
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:631–657
https://doi.org/10.1007/s10836-023-06089-0

Effective Software Mutation‑Test Using Program Instructions Classification

Zeinab Asghari1 · Bahman Arasteh2,3 · Abbas Koochari1

Received: 20 June 2023 / Accepted: 12 October 2023 / Published online: 9 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The quantity of bugs that a software test-data finds determines its effectiveness. A useful technique for assessing the effi-
cacy of a test set is mutation testing. The primary issues with the mutation test are cost and time requirements. Close to
40% of the injected bugs in the mutation test are effect-less (equivalent). Reducing the number of generated total mutants
by decreasing equivalent mutants and reducing the execution time of the mutation test are the main objectives of this study.
An error-propagation aware mutation test approach has been suggested in this research. Three steps make up the process.
To find a collection of instruction-level characteristics effective on the error propagation rate, the data and instructions of
the input program were evaluated in the first step. Utilizing supervised machine learning techniques, an instruction classi-
fier was developed using the prepared dataset in the second step. After classifying the program instructions automatically
by the created classifier, the mutation test is performed only on the identified error-propagating instructions; the identified
non-error-propagating instructions are avoided to mutate in the proposed mutation testing. The conducted experiments on
the set of standard benchmark programs indicate that the proposed method causes about 19% reduction in the number of
generated mutants. Furthermore, the proposed method causes a 32.24% reduction in the live mutants. It should be noted
that the proposed method eliminated only the affectless mutants. The key technical benefit of the suggested solution is that
mutation of the instructions that don't propagate errors is avoided. These findings can lead to a performance improvement
in the existing mutation-test methods and tools.

Keywords Software test · Equivalent mutant · Error propagation · Machine learning · Instruction classification

1 Introduction

Nowadays, software is regarded as an important part of modern
human life. In fact, software failures in different applications
may have irreversible financial and humanistic impacts [5, 6].
Hence, by using quality assurance methods, software failure

can be prevented and avoided. Software reliability (as one of
the quality metrics) is impacted by the number of bugs in the
software [3]. Software reliability may be remarkably enhanced
by detecting and removing bugs in each stage of software devel-
opment [2]. Software testing is a primary technique for evaluat-
ing and assuring the reliability of a software product. Software
bugs made by a developer may lead to errors and finally failure
during program execution. It should be noted that the cost of
software testing accounts for 50% of the total software devel-
opment cost [21]. The effectiveness of a test depends on the
number of detected bugs by it. Ideally, close to 100% of the
bugs in a program can be detected by effective test data.

Mutation testing is a practical method for evaluating
the effectiveness of a set of test data (test set). The impetus
behind mutation testing is to inject bugs, namely mutants,
into program source code. In this field, a program with an
injected bug (mutation) is named mutant. Such modifica-
tions (injected bugs) are realized and implemented by means
of a series of mutation operators. Consequently, the new
buggy-programs (mutants) are generated during mutation
testing. Indeed, a mutant simulates the behavior of a buggy

Responsible Editor: Y. K. Malaiya.

 * Bahman Arasteh
 bahman.arasteh@istinye.edu.tr

 Zeinab Asghari
 zeinab.asghari@srbiau.ac.ir

 Abbas Koochari
 koochari@srbiau.ac.ir

1 Department of Computer Engineering, Science and Research
Branch, Islamic Azad University, Tehran, Iran

2 Department of Computer Engineering, Tabriz Branch,
Islamic Azad University, Tabriz, Iran

3 Department of Software Engineering, Faculty of Engineering
and Natural Science, Istinye University, Istanbul, Turkey

http://orcid.org/0000-0001-5202-6315
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06089-0&domain=pdf

632 Journal of Electronic Testing (2023) 39:631–657

1 3

program. The main objective of mutation testing is to evalu-
ate the capability of a test set for detecting mutations (injected
bugs). In Table 1, three mutant programs are created from the
main program. Line 5 of the original program has changed
with three mutations. To enhance the efficacy of mutation
testing, a large number of mutants should be generated sys-
tematically. The number of generated mutants depends on
the number of lines of the source code. In programs with a
high number of code lines, a large number of mutants are pro-
duced. Hence, cost and time consumption are two of the main
problems with the mutation test; this is regarded as one of
the most serious challenges in the realm of software testing.

According to similar research [25], 40% of the injected
bugs in the mutation test have no impact (equivalent). As
a result, just a portion of the bugs that were injected are
active and causing output in the application. The exist-
ence of effect-less mutations causes the mutation test to
be less effective, take longer, and cost more money. If
a mutant program differs syntactically from the original
program but has the same outcomes, the mutant program
is equivalent. The behavior of the equivalent mutants is
the same as that of the original program. One of the major
challenging problems is equivalent mutants’ identification,
because identifying the equivalent mutants is an undecid-
able problem. The following are the paper's goals:

• Reducing the number of generated mutants by decreasing
equivalent mutants.

• Reducing the execution time of mutation testing by
decreasing the number of generated mutants.

• Reducing the cost of mutation testing by decreasing the
number of generated mutants.

• Reducing the number of generated equivalent mutants
generated.

In this paper, program data and instructions were ana-
lyzed and the set of syntactic features effective in the

error-propagation rate of program instructions were identi-
fied. Then, program instructions are classified according to
the identified features using supervised machine-learning
algorithms. In fact, by capitalizing on machine learning
algorithms, program instructions are ranked according to
error propagation. Finally, mutation operators are applied
only to the instructions with a higher error propagation rate.

The contributions of the present study are as follows:

• Extracting the static and dynamic features effective on
error-propagation at the level of program instructions.

• Producing a dataset (as training-data set) that includes the
instruction-level features for evaluating the instructions’
error-propagation rate.

• Generating an instruction classifier to classify the pro-
gram instructions using machine learning algorithms and
the produced training-data set.

• Applying the mutation operators only on the most error-
propagating instructions identified by the classifier and
eliminating the non-error-propagating instructions in the
mutation test.

• Identifying the equivalent mutants using the instruction
classifier and eliminating them from the mutant set.

The seven sections of the paper are as follows: The second
section provides a brief review of important mutant reduc-
tion techniques. Section 3 illustrates Supervised machine
learning algorithms used in article. Section 4 explains the
proposed method. The environment and tools that are uti-
lized to evaluate the proposed approach are described in the
first half of Section 4. Datasets and evaluation criteria are
also covered in this section. In the second part of Section 4,
the study's findings are provided and analyzed. Section 5
presented a review of mutation test environments. Section 6
is a complete description of the evaluation of the proposed
system. Eventually in Section 7, the study's conclusion as
well as future research directions are provided.

Table 1 Original program and
the generated mutants

Mutant 1Original program

1. Class Class A {
2. public intinc(int a, int b){
3. for(b<10){
4. a++;
5. b=b-2;
6. }
7. return a;
8. } }

1. class Class A{
2. public intinc(int a, int b){
3. for(b<10){
4. a++;
5. b=b+2;
6. }
7. return a;
8. } }

Mutant 3Mutant 2
1. class Class A{
2. public intinc(int a, int b){
3. for(b<10){
4. a++;
5. b=b/2;
6. }
7. return a;
8. } }

1. class Class A{
2. public intinc(int a, int b){
3. for(b<10){
4. a++;
5. b=b*2;
6. }
7. return a;
8. } }

633Journal of Electronic Testing (2023) 39:631–657

1 3

2 Related Works

Mutation testing is applied for evaluating the quality of test
data. The rationale behind the mutation test is that a series
of bugs are used so as to simulate real programing bugs.
Such buggy programs (mutants) are produced as a result
of making minor syntactic changes in the program source
code. Equation 1 states that the percentage of discovered
mutants (killed mutants) in test data determines a test's score
[31]. All of the inserted bugs are found and eliminated using
efficient test data. Live mutants are mutations that give the
same test data results as the original program. The test set
is deemed sufficient, and the test procedure is terminated if
the mutation score of the test set is equal to 100 percent. The
mutation score is influenced by the presence of equivalent
mutants. The output of the comparable mutants is identical
to that of the original program. In one of the articles with
the aim of reducing the number of mutations produced, the
combination of clustering and sorting methods is used to
reduce the number of mutations produced [54]. Another
method has also been proposed in which the combination
of clustering and sorting methods is used to reduce the num-
ber of mutations produced. Another method has also been
proposed in which have been sorted mutant branches based
on their dominance degrees [15, 16].

Researchers have proposed many strategies for lowering
the cost of mutation testing. Here's a review of several key
techniques:

Mutant Sampling It is regarded as one of the simplest meth-
ods for reducing the number of mutations [12]. Mutant sam-
pling involves performing mutations on a limited sample of
the produced mutants. Numerous studies have examined the
percentages of various samples, ranging from 10 to 40%
[52]. The effect of the 10% sample percentage was only 16%
smaller than the entire set of generated mutants, according to
the experimental results. As a result, techniques for assess-
ing mutations with a 10% sampling percentage can still be
a good option. This is consistent with King's research [27].
Through tests, Papadakis and Malevris [42] investigated the
effectiveness of several mutation sampling techniques (from
10 to 60% in 10% steps).

Mutant Selection Selective mutation is a rough method for
lowering the number of mutants. In order to decrease the
number of executive mutations, authors suggested random
selection mutation. Randomly, just a tiny portion of the
mutations are investigated [1]. A method known as limited
mutation only considers a limited number of mutants while

(1)Mutation Score =
KilledMutants

AllMutants − Equivalent Mutants

disregarding the majority of them. The method selects just
some of the mutation operators to make mutants [39]. To
expand on this strategy, the authors examined the efficacy
of several mutation operator sets [38]. The results show that
just five operators out of a total of 22 are needed to measure
the success of mutation testing. The authors suggested six
operators for estimating the number of mutation operators
that are suitable [8]. A set of 10 operators was developed
by combining these operators, which eliminated 65% of the
mutations while maintaining the test validity. Other research
examined the effectiveness of using just one or two muta-
tion operators. In comparison to the dependent mutation
operator, Authors assessed the effectiveness of utilizing
mutation with one or two assignment mutation operators
[52]. According to the experiment results, the number of
matching mutations can be decreased by up to 67%, while
only 5% of the test efficacy is lost. In addition, multiple stud-
ies have demonstrated that inserting these mutations has no
effect on the quality of the test cases generated. Research-
ers looked at the differences between sampling mutation
and selective mutation [57]. Two sample methodologies
were compared to three selection procedures. The selective
mutation was shown to be less effective than the sampling
mutation. Finally selecting and sampling mutations be used
in combination to generate promising results [56]. Another
method has been proposed by researchers, in which certain
pathways are produced based on unique characteristics, and
based on this, the production of mutations can be somehow
controlled This algorithm is an optimization algorithm suit-
able for identifying optimal paths with priority [14].

Minimum Mutant Sets The results of experiments indicate
that by concentrating on a minimum set of mutants, a con-
siderable proportion of mutants might be eliminated [32].
Researchers have made an effort to determine the fewest
mutations necessary to fully cover their set, which would
be adequate for determining the minimum set's ability. The
experiment that used the fewest changes to program source
code was originally proposed by another authors [28]. The
gathered data indicates that even for mutations that are
scarcely destroyed, just a modest portion of the produced
mutations (9%) is required to cover the whole set. Other
researchers investigated this issue both theoretically and
experimentally [29]. Dynamic sharing was used to lower
the number of mutations. Given a test set, the x mutation is
dynamically translated into the y mutation; test cases that kill
x also kills y. When the dynamic subset was examined using
the C programming language, it was found that just 12% of
the generated mutations were necessary to cover the whole
set. Last but not least, researchers investigated if establishing
the association between frequent mutations might be done
using dynamic and static analytic approaches [29, 30]. They
found that for better results, static and dynamic analysis

634 Journal of Electronic Testing (2023) 39:631–657

1 3

techniques should be used. Another innovative method pro-
poses an optimized decentralized adaptation logic for mod-
eling Self Adaptive Software Systems (SAS) which exploits
the multi-agent concept. Each subsystem has an objective
and uses an Artificial Bee Colony metaheuristic to achieve
local optimization which in turn leads to the optimization of
the whole distributed system [9].

Strong, Weak and Hard Mutations Researchers have devel-
oped a variety of strategies for reducing the cost of the muta-
tion test's application, in addition to limiting the number of
generated mutants to reduce mutation costs. The weak muta-
tion strategy is one of Howden's strategies [25]. By omitting
the whole implementation of the main program and its muta-
tions, weak mutation aims to lower the processing cost asso-
ciated with mutation avoidance. To achieve this, the weak
mutation lays forth the requirements that a mutation must
meet in order to be labeled as a dead mutation. To compare
the final output of the main program and the modified pro-
gram, the internal states of the programs are compared imme-
diately after applying the mutation or altered components. It
should be noted that when compared to a "weak mutation,"
the average mutation is referred to as a "strong mutation.
Researchers proposed the strong mutation as a middle ground
between strong and weak mutations [53]. They claimed that
the internal states of the main program and its mutations at
any point could be compared. Weak mutations are useful
in many investigations. Researchers built a structure for the
FORTRAN77 software and then assessed its effectiveness
and usefulness [37]. The results showed that weak mutations
reduced manual effectiveness because fewer related muta-
tions were evaluated. In this article, the authors used a range

of techniques to examine the efficacy of weak mutations.
They concluded that weak mutation is more cost-effective.
Researchers proposed novel mutation test execution methods
known as higher rank (order) mutation [25, 28, 53]. First
rank (order) mutations and higher order mutations are the
two categories used in this technique to classify mutations.
First order mutation is produced if mutational operators are
only applied once to the program. Higher level mutations
will be created if they are applied more than once, though.
This method's motivation is the discovery of unique and
rare bugs. Table 2 provides an illustration of a lower-order,
higher-order, and first-order mutation. Table 3 displays the
key characteristics, advantages and disadvantages of some of
the strategies described earlier.

3 Supervised Machine Learning Algorithms

Machine learning uses programmed algorithms that learn
and optimize their operations by analyzing input data to
make predictions within an acceptable range. With the
feeding of new data, these algorithms tend to make more
accurate predictions. Although there are some variations
of how to group machine learning algorithms, they can be
divided into three broad categories according to their pur-
poses and the way the underlying machine is being taught.
These three categories are: supervised, unsupervised and
semi-supervised.

Supervised machine learning algorithms generate a func-
tion that map inputs to desired outputs [41]. Supervised
learning is fairly common in classification problems because

Table 2 First, second and higher order mutations

Original program p
result = 0;
for (int i = 1; i <= 10; i++){
result = result + i; }

FOM1

result = 0; for (int i = 1; i>= 10; i++) {
result = result + i; }

FOM2

result = 0;
for (int i = 1; i <= 10; i++) {

result = result / i; }
SOM

result = 0;
for (int i = 1; i>= 10; i++) {

result = result / i; }
HOM

result = 0;
for (int i = 1; i>= 10; i--) {

result = result / i; }

635Journal of Electronic Testing (2023) 39:631–657

1 3

the goal is often to get the computer to learn a classification
system that we have created [48]. Supervised machine learn-
ing is the construction of algorithms that are able to produce
general patterns and hypotheses by using externally supplied
instances to predict the fate of future instances. Supervised
machine learning classification algorithms aim at categoriz-
ing data from prior information. Classification is carried out
very frequently in data science problems. Various successful
techniques have been proposed to solve such problems viz.
Rule-based techniques, Logic-based techniques, Instance-
based techniques, stochastic techniques [49].

Decision Tree Decision tree (DT) is one of the earliest
and prominent machine learning algorithms. A decision
tree models the decision logics i.e., tests and corresponds
outcomes for classifying data items into a tree-like struc-
ture. One of the algorithms used in this paper is DT. Because
Decision trees does not require scaling of data as well.
Decision trees were chosen for this case study given their
ability to convert datasets into easy-to-understand and yet
information-rich graphical displays. The nodes of a DT tree
normally have multiple levels where the first or top-most
node is called the root node. All internal nodes (i.e., nodes
having at least one child) represent tests on input variables
or attributes. Depending on the test outcome, the classifi-
cation algorithm branches towards the appropriate child

node where the process of test and branching repeats until it
reaches the leaf node [43]. The leaf or terminal nodes cor-
respond to the decision outcomes. DTs have been found easy
to interpret and quick to learn and are a common component
to many medical diagnostic protocols [13].

Random Forest A random forest (RF) is an ensemble clas-
sifier and consisting of many DTs similar to the way a forest
is a collection of many trees [11]. DTs that are grown very
deep often cause overfitting of the training data, resulting a
high variation in classification outcome for a small change in
the input data. They are very sensitive to their training data,
which makes them error-prone to the test dataset. The differ-
ent DTs of an RF are trained using the different parts of the
training dataset. To classify a new sample, the input vector
of that sample is required to pass down with each DT of the
forest. Each DT then considers a different part of that input
vector and gives a classification outcome. The forest then
chooses the classification of having the most ‘votes’ (for
discrete classification outcome) or the average of all trees
in the forest (for numeric classification outcome). Since the
RF algorithm considers the outcomes from many different
DTs, it can reduce the variance resulted from the consid-
eration of a single DT for the same dataset Fig. 1 shows an
illustration of the RF algorithm. Another machine learning
algorithm used in this paper is RF. Because It is flexible to

Table 3 The related works which proposed to reduce the number of mutants

The methods Procedure Merits Demerits

Mutation sampling:
 [1, 12, 27, 47, 51, 52] The produced mutations are

picked as a subset.
The straightforwardness of the

test execution
lower test effectiveness

Selective mutation, limited
mutation:

[8, 28, 35, 38, 39, 42, 52, 56,
57]

choosing a limited number of
mutation operators

lowering the number of
mutations by 65%

The necessity to combine this approach
with mutation sampling due to its poor
performance when used alone

Minimum mutation sets:
[18, 22, 28–30, 32] Eliminating the covering mutants

s.
To cover the whole set, only

a tiny portion of the created
mutations are needed.

Imprecise

Strong, weak and hard
mutations: [24, 25, 28, 53]

Weak mutation: By bypassing
the full execution of the
program, it lowers the number
of mutations

They cost less and need less
computational resources.

If the entire application is not run, they
require comparison and might be
inaccurate.

Strong mutation: it reduces
the number of mutations
by contrasting the output of
the original program with
the output of the modified
program.

A mixture of strong and weak
mutation is referred to as "hard
mutation".

636 Journal of Electronic Testing (2023) 39:631–657

1 3

both classification and regression problems and automates
missing values present in the dataset.

Artificial Neural Network Artificial neural networks (ANNs)
are a set of machine learning algorithms which are inspired
by the functioning of the neural networks of human brain.
They were first proposed by McCulloch and Pitts [33] and
later popularized by the works of Rumelhart et al [44]. In the
biological brain, neurons are connected to each other through
multiple axon junctions forming a graph like architecture.
These interconnections can be rewired (e.g., through neu-
roplasticity) that helps to adapt, process and store informa-
tion. Likewise, ANN algorithms can be represented as an
interconnected group of nodes. The output of one node goes
as input to another node for subsequent processing accord-
ing to the interconnection. Nodes are normally grouped
into a matrix called layer depending on the transformation
they perform. Apart from the input and output layer, there
can be one or more hidden layers in an ANN framework.
Nodes and edges have weights that enable to adjust signal
strengths of communication which can be amplified or weak-
ened through repeated training. Based on the training and

subsequent adaption of the matrices, node and edge weights,
ANNs can make a prediction for the test data. Figure 2 shows
an illustration of an ANN (with two hidden layers) with its
interconnected group of nodes. This algorithm is also used
in this paper. It is non-linear in nature. This allows to model
complex relationships and patterns in dataset. It can extract
features from dataset. This eliminates manual feature editing.
Also, the high speed and parallel processing capability of this
algorithm has made it to be used in this paper.

K‑nearest Neighbor The K-nearest neighbor (KNN) algo-
rithm is one of the simplest and earliest classification algo-
rithms [10]. It can be thought a simpler version of an NB
classifier. Unlike the NB technique, the KNN algorithm does
not require to consider probability values. The ‘K’ is the
KNN algorithm is the number of nearest neighbor’s consid-
ered to take ‘vote’ from. The selection of different values
for ‘K’ can generate different classification results for the
same sample object. Figure 3 shows an illustration of how
the KNN works to classify a new object. For K = 3, the new
object (star) is classified as ‘black’; however, it has been
classified as ‘red’ when K = 5.

Fig. 1 A brief illustration of a
Random Forest

Fig. 2 An illustration of the
artificial neural network struc-
ture with two hidden layers

637Journal of Electronic Testing (2023) 39:631–657

1 3

Naïve Bayes Naïve Bayes (NB) is a classification technique
based on the Bayes’ theorem [23]. This theorem can describe
the probability of an event based on the prior knowledge
of conditions related to that event. This classifier assumes
that a particular feature in a class is not directly related to
any other feature although features for that class could have
interdependence among themselves [36]. By considering
the task of classifying a new object (white circle) to either
‘green’ class or ‘red’ class, Fig. 4 provides an illustration
about how the NB technique works.

Gradient Boosting Gradient boostingwas first proposed in
[19]. GBT models build ensembles of decision trees and
apply the boosting principle to learn a tree structure where
each new tree is built to approximate the negative gradient of
the empirical loss function in order to correct the errors made

by previous trees in the ensemble. These trees are typically
weak learners, i.e., the size of the individual trees is typi-
cally kept small. Furthermore, in each iteration of the training
phase, only a random subsample of the data instances (rows)
and features (columns) are used, in order to prevent overfit-
ting [20]. The final prediction is calculated by combining
the individual predictions with coefficients learned during
the training phase. This is in contrast to random forests (RF),
another tree-based ensemble model, where full-grown trees
are built, and their predictions are combined uniformly. One
reason as to why we would consider using GBT algorithm
in this paper is this is generally more accurate compared to
other models. Another advantage is that this algorithm trains
faster and handles missing values natively.

4 The Proposed Method

The primary goal of this study is to improve the efficacy of
mutation testing. Mutation testing is thought to have a num-
ber of issues, one of which being the existence of equiva-
lent mutants. The quantity and kind of program instructions
affect how many equivalent mutants there are. Decreasing
the number of equivalent mutations increases the value of
the mutation score. Figure 5 presents an overview of the
suggested method's stages. The proposed method is divided
into two main parts: front-end and back-end of proposed
method. Steps 1 to 3 are located in the front part and steps
4 and 5 are located in the back part. Finally, the output of
this method will include step 6. The output of the front part
includes the dataset required for machine learning training
and creating instruction classifiers. The output of the back
part is the classifier created from the instructions.

In this paper, program data and instructions were ana-
lyzed and the syntactic features effective on error propa-
gation at the level of program instructions were identified.
Syntactic features include static and dynamic features. Static
features are extracted statically without program execution.
However, the identification of dynamic features requires test
cases and program execution. Then, program instructions are
classified according to their error propagation rate. In this
paper, supervised machine learning algorithms were used
to classify the program instructions. In fact, by capitalizing
on different machine learning algorithms (Gradient Boosted
Trees, Decision Tree, Deep learning and Random Forest),
program instructions are ranked according to error propa-
gation. Finally, mutation operators are applied only to the
instructions with a higher error-propagation probability.

4.1 Program Analysis

The proposed method classifies a program’s instructions
based on the error-propagation rate of the instruction.

Fig. 3 A simplified illustration of the K-nearest neighbor algorithm

Fig. 4 An illustration of the Naïve Bayes algorithm

638 Journal of Electronic Testing (2023) 39:631–657

1 3

The error-propagation rate of an instruction in a program
depends on some unknown features. Identifying these effec-
tive features is a contribution of this study. The proposed
classifier was created using a specific dataset. The required
dataset includes the specific features of the instructions
of the selected benchmark programs. Firstly, the effective
instruction-level features are identified by analyzing the
source code of the selected benchmark programs. Indeed,
the degree of error-propagation rate in each instruction is
measured according to the identified features. In this study,
the identified features that have an impact on the error
propagation rate are shown in Table 4. The purpose of the
first stage of the proposed method is to identify those fea-
tures of the program instructions that are required to create
a dataset. The required dataset will be prepared in stage 2.
This dataset is used to create an instruction-classifier by the
machine learning algorithm at stage 3. The required dataset
includes some strategic information (features) about the pro-
gram instructions that have an impact on the error propaga-
tion rate. The objective dataset includes static and dynamic
features, respectively. The static and dynamic features of

the required dataset to create the instruction classifier to be
identified. The static features are quantified by the static
analysis, and the dynamic features of the program are quanti-
fied by the dynamic analysis.

Static Analysis At this stage, each instruction within the
selected benchmark programs is statically analyzed to quan-
tify the value of the static feature depicted in Table 3. This step
of the proposed method shown in Fig. 5, the static features
of the program are extracted from each program instruction.
These features are listed in Table 4. To find these features, as
it is clear from the names of this, there is no need to run the
program, and these characteristics can be quantified using
the CFG graph. The CFG graph is depicted in Fig. 7 for the
factorial program. These features somehow affect the program
error propagation rate and are therefore of interest. All these
details are done in the first step of the proposed method shown
in Fig. 5. Each row in the dataset is related to an instruction
in a dataset. The control flow graph (CFG) of the program
and its description in Tables 5 and 6 are used to quantify the
static features shown in Table 4 for the benchmark programs’

Fig. 5 Stages of the proposed method

Table 4 The identified static and dynamic features of the program instructions

a Total number of operators in the instruction
b Total number of operands in the instruction
c Number of unique operands
d Number of unique operators

Attribute Description

Static Features Number of Variable Definitions The number of variables defined in an instruction
Number of Computational operators The number of mathematical operators applied in an instruction
Number of Conditional operators The number of conditional operators used in an instruction
Number of Variable usages Number of variables used in the instruction
Numerical data value The presence or lack of numerical value in an instruction
Data dependency The number of next instructions which has data dependency on

the result of the current instruction
Nesting level Accessibility of the instruction
Control dependency The number of next instructions which has control dependency

on the result of the current instruction
Instruction length N1a+ N2b

Instruction complexity (N2/n2c)*(n1d/2)
Dynamic Features Average Runtime Average Number of Run

639Journal of Electronic Testing (2023) 39:631–657

1 3

instructions. CFG represents the program's executing paths.
CFG is essential for static analysis of the source code based
on the selected features. Firstly, the CFG is extracted from
the source code and includes nodes and the arcs; the nodes
include a block of non-branch instructions, and the arcs rep-
resent the execution flows of the program. In general, a basic
block (BB) includes a maximum sequence of program instruc-
tions (instructions between two branch instructions). The Fac-
torial program is one of the applied benchmark programs in
the experiments which were investigated. Figure 6 illustrates
the source code of the factorial program, and Fig. 7 shows the
generated CFG for the program. The required CFG is gen-
erated automatically from a source code by different open-
source tools like Visustin (https:// www. aivos to. com/ visus tin.
html) in a polynomial time complexity.

In a CFG, the nodes with more than one output edge
include branch instructions and control data. Table 5 shows
the def-use paths (DU paths) for each data in the program
using the related CFG. For a given specific variable in the
program, all the defined nodes are found. Then, DU paths
are extracted among the definition (def) and use (use) nodes.
Table 6 gives the related def and use in each node (BB) of
the CFG shown in Fig. 7.

The first five features in Table 4 can be set using the
source code. The nesting level of an instruction shows the
accessibility of the instruction. If the instruction is not in an
if instruction, its nesting level is 0; if it is in an if instruction,
then its nesting level is 1. The nesting level of an instruction
is calculated by the source code analysis. Data and control
dependency features are quantified by the generated CFG.
The variable used in an instruction determines data depend-
ency of that instruction to another instruction. The control
dependency shows the degree of dependence of the instruc-
tion on the execution of the parent nodes, which means that
if the parent node is not executed, the child node will not be
executed either. The number of data and control dependen-
cies of the instruction are obtained from the CFG of the
program. The other two features of an instruction are its
length and the complexity that can be computed by using the
Halstead complexity formula Sommerville [46].

Dynamic Analysis Dynamic analysis is considered to be a
method that helps to obtain useful information based on
executive paths. At this stage, the dynamic features that
are depicted in Table 4, are quantified dynamically for the

Fig. 6 A source code of a factorial program as case study 1

Fig. 7 The CFG of the source code represented by Fig. 2

Table 5 Def-Use (DU) paths of each data in the program shown in
Fig. 6

variable DU-paths

i (1, (4,5)), (1, (4,6)), (6,6)
fact_num (1,6), (6,6), (6,5)
num (1, (2,3)), (1, (2,4)), (1,

(4,5)), (1, (4,6))

Table 6 Definition and use instructions into the nodes of the CFG
illustrated in Fig. 7

Node or Edge Definition (D) Uses (U)

1(start block) fact_num,num
2,3 (edge) num
3,4 (edge) num
4,5 (edge) i,num
4,6 (edge) i,num
6 (loop block) fact_num,i fact_num,i
7 (final block)

https://www.aivosto.com/visustin.html
https://www.aivosto.com/visustin.html

640 Journal of Electronic Testing (2023) 39:631–657

1 3

benchmark programs’ instructions. It is time to extract the
dynamic feature of the instructions. This feature, which is
the number of execution of instructions, is obtained from the
execution of each program. To get the values of this feature,
we need a data set that must be prepared as code coverage.
The reason for this is that the code coverage method guaran-
tees that each instruction is executed at least once. For each
program, we need 100 executions in the program. Based
on these executions, we can estimate the average execu-
tion of each instruction. Quantifying these features requires
dynamic analysis of the program at run time. Table 7 gives
the number of executions of each instruction in a factorial
program using a single test data (5). The average number of
executions of each instruction is regarded as the dynamic
feature which is effective on the error-propagation rate. The
program with the test cases should be executed to compute
the number of executions of each instruction. Before execut-
ing the benchmark program, the required test case should
be designed. In this study, edge coverage-based test data
is generated for the benchmark programs. Edge coverage
covers all the edges in the CFG of the program. Generating
test cases to obtain the number of executions of each instruc-
tion can be done using the ACO algorithm [45], or the SDA
algorithm [14]. In this method, we have manually created
test cases based on the edge coverage method and run them
on each application.

The test cases that are designed in this way can execute all
instructions of the program under test at least once. In order
to quantify the number of executions of a program instruc-
tion, the program should be executed by the generated test
data. Table 7 depicts the average number of executions of the
instructions in the factorial programs that have been quanti-
fied after real executions by the generated coverage-based test
data. Table 8 depicts the quantified features for the instruc-
tions of the factorial benchmark program. For example, for
factorial source code in Fig. 6, Data Dependency type1 in
line seven of the program is 2. Due to the data dependence
of the two variables max and x[i] on two instructions 4 and
6, the value of this feature is 2. Data dependency type 2 is

Table 7 The CFG of the source
code represented by Fig. 6

Line Number Avg
Num. of
Run

1 1
2 1
3 1
4 1
5 1
6 5
7 5
8 1

Ta
bl

e
8

 T
he

 q
ua

nt
ifi

ed
 v

al
ue

s o
f t

he
 fe

at
ur

es
 fo

r t
he

 fa
ct

or
ia

l b
en

ch
m

ar
k

pr
og

ra
m

Li
ne

 N
um

be
r

AV
G

.
N

um
. o

f
Ru

n

N
um

. o
f

Va
ria

bl
e

D
ef

in
iti

on

N
um

. o
f

C
om

pu
ta

tio
na

l
O

pe
ra

to
rs

N
um

. o
f

C
on

di
tio

na
l

O
pe

ra
to

rs

N
um

. o
f

Va
ria

bl
e

us
ag

e

N
um

. o
f

in
te

rm
ed

ia
te

D

at
a

N
um

. o
f D

at
a

D
ep

en
de

nc
y

ty
pe

1

N
um

. o
f D

at
a

D
ep

en
de

nc
y

ty
pe

2

N
um

. o
f

C
on

tro
l

D
ep

en
de

nc
y

In
str

uc
tio

n
le

ng
th

In
str

uc
tio

n
C

om
pl

ex
ity

N
es

tin
g

Le
ve

l

1
1

1
0

0
0

0
0

0
0

7
2

0
2

1
1

0
0

1
0

0
0

0
4

1
0

3
1

0
0

1
1

1
0

0
0

5
1

0
4

1
0

0
0

1
0

0
0

1
5

1
1

5
1

0
0

1
0

0
1

1
1

2
1

0
6

5
2

1
1

2
1

1
1

0
13

4
1

7
5

1
1

0
2

0
2

0
1

6
2

2
8

1
0

0
0

2
0

1
0

0
9

1
1

641Journal of Electronic Testing (2023) 39:631–657

1 3

a node dependency. For example, line instructions 5 and 6
both have data dependencies of node type. The instruction 5
is dependent on instruction 3. The instruction 6 is depend-
ent on instruction 5. Considering that the control depend-
ency shows the degree of dependence of the instruction on
the execution of the parent nodes, instructions 4, 5, and 7
are dependent on the parent node, therefore the value of the
control dependency of these three instructions will be equal
to 1. The instruction length is calculated as the total number
of operators and operands. All the brackets, commas, and
terminators are considered operators. For example, in Fig. 6,
the instruction length of instruction in line 1 is equal to 7.
Complexity is calculated based on Halstead complexity for-
mula: (N2/n2) * (n1/2). In this formula, n1 is equal to number
of distinct operators, n2 is equal number of distinct operands,
N1 is equal to total number of occurrences of operators and
N2 is equal to total number of occurrences of operands. In
Factorial benchmark source code, complexity of line 6, The
complexity is calculated as follows:

The result of calculation is equal to 4. The Nesting level
of an instruction shows the accessibility of the instruction.
If the instruction is not in an if instruction, its nesting level
is 0; if it is in an if instruction, then its nesting level is 1. For
example, because of else and for instruction, the nesting
level of 7 line of code is equal to 2.

4.2 Generating the Training Dataset

In this section of the paper, stage 3 of the proposed method
(as shown in Fig. 5) is discussed. The required dataset to
train the machine learning algorithm is prepared in stage 3.
The identified features of the dataset are shown in Table 4
and then quantified using the generated CFG and real

N2 = i, 1, i, num, i

n2 ∶ i, 1, num

n1 ∶ for() , = , ; , <=

execution. There is a record (row) for each program instruc-
tion in the created dataset. As mentioned earlier, static fea-
tures were quantified by means of source code and CFG. The
average number of executions of each instruction was also
measured as a dynamic feature by real executions. Table 8
(as a part of the generated dataset) shows the values of each
feature for all the instructions of the factorial program. The
columns of Table 8 indicate the following features, respec-
tively: the number of variables defined in the instruction
(static feature), the number of computational operators
(static feature), the number of conditional operators (static
feature), the number of used variables in the instruction
(static feature), the number of numerical values used in the
instruction (static feature), the number of data dependencies
of the instruction (static feature), the number of conditional
dependencies of the instruction (static feature), instruction
length (static feature), instruction complexity (static feature),
execution level of the instruction (dynamic feature), nesting
level of each instruction (static feature), and the last feature
error propagation rate of an instruction.

The last column (feature) is the dependent variable, and
the other features are independent variables that are used
in the training stage of the machine learning algorithm. An
extensive series of mutation testing experiments has been
performed in order to measure the error-propagation rate
of each instruction. In these experiments, all possible bugs
(mutants) have been injected into each instruction sepa-
rately by the MuJava tool automatically [31]. After inject-
ing a mutant (bug) into an instruction in a benchmark pro-
gram, the program was executed 100 times by the selected
coverage-based test data. Indeed, the error propagation rate
of each instruction in a program has been measured by 100
executions in the presence of the injected mutant. Equa-
tion 1 is used to measure the error-propagation rate of an
instruction. The number of times the program fails divided
by 100 indicates the error propagation rate of an instruc-
tion. The MuJava is used to measure the error-propagation
rate of each instruction and quantify the last feature. The
features, listed in Table 8, are used in the form of a dataset
for training the machine learning algorithms to create the
instruction classifier.

Table 9 Created Factorial
program dataset as the input of
the ML algorithm

ANR NVD NOP NCOP NVU NID NDD1 NDD2 NCD IL IC NL RANK

1 1 0 0 0 0 0 0 0 8 2 0 C
1 1 0 0 1 0 0 0 0 4 1 0 C
1 0 0 1 1 1 0 0 0 5 1 0 C
0 0 0 0 1 0 0 0 1 5 1 1 D
1 0 0 1 0 0 1 1 1 2 1 0 B
5 2 1 1 2 1 1 1 0 13 4 1 A
5 1 1 0 2 0 2 0 1 6 2 2 B
1 0 0 0 2 0 1 0 0 9 1 1 D

642 Journal of Electronic Testing (2023) 39:631–657

1 3

A larger data set has been used to check the performance
of the data set for entering the machine learning algorithm
Table 9. This data set is taken from Factorial program.
Table 10 depicted dataset extracted from Maximum program
as the input of ML algorithm. As shown in the Table 10, the
RANK column indicates the program instruction type. In
this example, the type D instructions are three instructions.
The technique used in this paper studies this level of instruc-
tions. The source code of this program is shown in Fig. 8.

4.3 Creating the Instruction Classifier using
Machine Learning Algorithm

The impetus behind this stage is to use machine learning
(ML) to create a classifier for classifying program instruc-
tions according to the degree of error propagation. In this
study, different machine learning (ML) algorithms (Gradi-
ent Boosted Trees, Decision Tree, Multi-Layer Perceptrons,
and Random Forest) have been used to create an instruction
classifier and the performance of the created classifier has
been compared with each other. This section includes two
stages: model training and model testing. In the training step
of the proposed method, a program-instruction classifier is
constructed by the ML algorithm as the base learning algo-
rithm. In this stage,the authors used static analysis methods
for converting a program into the identical executive version
which is simpler and Lighter than the original program. It
should be noted that determining the error-propagation rate
of the data and instructions with helping the graphical rep-
resentation is simpler than the main program. The features
in the program instructions are considered as the input layer
of ML algorithm. Create a dataset with 100 examples using
the static and dynamic analysis of source-codes by setting
a local random seed (default = 1992) to ensure repeatabil-
ity. Converting the label attribute(rank) from polynomial to
RANK using the appropriate operator enables us to select

(2)
Error − PropagationRate =

Number of failures

Total Number of Execution
∗ 100%

specific binominal classification performance measures.
Split data into two partitions: an 80% partition (80 exam-
ples) for model building and validation and a 20% partition
for testing. An important point to note is that data parti-
tioning is not an exact science, and this ratio can change
depending on the data. Connecting the 80% output (upper
output port) from the Split Data operator to the Split Valida-
tion operator. Select a relative split with a ratio of 0.7 (70%
for training) and shuffled sampling. Insert one of the NN,
DT, GBT and RF operator in the Training panel of the Split
Validation operator and the usual Apply Model operator in
the Testing panel that embedded into Optimize Parameters
(Grid). Add a Performance (Binomial Classification) opera-
tor. Select the following options in the performance operator:
accuracy, recall, precision, kappa and Root_Mean_Squared_
Error. Figure 9 shows a view of the implementation of
machine learning algorithms in rapidminer tool.

The structure of the required dataset for training the ML
is explained in Table 8. In order to construct the classifica-
tion model, each data set has been divided into K subsets and
k-1 subsets are used as training data; to test the constructed
model, the remaining subset is used. This process has been
repeated k times. It should be noted that the training and test
data should have the same distribution. To this end, the data-
sets are divided into training and test subsets in such a way
that the training and test data include the same percentage
of faulty and non-faulty instances. Finally, the constructed
classifier takes the attributes of a program instruction and
predicts its error-propagation rate category. The features of
an instruction that are required to classify it are explained
in Table 4. The assumed datasets were obtained for all the
benchmark programs. The dataset is the input of the ML
algorithm. In this study, the RapidMiner tool (https:// rapid
miner. com/) was used to implement the required ML algo-
rithm. Table 11 depict the features of the input dataset. The
created classifier classifies the instructions of the program
based on their features. In this study, the program instruc-
tions are categorized into 4 categories by the created clas-
sifier; Table 10 illustrates the determined categories for the

Fig. 8 A source code of a Maxi-
mum program as case study 2

https://rapidminer.com/
https://rapidminer.com/

643Journal of Electronic Testing (2023) 39:631–657

1 3

program instructions. After training the ML algorithm with
the dataset, the created classifier should be tested. The train-
ing data was used to test in this study. The created instruc-
tion classifier was evaluated (tested) using the tenfold cross
validation technique. As mentioned previously, the distribu-
tion of attributes in training and test data is 80% for training
and 20% for testing.

4.4 Mutation Test

Stage 4 of the proposed method is the mutation test.
Figure 10 shows the workflow of the fourth stage (mutation
test) of the proposed method. In this stage, only the error-
prone instructions (identified by the created classifier in
the previous stage) are considered to be injected as mutants
(bugs). This stage is implemented by the MuJava tool to
automatically inject the bugs. The program instructions
that are classified as the non-error-propagating instructions
are avoided in the mutation test. Mutating the non-error-
propagating instructions more likely generates equivalent

mutants. In fact, the suggested method makes use of the
developed classifier to identify the program's most error-
propagating instructions. The overall number of mutants
was decreased by avoiding the mutation of the non-error-
propagating instructions. The mutation scores are also
improved by lowering the number of equivalent mutants. The
proposed method tries to reduce the number of generated
affectless mutants (equivalent); to this end, after classifying
the program instruction by the first step of the proposed
method, the instructions in the class D are not considered for
mutation in the second step. The mutation test was executed
5 times with 5 test suits for each benchmark program.

5 A Review of Mutation Test Environments

Many current applications provide high performance to
process large volumes of data. These applications usu-
ally run in highly distributed environments Nevertheless,
the large and complex architectures required for deploying

Fig. 9 A view of the imple-
mentation of machine learning
algorithms in rapidminer

Table 10 Maximum program
dataset as the input of the ML
algorithm

LOC ANR NVD NOP NCOP NVU NID NDD1 NDD2 NCD IL IC NL RANK

1 1 1 0 0 1 0 0 1 0 1 1 0 C
2 1 0 0 0 2 0 0 1 0 2 1 0 B
3 1 0 0 0 1 0 0 0 0 1 1 0 D
4 1 1 0 0 2 1 0 1 0 4 1 0 B
5 1 0 0 0 1 0 0 0 0 1 1 0 D
6 5 1 1 1 2 1 3 1 0 9 4 0 A
7 5 0 0 1 2 0 2 1 1 4 1 1 B
8 5 0 0 0 2 0 1 0 1 3 1 1 B
9 1 0 0 0 1 0 0 0 0 1 1 0 D
10 1 0 0 0 1 0 0 0 0 1 1 0 C

644 Journal of Electronic Testing (2023) 39:631–657

1 3

these applications may not be available during the develop-
ment phase. Usually, these applications are tested against
a small number of test cases that are manually designed
by the testers. It is desirable to have effective test suites in
order to detect failures in the application models. The basic
characteristics of mutation testing tools include operators
supported by the tool, mutation generation methods, and
speed-up methods [31].

5.1 Mujava

MuJava [40] is a mutation testing system developed for the
testing of Java programs. Its primary purpose has been to
investigate mutation operators specific to object-oriented
programming languages like Java. The prospect of using
MuJava in a large-scale software development setting is an
attractive one, as its mutation operators represent the state
of the art in mutation testing research. However, as it is an
experimental system, the extent to which it is scalable is
unclear. The source code for MuJava is not publicly avail-
able, so its modification for improved scalability is difficult
from a legal and practical point of view. Furthermore, its test
format is not JUnit. It was infeasible for us to port our large
legacy set of JUnit tests.

5.2 MuTomVo

MuTomVo was designed to be used in simulation tools
based on OMNeT++ [50]. MuTomVo can be used with
any other simulation tool based in OMNeT++. MuTomVo
is a mutation testing framework which provides mecha-
nisms to generate test suites and evaluate their effective-
ness. MuTomVo allows to apply the mutation operators for
reproducing the common mistakes made by competent pro-
grammers. MuTomVo is modular in the sense that its func-
tionality is divided into independent modules. Four modules
used to carry out mutation analysis: mutation engine, code
analyzer, mutant builder and code generator. Consequently,

different modifications can be applied to each module with-
out interfering with the rest of the framework. On the other
hand, this framework is flexible in the sense that different
approaches can be integrated in each module. For instance,
different code analyzers can be used to process the source
code of different programming languages like, among oth-
ers, C, C++ and Java.

5.3 Jester

Another tool that has been reviewed is Jester. Jester, in
mutation testing, is considered an expensive tool for branch
testing [34]. In fact, Jester provides a solution to develop a
default set of jump operators, but the problems related to
the efficiency and reliability of this tool remain unsolved.
Additionally, the jump operators offered by Jester are not
context-aware and often lead to broken code. The important
point is that the Jester method is used to generate, com-
pile and run unit tests against a mutation. This process is
repeated for each mutation of the system under test and is
therefore inefficient. Because of these disadvantages, Jester
is not used in practical evaluations.

5.4 Jumble

Jumble has now been made available as an open source pro-
ject on SourceForge at http:// jumble. sourc eforge. net/. The
primary entry point to Jumble is a single Java class that takes
as parameters a class to be mutation tested and one or more
JUnit test classes. The output is a simple textual summary
of running the tests. This is in the style of JUnit test output
and includes an overall score of how many mutations were
successfully caught as well as details about those mutations
that are not. This includes the source line and the mutation
performed. Variants of the output include a version compat-
ible with Java development in emacs where it is possible to
click on the line and go to the source line containing the
mutation point [26].

Fig. 10 The workflow of the fourth Stage of the Proposed Method

http://jumble.sourceforge.net/

645Journal of Electronic Testing (2023) 39:631–657

1 3

5.5 Mothra

Mothra [17] is a mutation testing environment developed
in the eighties for use with Fortran 77. While it cannot be
used with Java software, it is the first fully featured muta-
tion testing system and a large proportion of research on
mutation testing described in the literature is based on it
[37, 38, 40]. Mothra’s mutation operators are the basis of
what is done in Jumble.

6 Evaluation System

An extensive series of experiments have been performed to
determine how well the recommended strategy reduces the
number of mutants in the mutation test. A software-based
experimental framework was developed to assess the effec-
tiveness of the proposed approach. The steps of the experi-
mental system are shown in Fig. 5. The software instruc-
tions were categorized using the newly developed classifier
in the first stage. Predicting the error-propagation rate of
each instruction in each benchmark program is the goal of
this stage. The mutation test was run on program instructions
with various error-propagation classes in the second stage
of the research. A series of mutation test experiments were
conducted to investigate the effectiveness of the proposed
method as follows.

• In the first experiment, all of the benchmark programs'
instructions get random mutation injections. In this
experiment, the MuJava tool's default settings for injec-
tion site and timing are used.

• The instructions with the highest rate of error propa-
gation are subjected to mutations in the second set of
experiments. The instruction classifier produced by the
ML algorithm recognized these instructions.

• Only the instructions with a reduced rate of error-prop-
agation were subjected to mutation in the third series
of experiments; the created classifier recognized these
instructions.

After doing the above-mentioned experiments, the
obtained results were compared with each other for the pur-
pose of investigating and analyzing the effectiveness of the
proposed method.

6.1 Benchmark Programs

To evaluate the effectiveness of the proposed method,
six standard benchmark programs have been selected.
These programs have been extensively used as standard

Ta
bl

e
11

Th

e
Fe

at
ur

es
 o

f t
he

 in
pu

t d
at

as
et

 th
at

 w
as

 u
se

d
to

 tr
ai

n
th

e
im

pl
em

en
te

d
M

L
al

go
rit

hm
s i

n
R

ap
id

M
in

er
 to

ol

A
N

R
N

V
D

N
O

P
N

CO
P

N
V

U
N

ID
N

D
D

1
N

D
D

2
N

C
D

IL
IC

N
L

R
A

N
K

A
ve

ra
ge

N

um
. o

f
Ru

ns

N
um

. o
f

Va
ria

bl
e

D
efi

ni
tio

n

N
um

. o
f

C
om

pu
-

ta
tio

na
l

O
pe

ra
to

rs

N
um

. o
f

C
on

di
tio

na
l

O
pe

ra
to

rs

N
um

. o
f

Va
ria

bl
e

us
ag

e

N
um

. o
f

in
te

rm
ed

i-
at

e
D

at
a

N
um

. o
f D

at
a

D
ep

en
d-

en
cy

 ty
pe

1

N
um

. o
f D

at
a

D
ep

en
d-

en
cy

 ty
pe

2

N
um

. o
f C

on
-

tro
l D

ep
en

d-
en

cy

In
str

uc
tio

n
Le

ng
th

In
str

uc
tio

n
C

om
pl

ex
ity

N
es

tin
g

Le
ve

l
R

A
N

K

In
de

pe
nd

en
t V

ar
ia

bl
es

D
ep

en
de

nt

Va
ria

bl
e

646 Journal of Electronic Testing (2023) 39:631–657

1 3

benchmarks in software testing research. Table 13 provides
the brief of these programs. The many programming struc-
tures and operations used in real-world software are included
in all of the benchmark programs, which were all created in
the Java programming language. The chosen benchmarks
are presented as functions (units). In fact, functions are pre-
sent in the millions of lines of code that make up real-world
applications. The standard size of a real-world function is
between 5 and 50 lines of code. The benchmark programs
are: Triangle, Factorial, FindMax, Prime, Mid, Bubblesort
and DOW. The Triangle benchmark program was used to
determine the type of triangle. The inputs of this program
include 3 integers, which after checking, returns the out-
put of the triangle type program, which includes equilat-
eral, isosceles, and right-angled triangles. If the triangle
formation condition is not met, the output will print an
error message with the title of triangle formation failure.
The Factorial program was used for computing the facto-
rial of an integer. In the factorial program, the entered data
value returns the factorial value of the entered number after
checking the factorial condition in the output. The Middle
program is used to compute and return the middle of three
numbers. In this program, the input contains three numbers.
In this program, the middle value of three entered numbers
is calculated and returned as a result. The FindMax program
specifies the maximum value of a list. Bubblesort takes a
list of integer numbers and sorts them in ascending order.
In the BubbleSort program, sorting is performed with vari-
able number of inputs and the sorted string is printed in
the output. The DOW program includes three categories of
input named year, month and day according to the Grego-
rian date. After taking these three inputs, the program prints
the equivalent day of the week of that date in the output.
For example, the date 1986 month 4 day 18 is equivalent to
Monday. Monday is printed as output.

The other required element in the conducted experiments
is the test set. Random generation of test data does not guar-
antee the coverage of all the instructions of the program.
Hence, in the conducted experiments, the coverage of all
instructions should be taken into account. In simple terms,
the extent to which the source code of a software program
will get executed during testing is what is termed as Code
Coverage. If the tests execute the entire piece of code includ-
ing all branches, conditions, or loops, then we would say
that there is complete coverage of all the possible scenarios
and thus the Code Coverage is 100%. To understand this
even better, let’s take up an example. Figure 11 is a simple
code that is used to add two numbers and display the result
depending on the value of the result. This program takes in
two inputs i.e. ‘a’ & ‘b’. The sum of both is stored in variable

c. If the value of c is less than 10, then the value of ‘c’ is
printed else ‘Sorry’ is printed. Now, if we have some tests
to validate the above program with the values of a & b such
that the sum is always less than 10, then the else part of the
code never gets executed. In such a scenario, we would say
that the coverage is not complete.

Branch coverage aims at ensuring that every branch
appearing in each conditional structure gets executed in
source code. For instance, in the above code, all the ‘If’
statements and any accompanying ‘Else’ statement should
all be covered by the test for a 100% Branch Coverage. For
example, in the above code if value sets (2, 3), (4, 2), (1, 1)
are used then Branch Coverage would be 100%. When data
set (2, 3) is used then (b > a) and the first ‘If’ branch gets
executed. Similarly, when data set (4, 2) is used then (a > b)
evaluates to true and the second ‘If’ branch gets executed.
Then with the data set (1, 1) the ‘Else’ branch evaluates
to true and gets executed. Thereby, ensuring 100% branch
coverage.

Statement Coverage is a measure that tells if all possi-
ble executable statements of code in source code have been
executed at least once. It is a method to ensure that each line
of the source code is covered at least once by the tests. This
might sound simple but caution needs to be exercised while
measuring the Statement Coverage. The reason being, in a
source code there could be a certain condition that might
not get executed depending on the input values. This would
mean that all the lines of code would not be covered in test-
ing. Thus, we may have to use different input value sets to
cover all such conditions in the source code. For example,
in the Fig. 12, if input values are taken as 2 & 3 then, the
‘Else’ part of the code would not get executed. However, if
the input values are of type 3 & 2 then the ‘If’ part of the
code would not get executed. This means that with either set
of values of our Statement Coverage would not be 100%. In
such a case, we may have to execute the tests with all three
[(2, 3), (3, 2), (0, 0)] set of values to ensure 100% Statement
Coverage.

For each benchmark program, different sets of test data
have been prepared based on the coverage criteria. To this
end, the CFG of each benchmark program is created. Edge
coverage is used as a graph-based criterion to generate test
data. Covering all edges in the CFG guarantees the coverage
of the all-program source code. As shown in Fig. 7, cover-
ing all edges of the total CFG is considered as test criteria.
In the second experiment, the CFG was created for each
benchmark program after eliminating the non-error-propa-
gating instructions of that program. In the final experiment,
all instructions can be considered for coverage, but only the
non-error-propagating instructions are important.

647Journal of Electronic Testing (2023) 39:631–657

1 3

6.2 The Framework

In the first stage of the proposed method, visustin (http://
www. aivos to. com/ visus tin. html) is used as a free software
tool to generate the annotated CFG of the input source pro-
gram. The generated CFG was used for static analysis of
the program source code. The required dataset is generated
using CFG and Tables 5 and 6. Tables 5 and 6 describe
the DU-paths of the program variables. These tables are
obtained from the source code and the related CFG. The cre-
ated dataset in the form of a matrix (excel file) was used by
the implemented ML algorithm in the RapidMiner tool set.

RapidMiner is a data mining tool with extensive data
analysis libraries. The main element of the proposed method
is an instruction classifier that was created by training the
implemented ML algorithm. The classifier takes the features
of an instruction (in the form of an array that is explained
in Table 12) and determines its category in terms of error-
propagation rate. The created classifier categorizes the
instructions of a program into 4 categories (explained in
Table 12). In the final stage, after classifying the program
instructions, the mutation test is conducted only on the
identified error-prone instructions. The mutation test is
conducted using MuJava [31]. MuJava as a free mutation
test tool is used in this study extensively. It automatically
produces a set of mutants.

After generating mutant programs (buggy programs),
Mujava uses the Junit tool for executing the test and eval-
uating the mutation score. As given in Table 14, mutation
operators at the method level, supported by Mujava, are listed.
After the CFG of each benchmark program is generated, the
error propagation rate for each instruction is evaluated by the
proposed method. Then, the instructions with a high error
propagation rate are detected by the aid of the classifier which
was obtained in the machine learning part. By changing every
instruction in the benchmark programs, mutant programs
(buggy programs) are created in the first evaluation stage.
Only the instructions with a high error-propagation rate were
subjected to mutation operators in the subsequent assessment
stage. The instructions with a low rate of error-propagation
are subjected to mutation operators in the third assessment
stage. The status of the created mutants is then looked into
in terms of being alive or killed. After that, it is calculated
how many mutations were made on the instructions with the

highest mistake propagation rate and the average mutation
score. Finally, the obtained results are compared and con-
trasted with those of the previous related works.

6.3 Results and Discussion

In this section, the statistical results obtained from the execu-
tion of tests and the generation of mutations and the results
obtained for 6 benchmark programs are explained in detail.

6.3.1 Evaluating the Proposed Classifier

As explained in Section 4, the prepared dataset is used
to train different ML algorithms. In this study, Gradient
Boosted Trees (GBT), Decision Trees (DT), Deep Learning
and Random Forest (RF) have been used as ML algorithms
to create the desired instruction-classifier. The required data-
set has been prepared in stage 2 of the proposed method. The
same dataset was used to train the ML algorithm and the cre-
ated classifier by the ML algorithms has been tested in the
same way (k-fold). Table 15 shows the configuration opera-
tors for all 4 machine learning algorithms. Based on the
value of each of these operators, the execution of the algo-
rithm will be different. But by optimizing these operators,
we have obtained the best implementation of the algorithms.

As explained in Section 4, the created classifier is a multi-
class classifier; the outputs of the classifier are shown in
Table 10. Every instruction in a 4-class classification must
be sorted into one of four categories. Given a set of pro-
gram instructions at the source code level, the generated
classifier must determine which category (A, B, C, or D)
each instruction belongs to. Indeed, the created classifier
takes the features of an instruction and predicts its classes
in terms of its error-propagation rate. The performance of
machine learning classification is measured using the confu-
sion matrix. Table 16 depicts the confusion matrix gener-
ated by the DT algorithm. The created classifiers by the ML
algorithms were evaluated in terms of the following criteria.

• Accuracy: The first criterion for assessing classification
models is their accuracy. Accuracy is the proportion of
predictions made by our model that were accurate.

• Precision: The other performance criterion is precision.
In multi-class classification, the precision is first calcu-
lated for each class, and then the average of the calcu-
lated values indicates the overall precision of the classi-
fier. The precision for an instruction class is the number
of correctly predicted instructions in the class out of all
predicted instructions in the class.

• Recall: The recall as another criterion for an instruction
class depicts the number of correctly predicted instruc-
tions in the class out of the total number of actual instruc-
tions into the class.

Table 12 Categorizing the
program instructions based on
the error-propagation rate

propagation rate Category

81%–100% A
61%–80% B
31%–60% C
0%–30% D

http://www.aivosto.com/visustin.html
http://www.aivosto.com/visustin.html

648 Journal of Electronic Testing (2023) 39:631–657

1 3

• Kappa: The kappa criterion is used to measure only
those instructions that may have been correctly classi-
fied by chance. Kappa can be measured using both the
total accuracy and the random accuracy.

• RMSE: RMSE is typically a performance metric for
evaluation of a regression type machine learning model
where a numerical label has been predicted. It can be
found in the "Performance(Regression)" operator. If your
dataset is a label and an associated prediction for each
row, then it will be able to calculated using that operator.

This stage of the proposed method has been implemented
in the RapidMiner tool set. RapidMiner includes an exten-
sive data analysis library and it is one of the most frequently
used tools for data analysis and data mining applications.
Table 17 shows the performance of the created classifier
by different ML algorithms in terms of accuracy, precision,
recall, kappa and Root Mean Squared Error. Accuracy is
the percentage of correctly classifies instances out of all
instances. It is more useful on a binary classification than
multi-class classification problems because it can be less
clear exactly how the accuracy breaks down across those

classes. Precision is the ratio of true positive samples to all
samples classified as positive. It is also known as Positive
Predictive Value (PPV). Recall is the ratio of true positive
samples to all samples that are actually positive. It is also
called True Positive Rate (TPR) or sensitivity. Kappa or
Cohen’s Kappa is like classification accuracy, except that
it is normalized at the baseline of random chance on your
dataset. It is a more useful measure to use on problems that
have an imbalance in the classes (e.g. 70–30 split for classes
0 and 1 and you can achieve 70% accuracy by predicting all
instances are for class 0). RMSE or Root Mean Squared
Error is the average deviation of the predictions from the
observations. It is useful to get a gross idea of how well

Fig. 11 Implemented experiments for evaluating the effectiveness of the proposed method in reducing the cost of mutation test

Table 13 Benchmarks programs characteristics

 Programs Program size
(code lines)

Program description

Triangle 16 Determining triangle type
Factorial 8 Determining factorial number
Mid 10 Finding the middle of 3numbers
FindMax 15 Finding the greatest number
Prime 22 Determines if it is a prime number
Bubblesort 5 Sorting the list
 DOW 56 Mapping day of week numeric to day

of week

Table 14 The mutation operators that have been used by the MuJava
tool in the proposed method

Operator Description

AOR Replacing the Arithmetic Operator
AOI Inserting the Arithmetic Operator
AOD Deleting the Arithmetic Operator
ROR Replacing the Relational Operator
COR Replacing the Conditional Operator
COI Inserting the Conditional Operator
COD Deleting the Conditional Operator
SOR Replacing the Shift Operator
LOR Replacement the Logical Operator
LOI Inserting the Logical Operator
LOD Deleting the Logical Operator
ASR Replacing the Assignment Operato

Deletion operators added in 2013

SDL Deleting the Statement
VDL Deleting the Variable
CDL Deleting the Constant
ODL Deleting the Operator

649Journal of Electronic Testing (2023) 39:631–657

1 3

(or not) an algorithm is doing, in the units of the output
variable.

6.3.2 Evaluating the Mutation‑Testing Method

The primary goal of this project is to lower the cost of
software mutation testing by locating and removing effect-
less mutants (equivalent mutants). It is noteworthy that the
static and dynamic analysis stages are aimed at accelerat-
ing and facilitating the next stages. A relationship was
introduced for estimating the error-propagation rate of
each instruction with respect to the CFG and source code.
The ML algorithm classifies the highly error-propagating
instructions of the program according to features. effect-
less mutants are determined according to the rate of propa-
gation to the program output. Creating mutation in the
instructions of source-code with a low propagation prob-
ability results in the ineffective mutation. Using ML clas-
sification, the proposed method intelligently finds a small
subset of program code which includes maximum error-
propagation rate. Then, rather than creating a large number
of mutations in all source-code, only the instructions of
error-propagating instructions are selected as the target
instructions for creating mutations. Then the created muta-
tions in the ineffective codes are ineffective and equivalent
and removing these parts improves the efficiency of muta-
tion test. The efficiency of the suggested strategy has been
examined through a series of experiments. As shown in
Table 13, a set of standard programs have been used as the
benchmark programs. All the mutation test experiments
have been performed on the MuJava and Junit platforms.
For each benchmark program, five sets of test data were
selected. Table 18 shows the generated coverage-based test
data for the benchmark programs. These test sets were
used during the mutation test. After generating the mutants
of each benchmark program by MuJava, the mutant pro-
grams were executed by the selected test sets. The required
metrics in this stage of the experiments are as follows.

• Number of generated mutants
• Number of killed mutants
• Number of live mutants
• The reduction rate of the live mutants
• The reduction rate of the total mutantsTa

bl
e

15

Sh
ow

s t
he

 c
on

fig
ur

at
io

n
op

er
at

or
s f

or
 a

ll
4

m
ac

hi
ne

 le
ar

ni
ng

 a
lg

or
ith

m
s

D
T

A
lg

or
ith

m
D

ec
is

io
n

Tr
ee

.c
rit

er
io

n
D

ec
is

io
n

Tr
ee

.n
um

be
r_

of
_

pr
ep

ru
ni

ng
_a

lte
rn

at
iv

es
D

ec
is

io
n

Tr
ee

.a
pp

ly
_p

re
pr

un
in

g
D

ec
is

io
n

Tr
ee

.m
in

im
al

_l
ea

f_
si

ze
D

ec
is

io
n

Tr
ee

.m
ax

im
al

_d
ep

th

Va
lu

e
R

an
ge

{ g
ai

n_
ra

tio
, i

nf
or

m
at

io
n_

ga
in

,
gi

ni
_i

nd
ex

, a
cc

ur
ac

y}
[0

,1
00

]
{T

ru
e,

Fa
ls

e}
[1

, I
nfi

ni
ty

]
[-

1,
10

0]

D
L

A
lg

or
ith

m
D

ee
p

Le
ar

ni
ng

.a
da

pt
iv

e_
ra

te
D

ee
p

Le
ar

ni
ng

.le
ar

ni
ng

_r
at

e_
de

ca
y

D
ee

p
Le

ar
ni

ng
.m

ax
_w

2

Va
lu

e
R

an
ge

{T
ru

e.
Fa

ls
e}

[0
,1

]
[0

, 3
.4

02
82

34
66

38
52

88
6E

38
]

G
B

T
A

lg
or

ith
m

G
ra

di
en

t B
oo

ste
d

Tr
ee

s.n
um

-
be

r_
of

_t
re

es
G

ra
di

en
t B

oo
ste

d
Tr

ee
s.

m
in

_s
pl

it_
im

pr
ov

em
en

t

Va
lu

e
R

an
ge

[1
,1

00
0]

[0
,1

]

R
F

A
lg

or
ith

m
R

an
do

m
 F

or
es

t.c
on

fid
en

ce
R

an
do

m
 F

or
es

t.c
rit

er
io

n
R

an
do

m
 F

or
es

t.a
pp

ly
_p

re
pr

un
in

g

Va
lu

e
R

an
ge

[1
.0

E-
7,

0.
5]

{ g
ai

n_
ra

tio
, i

nf
or

m
at

io
n_

ga
in

, g
in

i_
in

de
x,

 a
cc

ur
ac

y}
{T

ru
e,

Fa
ls

e}

Table 16 Confusion matrix of
the DT algorithm that is used to
measure evaluation criteria

Actual Classes

A B C D

Predicted
Classes

A 38 1 0 0
B 0 14 0 0
C 0 0 13 2
D 0 0 0 12

650 Journal of Electronic Testing (2023) 39:631–657

1 3

At this stage of the proposed method, three sets of experi-
ments have been performed separately on each benchmark
program.

• All instructions of the benchmark program were mutated
by the MuJava and then the generated buggy programs
(mutants) were executed by the Junit using the prepared
test data.

• Only the error-prone instruction identified by the pro-
posed method were considered for the mutation in the
MuJava. In this experiment, the generated mutants were
executed by the Junit to evaluate the mutation score.

• Only the non-error-prorating instructions have been con-
sidered for the mutation test. Similar to the former exper-
iments, the generated mutants were executed to calculate
the mutation score.

Table 19 depicts the generated mutants for all bench-
mark programs. As seen in Table 19, all of the benchmark
programs' instructions were subjected to MuJava operators
(mutation operators). The discovered instructions by our
developed classifier were regarded as mutations in the sub-
sequent experiments. Class A instructions are the ones that
propagate the errors to the program output; class D instruc-
tions, on the other hand, don't propagate the errors to the
program output.

Figure 13 indicates the generated mutants for differ-
ent instructions of each benchmark program by MuJava.
On average, about 43.24% of the generated mutants are
related to the most error-propagating instructions that were

identified by the classifier. About 38.29% of the generated
mutants are related to the instructions of classes B and C.
About 18.45% of the generated mutants are related to the
non-error-propagating instructions. The error-propagation
rate of the instructions is not taken into account by the typi-
cal mutation testing methods, which operate in a brute-force
way. In fact, all program instructions are tested in the muta-
tion testing methods and tools. Consequently, a sizable por-
tion of the created mutants are equivalent. Meanwhile, the
proposed method performs the mutation operators only on
the instructions that were classified in classes A, b, C; the
instructions in class D (non-error propagating instructions)
are avoided to mutate. The generated mutants on the non-
error propagating instructions are more likely equivalent.

Figure 14 shows the total number generated mutants in
each benchmark programs in two experiments. In the first
experiment (brute force technique), all instructions of the
programs were mutated by the mutation operators of the
MuJava. On the second experiment, the non-error propa-
gating instructions were eliminated in the mutation test and
the instructions in classes A, B, and C (error-propagating
instructions) were mutated. In every experiment, the sug-
gested method (error-propagation aware method) produces
fewer mutants than brute force mutation testing. The aver-
age number of mutants produced by the brute force muta-
tion in MuJava is around 136.28, but the average number
of mutants produced by the suggested approach is approxi-
mately 114.42. In fact, the number of mutants for a program
function (unit) produced by the suggested procedure is far
smaller than the number of mutants produced by the brute

Table 17 The output of different
ML in terms of accuracy, kappa,
recall, precision and RMSE

Name of ML algorithm Accuracy Kappa Recall Precision Root_Mean_
Squared_
Error

Random Forest (RF) 100% 1.000 100% 100% 0.280 ± 0.000
Decision Tree (DT) 96.25% 0.945 94.76% 95.91% 0.148 ± 0.000
Deep Learning 96.49% 0.948 95.45% 98.28% 0.237 ± 0.000
Gradient Boosted Trees (GBT) 96.25% 0.945 94.76% 96.03% 0.211 ± 0.000

Table 18 Five different test set for each benchmark that were selected based on the code coverage criteria

Programs Num. of inputs Test Suit

Triangle 3 {(12, 12, 18), (14, 14, 14), (5, 4, 3), (13, 14, 13), (8, 6, 10)}
Factorial 1 {20, 15, 17, 3, 2}
Mid 3 {(231, 231, 231), (14, 12, 19), (180, 643, 522), (200, 200, 120), (213, 421, 213)}
FindMax 5 {(453, 564, 87, 235, 78), (45, 64, 193, 77, 78), (128, 93,14, 31, 0), (93, 432, 37,11, 42),

(89, 75, 63, 142, 29)}
Prime 1 {17, 21, 23, 27, 19}
Bubblesort List of n integer values {(25, 26, 87, 230, 298, 1000, 1020), (1,-3,19,77,0, 658, 9), (35, 30, 29, 21, 15, 8, 7),

(93, 432, 108, 370, 42, 93), (9, 75, 603, 12, 9, 2)}
DOW 3 {(14,1,1994),(22,1,1962),(9,11,1904),(1,2,1940),(15,5,1955)}

651Journal of Electronic Testing (2023) 39:631–657

1 3

force mutation test. The results show that the suggested strat-
egy significantly reduced the number of mutants, which in
turn reduced the cost of the mutation test. The selected test
suit based on code coverage for each benchmark program
has been explained in Table 18.

Figure 15 illustrates the number of live mutants of seven
programs in the five executions by the Junit. The live
mutants are the mutants that were not killed (detected) by
the test sets. On average, the number of live mutants in the
brute force methods (traditional methods) is shown with
green color for all programs; for Triangle program, the num-
ber of live mutants in the proposed method is about 107.
Indeed, 29.13% of the live mutants have been reduced by the
proposed method in the test of the Triangle program. The
proposed method tries to reduce the equivalent mutants by
avoiding the mutation of the non-error-propagating instruc-
tions. The proposed method has similar effectiveness to the
bubblesort benchmark program. The number of live mutants
is considerably reduced by the proposed method. On aver-
age, the number of live mutants in the bubblesort program
is about 3.4, whereas in brute force mutation testing this
figure is about 9.4.

The results of the mutation testing on the factorial pro-
gram have been shown in Fig. 15 using the five different test
sets. The results demonstrate that the number of live mutants
may be significantly decreased using the suggested strategy.

The brute force mutation test produces an average of around
23.2 live mutants; the suggested approach produces an aver-
age of about 9.4 live mutants.

Similar mutation experiments have been performed on
the Prime benchmark program. Firstly, all instructions in
the program were mutated by MuJava. Indeed, all mutation
operators of the MuJava performed in all instructions of the
program in an automatic platform. Secondly, the mutation
operators were performed only on the error-propagation
instructions that had been identified by the first step of the
proposed method. In the Prime, the proposed method pro-
vides similar results. Figure 14 illustrates how fewer affect-
less mutants were produced using the proposed method. The
Middle program is another benchmark that is applied in the
tests. This program offers several program structures that
may be utilized in real-world projects. In fact, the chosen
benchmark programs perform features that are common
to real-world systems. The number of live mutants created
using the suggested method is less than those generated
using the brute force method, as illustrated in Fig. 15. The
similar experiment was performed on the Max program.
Similarly, to the previous experiments, the affectless mutants
were avoided, and consequently the mutation score of the
selected test sets has been increased. All in all, the proposed
method is successful in reducing affectless mutants.

The final experiment in Fig. 15 was performed on the
DOW program. This program is bigger in number of lines(56
LOC) compared to the previous programs. With similar
results observed, comparing the number of live mutations
compared to the original program shows success in reduc-
ing live mutations. Figure 16 shows mutation score in the
mutation test performed on the all programs in the brute
force and error-propagation aware (proposed) methods with
5 test sets. Eliminating the ineffective mutants (equivalent
mutants) causes an increase in the mutation score of the
test sets. The results show the effectiveness of the proposed
method in terms of the ineffective mutants’ reduction. As
shown in Fig. 16, the mutation score of all test sets has been
increased in the error-propagation aware mutation test. In the

Table 19 Generated mutants for all benchmarks by the mujava tool

program name Total mutants Number of mutants for a
instructions

Number of mutants for b
instructions

Number of mutants for c
instructions

Number of
mutants for d
instructions

Triangle 252 96 79 33 44
Bubble sort 97 52 23 12 10
Factorial 68 27 15 8 18
Prime 66 29 12 10 15
Middle 121 58 28 20 15
FindMax 56 19 10 9 18
DOW 294 107 101 52 34

Fig. 12 A simple program used to illustrate code coverage

652 Journal of Electronic Testing (2023) 39:631–657

1 3

Fig. 13 Percentage of the generated mutants on the different instructions with different error propagation rate by MuJava

Fig. 14 Number of generated mutants in two brute force and error-propagation aware (proposed) methods

653Journal of Electronic Testing (2023) 39:631–657

1 3

Fig. 15 Number of Live mutants in the mutation test performed on the all programs in the brute force and error-propagation aware (proposed)
methods with 5 test sets

Fig. 16 Obtained mutation score in the mutation test performed on the all programs in the brute force and error-propagation aware (proposed)
methods with 5 test sets

654 Journal of Electronic Testing (2023) 39:631–657

1 3

error-propagation aware mutation test, the obtained incre-
ment in the mutation score of the same test sets is about
25.70%. Additionally, the suggested method outperforms the
brute force method in terms of mutation score for the iden-
tical test sets. Additionally, the suggested method outper-
forms the conventional method in terms of mutation score
across all test sets (five test sets). The mutation score of a
test set can be evaluated accurately with a limited number
of mutants.

As shown in Fig. 16, the mutation score of the test
sets for bubblesort program reached 95.20% in the pro-
posed method. The mutation score of the identical test
sets therefore increased to 82.8 percent. Therefore, the
factorial experiments' findings show that the suggested
method is effective at identifying and removing affect-
less mutants. For Middle program, the suggested method
outperforms the conventional method in terms of muta-
tion score across all test sets (five test sets). Similarly, to
the previous experiments, for Max program, the muta-
tion score of a test set can be evaluated accurately with
a limited number of mutants. The final experiment was
performed on the DOW program. The average value of the
test score in the Dow program for the original program
is about 21.4 and for error-propagation aware method is

22.7. This increase is a very significant number for a pro-
gram with 56 lines of code.

Tables 20 and 21 indicate the percent of the reduced
total and live mutants in all benchmark programs in the
proposed method. The number of produced mutants is
typically reduced by roughly 19% using the suggested
method. Additionally, the live mutants are reduced by
32.24% as a result of the suggested technique. It should
be noted that the suggested method tries to eliminate
only the effect-less mutant (equivalent). The key techni-
cal benefit of the suggested method is that the mutation
of the instructions that don't propagate errors is avoided.
These findings could help the current mutation-test tools
and procedures perform better. The method described in
this study may be used with MuJava, Muclipse, and other
related mutation tools. Finally, researchers and software
developers can benefit from the results of this study.

7 Conclusion

To sum it up, the proposed method was divided into two
significant phases. In the first phase, the source code of the
input-program source code was statically and dynamically
investigated to identify the error-propagating features of
the program instructions. With regard to the identified
features, a dataset was created using a set of standard
benchmark programs. In the next phase of the method, the
dataset was used to train the ML algorithms and create an
instruction classifier. The constructed classifier classes the
program instructions based on its error-propagating rate.
The instructions that are classified as error-propagating,
are considered in the mutation testing by the MuJava tool.
The non-error-propagating instructions are avoided due
to mutation in the proposed method. This technique aims
to reduce the number of mutants generated, specifically
targeting non-error propagating instructions, in order to
improve the efficiency of mutation testing. By selectively
excluding non-error propagating instructions from the
mutation process, the proposed technique effectively reduces
the number of mutants generated during mutation testing.
The proposed method identifies the strategic locations of the
program source code in terms of error-propagation rate and
performs the standard mutation operators on them. Avoiding
the non-error propagating instructions caused a considerable
reduction in the number of generated mutants in the
mutation test. Consequently, a sizable portion of the created
mutants are equivalent. Meanwhile, the proposed method
performs the mutation operators only on the instructions
that were classified in classes A, b, C; the instructions in
class D (non-error propagating instructions) are avoided to
mutate. The generated mutants on the non-error propagating
instructions are more likely equivalent. each benchmark

Table 20 The number of generated mutants for all benchmarks in
brute-force and proposed method by the MuJava tool

Benchmark Brute force
Method

Proposed
Method

Percent of the
reduced total
mutants

Triangle 252 192 13.12%
Prime 97 87 10.30%
Maximum 68 50 26.47%
BubbleSort 66 51 22.72%
Middle 121 106 12.39%
Factorial 56 38 32.14%
DOW 294 277 5.78%

Table 21 The average number of live mutants in five test executions
in brute-force and proposed method by the MuJava tool

Benchmark Brute force
Method

Proposed Method Percent of the
reduced live
mutants

Triangle 151.4 107.4 29.06%
Prime 44.4 25.8 41.89%
Maximum 22 7.2 67.27%
BubbleSort 9.4 3.4 63.82%
Middle 97.6 82.6 15.36%
Factorial 23.2 9.4 59.48%
DOW 228 213 6.57%

655Journal of Electronic Testing (2023) 39:631–657

1 3

programs in two experiments. In the first experiment (brute
force technique), all instructions of the programs were
mutated by the mutation operators of the MuJava. On the
second experiment, the non-error propagating instructions
were eliminated in the mutation test and the instructions in
classes A, B, and C (error-propagating instructions) were
mutated. In every experiment, the suggested method (error-
propagation aware method) produces fewer mutants than
brute force mutation testing. Therefore, the proposed method
of reducing mutation testing focuses on selectively mutating
error-propagating instructions while avoiding non-error
propagating instructions. The results show that the suggested
strategy significantly reduced the number of mutants, which
in turn reduced the cost of the mutation test.

The proposed approach for reducing mutation testing
involves selectively applying mutation operators on error-
propagating instructions, while avoiding non-error
propagating instructions. One of the main problems
associated with mutation testing is the large number
of equivalent mutants that are generated. The strategy
of selectively applying mutation operators on error-
propagating instructions and avoiding non-error
propagating instructions in the proposed approach helps
to reduce the number of equivalent mutants. In the one
of the previous methods in term of mutation reduction,
using the genetic algorithm, paths with a high impact
on the error propagation rate have been identified, and
mutants were only applied to the paths with a high error
propagation rate [24]. But the problem of this method is the
misclassification of killable mutants instead of equivalent
mutants and the misclassification of equivalent mutants
instead of killable mutants. although in this method, instead
of examining the program at the level of instructions, the
program was evaluated at the level of the path, and this
caused low efficiency in examining the mutants. Because
the granularity of program evaluation in the genetic
algorithm method is larger than the proposed method.
Finding the error-propagating instructions of a program
source code can be mapped in an optimization problem and
then it can be solved by different metaheuristic algorithm
suggested in [4, 7, 55]. Error propagation rate is an indirect
metric of an instruction in a program. some of them have
been identified in this study, but identifying the other
effective features is suggested as one of the future studies.
The other extension of this study is using deep learning to
create more accurate and more precise classifiers.

Author Contribution All authors contributed to this study.

Funding The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Data Availability The data related to the current study is available in
the google. Drive and can be freely accessed by the following link:
https:// drive. google. com/ drive/ folde rs/ 1QqFF XYpgi ntZeS gQi7u zytBD
PdkNp uBD? usp= shari ng

Declarations

Conflict of Interest The authors have no relevant financial or non-fi-
nancial conflict interests.

References

 1. Acree A, Budd T, DeMillo R, Lipton R, Sayward F (1980) Muta-
tion Analysis, School of Information and Computer Science.
Georgia Inst Technol

 2. Arasteh B (2018) Software Fault-Prediction using Combination
of Neural Network and Naive Bayes Algorithm. J Netw Technol
9(3):94–101. https:// doi. org/ 10. 6025/ jnt/ 2018/9/ 3/ 94- 101

 3. Arasteh B (2019) ReDup: A software-based method for detecting
soft-error using data analysis. In Comput Electr Eng 78(9):89–107

 4. Arasteh B, Fatolahzadeh A, Kiani F (2022) Savalan: Multi objec-
tive and homogeneous method for software modules clustering. J
Softw Evol 34(1):2022. https:// doi. org/ 10. 1002/ smr. 2408

 5. Arasteh B, Miremadi SG, Rahmani AM (2014) Developing Inher-
ently Resilient Software Against Soft-Errors Based on Algorithm
Level Inherent Features. J Electron Test 30(9):193–212. https://
doi. org/ 10. 1007/ s10836- 014- 5438-8

 6. Arasteh B, Pirahesh S, Zakeri A, Arasteh B (2014) Highly Avail-
able and Dependable E-learning Services Using Grid System.
Procedia Soc Behav Sci 143(2014):471–476. https:// doi. org/ 10.
1016/j. sbspro. 2014. 07. 519

 7. Arasteh B, Razieh S, Keyvan A (2020) ARAZ: A software
modules clustering method using the combination of particle
swarm optimization and genetic algorithms. Intell Decis Technol
14(4):449–462. https:// doi. org/ 10. 3233/ idt- 200070

 8. Barbosa EF, Maldonado JC, Vincenzi AMR (2001) Toward the
determination of sufficient mutant operators for C. Softw Test
Verif Reliab 11(2):113–136

 9. Binu Rajan MR, Vinod Chandra SS (2017) ABC Metaheuristic
Based Optimized Adaptation Planning Logic for Decision Making
Intelligent Agents in Self Adaptive Software System. Lect Notes
Comput Sci 10387:496–504

 10. Bishop CM (1995) Neural networks for pattern recognition. Clar-
endon Press, Oxford, England. Oxford University Press, Inc. New
York, NY, USA ©1995 ISBN: 0198538642. Available at: http://
cs. du. edu/ ~mitch ell/ mario_ books/ Neural_ Netwo rks_ for_ Patte rn_
Recog nitio n_-_ Chris topher_ Bishop. pdf

 11. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
 12. Budd TA (1980) Yale University, Mutation Analysis of Program

Test Data
 13. Bouyer A, Arasteh B, Movaghar A (2007) A new hybrid model

using case-based reasoning and decision tree methods for improv-
ing speedup and accuracy. IADIS International conference of
applied computing

 14. Chandra SV, Sankar SS, Anand HS (2022) Smell detection agent
optimization approach to path generation in automated software
testing. J Electron Test 38(6):623–636. https:// doi. org/ 10. 1007/
s10836- 022- 06033-8

 15. Dang X, Gong D, Yao X, Tian T, Liu H (2022) Enhancement
of Mutation Testing via Fuzzy Clustering and Multi-Population
Genetic Algorithm. IEEE Trans Softw Eng 48(6):2141–2156

https://drive.google.com/drive/folders/1QqFFXYpgintZeSgQi7uzytBDPdkNpuBD?usp=sharing
https://drive.google.com/drive/folders/1QqFFXYpgintZeSgQi7uzytBDPdkNpuBD?usp=sharing
https://doi.org/10.6025/jnt/2018/9/3/94-101
https://doi.org/10.1002/smr.2408
https://doi.org/10.1007/s10836-014-5438-8
https://doi.org/10.1007/s10836-014-5438-8
https://doi.org/10.1016/j.sbspro.2014.07.519
https://doi.org/10.1016/j.sbspro.2014.07.519
https://doi.org/10.3233/idt-200070
http://cs.du.edu/~mitchell/mario_books/Neural_Networks_for_Pattern_Recognition_-_Christopher_Bishop.pdf
http://cs.du.edu/~mitchell/mario_books/Neural_Networks_for_Pattern_Recognition_-_Christopher_Bishop.pdf
http://cs.du.edu/~mitchell/mario_books/Neural_Networks_for_Pattern_Recognition_-_Christopher_Bishop.pdf
https://doi.org/10.1007/s10836-022-06033-8
https://doi.org/10.1007/s10836-022-06033-8

656 Journal of Electronic Testing (2023) 39:631–657

1 3

 16. Delgado-Pérez P, Medina-Bulo I (2018) Search-based mutant
selection for efficient test suite improvement: Evaluation and
results. Inf Softw Technol 104(2018):130–143

 17. DeMillo RA, Spafford EH (1986) The Mothra software testing
environment, presented at The 11th NASA Softw Eng Lab Work-
shop Goddard Space Center

 18. Deng L, Offutt J, Ammann P, Mirzaei N (2017) Mutation opera-
tors for testing Android apps. Inf Softw Technol 81:154–168

 19. Friedman JH (2001) Greedy function approximation: a gradient
boosting machine. Ann Stat 29(5):1189–1232

 20. Friedman JH (2002) Stochastic gradient boosting. Comput Stat
Data Anal 38(4):367–378

 21. Ghaemi A, Arasteh B (2020) SFLA-based heuristic method to
generate software structural test data. J Softw Evol Proc 32:e2228.
https:// doi. org/ 10. 1002/ smr. 2228

 22. Gheyi R, Ribeiro M, Souza B, Guimarães M, Fernandes L,
d’Amorim M, Alves V, Teixeira L, Fonseca B (2021) Identifying
method-level mutation subsumption relations using Z3. Inf Softw
Technol 132:106496

 23. Good IJ (1951) Probability and the Weighing of Evidence, Phi-
losophy Volume 26, Issue 97, 1951. Published by Charles Grif-
fin and Company, London 1950. Copyright © The Royal Institute
of Philosophy 1951, pp. 163–164. https:// doi. org/ 10. 1017/ S0031
81910 00268 63. Available at Royal Institute of Philosophy web-
site: https:// www. cambr idge. org/ core/ journ als/ philo sophy/ artic le/
proba bility- and- the- weigh ing- of- evide nce- by- goodi-j- london- charl es-
griff in- and- compa ny- 1950- pp- viii- 119- price- 16s/ 7D911 224F3
713FD CFD14 51BBB 29824 42

 24. Hosseini S, Arasteh B, Isazadeh A, Mohsenzadeh M,
Mirzarezaee M (2021) An error-propagation aware method to
reduce the software mutation cost using genetic algorithm. Data
Technologies and Applications 55(1):118–148. https:// doi. org/ 10.
1108/ DTA- 03- 2020- 0073

 25. Howden WE (1982) “Weak mutation testing and completeness of
test sets.” IEEE Trans Softw Eng 8(4):371–379

 26. Irvine SA, Pavlinic T, Trigg L, Cleary JG, Inglis S, Utting M
(2007) Jumble Java byte code to measure the effectiveness of unit
tests. Proceedings of the Test: Acad Ind Proc Pract Res Tech -
MUTAT (TAICPART-MUTATION ’07). IEEE Computer Society,
USA, pp 169–175. https:// doi. org/ 10. 1109/ taic. part. 2007. 38

 27. King KN, Offutt AJ (1991) A Fortran language system for muta-
tion-based software testing. Softw: Pract Exper 21(7):685–718

 28. Kintis M, Papadakis M, Malevris N (2010) Evaluating mutation
testing alternatives: a collateral experiment. Proc 17th Asia-
Pacific Softw Eng Proc (APSEC)

 29. Kurtz B, Ammann P, Delamaro M, Offutt J, Deng L (2014)
Mutant subsumption graphs. 2014 IEEE Seventh Int Proc Softw
Test Verif Valid Workshops (ICSTW)

 30. Kurtz B, Ammann P, Offutt J (2015) Static analysis of mutant
subsumption. IEEE Eighth Int Proc Softw Test Verif Valid Work-
shops (ICSTW)

 31. Ma YS, Offutt J, Kwon YR (2006) MuJava: A Mutation System
for Java. In 28th Int Proc Softw Eng (ICSE ’06)

 32. Malevris N, Yates D (2006) The collateral coverage of data flow
criteria when branch testing. Inf Softw Technol 48(8):676–686

 33. McCulloch WS, Pitts W (1943) A logical calculus of the ideas
immanent in nervous activity. Bull Math Biophys 5(4):115–133

 34. Moore I (2001) Jester - a JUnit test tester
 35. Mresa ES, Bottaci L (1999) Efficiency of mutation operators and

selective mutation strategies: an empirical study. Softw Test Verif
Reliabil 9(4):205–232

 36. Nilsson NJ (1965) Learning machines. New York: McGraw-Hill.
Published in: J IEEE Trans Inf Theory 12(3):407, 1966. Inf Theory

12(3), 1966. https:// doi. org/ 10. 1109/ TIT. 1966. 10539 12. Available
at ACM digital library website: http:// dl. acm. org/ citat ion. cfm? id=
22674 04

 37. Offutt AJ, Lee SD (1994) An empirical evaluation of weak muta-
tion. IEEE Trans Softw Eng 20(5):337–344

 38. Offutt AJ, Rothermel G, Zapf C (1993) An experimental evalua-
tion of selective mutation. Proceedings of the 15th Int Proc Softw
Eng, ICSE ’93, IEEE Computer Society Press, Los Alamitos, CA

 39. Offutt J, Lee A, Rothermel G, Untch RH, Zapf C (1996) An
Experimental Determination of Sufficient Mutant Operators.
ACM Trans Softw Eng Methodol 5:99–118

 40. Offutt J, Ma Y-S, Kwon YR (2006) MuJava: an automated class
mutation system. Softw Test Verif Reliab 15:97–133

 41. Osisanwo FY, Akinsola JET, Awodele O, Hinmikaiye JO, Ola-
kanmi O, Akinjobi J (2017) Supervised machine learning algo-
rithms: classification and comparison. Int J Comput Trends Tech-
nol (IJCTT) 48(3):128–138

 42. Papadakis M, Malevris N (2010) An empirical evaluation of the
first and second order mutation testing strategies. Third Int Proc
Softw Test Verif Valid Workshops (ICSTW)

 43. Quinlan JR (1986) Induction of decision trees. Mach Learn
1(1):81–106

 44. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning repre-
sentations by back propagating errors. Nature 323(6088):533

 45. Sharma B, Girdhar I, Taneja M, Basia P, Vadla S, Srivastava PR
(2011) Software coverage: A testing approach through ant col-
ony optimization. Lecture notes in computer science, vol 7076.
Springer, Berlin, Heidelberg. https:// doi. org/ 10. 1007/ 978-3- 642-
27172-4_ 73

 46. Sommerville I (2018) Software engineering, 10th edn. Pearson
India (ISBN: 9332582696)

 47. Sridharan M, Siami-Namin A (2010) Prioritizing mutation opera-
tors based on importance sampling. In: Proceedings of the IEEE
21th Int Sympo- sium Softw Reliab Eng (ISSRE). IEEE, San Jose,
CA, USA, pp. 378–387

 48. Taiwo OA (2010) Types of Machine Learning Algorithms, New
Advances in Machine Learning, Yagang Zhang (Ed.), ISBN:
978-953-307-034-6, InTech, University of Portsmouth United
Kingdom. Pp 3 – 31. Available at InTech open website: http://
www. intec hopen. com/ books/ new- advan ces- inmac hine- learn ing/
types- of- machi ne- learn ing- algor ithms

 49. Uddin S, Khan A, Hossain ME, Moni MA (2019) Comparing dif-
ferent supervised machine learning algorithms for disease predic-
tion. BMC Med Inform Decis Mak 19(1):1–16. https:// doi. org/ 10.
1186/ s12911- 019- 1004-8

 50. Varga A (2001) Discrete event simulation system. In Proc Eur
Simul Multiconference (ESM’2001) (pp. 1–7)

 51. Wei C, Yao X, Gong D, Liu H (2021) Spectral clustering
based mutant reduction for mutation testing. Inf Softw Technol
132:106502

 52. Wong WE (1993) On mutation and data flow. Ph.D. dissertation,
Purdue University

 53. Woodward M, Halewood K (1998) From weak to strong, dead or
alive? An analysis of some mutation testing issues. Proc Second
Workshop Softw Test Verif Anal

 54. Yao X, Zhang G, Pan F, Gong D, Wei C (2022) Orderly Genera-
tion of Test Data via Sorting Mutant Branches Based on Their
Dominance Degrees for Weak Mutation Testing. In IEEE Trans
Softw Eng 48(4):1169–1184

 55. Zadahmad M, Arasteh B, YousefzadehFard P (2011) A pattern-
oriented and web-based architecture to support mobile learning
software development. Procedia Soc Behav Sci 28(2011):194–
199. https:// doi. org/ 10. 1016/j. sbspro. 2011. 11. 037

https://doi.org/10.1002/smr.2228
https://doi.org/10.1017/S0031819100026863
https://doi.org/10.1017/S0031819100026863
https://www.cambridge.org/core/journals/philosophy/article/probability-and-the-weighing-of-evidence-by-goodi-j-london-charles-griffin-and-company-1950-pp-viii-119-price-16s/7D911224F3713FDCFD1451BBB2982442
https://www.cambridge.org/core/journals/philosophy/article/probability-and-the-weighing-of-evidence-by-goodi-j-london-charles-griffin-and-company-1950-pp-viii-119-price-16s/7D911224F3713FDCFD1451BBB2982442
https://www.cambridge.org/core/journals/philosophy/article/probability-and-the-weighing-of-evidence-by-goodi-j-london-charles-griffin-and-company-1950-pp-viii-119-price-16s/7D911224F3713FDCFD1451BBB2982442
https://www.cambridge.org/core/journals/philosophy/article/probability-and-the-weighing-of-evidence-by-goodi-j-london-charles-griffin-and-company-1950-pp-viii-119-price-16s/7D911224F3713FDCFD1451BBB2982442
https://doi.org/10.1108/DTA-03-2020-0073
https://doi.org/10.1108/DTA-03-2020-0073
https://doi.org/10.1109/taic.part.2007.38
https://doi.org/10.1109/TIT.1966.1053912
https://dl.acm.org/doi/10.1109/TIT.1966.1053912
https://dl.acm.org/doi/10.1109/TIT.1966.1053912
https://doi.org/10.1007/978-3-642-27172-4_73
https://doi.org/10.1007/978-3-642-27172-4_73
http://www.intechopen.com/books/new-advances-inmachine-learning/types-of-machine-learning-algorithms
http://www.intechopen.com/books/new-advances-inmachine-learning/types-of-machine-learning-algorithms
http://www.intechopen.com/books/new-advances-inmachine-learning/types-of-machine-learning-algorithms
https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.1016/j.sbspro.2011.11.037

657Journal of Electronic Testing (2023) 39:631–657

1 3

 56. Zhang L, Gligoric M, Marinov D, Khurshid S (2013) Operator-
based and random mutant selection: better together. Autom Softw
Eng (ASE),. IEEE/ACM 28th International Proc

 57. Zhang L, Hou S-S, Hu J-J, Xie T, Mei H (2010) Is operator-based
mutant selection superior to random mutant selection? Proceed-
ings of the 32nd ACM/IEEE Int Proc Softw Eng, 2010

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Zeinab Asghari is a researcher in in the science and research branch
of islamic azad university. Her research interest includes software test-
ing, evolutionary algorithms and their function in software depend-
ability engineering.

Bahman Arasteh was born in Tabriz. He received the master degree
in software engineering from Azad University of Arak, and the PhD
degree in software engineering from Islamic Azad University, Tehran
Science and Research Branch, respectively. Currently, he is an associ-
ate professor at Istinye University, Istanbul, Turkiye. He has published
more than 50 papers in refereed international journals and conferences.
He is the coordinating editor in the springer journal of electronic test
and springer journal of system assurance engineering and manage-
ment. He is the reviewer of different international journals in Elsevier,
Springer, Wiley and Hindawi. His research interests include search-
based software engineering, Software testing, optimization algorithms,
software fault tolerance, and software security.

Abbas Koochari is an associate professor in the science and research
branch of islamic azad university. His research interest includes search-
based computer engineering, complex networks, optimization problems
and meta heuristic algorithms.

	Effective Software Mutation-Test Using Program Instructions Classification
	Abstract
	1 Introduction
	2 Related Works
	3 Supervised Machine Learning Algorithms
	4 The Proposed Method
	4.1 Program Analysis
	4.2 Generating the Training Dataset
	4.3 Creating the Instruction Classifier using Machine Learning Algorithm
	4.4 Mutation Test

	5 A Review of Mutation Test Environments
	5.1 Mujava
	5.2 MuTomVo
	5.3 Jester
	5.4 Jumble
	5.5 Mothra

	6 Evaluation System
	6.1 Benchmark Programs
	6.2 The Framework
	6.3 Results and Discussion
	6.3.1 Evaluating the Proposed Classifier
	6.3.2 Evaluating the Mutation-Testing Method

	7 Conclusion
	References

