the number 
of mutations

They cost less and need less 
computational resources.

If the entire application is not run, they 
require comparison and might be 
inaccurate.

Strong mutation: it reduces 
the number of mutations 
by contrasting the output of 
the original program with 
the output of the modified 
program.

A mixture of strong and weak 
mutation is referred to as "hard 
mutation".



636	 Journal of Electronic Testing (2023) 39:631–657

1 3

both classification and regression problems and automates 
missing values present in the dataset.

Artificial Neural Network  Artificial neural networks (ANNs) 
are a set of machine learning algorithms which are inspired 
by the functioning of the neural networks of human brain. 
They were first proposed by McCulloch and Pitts [33] and 
later popularized by the works of Rumelhart et al [44]. In the 
biological brain, neurons are connected to each other through 
multiple axon junctions forming a graph like architecture. 
These interconnections can be rewired (e.g., through neu-
roplasticity) that helps to adapt, process and store informa-
tion. Likewise, ANN algorithms can be represented as an 
interconnected group of nodes. The output of one node goes 
as input to another node for subsequent processing accord-
ing to the interconnection. Nodes are normally grouped 
into a matrix called layer depending on the transformation 
they perform. Apart from the input and output layer, there 
can be one or more hidden layers in an ANN framework. 
Nodes and edges have weights that enable to adjust signal 
strengths of communication which can be amplified or weak-
ened through repeated training. Based on the training and 

subsequent adaption of the matrices, node and edge weights, 
ANNs can make a prediction for the test data. Figure 2 shows 
an illustration of an ANN (with two hidden layers) with its 
interconnected group of nodes. This algorithm is also used 
in this paper. It is non-linear in nature. This allows to model 
complex relationships and patterns in dataset. It can extract 
features from dataset. This eliminates manual feature editing. 
Also, the high speed and parallel processing capability of this 
algorithm has made it to be used in this paper.

K‑nearest Neighbor  The K-nearest neighbor (KNN) algo-
rithm is one of the simplest and earliest classification algo-
rithms [10]. It can be thought a simpler version of an NB 
classifier. Unlike the NB technique, the KNN algorithm does 
not require to consider probability values. The ‘K’ is the 
KNN algorithm is the number of nearest neighbor’s consid-
ered to take ‘vote’ from. The selection of different values 
for ‘K’ can generate different classification results for the 
same sample object. Figure 3 shows an illustration of how 
the KNN works to classify a new object. For K = 3, the new 
object (star) is classified as ‘black’; however, it has been 
classified as ‘red’ when K = 5.

Fig. 1   A brief illustration of a 
Random Forest

Fig. 2   An illustration of the 
artificial neural network struc-
ture with two hidden layers
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Naïve Bayes  Naïve Bayes (NB) is a classification technique 
based on the Bayes’ theorem [23]. This theorem can describe 
the probability of an event based on the prior knowledge 
of conditions related to that event. This classifier assumes 
that a particular feature in a class is not directly related to 
any other feature although features for that class could have 
interdependence among themselves [36]. By considering 
the task of classifying a new object (white circle) to either 
‘green’ class or ‘red’ class, Fig. 4 provides an illustration 
about how the NB technique works.

Gradient Boosting  Gradient boostingwas first proposed in 
[19]. GBT models build ensembles of decision trees and 
apply the boosting principle to learn a tree structure where 
each new tree is built to approximate the negative gradient of 
the empirical loss function in order to correct the errors made 

by previous trees in the ensemble. These trees are typically 
weak learners, i.e., the size of the individual trees is typi-
cally kept small. Furthermore, in each iteration of the training 
phase, only a random subsample of the data instances (rows) 
and features (columns) are used, in order to prevent overfit-
ting [20]. The final prediction is calculated by combining 
the individual predictions with coefficients learned during 
the training phase. This is in contrast to random forests (RF), 
another tree-based ensemble model, where full-grown trees 
are built, and their predictions are combined uniformly. One 
reason as to why we would consider using GBT algorithm 
in this paper is this is generally more accurate compared to 
other models. Another advantage is that this algorithm trains 
faster and handles missing values natively.

4 � The Proposed Method

The primary goal of this study is to improve the efficacy of 
mutation testing. Mutation testing is thought to have a num-
ber of issues, one of which being the existence of equiva-
lent mutants. The quantity and kind of program instructions 
affect how many equivalent mutants there are. Decreasing 
the number of equivalent mutations increases the value of 
the mutation score. Figure 5 presents an overview of the 
suggested method's stages. The proposed method is divided 
into two main parts: front-end and back-end of proposed 
method. Steps 1 to 3 are located in the front part and steps 
4 and 5 are located in the back part. Finally, the output of 
this method will include step 6. The output of the front part 
includes the dataset required for machine learning training 
and creating instruction classifiers. The output of the back 
part is the classifier created from the instructions.

In this paper, program data and instructions were ana-
lyzed and the syntactic features effective on error propa-
gation at the level of program instructions were identified. 
Syntactic features include static and dynamic features. Static 
features are extracted statically without program execution. 
However, the identification of dynamic features requires test 
cases and program execution. Then, program instructions are 
classified according to their error propagation rate. In this 
paper, supervised machine learning algorithms were used 
to classify the program instructions. In fact, by capitalizing 
on different machine learning algorithms (Gradient Boosted 
Trees, Decision Tree, Deep learning and Random Forest), 
program instructions are ranked according to error propa-
gation. Finally, mutation operators are applied only to the 
instructions with a higher error-propagation probability.

4.1 � Program Analysis 

The proposed method classifies a program’s instructions 
based on the error-propagation rate of the instruction. 

Fig. 3    A simplified illustration of the K-nearest neighbor algorithm

Fig. 4    An illustration of the Naïve Bayes algorithm
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The error-propagation rate of an instruction in a program 
depends on some unknown features. Identifying these effec-
tive features is a contribution of this study. The proposed 
classifier was created using a specific dataset. The required 
dataset includes the specific features of the instructions 
of the selected benchmark programs. Firstly, the effective 
instruction-level features are identified by analyzing the 
source code of the selected benchmark programs. Indeed, 
the degree of error-propagation rate in each instruction is 
measured according to the identified features. In this study, 
the identified features that have an impact on the error 
propagation rate are shown in Table 4. The purpose of the 
first stage of the proposed method is to identify those fea-
tures of the program instructions that are required to create 
a dataset. The required dataset will be prepared in stage 2. 
This dataset is used to create an instruction-classifier by the 
machine learning algorithm at stage 3. The required dataset 
includes some strategic information (features) about the pro-
gram instructions that have an impact on the error propaga-
tion rate. The objective dataset includes static and dynamic 
features, respectively. The static and dynamic features of 

the required dataset to create the instruction classifier to be 
identified. The static features are quantified by the static 
analysis, and the dynamic features of the program are quanti-
fied by the dynamic analysis.

Static Analysis  At this stage, each instruction within the 
selected benchmark programs is statically analyzed to quan-
tify the value of the static feature depicted in Table 3. This step 
of the proposed method shown in Fig. 5, the static features 
of the program are extracted from each program instruction. 
These features are listed in Table 4. To find these features, as 
it is clear from the names of this, there is no need to run the 
program, and these characteristics can be quantified using 
the CFG graph. The CFG graph is depicted in Fig. 7 for the 
factorial program. These features somehow affect the program 
error propagation rate and are therefore of interest. All these 
details are done in the first step of the proposed method shown 
in Fig. 5. Each row in the dataset is related to an instruction 
in a dataset. The control flow graph (CFG) of the program 
and its description in Tables 5 and 6 are used to quantify the 
static features shown in Table 4 for the benchmark programs’ 

Fig. 5   Stages of the proposed method

Table 4   The identified static and dynamic features of the program instructions

a Total number of operators in the instruction
b Total number of operands in the instruction
c Number of unique operands
d Number of unique operators

Attribute Description

Static Features Number of Variable Definitions The number of variables defined in an instruction
Number of Computational operators The number of mathematical operators applied in an instruction
Number of Conditional operators The number of conditional operators used in an instruction
Number of Variable usages Number of variables used in the instruction
Numerical data value The presence or lack of numerical value in an instruction
Data dependency The number of next instructions which has data dependency on 

the result of the current instruction
Nesting level Accessibility of the instruction
Control dependency The number of next instructions which has control dependency 

on the result of the current instruction
Instruction length N1a+ N2b

Instruction complexity (N2/n2c)*(n1d/2)
Dynamic Features Average Runtime Average Number of Run
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instructions. CFG represents the program's executing paths. 
CFG is essential for static analysis of the source code based 
on the selected features. Firstly, the CFG is extracted from 
the source code and includes nodes and the arcs; the nodes 
include a block of non-branch instructions, and the arcs rep-
resent the execution flows of the program. In general, a basic 
block (BB) includes a maximum sequence of program instruc-
tions (instructions between two branch instructions). The Fac-
torial program is one of the applied benchmark programs in 
the experiments which were investigated. Figure 6 illustrates 
the source code of the factorial program, and Fig. 7 shows the 
generated CFG for the program. The required CFG is gen-
erated automatically from a source code by different open-
source tools like Visustin (https://​www.​aivos​to.​com/​visus​tin.​
html) in a polynomial time complexity.

In a CFG, the nodes with more than one output edge 
include branch instructions and control data. Table 5 shows 
the def-use paths (DU paths) for each data in the program 
using the related CFG. For a given specific variable in the 
program, all the defined nodes are found. Then, DU paths 
are extracted among the definition (def) and use (use) nodes. 
Table 6 gives the related def and use in each node (BB) of 
the CFG shown in Fig. 7.

The first five features in Table 4 can be set using the 
source code. The nesting level of an instruction shows the 
accessibility of the instruction. If the instruction is not in an 
if instruction, its nesting level is 0; if it is in an if instruction, 
then its nesting level is 1. The nesting level of an instruction 
is calculated by the source code analysis. Data and control 
dependency features are quantified by the generated CFG. 
The variable used in an instruction determines data depend-
ency of that instruction to another instruction. The control 
dependency shows the degree of dependence of the instruc-
tion on the execution of the parent nodes, which means that 
if the parent node is not executed, the child node will not be 
executed either. The number of data and control dependen-
cies of the instruction are obtained from the CFG of the 
program. The other two features of an instruction are its 
length and the complexity that can be computed by using the 
Halstead complexity formula Sommerville [46].

Dynamic Analysis  Dynamic analysis is considered to be a 
method that helps to obtain useful information based on 
executive paths. At this stage, the dynamic features that 
are depicted in Table 4, are quantified dynamically for the 

Fig. 6   A source code of a factorial program as case study 1

Fig. 7   The CFG of the source code represented by Fig. 2

Table 5   Def-Use (DU) paths of each data in the program shown in 
Fig. 6

variable DU-paths

i (1, (4,5)), (1, (4,6)), (6,6)
fact_num (1,6), (6,6), (6,5)
num (1, (2,3)), (1, (2,4)), (1, 

(4,5)), (1, (4,6))

Table 6   Definition and use instructions into the nodes of the CFG 
illustrated in Fig. 7

Node or Edge Definition (D) Uses (U)

1(start block) fact_num,num
2,3 (edge) num
3,4 (edge) num
4,5 (edge) i,num
4,6 (edge) i,num
6 (loop block) fact_num,i fact_num,i
7 (final block)

https://www.aivosto.com/visustin.html
https://www.aivosto.com/visustin.html
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benchmark programs’ instructions. It is time to extract the 
dynamic feature of the instructions. This feature, which is 
the number of execution of instructions, is obtained from the 
execution of each program. To get the values of this feature, 
we need a data set that must be prepared as code coverage. 
The reason for this is that the code coverage method guaran-
tees that each instruction is executed at least once. For each 
program, we need 100 executions in the program. Based 
on these executions, we can estimate the average execu-
tion of each instruction. Quantifying these features requires 
dynamic analysis of the program at run time. Table 7 gives 
the number of executions of each instruction in a factorial 
program using a single test data (5). The average number of 
executions of each instruction is regarded as the dynamic 
feature which is effective on the error-propagation rate. The 
program with the test cases should be executed to compute 
the number of executions of each instruction. Before execut-
ing the benchmark program, the required test case should 
be designed. In this study, edge coverage-based test data 
is generated for the benchmark programs. Edge coverage 
covers all the edges in the CFG of the program. Generating 
test cases to obtain the number of executions of each instruc-
tion can be done using the ACO algorithm [45], or the SDA 
algorithm [14]. In this method, we have manually created 
test cases based on the edge coverage method and run them 
on each application.

The test cases that are designed in this way can execute all 
instructions of the program under test at least once. In order 
to quantify the number of executions of a program instruc-
tion, the program should be executed by the generated test 
data. Table 7 depicts the average number of executions of the 
instructions in the factorial programs that have been quanti-
fied after real executions by the generated coverage-based test 
data. Table 8 depicts the quantified features for the instruc-
tions of the factorial benchmark program. For example, for 
factorial source code in Fig. 6, Data Dependency type1 in 
line seven of the program is 2. Due to the data dependence 
of the two variables max and x[i] on two instructions 4 and 
6, the value of this feature is 2. Data dependency type 2 is 

Table 7   The CFG of the source 
code represented by Fig. 6

Line Number Avg 
Num. of 
Run

1 1
2 1
3 1
4 1
5 1
6 5
7 5
8 1
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a node dependency. For example, line instructions 5 and 6 
both have data dependencies of node type. The instruction 5 
is dependent on instruction 3. The instruction 6 is depend-
ent on instruction 5. Considering that the control depend-
ency shows the degree of dependence of the instruction on 
the execution of the parent nodes, instructions 4, 5, and 7 
are dependent on the parent node, therefore the value of the 
control dependency of these three instructions will be equal 
to 1. The instruction length is calculated as the total number 
of operators and operands. All the brackets, commas, and 
terminators are considered operators. For example, in Fig. 6, 
the instruction length of instruction in line 1 is equal to 7. 
Complexity is calculated based on Halstead complexity for-
mula: (N2/n2) * (n1/2). In this formula, n1 is equal to number 
of distinct operators, n2 is equal number of distinct operands, 
N1 is equal to total number of occurrences of operators and 
N2 is equal to total number of occurrences of operands. In 
Factorial benchmark source code, complexity of line 6, The 
complexity is calculated as follows:

The result of calculation is equal to 4. The Nesting level 
of an instruction shows the accessibility of the instruction. 
If the instruction is not in an if instruction, its nesting level 
is 0; if it is in an if instruction, then its nesting level is 1. For 
example, because of else and for instruction, the nesting 
level of 7 line of code is equal to 2.

4.2 � Generating the Training Dataset

In this section of the paper, stage 3 of the proposed method 
(as shown in Fig. 5) is discussed. The required dataset to 
train the machine learning algorithm is prepared in stage 3. 
The identified features of the dataset are shown in Table 4 
and then quantified using the generated CFG and real 

N2 = i, 1, i, num, i

n2 ∶ i, 1, num

n1 ∶ for() , = , ; , <=

execution. There is a record (row) for each program instruc-
tion in the created dataset. As mentioned earlier, static fea-
tures were quantified by means of source code and CFG. The 
average number of executions of each instruction was also 
measured as a dynamic feature by real executions. Table 8 
(as a part of the generated dataset) shows the values of each 
feature for all the instructions of the factorial program. The 
columns of Table 8 indicate the following features, respec-
tively: the number of variables defined in the instruction 
(static feature), the number of computational operators 
(static feature), the number of conditional operators (static 
feature), the number of used variables in the instruction 
(static feature), the number of numerical values used in the 
instruction (static feature), the number of data dependencies 
of the instruction (static feature), the number of conditional 
dependencies of the instruction (static feature), instruction 
length (static feature), instruction complexity (static feature), 
execution level of the instruction (dynamic feature), nesting 
level of each instruction (static feature), and the last feature 
error propagation rate of an instruction.

The last column (feature) is the dependent variable, and 
the other features are independent variables that are used 
in the training stage of the machine learning algorithm. An 
extensive series of mutation testing experiments has been 
performed in order to measure the error-propagation rate 
of each instruction. In these experiments, all possible bugs 
(mutants) have been injected into each instruction sepa-
rately by the MuJava tool automatically [31]. After inject-
ing a mutant (bug) into an instruction in a benchmark pro-
gram, the program was executed 100 times by the selected 
coverage-based test data. Indeed, the error propagation rate 
of each instruction in a program has been measured by 100 
executions in the presence of the injected mutant. Equa-
tion 1 is used to measure the error-propagation rate of an 
instruction. The number of times the program fails divided 
by 100 indicates the error propagation rate of an instruc-
tion. The MuJava is used to measure the error-propagation 
rate of each instruction and quantify the last feature. The 
features, listed in Table 8, are used in the form of a dataset 
for training the machine learning algorithms to create the 
instruction classifier.

Table 9   Created Factorial 
program dataset as the input of 
the ML algorithm

ANR NVD NOP NCOP NVU NID NDD1 NDD2 NCD IL IC NL RANK

1 1 0 0 0 0 0 0 0 8 2 0 C
1 1 0 0 1 0 0 0 0 4 1 0 C
1 0 0 1 1 1 0 0 0 5 1 0 C
0 0 0 0 1 0 0 0 1 5 1 1 D
1 0 0 1 0 0 1 1 1 2 1 0 B
5 2 1 1 2 1 1 1 0 13 4 1 A
5 1 1 0 2 0 2 0 1 6 2 2 B
1 0 0 0 2 0 1 0 0 9 1 1 D



642	 Journal of Electronic Testing (2023) 39:631–657

1 3

A larger data set has been used to check the performance 
of the data set for entering the machine learning algorithm 
Table 9. This data set is taken from Factorial program. 
Table 10 depicted dataset extracted from Maximum program 
as the input of ML algorithm. As shown in the Table 10, the 
RANK column indicates the program instruction type. In 
this example, the type D instructions are three instructions. 
The technique used in this paper studies this level of instruc-
tions. The source code of this program is shown in Fig. 8.

4.3 � Creating the Instruction Classifier using 
Machine Learning Algorithm

The impetus behind this stage is to use machine learning 
(ML) to create a classifier for classifying program instruc-
tions according to the degree of error propagation. In this 
study, different machine learning (ML) algorithms (Gradi-
ent Boosted Trees, Decision Tree, Multi-Layer Perceptrons, 
and Random Forest) have been used to create an instruction 
classifier and the performance of the created classifier has 
been compared with each other. This section includes two 
stages: model training and model testing. In the training step 
of the proposed method, a program-instruction classifier is 
constructed by the ML algorithm as the base learning algo-
rithm. In this stage,the authors used static analysis methods 
for converting a program into the identical executive version 
which is simpler and Lighter than the original program. It 
should be noted that determining the error-propagation rate 
of the data and instructions with helping the graphical rep-
resentation is simpler than the main program. The features 
in the program instructions are considered as the input layer 
of ML algorithm. Create a dataset with 100 examples using 
the static and dynamic analysis of source-codes by setting 
a local random seed (default = 1992) to ensure repeatabil-
ity. Converting the label attribute(rank) from polynomial to 
RANK using the appropriate operator enables us to select 

(2)
Error − PropagationRate =

Number of failures

Total Number of Execution
∗ 100%

specific binominal classification performance measures. 
Split data into two partitions: an 80% partition (80 exam-
ples) for model building and validation and a 20% partition 
for testing. An important point to note is that data parti-
tioning is not an exact science, and this ratio can change 
depending on the data. Connecting the 80% output (upper 
output port) from the Split Data operator to the Split Valida-
tion operator. Select a relative split with a ratio of 0.7 (70% 
for training) and shuffled sampling. Insert one of the NN, 
DT, GBT and RF operator in the Training panel of the Split 
Validation operator and the usual Apply Model operator in 
the Testing panel that embedded into Optimize Parameters 
(Grid). Add a Performance (Binomial Classification) opera-
tor. Select the following options in the performance operator: 
accuracy, recall, precision, kappa and Root_Mean_Squared_
Error. Figure 9  shows a view of the implementation of 
machine learning algorithms in rapidminer tool.

The structure of the required dataset for training the ML 
is explained in Table 8. In order to construct the classifica-
tion model, each data set has been divided into K subsets and 
k-1 subsets are used as training data; to test the constructed 
model, the remaining subset is used. This process has been 
repeated k times. It should be noted that the training and test 
data should have the same distribution. To this end, the data-
sets are divided into training and test subsets in such a way 
that the training and test data include the same percentage 
of faulty and non-faulty instances. Finally, the constructed 
classifier takes the attributes of a program instruction and 
predicts its error-propagation rate category. The features of 
an instruction that are required to classify it are explained 
in Table 4. The assumed datasets were obtained for all the 
benchmark programs. The dataset is the input of the ML 
algorithm. In this study, the RapidMiner tool (https://​rapid​
miner.​com/) was used to implement the required ML algo-
rithm. Table 11 depict the features of the input dataset. The 
created classifier classifies the instructions of the program 
based on their features. In this study, the program instruc-
tions are categorized into 4 categories by the created clas-
sifier; Table 10 illustrates the determined categories for the 

Fig. 8   A source code of a Maxi-
mum program as case study 2

https://rapidminer.com/
https://rapidminer.com/
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program instructions. After training the ML algorithm with 
the dataset, the created classifier should be tested. The train-
ing data was used to test in this study. The created instruc-
tion classifier was evaluated (tested) using the tenfold cross 
validation technique. As mentioned previously, the distribu-
tion of attributes in training and test data is 80% for training 
and 20% for testing.

4.4 � Mutation Test

Stage 4 of the proposed method is the mutation test. 
Figure 10 shows the workflow of the fourth stage (mutation 
test) of the proposed method. In this stage, only the error-
prone instructions (identified by the created classifier in 
the previous stage) are considered to be injected as mutants 
(bugs). This stage is implemented by the MuJava tool to 
automatically inject the bugs. The program instructions 
that are classified as the non-error-propagating instructions 
are avoided in the mutation test. Mutating the non-error-
propagating instructions more likely generates equivalent 

mutants. In fact, the suggested method makes use of the 
developed classifier to identify the program's most error-
propagating instructions. The overall number of mutants 
was decreased by avoiding the mutation of the non-error-
propagating instructions. The mutation scores are also 
improved by lowering the number of equivalent mutants. The 
proposed method tries to reduce the number of generated 
affectless mutants (equivalent); to this end, after classifying 
the program instruction by the first step of the proposed 
method, the instructions in the class D are not considered for 
mutation in the second step. The mutation test was executed 
5 times with 5 test suits for each benchmark program.

5 � A Review of Mutation Test Environments

Many current applications provide high performance to 
process large volumes of data. These applications usu-
ally run in highly distributed environments Nevertheless, 
the large and complex architectures required for deploying 

Fig. 9   A view of the imple-
mentation of machine learning 
algorithms in rapidminer

Table 10   Maximum program 
dataset as the input of the ML 
algorithm

LOC ANR NVD NOP NCOP NVU NID NDD1 NDD2 NCD IL IC NL RANK

1 1 1 0 0 1 0 0 1 0 1 1 0 C
2 1 0 0 0 2 0 0 1 0 2 1 0 B
3 1 0 0 0 1 0 0 0 0 1 1 0 D
4 1 1 0 0 2 1 0 1 0 4 1 0 B
5 1 0 0 0 1 0 0 0 0 1 1 0 D
6 5 1 1 1 2 1 3 1 0 9 4 0 A
7 5 0 0 1 2 0 2 1 1 4 1 1 B
8 5 0 0 0 2 0 1 0 1 3 1 1 B
9 1 0 0 0 1 0 0 0 0 1 1 0 D
10 1 0 0 0 1 0 0 0 0 1 1 0 C
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these applications may not be available during the develop-
ment phase. Usually, these applications are tested against 
a small number of test cases that are manually designed 
by the testers. It is desirable to have effective test suites in 
order to detect failures in the application models. The basic 
characteristics of mutation testing tools include operators 
supported by the tool, mutation generation methods, and 
speed-up methods [31].

5.1 � Mujava 

MuJava [40] is a mutation testing system developed for the 
testing of Java programs. Its primary purpose has been to 
investigate mutation operators specific to object-oriented 
programming languages like Java. The prospect of using 
MuJava in a large-scale software development setting is an 
attractive one, as its mutation operators represent the state 
of the art in mutation testing research. However, as it is an 
experimental system, the extent to which it is scalable is 
unclear. The source code for MuJava is not publicly avail-
able, so its modification for improved scalability is difficult 
from a legal and practical point of view. Furthermore, its test 
format is not JUnit. It was infeasible for us to port our large 
legacy set of JUnit tests.

5.2 � MuTomVo

MuTomVo was designed to be used in simulation tools 
based on OMNeT++ [50]. MuTomVo can be used with 
any other simulation tool based in OMNeT++. MuTomVo 
is a mutation testing framework which provides mecha-
nisms to generate test suites and evaluate their effective-
ness. MuTomVo allows to apply the mutation operators for 
reproducing the common mistakes made by competent pro-
grammers. MuTomVo is modular in the sense that its func-
tionality is divided into independent modules. Four modules 
used to carry out mutation analysis: mutation engine, code 
analyzer, mutant builder and code generator. Consequently, 

different modifications can be applied to each module with-
out interfering with the rest of the framework. On the other 
hand, this framework is flexible in the sense that different 
approaches can be integrated in each module. For instance, 
different code analyzers can be used to process the source 
code of different programming languages like, among oth-
ers, C, C++ and Java.

5.3 � Jester

Another tool that has been reviewed is Jester. Jester, in 
mutation testing, is considered an expensive tool for branch 
testing [34]. In fact, Jester provides a solution to develop a 
default set of jump operators, but the problems related to 
the efficiency and reliability of this tool remain unsolved. 
Additionally, the jump operators offered by Jester are not 
context-aware and often lead to broken code. The important 
point is that the Jester method is used to generate, com-
pile and run unit tests against a mutation. This process is 
repeated for each mutation of the system under test and is 
therefore inefficient. Because of these disadvantages, Jester 
is not used in practical evaluations.

5.4 � Jumble

Jumble has now been made available as an open source pro-
ject on SourceForge at http://​jumble.​sourc​eforge.​net/. The 
primary entry point to Jumble is a single Java class that takes 
as parameters a class to be mutation tested and one or more 
JUnit test classes. The output is a simple textual summary 
of running the tests. This is in the style of JUnit test output 
and includes an overall score of how many mutations were 
successfully caught as well as details about those mutations 
that are not. This includes the source line and the mutation 
performed. Variants of the output include a version compat-
ible with Java development in emacs where it is possible to 
click on the line and go to the source line containing the 
mutation point [26].

Fig. 10   The workflow of the fourth Stage of the Proposed Method

http://jumble.sourceforge.net/
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5.5 � Mothra

Mothra [17] is a mutation testing environment developed 
in the eighties for use with Fortran 77. While it cannot be 
used with Java software, it is the first fully featured muta-
tion testing system and a large proportion of research on 
mutation testing described in the literature is based on it 
[37, 38, 40]. Mothra’s mutation operators are the basis of 
what is done in Jumble.

6 � Evaluation System

An extensive series of experiments have been performed to 
determine how well the recommended strategy reduces the 
number of mutants in the mutation test. A software-based 
experimental framework was developed to assess the effec-
tiveness of the proposed approach. The steps of the experi-
mental system are shown in Fig. 5. The software instruc-
tions were categorized using the newly developed classifier 
in the first stage. Predicting the error-propagation rate of 
each instruction in each benchmark program is the goal of 
this stage. The mutation test was run on program instructions 
with various error-propagation classes in the second stage 
of the research. A series of mutation test experiments were 
conducted to investigate the effectiveness of the proposed 
method as follows.

•	 In the first experiment, all of the benchmark programs' 
instructions get random mutation injections. In this 
experiment, the MuJava tool's default settings for injec-
tion site and timing are used.

•	 The instructions with the highest rate of error propa-
gation are subjected to mutations in the second set of 
experiments. The instruction classifier produced by the 
ML algorithm recognized these instructions.

•	 Only the instructions with a reduced rate of error-prop-
agation were subjected to mutation in the third series 
of experiments; the created classifier recognized these 
instructions.

After doing the above-mentioned experiments, the 
obtained results were compared with each other for the pur-
pose of investigating and analyzing the effectiveness of the 
proposed method.

6.1 � Benchmark Programs

To evaluate the effectiveness of the proposed method, 
six standard benchmark programs have been selected. 
These programs have been extensively used as standard 
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benchmarks in software testing research. Table 13 provides 
the brief of these programs. The many programming struc-
tures and operations used in real-world software are included 
in all of the benchmark programs, which were all created in 
the Java programming language. The chosen benchmarks 
are presented as functions (units). In fact, functions are pre-
sent in the millions of lines of code that make up real-world 
applications. The standard size of a real-world function is 
between 5 and 50 lines of code. The benchmark programs 
are: Triangle, Factorial, FindMax, Prime, Mid, Bubblesort 
and DOW. The Triangle benchmark program was used to 
determine the type of triangle. The inputs of this program 
include 3 integers, which after checking, returns the out-
put of the triangle type program, which includes equilat-
eral, isosceles, and right-angled triangles. If the triangle 
formation condition is not met, the output will print an 
error message with the title of triangle formation failure. 
The Factorial program was used for computing the facto-
rial of an integer. In the factorial program, the entered data 
value returns the factorial value of the entered number after 
checking the factorial condition in the output. The Middle 
program is used to compute and return the middle of three 
numbers. In this program, the input contains three numbers. 
In this program, the middle value of three entered numbers 
is calculated and returned as a result. The FindMax program 
specifies the maximum value of a list. Bubblesort takes a 
list of integer numbers and sorts them in ascending order. 
In the BubbleSort program, sorting is performed with vari-
able number of inputs and the sorted string is printed in 
the output. The DOW program includes three categories of 
input named year, month and day according to the Grego-
rian date. After taking these three inputs, the program prints 
the equivalent day of the week of that date in the output. 
For example, the date 1986 month 4 day 18 is equivalent to 
Monday. Monday is printed as output.

The other required element in the conducted experiments 
is the test set. Random generation of test data does not guar-
antee the coverage of all the instructions of the program. 
Hence, in the conducted experiments, the coverage of all 
instructions should be taken into account. In simple terms, 
the extent to which the source code of a software program 
will get executed during testing is what is termed as Code 
Coverage. If the tests execute the entire piece of code includ-
ing all branches, conditions, or loops, then we would say 
that there is complete coverage of all the possible scenarios 
and thus the Code Coverage is 100%. To understand this 
even better, let’s take up an example. Figure 11 is a simple 
code that is used to add two numbers and display the result 
depending on the value of the result. This program takes in 
two inputs i.e. ‘a’ & ‘b’. The sum of both is stored in variable 

c. If the value of c is less than 10, then the value of ‘c’ is 
printed else ‘Sorry’ is printed. Now, if we have some tests 
to validate the above program with the values of a & b such 
that the sum is always less than 10, then the else part of the 
code never gets executed. In such a scenario, we would say 
that the coverage is not complete.

Branch coverage aims at ensuring that every branch 
appearing in each conditional structure gets executed in 
source code. For instance, in the above code, all the ‘If’ 
statements and any accompanying ‘Else’ statement should 
all be covered by the test for a 100% Branch Coverage. For 
example, in the above code if value sets (2, 3), (4, 2), (1, 1) 
are used then Branch Coverage would be 100%. When data 
set (2, 3) is used then (b > a) and the first ‘If’ branch gets 
executed. Similarly, when data set (4, 2) is used then (a > b) 
evaluates to true and the second ‘If’ branch gets executed. 
Then with the data set (1, 1) the ‘Else’ branch evaluates 
to true and gets executed. Thereby, ensuring 100% branch 
coverage.

Statement Coverage is a measure that tells if all possi-
ble executable statements of code in source code have been 
executed at least once. It is a method to ensure that each line 
of the source code is covered at least once by the tests. This 
might sound simple but caution needs to be exercised while 
measuring the Statement Coverage. The reason being, in a 
source code there could be a certain condition that might 
not get executed depending on the input values. This would 
mean that all the lines of code would not be covered in test-
ing. Thus, we may have to use different input value sets to 
cover all such conditions in the source code. For example, 
in the Fig. 12, if input values are taken as 2 & 3 then, the 
‘Else’ part of the code would not get executed. However, if 
the input values are of type 3 & 2 then the ‘If’ part of the 
code would not get executed. This means that with either set 
of values of our Statement Coverage would not be 100%. In 
such a case, we may have to execute the tests with all three 
[(2, 3), (3, 2), (0, 0)] set of values to ensure 100% Statement 
Coverage.

For each benchmark program, different sets of test data 
have been prepared based on the coverage criteria. To this 
end, the CFG of each benchmark program is created. Edge 
coverage is used as a graph-based criterion to generate test 
data. Covering all edges in the CFG guarantees the coverage 
of the all-program source code. As shown in Fig. 7, cover-
ing all edges of the total CFG is considered as test criteria. 
In the second experiment, the CFG was created for each 
benchmark program after eliminating the non-error-propa-
gating instructions of that program. In the final experiment, 
all instructions can be considered for coverage, but only the 
non-error-propagating instructions are important.
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6.2 � The Framework

In the first stage of the proposed method, visustin (http://​
www.​aivos​to.​com/​visus​tin.​html) is used as a free software 
tool to generate the annotated CFG of the input source pro-
gram. The generated CFG was used for static analysis of 
the program source code. The required dataset is generated 
using CFG and Tables 5 and 6. Tables 5 and 6 describe 
the DU-paths of the program variables. These tables are 
obtained from the source code and the related CFG. The cre-
ated dataset in the form of a matrix (excel file) was used by 
the implemented ML algorithm in the RapidMiner tool set.

RapidMiner is a data mining tool with extensive data 
analysis libraries. The main element of the proposed method 
is an instruction classifier that was created by training the 
implemented ML algorithm. The classifier takes the features 
of an instruction (in the form of an array that is explained 
in Table 12) and determines its category in terms of error-
propagation rate. The created classifier categorizes the 
instructions of a program into 4 categories (explained in 
Table 12). In the final stage, after classifying the program 
instructions, the mutation test is conducted only on the 
identified error-prone instructions. The mutation test is 
conducted using MuJava [31]. MuJava as a free mutation 
test tool is used in this study extensively. It automatically 
produces a set of mutants.

After generating mutant programs (buggy programs), 
Mujava uses the Junit tool for executing the test and eval-
uating the mutation score. As given in Table 14, mutation 
operators at the method level, supported by Mujava, are listed. 
After the CFG of each benchmark program is generated, the 
error propagation rate for each instruction is evaluated by the 
proposed method. Then, the instructions with a high error 
propagation rate are detected by the aid of the classifier which 
was obtained in the machine learning part. By changing every 
instruction in the benchmark programs, mutant programs 
(buggy programs) are created in the first evaluation stage. 
Only the instructions with a high error-propagation rate were 
subjected to mutation operators in the subsequent assessment 
stage. The instructions with a low rate of error-propagation 
are subjected to mutation operators in the third assessment 
stage. The status of the created mutants is then looked into 
in terms of being alive or killed. After that, it is calculated 
how many mutations were made on the instructions with the 

highest mistake propagation rate and the average mutation 
score. Finally, the obtained results are compared and con-
trasted with those of the previous related works.

6.3 � Results and Discussion

In this section, the statistical results obtained from the execu-
tion of tests and the generation of mutations and the results 
obtained for 6 benchmark programs are explained in detail.

6.3.1 � Evaluating the Proposed Classifier

As explained in Section 4, the prepared dataset is used 
to train different ML algorithms. In this study, Gradient 
Boosted Trees (GBT), Decision Trees (DT), Deep Learning 
and Random Forest (RF) have been used as ML algorithms 
to create the desired instruction-classifier. The required data-
set has been prepared in stage 2 of the proposed method. The 
same dataset was used to train the ML algorithm and the cre-
ated classifier by the ML algorithms has been tested in the 
same way (k-fold). Table 15 shows the configuration opera-
tors for all 4 machine learning algorithms. Based on the 
value of each of these operators, the execution of the algo-
rithm will be different. But by optimizing these operators, 
we have obtained the best implementation of the algorithms.

As explained in Section 4, the created classifier is a multi-
class classifier; the outputs of the classifier are shown in 
Table 10. Every instruction in a 4-class classification must 
be sorted into one of four categories. Given a set of pro-
gram instructions at the source code level, the generated 
classifier must determine which category (A, B, C, or D) 
each instruction belongs to. Indeed, the created classifier 
takes the features of an instruction and predicts its classes 
in terms of its error-propagation rate. The performance of 
machine learning classification is measured using the confu-
sion matrix. Table 16 depicts the confusion matrix gener-
ated by the DT algorithm. The created classifiers by the ML 
algorithms were evaluated in terms of the following criteria.

•	 Accuracy: The first criterion for assessing classification 
models is their accuracy. Accuracy is the proportion of 
predictions made by our model that were accurate.

•	 Precision: The other performance criterion is precision. 
In multi-class classification, the precision is first calcu-
lated for each class, and then the average of the calcu-
lated values indicates the overall precision of the classi-
fier. The precision for an instruction class is the number 
of correctly predicted instructions in the class out of all 
predicted instructions in the class.

•	 Recall: The recall as another criterion for an instruction 
class depicts the number of correctly predicted instruc-
tions in the class out of the total number of actual instruc-
tions into the class.

Table 12   Categorizing the 
program instructions based on 
the error-propagation rate

propagation rate Category

81%–100% A
61%–80% B
31%–60% C
0%–30% D

http://www.aivosto.com/visustin.html
http://www.aivosto.com/visustin.html
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•	 Kappa: The kappa criterion is used to measure only 
those instructions that may have been correctly classi-
fied by chance. Kappa can be measured using both the 
total accuracy and the random accuracy.

•	 RMSE: RMSE is typically a performance metric for 
evaluation of a regression type machine learning model 
where a numerical label has been predicted. It can be 
found in the "Performance(Regression)" operator. If your 
dataset is a label and an associated prediction for each 
row, then it will be able to calculated using that operator.

This stage of the proposed method has been implemented 
in the RapidMiner tool set. RapidMiner includes an exten-
sive data analysis library and it is one of the most frequently 
used tools for data analysis and data mining applications. 
Table 17 shows the performance of the created classifier 
by different ML algorithms in terms of accuracy, precision, 
recall, kappa and Root Mean Squared Error. Accuracy is 
the percentage of correctly classifies instances out of all 
instances. It is more useful on a binary classification than 
multi-class classification problems because it can be less 
clear exactly how the accuracy breaks down across those 

classes. Precision is the ratio of true positive samples to all 
samples classified as positive. It is also known as Positive 
Predictive Value (PPV). Recall is the ratio of true positive 
samples to all samples that are actually positive. It is also 
called True Positive Rate (TPR) or sensitivity. Kappa or 
Cohen’s Kappa is like classification accuracy, except that 
it is normalized at the baseline of random chance on your 
dataset. It is a more useful measure to use on problems that 
have an imbalance in the classes (e.g. 70–30 split for classes 
0 and 1 and you can achieve 70% accuracy by predicting all 
instances are for class 0). RMSE or Root Mean Squared 
Error is the average deviation of the predictions from the 
observations. It is useful to get a gross idea of how well 

Fig. 11   Implemented experiments for evaluating the effectiveness of the proposed method in reducing the cost of mutation test

Table 13   Benchmarks programs characteristics

 Programs Program size 
(code lines)

Program description

Triangle 16  Determining triangle type
Factorial 8  Determining factorial number
Mid 10  Finding the middle of 3numbers
FindMax 15  Finding the greatest number
Prime 22  Determines if it is a prime number
Bubblesort 5  Sorting the list
 DOW 56  Mapping day of week numeric to day 

of week

Table 14   The mutation operators that have been used by the MuJava 
tool in the proposed method

Operator Description

AOR Replacing the Arithmetic Operator
AOI Inserting the Arithmetic Operator
AOD Deleting the Arithmetic Operator
ROR Replacing the Relational Operator
COR Replacing the Conditional Operator
COI Inserting the Conditional Operator
COD Deleting the Conditional Operator
SOR Replacing the Shift Operator
LOR Replacement the Logical Operator
LOI Inserting the Logical Operator
LOD Deleting the Logical Operator
ASR Replacing the Assignment Operato

Deletion operators added in 2013

SDL Deleting the Statement
VDL Deleting the Variable
CDL Deleting the Constant
ODL Deleting the Operator
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(or not) an algorithm is doing, in the units of the output  
variable.

6.3.2 � Evaluating the Mutation‑Testing Method

The primary goal of this project is to lower the cost of 
software mutation testing by locating and removing effect-
less mutants (equivalent mutants). It is noteworthy that the 
static and dynamic analysis stages are aimed at accelerat-
ing and facilitating the next stages. A relationship was 
introduced for estimating the error-propagation rate of 
each instruction with respect to the CFG and source code. 
The ML algorithm classifies the highly error-propagating 
instructions of the program according to features. effect-
less mutants are determined according to the rate of propa-
gation to the program output. Creating mutation in the 
instructions of source-code with a low propagation prob-
ability results in the ineffective mutation. Using ML clas-
sification, the proposed method intelligently finds a small 
subset of program code which includes maximum error-
propagation rate. Then, rather than creating a large number 
of mutations in all source-code, only the instructions of 
error-propagating instructions are selected as the target 
instructions for creating mutations. Then the created muta-
tions in the ineffective codes are ineffective and equivalent 
and removing these parts improves the efficiency of muta-
tion test. The efficiency of the suggested strategy has been 
examined through a series of experiments. As shown in 
Table 13, a set of standard programs have been used as the 
benchmark programs. All the mutation test experiments 
have been performed on the MuJava and Junit platforms. 
For each benchmark program, five sets of test data were 
selected. Table 18 shows the generated coverage-based test 
data for the benchmark programs. These test sets were 
used during the mutation test. After generating the mutants 
of each benchmark program by MuJava, the mutant pro-
grams were executed by the selected test sets. The required 
metrics in this stage of the experiments are as follows.

•	 Number of generated mutants
•	 Number of killed mutants
•	 Number of live mutants
•	 The reduction rate of the live mutants
•	 The reduction rate of the total mutantsTa
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Table 16   Confusion matrix of 
the DT algorithm that is used to 
measure evaluation criteria

Actual Classes

A B C D

Predicted 
Classes

A 38 1 0 0
B 0 14 0 0
C 0 0 13 2
D 0 0 0 12
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At this stage of the proposed method, three sets of experi-
ments have been performed separately on each benchmark 
program.

•	 All instructions of the benchmark program were mutated 
by the MuJava and then the generated buggy programs 
(mutants) were executed by the Junit using the prepared 
test data.

•	 Only the error-prone instruction identified by the pro-
posed method were considered for the mutation in the 
MuJava. In this experiment, the generated mutants were 
executed by the Junit to evaluate the mutation score.

•	 Only the non-error-prorating instructions have been con-
sidered for the mutation test. Similar to the former exper-
iments, the generated mutants were executed to calculate 
the mutation score.

Table 19 depicts the generated mutants for all bench-
mark programs. As seen in Table 19, all of the benchmark 
programs' instructions were subjected to MuJava operators 
(mutation operators). The discovered instructions by our 
developed classifier were regarded as mutations in the sub-
sequent experiments. Class A instructions are the ones that 
propagate the errors to the program output; class D instruc-
tions, on the other hand, don't propagate the errors to the 
program output.

Figure 13  indicates the generated mutants for differ-
ent instructions of each benchmark program by MuJava. 
On average, about 43.24% of the generated mutants are 
related to the most error-propagating instructions that were 

identified by the classifier. About 38.29% of the generated 
mutants are related to the instructions of classes B and C. 
About 18.45% of the generated mutants are related to the 
non-error-propagating instructions. The error-propagation 
rate of the instructions is not taken into account by the typi-
cal mutation testing methods, which operate in a brute-force 
way. In fact, all program instructions are tested in the muta-
tion testing methods and tools. Consequently, a sizable por-
tion of the created mutants are equivalent. Meanwhile, the 
proposed method performs the mutation operators only on 
the instructions that were classified in classes A, b, C; the 
instructions in class D (non-error propagating instructions) 
are avoided to mutate. The generated mutants on the non-
error propagating instructions are more likely equivalent.

Figure 14 shows the total number generated mutants in 
each benchmark programs in two experiments. In the first 
experiment (brute force technique), all instructions of the 
programs were mutated by the mutation operators of the 
MuJava. On the second experiment, the non-error propa-
gating instructions were eliminated in the mutation test and 
the instructions in classes A, B, and C (error-propagating 
instructions) were mutated. In every experiment, the sug-
gested method (error-propagation aware method) produces 
fewer mutants than brute force mutation testing. The aver-
age number of mutants produced by the brute force muta-
tion in MuJava is around 136.28, but the average number 
of mutants produced by the suggested approach is approxi-
mately 114.42. In fact, the number of mutants for a program 
function (unit) produced by the suggested procedure is far 
smaller than the number of mutants produced by the brute 

Table 17   The output of different 
ML in terms of accuracy, kappa, 
recall, precision and RMSE

Name of ML algorithm Accuracy Kappa Recall Precision Root_Mean_
Squared_
Error

Random Forest (RF) 100% 1.000 100% 100% 0.280 ± 0.000
Decision Tree (DT) 96.25% 0.945 94.76% 95.91% 0.148 ± 0.000
Deep Learning 96.49% 0.948 95.45% 98.28% 0.237 ± 0.000
Gradient Boosted Trees (GBT) 96.25% 0.945 94.76% 96.03% 0.211 ± 0.000

Table 18   Five different test set for each benchmark that were selected based on the code coverage criteria

Programs Num. of inputs Test Suit

Triangle 3 {(12, 12, 18), (14, 14, 14), (5, 4, 3), (13, 14, 13), (8, 6, 10)}
Factorial 1 {20, 15, 17, 3, 2}
Mid 3 {(231, 231, 231), (14, 12, 19), (180, 643, 522), (200, 200, 120), (213, 421, 213)}
FindMax 5 {(453, 564, 87, 235, 78), (45, 64, 193, 77, 78), (128, 93,14, 31, 0), (93, 432, 37,11, 42),

(89, 75, 63, 142, 29)}
Prime 1 {17, 21, 23, 27, 19}
Bubblesort List of n integer values {(25, 26, 87, 230, 298, 1000, 1020), (1,-3,19,77,0, 658, 9), (35, 30, 29, 21, 15, 8, 7),

(93, 432, 108, 370, 42, 93), (9, 75, 603, 12, 9, 2)}
DOW 3 {(14,1,1994),(22,1,1962),(9,11,1904),(1,2,1940),(15,5,1955)}
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force mutation test. The results show that the suggested strat-
egy significantly reduced the number of mutants, which in 
turn reduced the cost of the mutation test. The selected test 
suit based on code coverage for each benchmark program 
has been explained in Table 18.

Figure 15 illustrates the number of live mutants of seven 
programs in the five executions by the Junit. The live 
mutants are the mutants that were not killed (detected) by 
the test sets. On average, the number of live mutants in the 
brute force methods (traditional methods) is shown with 
green color for all programs; for Triangle program, the num-
ber of live mutants in the proposed method is about 107. 
Indeed, 29.13% of the live mutants have been reduced by the 
proposed method in the test of the Triangle program. The 
proposed method tries to reduce the equivalent mutants by 
avoiding the mutation of the non-error-propagating instruc-
tions. The proposed method has similar effectiveness to the 
bubblesort benchmark program. The number of live mutants 
is considerably reduced by the proposed method. On aver-
age, the number of live mutants in the bubblesort program 
is about 3.4, whereas in brute force mutation testing this 
figure is about 9.4.

The results of the mutation testing on the factorial pro-
gram have been shown in Fig. 15 using the five different test 
sets. The results demonstrate that the number of live mutants 
may be significantly decreased using the suggested strategy. 

The brute force mutation test produces an average of around 
23.2 live mutants; the suggested approach produces an aver-
age of about 9.4 live mutants.

Similar mutation experiments have been performed on 
the Prime benchmark program. Firstly, all instructions in 
the program were mutated by MuJava. Indeed, all mutation 
operators of the MuJava performed in all instructions of the 
program in an automatic platform. Secondly, the mutation 
operators were performed only on the error-propagation 
instructions that had been identified by the first step of the 
proposed method. In the Prime, the proposed method pro-
vides similar results. Figure 14 illustrates how fewer affect-
less mutants were produced using the proposed method. The 
Middle program is another benchmark that is applied in the 
tests. This program offers several program structures that 
may be utilized in real-world projects. In fact, the chosen 
benchmark programs perform features that are common 
to real-world systems. The number of live mutants created 
using the suggested method is less than those generated 
using the brute force method, as illustrated in Fig. 15. The 
similar experiment was performed on the Max program. 
Similarly, to the previous experiments, the affectless mutants 
were avoided, and consequently the mutation score of the 
selected test sets has been increased. All in all, the proposed 
method is successful in reducing affectless mutants.

The final experiment in Fig. 15 was performed on the 
DOW program. This program is bigger in number of lines(56 
LOC) compared to the previous programs. With similar 
results observed, comparing the number of live mutations 
compared to the original program shows success in reduc-
ing live mutations. Figure 16 shows mutation score in the 
mutation test performed on the all programs in the brute 
force and error-propagation aware (proposed) methods with 
5 test sets. Eliminating the ineffective mutants (equivalent 
mutants) causes an increase in the mutation score of the 
test sets. The results show the effectiveness of the proposed 
method in terms of the ineffective mutants’ reduction. As 
shown in Fig. 16, the mutation score of all test sets has been 
increased in the error-propagation aware mutation test. In the 

Table 19   Generated mutants for all benchmarks by the mujava tool

program name Total mutants Number of mutants for a 
instructions

Number of mutants for b 
instructions

Number of mutants for c 
instructions

Number of 
mutants for d 
instructions

Triangle 252 96 79 33 44
Bubble sort 97 52 23 12 10
Factorial 68 27 15 8 18
Prime 66 29 12 10 15
Middle 121 58 28 20 15
FindMax 56 19 10 9 18
DOW 294 107 101 52 34

Fig. 12   A simple program used to illustrate code coverage
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Fig. 13   Percentage of the generated mutants on the different instructions with different error propagation rate by MuJava

Fig. 14   Number of generated mutants in two brute force and error-propagation aware (proposed) methods
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Fig. 15   Number of Live mutants in the mutation test performed on the all programs in the brute force and error-propagation aware (proposed) 
methods with 5 test sets

Fig. 16   Obtained mutation score in the mutation test performed on the all programs in the brute force and error-propagation aware (proposed) 
methods with 5 test sets
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error-propagation aware mutation test, the obtained incre-
ment in the mutation score of the same test sets is about 
25.70%. Additionally, the suggested method outperforms the 
brute force method in terms of mutation score for the iden-
tical test sets. Additionally, the suggested method outper-
forms the conventional method in terms of mutation score 
across all test sets (five test sets). The mutation score of a 
test set can be evaluated accurately with a limited number 
of mutants.

As shown in Fig. 16, the mutation score of the test 
sets for bubblesort program reached 95.20% in the pro-
posed method. The mutation score of the identical test 
sets therefore increased to 82.8 percent. Therefore, the 
factorial experiments' findings show that the suggested 
method is effective at identifying and removing affect-
less mutants. For Middle program, the suggested method 
outperforms the conventional method in terms of muta-
tion score across all test sets (five test sets). Similarly, to 
the previous experiments, for Max program, the muta-
tion score of a test set can be evaluated accurately with 
a limited number of mutants. The final experiment was 
performed on the DOW program. The average value of the 
test score in the Dow program for the original program 
is about 21.4 and for error-propagation aware method is 

22.7. This increase is a very significant number for a pro-
gram with 56 lines of code.

Tables 20 and 21 indicate the percent of the reduced 
total and live mutants in all benchmark programs in the 
proposed method. The number of produced mutants is 
typically reduced by roughly 19% using the suggested 
method. Additionally, the live mutants are reduced by 
32.24% as a result of the suggested technique. It should 
be noted that the suggested method tries to eliminate 
only the effect-less mutant (equivalent). The key techni-
cal benefit of the suggested method is that the mutation 
of the instructions that don't propagate errors is avoided. 
These findings could help the current mutation-test tools 
and procedures perform better. The method described in 
this study may be used with MuJava, Muclipse, and other 
related mutation tools. Finally, researchers and software 
developers can benefit from the results of this study.

7 � Conclusion

To sum it up, the proposed method was divided into two 
significant phases. In the first phase, the source code of the 
input-program source code was statically and dynamically 
investigated to identify the error-propagating features of 
the program instructions. With regard to the identified 
features, a dataset was created using a set of standard 
benchmark programs. In the next phase of the method, the 
dataset was used to train the ML algorithms and create an 
instruction classifier. The constructed classifier classes the 
program instructions based on its error-propagating rate. 
The instructions that are classified as error-propagating, 
are considered in the mutation testing by the MuJava tool. 
The non-error-propagating instructions are avoided due 
to mutation in the proposed method. This technique aims 
to reduce the number of mutants generated, specifically 
targeting non-error propagating instructions, in order to 
improve the efficiency of mutation testing. By selectively 
excluding non-error propagating instructions from the 
mutation process, the proposed technique effectively reduces 
the number of mutants generated during mutation testing. 
The proposed method identifies the strategic locations of the 
program source code in terms of error-propagation rate and 
performs the standard mutation operators on them. Avoiding 
the non-error propagating instructions caused a considerable 
reduction in the number of generated mutants in the 
mutation test. Consequently, a sizable portion of the created 
mutants are equivalent. Meanwhile, the proposed method 
performs the mutation operators only on the instructions 
that were classified in classes A, b, C; the instructions in 
class D (non-error propagating instructions) are avoided to 
mutate. The generated mutants on the non-error propagating 
instructions are more likely equivalent. each benchmark 

Table 20   The number of generated mutants for all benchmarks in 
brute-force and proposed method by the MuJava tool

Benchmark Brute force 
Method

Proposed 
Method

Percent of the 
reduced total 
mutants

Triangle 252 192 13.12%
Prime 97 87 10.30%
Maximum 68 50 26.47%
BubbleSort 66 51 22.72%
Middle 121 106 12.39%
Factorial 56 38 32.14%
DOW 294 277 5.78%

Table 21   The average number of live mutants in five test executions 
in brute-force and proposed method by the MuJava tool

Benchmark Brute force 
Method

Proposed Method Percent of the 
reduced live 
mutants

Triangle 151.4 107.4 29.06%
Prime 44.4 25.8 41.89%
Maximum 22 7.2 67.27%
BubbleSort 9.4 3.4 63.82%
Middle 97.6 82.6 15.36%
Factorial 23.2 9.4 59.48%
DOW 228 213 6.57%
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programs in two experiments. In the first experiment (brute 
force technique), all instructions of the programs were 
mutated by the mutation operators of the MuJava. On the 
second experiment, the non-error propagating instructions 
were eliminated in the mutation test and the instructions in 
classes A, B, and C (error-propagating instructions) were 
mutated. In every experiment, the suggested method (error-
propagation aware method) produces fewer mutants than 
brute force mutation testing. Therefore, the proposed method 
of reducing mutation testing focuses on selectively mutating 
error-propagating instructions while avoiding non-error 
propagating instructions. The results show that the suggested 
strategy significantly reduced the number of mutants, which 
in turn reduced the cost of the mutation test.

The proposed approach for reducing mutation testing 
involves selectively applying mutation operators on error- 
propagating instructions, while avoiding non-error 
propagating instructions. One of the main problems 
associated with mutation testing is the large number 
of equivalent mutants that are generated. The strategy 
of selectively applying mutation operators on error-
propagating instructions and avoiding non-error 
propagating instructions in the proposed approach helps 
to reduce the number of equivalent mutants. In the one 
of the previous methods in term of mutation reduction, 
using the genetic algorithm, paths with a high impact 
on the error propagation rate have been identified, and 
mutants were only applied to the paths with a high error 
propagation rate [24]. But the problem of this method is the 
misclassification of killable mutants instead of equivalent 
mutants and the misclassification of equivalent mutants 
instead of killable mutants. although in this method, instead 
of examining the program at the level of instructions, the 
program was evaluated at the level of the path, and this 
caused low efficiency in examining the mutants. Because 
the granularity of program evaluation in the genetic 
algorithm method is larger than the proposed method. 
Finding the error-propagating instructions of a program 
source code can be mapped in an optimization problem and 
then it can be solved by different metaheuristic algorithm 
suggested in [4, 7, 55]. Error propagation rate is an indirect 
metric of an instruction in a program. some of them have 
been identified in this study, but identifying the other 
effective features is suggested as one of the future studies. 
The other extension of this study is using deep learning to 
create more accurate and more precise classifiers.
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