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Abstract
Since 2007, methods that utilize side-channel data to detect hardware Trojan (HT) problems have been widely studied. 
Machine learning methods are widely used for hardware Trojan detection, but with the development of integrated circuits 
(ICs), better results are usually obtained using deep learning methods. In this paper, we propose an architecture inspired by 
Residual-Block and Dense-Block and combine it with SE Attention Mechanism, which we named the Res-Dense-SE-Net 
network. By combining residual connectivity, dense connectivity, and attention mechanism, the Res-Dense-SE-Net network 
can enjoy the advantages of these three network architectures at the same time, which can improve the expressiveness and 
performance of the model. The Res-Dense-SE-Net network can capture the key features in the image better, and it can solve 
the problems of gradient vanishing and feature transfer efficiently, which can in turn improve the classification accuracy 
and the generalization ability of the model. Based on the publicly available AES series of hardware Trojans from TrustHub 
and the publicly available hardware Trojan-side channel data by Faezi et al., we evaluate the effectiveness of the method 
proposed in this paper. The experimental results show that when a single Trojan exists, the method proposed in this paper 
has a high accuracy rate; and when multiple types of hardware Trojans exist at the same time and need to be categorized, 
the categories of hardware Trojans can also be effectively identified, and the categorization accuracy is high compared with 
the existing deep learning methods.
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1  Introduction

Since the late 1950s, integrated circuits have followed 
Moore's Law and have been rapidly evolving to become the 
main form of implementation of electronic products in eve-
ryday life. However, with the globalization of IC design, 
manufacturing, and sales, security issues are becoming 
more and more prominent, and hardware Trojans are one 
of the main threats. The research and development, mass 
production, and final deployment of a chip often require 

the cooperation of dozens of teams. However, in the imple-
mentation process, there may be attackers hidden in every 
team involved, who can maliciously tamper with the original 
design to achieve ulterior motives. This type of malicious 
tampering with the original circuitry in the form of hardware 
is known as a "hardware Trojan".

The real emergence of hardware Trojans as a special-
ized academic term in security began in 2007 [1]. With 
the advances in processes, a large-scale digital integrated 
circuit typically contains hundreds of millions of transis-
tors, whereas a hardware Trojan typically contains only a 
few hundred logic gates at most. In other words, hardware 
Trojan circuits are very small in size relative to their par-
ent circuits, and their physical-electrical properties are so 
weakly expressed that they are difficult to detect. In addi-
tion, hardware Trojan circuits are triggered only in very 
few cases where the conditions preset by the attacker are 
met. As a result, hardware Trojans are extremely stealthy. 
Meanwhile, hardware Trojans can cause serious damage 
such as denial of service, unexpected failures, data leakage, 
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and performance degradation of chips. A hardware Trojan 
structural module generalized by a simple abstraction can 
be divided into a trigger circuit responsible for activating 
the Trojan and a load circuit that determines the effect of 
the Trojan attack [15].

Since the activation mechanism and attack load of hard-
ware Trojans are uncertain to the detector, the detector can-
not utilize automated test vector generation tools to gener-
ate tit-for-tat test vectors for hardware Trojans in the same 
way that it is possible to test for hardware failures. The side 
channel analysis detection method for hardware Trojans 
essentially transforms the detection of hardware Trojans into 
a data classification problem by building a mathematical 
model based on its physical and operational parameters from 
its working mechanism. The accuracy of the model depends 
heavily on the size of the effective parameter inputs to the 
model and the ability to fit the function.

The validation experiments of the method proposed in 
this paper are based on the power and EM side-channel sign-
aling datasets of the hardware Trojan benchmark. The con-
tributions of this paper are as follows: 1. preprocessing the 
original data by using the Markov Transition Field(MTF), 
which highlights the temporal order between the data and 
makes the features more obvious; 2. designing a new net-
work structure model for hardware Trojan detection, which 
improves the Residual-Block and Dense-Block structures 
based on the two, and uses a combination of the two to the 
new Residual-Dense-block is formed, and the SE structure 
is also inserted into the module, finally completing the 
Res-Dense-SE-Net network. Using this network structure 
to detect hardware Trojans, we can effectively improve the 
accuracy rate and achieve excellent recall, F1 score, and pre-
cision values; 3. The network proposed in this paper also has 
a very high accuracy rate in multi-Trojan classification, and 
can efficiently determine and differentiate between the types 
of hardware Trojans; 4. We surveyed existing HT detection 
methods and their shortcomings and depicted the current 
status and challenges of the research field, as well as the 
potential of Convolutional Learning for the potential for 
hardware security.

This paper is organized as follows: the second part is 
the background, the third part describes the analysis of the 
hardware Trojan detection method and algorithmic process 
proposed in this paper, the fourth part is the experimental 
results, and the fifth part is the conclusion.

2 � Background

Side-channel analysis detection methods are the most diverse 
and widely researched methods in current hardware Trojan 
detection. Theoretically, a hardware Trojan exists in the form 
of a physical entity in the chip, and therefore its existence 

necessarily alters the non-logical nature of the original 
design, regardless of its ultimate purpose. Therefore, the 
core idea of the side-channel analysis detection method is 
to extract the side-channel information of the chip under 
test from the process deviation and measurement noise and 
compare it with the side-channel information of the ideal 
case, if the two are inconsistent, it means that the chip under 
test has been implanted with a hardware Trojan.

D. Agrawal et al. [1] creatively utilized power consump-
tion information in side channel data to detect hardware Tro-
jans in 2007. Since then, various side channel information 
has been attempted for detection [8, 15, 33]. For example,  
current regionalization analysis and insertion of correc-
tion circuits are used to improve the signal-to-noise ratio of 
dynamic power consumption [25, 37]. Salmani et al. achieved 
localized management of dynamic power consumption by 
reconfiguring the scan chain order, thus reducing the total 
dynamic power consumption of the parent circuit during Tro-
jan detection [29]. In addition, S. Ghosh et al. proposed a 
multiparameter detection method that utilizes the correlation 
between two parameters, the maximum operating frequency, 
and the transient current, to compensate for the low detec-
tion sensitivity of the single-side channel method [9]. With 
the emergence of IP-level and bus-level hardware trojans 
and the increase in circuit size, researchers can continuously 
monitor chip runtime characteristics, including behavior, 
power consumption, etc. [4, 16]. The application of machine 
learning can be traced back to Jin et al. [17], who proposed  
in 2012 to use ANN models to process parameters meas-
ured from wireless encryption chips and achieve the clas-
sification of hardware Trojan embedded circuits. With the 
popularity of machine learning in 2014, this technology was  
widely applied in hardware Trojan detection [11, 23, 24, 27]. 
However, since machine learning cannot bring high accuracy, 
coupled with the rise of deep learning, many researchers choose 
to use deep learning for detection. In recent years, a large num-
ber of network structures based on CNN and RNN have been 
used in experiments, and faster detection speed and higher 
detection accuracy have proven the feasibility of deep learn-
ing in this direction [5, 22, 30, 32, 40, 41]. However, a single  
network structure cannot continuously improve the detection 
accuracy of related trojans. Continuously digging deep into the 
network not only greatly reduces the running speed of the pro-
gram, but also easily leads to overfitting and reduces accuracy. 
Therefore, we came up with the method of using composite 
networks. In our investigation, we found that the attention 
mechanism can improve the accuracy of ResNet and Densenet 
[7, 13, 20, 21, 36, 38, 39], so we thought of combining ResNet  
and Densenet, inheriting the residual connection and dense 
connection, and introducing the SE attention mechanism to 
enhance the expression ability and importance of features. 
To make full use of the respective advantages of ResNet and 
Densenet, but also to make up for some of their limitations.



623Journal of Electronic Testing (2023) 39:621–629	

1 3

Up to now, many papers have proved that MTF, as a 
feature extraction and representation method in the process 
of time series processing, can play its advantages in many 
fields and improve the final classification performance. 
Therefore, on the premise of using MTF, this paper selects 
the composite network based on the combined structure 
of the Residual-Block and Dense-Block with an attention 
mechanism, to achieve the purpose of improving the net-
work capacity and not excessive occupation of equipment 
computing resources.

3 � Detection Model and Algorithmic Process

3.1 � Base Structure

3.1.1 � MTF

Markov transition field is a time series image coding method 
based on the Markov transition matrix. This method regards 
the time-lapse of time series as a Markov process, that is, 
when the current state is known, its future evolution does 
not depend on its past evolution, so it constructs a Markov 
transition matrix, and then expands it to a Markov transition 
field to realize image coding.

MTF was originally a feature extraction method for 
time series data. For time series data, MTF can capture the 
dynamic changes and conversion rules between time series. 
It can extract important features from data, especially for 
periodic or regular sequence data. MTF can express these 
features well, to better understand and analyze data. MTF 
transforms the original sequence data into a low-dimensional 
feature vector, which realizes the dimensionality reduction 
and compression of the data. This reduces data storage and 
computing costs and reduces redundant information while 
retaining critical information. By converting sequence data 
into MTF feature vectors, various machine learning algo-
rithms can be used to realize data classification and recog-
nition. The sequence data is converted into image form, to 
realize the visualization of data. This makes the data analysis 
and understanding more intuitive and easy to understand.

3.1.2 � Residual‑Block

A milestone in CNN's history is the emergence of the Resnet 
model. The core of the Residual-Block is to establish a 
"short circuit connection" between the front layer and the 
back layer, which helps to alleviate the problem of gradient 
disappearance and makes it easier to learn the expected map-
ping, to train a deeper network. Figure 1 shows a simplified 
version of the residual structure.

3.1.3 � Dense‑Block

The feature maps of each layer of a Dense-Block are the 
same size and can be connected in the channel dimension. 
The non-linear combination function in Dense-Block usu-
ally adopts the structure of BN + ReLU + 3 × 3 Conv. For the 
input of the later layer will be very large, a bottleneck layer 
will be used inside the Dense-Block to reduce the amount 
of calculation, mainly by adding 1 × 1 Conv to the original 
structure, as shown in Fig. 2.

3.1.4 � Attention Mechanism

The se module assigns different weights to different posi-
tions of the image from the perspective of the channel 
domain through a weight matrix to obtain more important 
feature information. Mainly relying on squeeze and excita-
tion, a 1*1*C weight matrix is obtained through a series of 
operations, and the original feature is reconstructed. The 
process is shown in Fig. 3 below (the number represents 
different channels, which is used to measure the importance 
of channels).

3.2 � Experimental Preparation

All the experiments involved in this paper are completed 
in the cloud server. This environment is configured with 
15 vCPU Intel(R) Xeon(R) platinum 8358P CPU, 80GB 
memory and RTXA5000(24GB), PyTorch 1.11.0/python3.8 
(cuda11.3) as the operating environment, and the operating 
software version is Pycharm professional 2022.2.2.

The data source used in this paper is the public data set 
of IEEE Dataport [26], which is from the paper [5, 6]. The 
data involved in this data set are the power and EM side-
channel signals of some HT references from TrustHub [28, 

Fig. 1   Residual-Block

4*k k 

Fig. 2   Dense-Block with a bottleneck
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31, 35]. All HTs are for an encrypted core circuit, which is 
named AES 128bits. AES circuit receives a 128-bit input 
value (plaintext), encrypts it with a key, and generates a 128-
bit output (ciphertext). In each data collection experiment, 
the encryption process needs to be repeated 10,000 times to 
generate 10,000-time series signals.

The data selected in this paper uses two Sakura-G boards 
to randomly collect power data to consider process changes 
and reduce the impact. At the same time, the side chan-
nel data is collected in the presence of HT in two cases, 
namely, when HT is inactive and when HT is triggered. In 
this case, all measured power consumption data include the 
static power consumption of HT in addition to the power 
consumption of the underlying circuit. The only differ-
ence between the two data acquisition cases is the dynamic 
power consumption of HT. For possible noise interference, 
we believe that the network structure has a certain anti-
interference ability to noise when independently training 
for each hardware Trojan, and can reduce the possible data 
impact caused by noise as much as possible. When the data 
is converted into waveform samples, it can be found that HT-
inactive samplings have a similar set of features, while HT-
triggered samplings have several different features from HT-
inactive samplings. Therefore, we believe that these changes 
can be used to report HT-triggered cases using an exception 
detection mechanism. We use AES-T700 as an example. We 
only perform waveform conversion on the initial data, and 
we can get the example shown in the Fig. 4 below, where (a) 
(b) is the trigger state and (c) (d) is the inactive state. Paying 
attention to the images of the examples, we can see that the 

HT inactive samples all have a similar set of features, while 
the HT triggered samples have some features that are differ-
ent from the HT inactive samples.

In this paper, to facilitate the visualization and compari-
son of experimental results, the Trojan horse types listed 
below are AES-T500, AES-T600, AES-T700, AES-T800, 
and AES-T1600. The time series signals of each HT are 
randomly extracted from the time series signals in the data 
set, of which 80% are used as the training set and 20% as 
the verification set.

We pre-processed the CSV format time serial side chan-
nel original data through MTF, changed it from low-dimen-
sional to high -dimensional 224*224 RGB pictures, and sent 
it into the network structure for learning.

3.3 � Algorithm Classification Process

In this experiment, the parameters selected by the network 
are verified by the control variable method. The parameters 
used to obtain the final results in the program are either the 
best choice under the same conditions, or a better solution 
under certain conditions (for example, after the adjustment, 
the running time is significantly reduced, but the accuracy 
rate is slightly reduced, so the parameters with slightly lower 
accuracy rate are selected).

This paper chooses the structure formed by the combina-
tion of residual block and dense block and attention mech-
anism as the backbone network of hardware Trojan horse 
detection. The schematic diagram of the network structure 

Fig. 3   The process of SE

1 3 5 72 4 6 8

,

Fig. 4   Waveforms of AES-T700 (a, b, c and d from left to right)
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and the key parameters of the network are shown in Fig. 5 
and Table 1 below.

Firstly, this paper uses MTF to preprocess the obtained 
time series signals, which can effectively ensure the extrac-
tion of the importance of data between the sequence of time, 
and also highlight the important features, to improve the 
accuracy of classification. Then, the converted RGB image 
is passed through the Res-Dense-SE-Net network. In the first 
half of the network, the Residual-Block is used for feature 
extraction, and the input image is connected to the depth 
residual after getting the feature map through the initial 
convolution layer and pooling layer of the Residual-Block. 
After a certain number of residual blocks, the output fea-
ture map of the Residual-Block is obtained. The output of 
Residual-Block is further processed in the second half using 

Dense-Block, where the output feature maps are fed into 
both the initial convolutional and pooling layers of Dense-
Block to obtain the initial feature maps of Dense-Block. The 
initial feature map is passed into a dense block for a richer 
feature representation. Finally, the output feature maps are 
classified by a fully connected layer. And, we add an SE 
attention mechanism to Residual-Block and Dense-Block 
to enhance the expressiveness of the network. During the 
forward propagation of the model, the SE attention module 
is applied to the output of each residual and dense block to 
reinforce the key information in the feature map.

The input 224 * 224 RGB image is first subjected to 3 × 3 
convolutions to extract shallow feature maps. Then, follow-
ing the maximum pooling layer, the output size of the feature 
map is reduced while preserving its main features, thereby 

Fig. 5   Network structure

Table 1   Key parameters of the 
network

Layer Parameter

Conv1 kernel_size = (3, 3), stride = (2, 2), padding = (3, 3)
Conv2 kernel_size = (3, 3), stride = (2, 2), padding = (3, 3)
Conv3 kernel_size = (3, 3), stride = (2, 2), padding = (3, 3)
Maxpool kernel_size = 3, stride = 2, padding = 1

ResidualBlock Conv kernel_size = (3, 3), stride = (1, 1), padding = (1, 1)
Conv4 kernel_size = (3, 3), stride = (1, 1), padding = (1, 1)
Conv1*1 kernel_size = (1, 1), stride = (1, 1), padding = (1, 1)

DenseBlock Conv3*3 kernel_size = (3, 3), stride = (1, 1), padding = (1, 1)
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reducing computational complexity. Then the feature map 
is sent to the Residual-Block and passed through a residual 
block format of [8, 8, 13, 33]. To enhance the network's focus  
on useful features for tasks, more effectively capture and uti-
lize key information, and improve the model's performance 
and generalized ability, we have included an SE structure. 
Finally, it is input into the Dense-Block with the same SE 
structure. The attention mechanism added to it enhances the 
modeling ability of the model, enabling the network to more 
accurately understand and represent the structural informa-
tion in the input data. After the series of operations, the 
network extracts deep abstraction and high-level semantic 
features, and ultimately passes through the global average 
pooling layer and fully connected layer.

This combined approach capitalizes on the respective 
advantages of Residual-Block and Dense-Block. Residual 
connections help to solve the gradient vanishing problem 
by allowing information to propagate faster through the 
network. Connecting through residual connections ena-
bles better training of deep networks and helps mitigate the 
effect of gradient vanishing on network performance. Dense 
connections allow features to fully propagate through the 
network, thereby improving the efficiency of feature reuse 
and information mobility, thus facilitating feature transfer 
and reuse, as well as better capturing features at different 
levels, and helping to mitigate the problem of information 
loss during feature transfer. The added SE attention mecha-
nism can help the network to better focus on key features, 
enhance the expression of important features, and improve 

classification performance. By combining the structures, the 
advantages of these three network structures can be enjoyed 
simultaneously, which can improve the expressive ability 
and classification performance of the model. t can better 
capture the key features in the image and effectively solve 
the gradient vanishing and feature transfer problems, which 
in turn improves the classification accuracy and the gener-
alization ability of the model.

4 � Results

Due to the lack of open-source HT detection project models, 
replication of state-of-the-art HT detection methods on the 
side channel data used is not feasible. To make a quantita-
tive comparison and further demonstrate the accuracy of 
the method proposed in this paper, we compare our detec-
tion mechanism with highly accurate models from [2, 3, 5, 
6, 19]. The accuracy of the specific method is shown in  
Fig. 6 below.

From the above figure, it can be seen that the Res-Dense-
SE-Net method proposed in this paper has high detection 
accuracy for several hardware Trojans activated, which is 
comparable to the state-of-the-art classification methods. 
This can reflect the feasibility of the methodology of this 
paper.

In addition, to be more intuitive, this paper also adopts the 
evaluation metrics commonly used in machine learning and 
deep learning to evaluate the classification performance of 

Fig. 6   Comparison of accuracy
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Table 2   Other evaluation indexes for Single hardware Trojan type

Recall/TPR Precision F1-score TNR

AES-T500 0.986 0.990 0.988 0.976
AES-T600 0.898 0.870 0.884 0.870
AES-T700 1.000 1.000 1.000 1.000
AES-T800 1.000 1.000 1.000 1.000
AES-T1600 0.917 0.940 0.928 0.897

Table 3   data from other papers

Average TPR Average TNR Average 
Accuracy

SVM 0.83 0.49 0.51
NN [12] 0.81 0.69 0.69
Multi-NN 0.85 0.70 0.73
NN [14] 0.72 0.90 /
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the model, i.e., recall, precision, and F1 score. Their calcula-
tion formulas are as follows.

Of these, the triggered category of hardware Trojans is 
labeled "positive" and the inactive category is labeled "nega-
tive". Then we get the four categories of True Positive (TP), 
False Positive (FP), True Negative (TN), and False Negative 
(FN). Based on the above definitions, we can also obtain the 
True Positive Rate (TPR) and True Negative Rate (TNR).

Table 2 lists the assessment indicators of the proposal 
methods used to detect various hardware Trojans and the best 
results for the corresponding test set. Table 3 lists some metrics 
from the literature [10–12, 14], where "NN" refers to neural 
network-based approaches and "Multi-NN" refers to multi-
intermediate layer neural networks. From the comparison of 
the data, it can be seen that the results of the method used in 
this paper are feasible when compared to the existing methods.

In addition, our proposed neural network is also effec-
tive in recognizing individual hardware Trojan types when 
multiple types of hardware Trojans coexist and need to be 
classified. The average detection accuracy is 97%, with the 
lowest accuracy for accurate identification of a single Trojan 
species being 93% and the highest being 100%. The results 
are also compared with existing general machine learning 

(1)Re call =
TP

TP + FN

(2)Pr ecision =
TP

TP + FP

(3)F1 − score =
2 ∗ Pr ecission ∗ Re call

Pr ecission + Re call

(4)TPR = Re call =
TP

TP + FN

(5)TNR =
TN

TN + FP

methods [18] and with [34] that have a similar case of mul-
tiple hardware Trojan types as this paper, and the results are 
shown in Fig. 7 below.

5 � Conclusion

As the importance of hardware Trojan detection grows, new 
technology tools are constantly being used to detect poten-
tial hardware Trojans. From the initial machine learning to 
today's deep learning, the detection rate and detection accu-
racy of hardware Trojans have improved dramatically, and 
the false detection rate is decreasing as the network goes 
deeper and the level of equipment improves.

In this paper, we propose a combinatorial deep neural 
network "Res-Dense-SE-Net" based on a Residual-Dense 
combinatorial structure and attention mechanism under MTF 
preprocessing. This neural network enables the detection of 
hardware Trojans based on time series of real channel data 
without a golden chip. The method proves feasibility in 
terms of detection accuracy of hardware Trojans compared 
to existing detection methods. In addition, when multiple 
hardware Trojans exist in a mixture and need to recognize 
the types, the neural network can effectively recognize 
the types of Trojans among them, effectively differentiate 
between multiple hardware Trojans, and achieve high accu-
racy in accurately recognizing the types of hardware Trojans.
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Fig. 7   Accuracy rate for mixed 
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