
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:583–595
https://doi.org/10.1007/s10836-023-06087-2

Trade‑off Mechanism Between Reliability and Performance
for Data‑flow Soft Error Detection

Zhenyu Zhao1 · Xin Chen1  · Yufan Lu2

Received: 21 April 2023 / Accepted: 5 October 2023 / Published online: 2 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The high energy particles in the space environment will perturb integrated circuits, resulting in system errors or even failures,
which is also known as single event effects (SEE). To ensure the normal operation of space systems, it is first necessary to
detect these errors. However, detection algorithms also bring additional overhead to the system and reduce its performance.
Therefore, we aim to find a trade-off between reliability and performance. To this end, we propose a quantitative evaluation
model for detection methods that evaluates the reliability gain of different detection methods under the same overhead. Our
method allocates the optimal detection method to the corresponding code segment based on the quantitative results, thereby
achieving a trade-off between reliability and performance. Experimental results show that the average energy efficiency of
our trade-off method is 91.34%, which is 21.49% higher than the other methods.

Keywords  Single-event effects · Soft error · Fault-tolerant system · Reliability · Trade-off · Software-based detection techniques

1  Introduction

Radiation hardened technology are essential for integrated
circuits working in space, the reason is that integrated cir-
cuits will be perturbed in space due to the hit of high energy
particle, which is also called single event effects (SEE). One
typical type of SEEs is single event upset (SEU), the phe-
nomenon of SEU is the logic state of sequential logic flips
from "0" to "1" (and vice versa), which may cause system
failures [3, 7, 11, 18, 29].

Fortunately, SEU is one kind of soft error and can be
recovered. The first step of recovery operation is detecting
these soft errors. There is a large amount of literature on

this classic topic [1, 2, 8, 10, 33]. However, detecting these
soft errors will increase execution time, which means the deg-
radation of system performance [9, 13, 21, 22, 24, 27, 31, 37].
For example, error detection by diverse data and duplicated
instructions (EDDDDI) improves the reliability, but brings
a huge overhead of execution time [24]. Translator for reli-
able software (ThOR) [30] implements code redundancy at C
Code level. Because of the utilizing of high-level languages,
this method is less difficult to implement. But due to the
coarse-grained of high-level languages, the overhead of this
method is higher than that of EDDDDI.

Therefore, implementing trade-off between reliability and
performance has attracted more and more attentions. Reli-
able Code Compiler (RECCO) [6] and Partial Software
Protection [42] implement the trade-off by only detecting
the key variables and codes, such as variables or code seg-
ment that are used multiple times, but the key variables and
codes are selected manually. Ref. [34] proposes a quanti-
tative method to evaluate the detection method, however,
this method does not consider the trade-off strategy between
multiple detection methods.

Motived by this problem, a trade-off mechanism between
reliability and performance for data-flow soft error detec-
tion is proposed in this paper. The main contributions of this
paper are as follow:

Responsible Editor: A. Yan

 *	 Xin Chen
	 xin_chen@nuaa.edu.cn

	 Zhenyu Zhao
	 15947470421@163.com

	 Yufan Lu
	 498425254@qq.com

1	 College of Electronic and Information Engineering, Nanjing
University of Aeronautics and Astronautics, Beijing, China

2	 School of Computer Science and Electronic Engineering,
University of Essex Colchester, London, UK

http://orcid.org/0000-0003-2706-5069
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06087-2&domain=pdf

584	 Journal of Electronic Testing (2023) 39:583–595

1 3

1.	 A mathematical model is developed to evaluate the
detection methods. Based on this, a quantitative evalua-
tion method is proposed to measure the detection energy
efficiency of different types of detection methods.

2.	 We have implemented an automated test platform to
find the optimal configuration of the proposed detection
method according to the energy efficiency of different
types of detection methods.

3.	 With the help of presented quantitative evaluation
method and automated test platform, the optimal con-
figuration of the detection methods can be obtained, and
then the trade-off between reliability and performance
can be realized more effectively.

4.	 The final results show that the average energy efficiency
of our trade-off method is 91.34%, RECCO is 75.42%,
partial software protection is 85.82%, EDDDDI is
66.34%, ThOR is 48.49%, and Fault Screening is 73.22%.
This suggests that our trade-off method works better.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief overview of related works. Section 3
presents relevant mathematical models, and Section 4 presents
the proposed trade-off strategy. Section 5 discusses experi-
mental results, and conclusions are made in Section 6.

2 � Related Works

Software-based soft error detection methods are divided
into two types: program redundancy and assertion detection.
Table 1 provides examples of two types of detection methods.

The fundamental concept of program redundancy detec-
tion methods is to detect errors by comparing the results of
original code with the result of modified code. Currently,
there are various program redundancy detection methods,
such as software fault tolerance (SWIFT) [31], error detec-
tion through repeated instructions (EDDI) [23] and EDDDDI
[24]. At the source code level, the detection methods include
ThOR [30] and RECCO [4-6, 6].

Another low overhead soft error detection method is
assertion detection. The fundamental concept of assertion
detection is to extract assertions that meet the specific
characteristics of the program, and then add the assertion
detection code to the program. Compared with the code
redundancy method, the overhead of assertion detection
is significantly reduced. However, the reliability improve-
ment of this method is not obvious, and it is not gener-
ally applicable. Some typical examples are the assertion
detection method based on variable type proposed by Hiller
et al. [13] and the fault screening method proposed by Paul
Racunas et al. [28].

In summary, most previous studies have considered the
reliability and performance trade-off only via one detec-
tion method, without considering the allocation between
different detection methods. Some studies considering the
trade-off between different detection methods [36], how-
ever, this study focused on the micro-architecture level rather
than the software level. One interesting study is a system-
level cross-layer early reliability analysis framework called
‘SyRA’ [38], which considered the application of a cross-
layer combination of two protection mechanisms. However,
their study focuses on the combination of hardware-based
method and software-based method, they still did not con-
sider how to make a trade-off with different software-based
detection methods.

3 � System Reliability and Overhead Model

In this paper, we present a quantitative evaluation method
of the detection method. The reliability and performance
trade-off is achieved by assigning code redundancy, asser-
tion detection or without using detection methods to each
BBs, as shown in Fig. 1.

In order to achieve a trade-off between system reliability
and performance, the first step is to calculate the reliabil-
ity and overhead of the system. There are many studies in
this field. However, since this paper focuses on the trade-off
mechanism between reliability and performance, to simplify
the calculation process, we adopt a simple reliability analysis
model proposed by Savino et al. in [32]. It is worth noting
that the accuracy of reliability analysis model will not sig-
nificantly impact the trade-off mechanism or the final result.
We will elaborate on this further in Section 4.

In this paper, we use "R" to represent the reliability of the
system, which indicates the probability of the program being

Table 1   Example of ThOR redundancy detection methods and Fault
Screening assertion detection methods

ThOR redundancy detection method Fault Screening assertion
detection method

Original code Modified code

int a, b; int a0, b0, b1, b1; int a, b;
a = 1;b = 1;

a = b; a0 = b0; assert(a + b = = 2);
a1 = b1;
if(b0! = b1); int c;

for(c = 1;c < 100;c++)
error(); c+ = a + b;

a = b + c; a0 = b0 + c0; assert(c > = 0);
a1 = b1 + c1;
if((b0! = b1) || (c0! = c1))
error();

585Journal of Electronic Testing (2023) 39:583–595	

1 3

executed correctly. We use "O" to represent the overhead
brought by the introduction of detection methods, which is
defined as the ratio between the execution time of the pro-
gram with added detection code and execution time of the
original program.

3.1 � System Reliability Assessment

We divide a complete program into basic blocks (BBs). BBs
are code segments that are executed in sequence with only
one parameter entry and exit. In this context, a program
comprises n functions denoted as Fi (1 ≤ i ≤ n), a function
comprises m BBs denoted as BBij (1 ≤ j ≤ m), and a BB com-
prises I instructions denoted as Iijk (1 ≤ k ≤ l). The correct
execution of each instruction is an independent event; thus,
reliability can be expressed as the probability of several
instructions being executed correctly, as follows.

where R represents the probability of the program executing
correctly, PC represents the probability of correct execution:
PC

(

Fi

)

 represents the probability of function Fi executing
correctly, PC

(

BBij

)

 represents the probability of BBij exe-
cuting correctly, and PC

(

Iijk
)

 represents the probability of
instruction Iijk executing correctly.

According to Eq. (1), the reliability of BB is determined
by the reliability of each instruction within the BB, and these

(1)
R =

∏n

i=1
PC

(

Fi

)

=

∏n

i=1

∏m

j=1
PC

(

BBij

)

=

∏n

i=1

∏m

j=1

∏l

k=1
PC

(

Iijk
)

reliabilities can be obtained through Savino et al.’s statistical
systematic reliability assessment study [32].

On this basis, we will further consider the improvement
of reliability by detection methods. After considering the
detection method, there are two situations that a BB per-
forms correctly: 1) when it executes correctly itself; 2) when
it executes incorrectly itself but the detection method detects
the error. However, in both cases, it is necessary to ensure
that the detection method executes correctly. The reason is
if the detection method executes incorrectly, even if the pro-
gram itself executes correctly, the BB will ultimately execute
incorrectly. These are expressed mathematically as follows.

where PMdet represents the probability that the detection
method can detect an error. Next, we will introduce two
reinforcement methods into our reliability calculation for-
mula: we assume that the detection probability using the
code redundancy method is 1, and the detection probability
using the assertion detection method is PMdet. We will dis-
cuss the PMdet in detail in Section 4.1.

The set of BBs using the code redundancy method
is A =

{

Bi1, Bi2, ⋯ Bij, ⋯

}

 (1 ≤ i ≤ n, 1 ≤ j ≤ m), according
to the hypothesis in the last paragraph, all the reliabilities of
BBs that belong to A are 1. The set of BBs using the assertion
detection method is B =

{

Bi1, Bi2, ⋯ Bij, ⋯

}

 (1 ≤ i ≤ n,
1 ≤ j ≤ m). Thus, the reliability after using detection method
is expressed as follows.

(2)
PC

(

BBij

)

=
{

PC

(

BBij

)

+
(

1 − PC

(

BBij

))

× PMdet

}

×
∏

PC

(

Idijk
)

Fig. 1   Example of allocating the
apposite method to each BBs

586	 Journal of Electronic Testing (2023) 39:583–595

1 3

where Id represents the additional detection instructions of
the detection method, and PC(Id) represents the probability
of Id being correctly executed. The symbol '1 × ' is due to we
assume that the reliability of the BBs using code redundancy
being 100% (1).

3.2 � System Overhead Assessment

We define the overhead of system as time overhead, which
is the ratio of execution time after using the detection
methods to the execution time of source program. We use
the clock cycle to represent the execution time.

where O represents the time overhead, Tdet represents the
overhead of the execution time after using the detection
methods, and Tsource represents the execution time of the
source program.

The code redundancy method adds redundant code
and detection code to the source code, while the assertion
method only adds detection code without redundant code.
Therefore, the execution time of source code is expressed
as follows.

where tBij represents the execution time of a BB without
using any detection methods.

The execution time after using detection methods is
expressed as follows.

where tdet represents the the execution time of the code
increased by detection methods.

Thus, from Eqs. (4), (5), and (6), the system overhead
O is expressed as follows.

R =
∏n

i=1

∏

j∈A
(1 ×

∏

j∈B

{

PC

(

Bij

)

+
(

1 − PC

(

Bij

))

× PMdet

}

×
∏

j∉A∪B
PC

(

Bij

)

×
∏

PC(Id)

(3)
R =

∏

j∈B

{

PC

(

Bij

)

+
(

1 − PC

(

Bij

))

× PMdet

}

×
∏

j∉A∪B
PC

(

Bij

)

×
∏

PC(Id)

(4)O = Tdet∕Tsource

(5)Tsource =
∑n

i=1

∑m

j=1
tBij

(6)

Tdet =
∑n

i=1

{

∑

j∈A

(

2 × tBij + tdet
)

+
∑

j∈B

(

tBij + tdet
)

+
∑

j∉A∪B
tBij

}

(7)

O =
{

∑n

i=1

∑m

j=1
tBij

}

∕
{

∑n

i=1

{

∑

j∈A

(

2 × tBij + tdet
)

+
∑

j∈B

(

tBij + tdet
)

+
∑

j∉A∪B
tBij

}}

4 � Proposed System Reliability
and Performance Trade‑Off Strategy

In this section, we introduce how to achieving a trade-off
between reliability and performance for the entire system.
First, we use system reliability analysis tools (such as 'SyRA'
[38], 'Flodam' [15], and 'SoftArch' [19]) to calculate the reli-
ability and execution time of the source BB, as well as the
reliability and execution time of each BB after using detection
methods. Then, we compute the improvement rate of reliability
and the increase rate of overhead for each BB. Next, we com-
pute the energy efficiency of different methods and assign the
method with higher energy efficiency to each BB. BBs with
high reliability do not adopt any detection methods to further
reduce overhead Finally, if engineers have different require-
ments for reliability or performance, we can reassign the result
based on these requirements. Figure 2 shows the process flow
of our trade-off strategy.

Since the system reliability analysis tool is only used in the
first stage (computing reliability and execution time), it is easy
to change another tools to increase the accuracy of reliability.
Thus, our trade-off strategy is not strongly dependent on the
system reliability analysis tool.

4.1 � Reliability Improvement Rate

The reliability improvement rate of a BB is defined as follows.

where Rimp represents the reliability improvement rate of a
BB, Rdet represents the reliability of a BB after using detec-
tion methods, Rsource represents the source reliability.

In combination with Eq. (3), the reliability increases rate
Rimp for the assertion detection method is given as follows.

where et represents the execution time.
For the BBs using the code redundancy method, the reli-

ability increase rate Rimp is expressed as follows.

The detection probability of assertion detection (PMdet)
can be calculated according to the concept of error masking
parameter [20], which refers to the error detection rate of the
detection method. An example of PMdet calculation is shown
here using the detection relationship of equality. The result
of correct execution of program is denoted as x, the result of

(8)Rimp =
(

Rdet∕Rsource

)

− 1

(9)

Rimp =
{(

((

PC

(

BBij

)

+
(

1 − PC

(

BBij

))

× PMdet

)

× PC(Id)
∧(et)

)

∕

(

PC

(

BBij

)∧
(et)

))}

− 1

(10)Rimp =
{

PC(Id)(et)∕PC

(

BBij

)∧
(et)

}

− 1

587Journal of Electronic Testing (2023) 39:583–595	

1 3

incorrect execution of program is denoted as x′, and the detec-
tion assertion is given as x = a; thus, x′ = x ± 2k ≠ a. Therefore,
x′ = a cannot be satisfied; thus, the PMdet is 100%. Ref. [36]
has provided a detailed approach to computing PMdet, so we
will not provide too many explanations in this paper.

However, most BBs have more than one variable, thus,
we must consider how to calculate PMdet for a BB with
multiple variables. In a BB where each variable is exe-
cuted correctly is an event that is independent of other
events, we assume a BB contains n variables. Addition-
ally, the detection probability for each variable is denoted
PMdet (vn). Then, we can get the PMdet for the basic block
as follows.

 If a BB has two variables: a and b, the PMdet of a is 0.5, the
PMdet of b is 1, then according to Eq. (11), the PMdet of this
BB will be: PMdet (a)*PMdet (b) = 0.5*1 = 0.5.

4.2 � Overhead Increase Rate

According to the assumption made in Section 3 (assume
that the detection probability PMdet using the program
redundancy method is 100%) and Eq. (7), the overhead
increase rate for the BBs using the assertion detection
method is expressed as follows.

(11)PMdet =
∏n

i=1
PMdet

(

vi
)

Fig. 2   Trade-off strategy process flow. Note: input (red), output (green), detection methods (blue), computational tasks (light gray)

588	 Journal of Electronic Testing (2023) 39:583–595

1 3

 For BBs using the program redundancy method, the over-
head increase rate is given as follows.

4.3 � Energy Efficiency of Detection Method

To configure the detection method, we define the ratio
of reliability improvement rate to the overhead increase
rate of each BB as the energy efficiency. This means that
for a BB, the detection method increases the overhead by
a part in exchange for improving the reliability. Higher
efficiency means that the detection method incurs a small
overhead increase in exchange for a significant improve-
ment in reliability. Note that we can select a more efficient
detection method to reduce the overhead of the system on
the premise of ensuring high reliability.

According to Eqs. (4) and (8), the energy efficiency of
the detection methods is expressed as follows.

where S represents the energy efficiency of detection method.

4.4 � Selection of BBs Without Detection Method

Some BBs will contain fewer instructions and have less
execution time, which means they have a high reliability.
Therefore, we can choose not to use any detection method
for these basic blocks, which will reduce system over-
head. We set a BB self-reliability threshold PBr, for BBs
with self-reliability greater than PBr, there is no detection
method is used Ref. [42] has determined that an effective
trade-off between system reliability and performance can
be obtained when the PBr value is selected as the top 20%
of the basic block's self-reliability. The number of BBs
without using the detection method is calculated as fol-
lows [42].

where X represents the number of BBs without using any
detection method.

4.5 � Example of Trade‑Off Mechanism

To illustrate our trade-off mechanism more clearly, we
present an example of using a real program to achieve the
trade-off. This program contains 11 BBs and is running on
the ARM Cortex-M3 architecture. First, we use a System

(12)O =
{(

tdet + tBij
)

× (et)
}

∕
{

tBij × (et)
}

(13)O =
{(

2 × tdet + tBij
)

× (et)
}

∕
{

tBij × (et)
}

(14)S = Rimp∕O =
{(

Rdet∕Rsource

)

− 1
}

∕
{

Tdet∕Tsource
}

(15)X = (Number of all basic blocks) × 20%

Reliability Analysis Tool to compute the source reliability
(Rsource), source execution time (Tsource), as well as the reli-
ability (Rdet) and execution time (Tdet) after using detection
method. The results are reported in Table 2 and Table 3.
Then, we compute the reliability improvement rate (Rimp)
and overhead increase rate (O) for each method using differ-
ent detection methods. The results are reported in Table 4.
Next, we calculate the energy efficiency (S) of each method
and report the results in Table 5. Finally, we assign the
detection method with the higher energy efficiency (S) to
each BB and select the 20% of BBs with the highest reli-
ability without using any detection methods. The results are
reported in Table 6.

4.6 � Reassign According to the Demand
of Reliability or Overhead

In some cases, engineers may have a higher demand for reli-
ability or performance. They can achieve higher reliability by
sacrificing system performance, and vice versa. Ref. [42] real-
izes this process by simply added or subtracted redundant BBs.

We have designed a reassignment process to make our
trade-off mechanism more flexible. We first define two
variables that represent the demand of reliability (dor) and
demand of performance (dop). The relationship between the
two variables is described by Eq. (16), where both variables
range from 0 to 2. In the default case, both variables are
set to 1, indicating an equal demand for reliability and per-
formance. When one variable increases, the other variable
decreases accordingly.

In order to realize the reassign process, dor is ralated to
Sre, dop is related to Sasrt. We add dor and dop to Eq. (14).

(16)dor = 2 − dop

Table 2   The Rsource and Tsource
of each BB

BBs Rsource (%) Tsource
(Clock
cycles)

BB1 87.69 9
BB2 82.05 21
BB3 78.11 25
BB4 89.07 13
BB5 77.86 26
BB6 69.12 44
BB7 96.69 5
BB8 92.12 6
BB9 91.30 12
BB10 75.53 32
BB11 90.55 12

589Journal of Electronic Testing (2023) 39:583–595	

1 3

where Sasrt represents the energy efficiency when using
assertion detection method, Sre represents the energy effi-
ciency when using redundancy detection method.

We add dop to Eq. (15):

where X’ represents the number of BBs without using any
detection methods after reassignment.

Through analysis of Eqs. (17), (18), and (19), we can infer
that when engineers have more demand for reliability, they
can input a higher value for dor, according to Eq. (16), dop

(17)Sasrt = dop ×
(

Rimp∕O
)

(18)Sre = dor ×
(

Rimp∕O
)

(19)X� = dop × (Number of all basic blocks) × 20%

will decrease. Since dor is related to Sre and X’, and dop is
related to Sasrt, the value of Sre will be higher than the default
case. This means that more BBs will be assigned to use
the code redundancy method, fewer BBs will be assigned
to use the assertion detection method, and less number of
BBs will be assigned without using any detection method.
Therefore, the system reliability will increase at the expense
of performance.

5 � Experimental Result

In Section 5.1, we describe how the experiment be set up,
Section 5.2 and Section 5.3 compares the reliability and
overhead of our method with the previous works, Section 5.4
shows the result of reassignment when the values of dor and
dop are adjusted.

Table 3   The Rdet and Tdet of
each BB

BBs Rdet of program
redundancy (%)

Rdet of assertion
detection (%)

Tdet of program
redundancy (Clock cycles)

Tdet of assertion
detection (Clock
cycles)

BB1 99.91 98.14 22 13
BB2 99.91 91.24 46 25
BB3 99.91 89.33 54 29
BB4 99.91 97.41 30 17
BB5 99.91 86.37 56 30
BB6 99.82 65.55 184 96
BB7 99.91 99.91 14 9
BB8 99.91 99.12 16 10
BB9 99.91 97.91 28 16
BB10 99.82 88.89 136 72
BB11 99.91 97.83 28 16

Table 4   The Rimp and O of each BB

BBs Rimp of
program
redundancy
(%)

Rimp of
assertion
detection (%)

O of program
redundancy
(%)

O of assertion
detection (%)

BB1 13.93 11.92 244.44 144.44
BB2 21.76 11.19 219.05 119.05
BB3 27.91 14.37 216.00 116.00
BB4 12.17 9.36 230.77 130.77
BB5 28.33 10.93 215.38 115.38
BB6 44.41 -5.01 418.18 218.18
BB7 3.33 3.33 280.00 180.00
BB8 8.46 7.59 266.67 166.67
BB9 9.44 7.24 233.33 133.33
BB10 32.16 17.69 425.00 225.00
BB11 10.34 8.05 233.33 133.33

Table 5   The S of each BB

BBs S of code redundancy S of assertion
detection

BB1 0.0570 0.0825
BB2 0.0994 0.0940
BB3 0.1292 0.1238
BB4 0.0527 0.0715
BB5 0.1315 0.0948
BB6 0.1062 -0.023
BB7 0.0119 0.0185
BB8 0.0317 0.0456
BB9 0.0404 0.0543
BB10 0.0757 0.0786
BB11 0.0443 0.0603

590	 Journal of Electronic Testing (2023) 39:583–595

1 3

5.1 � Experimental Set Up

We chose STM32CubeIDE as the experimental platform,
which is an integrated development environment for STM32
products. Through Serial Wire Debug (SWD), we can simu-
late faults caused by space radiation and observe the current
state of the system.

In this experiment, fault injection was performed on a
real STM32F103c6t6 device connected to the host PC
through SWD. The host PC controlled the process of the
STM32F103c6t6 device. To simulate the fault, we used "step
into" to iterate through every instruction and changed the
value of every register through SWD.

Figure 3 shows the experimental process. The win-
dow on the left displays the C code, the window in the
middle shows the corresponding assembly code, and the
window on the right shows all the registers of the ARM
Cortex-M3. We can change the value of these registers
through this window. Faults are injected into the program
by break-point debugging. By viewing and comparing the
final result and the running status of the program, we could
judge whether an SDC error occurs, and whether the SDC
error is detected or not.

The test program are the program written by ourselves,
Matrix Multiplication, Qsort, and Rad2deg from the
MiBench test set [12]. Single event setup (SEU) is a com-
mon soft error, so our experiment uses SEU as soft error
model. We injected 272 SEU errors into each program.
According to Ref. [17], the confidence level of our result is
95%, and error margin is 5%.

We selected three detection methods and two trade-off
methods to contrast with our trade-off method. The detec-
tion methods include EDDDDI, implementing error detec-
tion by diverse data and duplicated instructions, ThOR, a
source code-level redundancy method, and Fault Screen-
ing, which performs value range assertion detection for
variables. The trade-off methods include RECCO, which
implements trade-off by only detecting the key variables,
and partial software protection, which only detects the key
code segments.

Table 6   The final assign result
of each BB

BBs Detection method

BB1 assertion
BB2 redundancy
BB3 redundancy
BB4 assertion
BB5 redundancy
BB6 redundancy
BB7 without use
BB8 without use
BB9 assertion
BB10 assertion
BB11 assertion

Fig. 3   The experiment platform STM32CubeIDE

591Journal of Electronic Testing (2023) 39:583–595	

1 3

5.2 � Reliability

We use fault injection to test the reliability of our system. The
reliability of some programs has been evaluated in Ref. [34],
on this basis, we added our program as a test program. We also
added Fault Screening and two trade-off methods, RECCO
and partial software protection, to compare with our trade-off
method. The result of fault injection is shown in Fig. 4.

Based on the effects of injected faults, we classify the
types of errors into the following four categories:

Correct Result (CR): The fault does not change the output.
Hard Fault (HF): The injected fault is detected by default
fault exception handlers in the ARM Cortex processor family.
Detected Fault (DF): The injected fault is detected by
the detection methods used for data flow error detection.
Undetected Fault (UDF): The injected fault is not detected
and it changes the output of the program.

Through analysis of the results, we found that the unde-
tected rates of the two Redundant code methods are both
below 2%, the average undetected rate of Fault Screening
is 28.15%. The average undetected rate of the two trade-off
methods is 9.83%, while the average undetected rate of our

method is 14.67%. Our trade-off method uses both Redun-
dant code and assertion detection, and some code segments
do not use any detection method, so our undetected rate is
12.67% higher than redundant detection methods and 13.48%
lower than assertion detection method. Compared to the two
trade-off methods, our trade-off method increased the unde-
tected rate by 4.84%, the reason is in some code segments,
we use assertion detection instead of program redundancy.

5.3 � Overhead

We use the ratio of clock cycles after using a detection
method to the clock cycles of the source program to repre-
sent the overhead of the detection method. The result of the
overhead is shown in Fig. 5.

Through analysis of the results, we found that due to the
coarse-grained of high-level languages, the average overhead
of Thor is the highest at 389.5%. The average overhead of
EDDDDI is 289.25%. The average overhead of Fault Screen-
ing is the lowest at 110.41%. The average overhead of the
two trade-off methods is 223.4%, and the average overhead
of our method is only 178.06%. Due to the use of two detec-
tion methods and some code without any detection method,
the overhead of our trade-off method is 45.34% lower than

Fig. 4   Result of fault inject result

592	 Journal of Electronic Testing (2023) 39:583–595

1 3

the other two trade-off methods and 61.6% lower than pro-
gram redundancy methods, which means that our method
has a higher performance than other trade-off methods and
program redundancy methods.

In order to more clearly compare the advantages of our
trade-off method, we use the definition of energy efficiency
of detection method in Eq. (14) to characterize the effect of
trade-off method. A higher energy efficiency means the trade-
off method can bring higher reliability improvement with the
same overhead. Therefore, the higher energy efficiency the
better effect of trade-off. We calculated the energy efficiency
of different methods under different test program. The final
results show that the average energy efficiency of our trade-
off method is 91.34%, RECCO is 75.42%, partial software
protection is 85.82%, EDDDDI is 66.34%, ThOR is 48.49%,
and Fault Screening is 73.22%. The energy efficiency of
our trade-off method is 15.93% and 5.52% higher than two
trade-off methods (RECCO, partial software protection), and
25.01%, 42.85%, 18.12% higher than the detection methods
without implement trade-off (EDDDDI, ThOR, Fault Screen-
ing). The experimental results are showed in Table 7.

5.4 � Results of Reassign

In this section, we demonstrate the final trade-off results
when the values of dop and dor are adjusted. Since fault
injection is time-consuming and complex, reliability is
measured by the probability of program been executed cor-
rectly rather than the detection rate in this section. To illus-
trate the change in energy efficiency S (see Eq. (14)) when
dor and dop change in our trade-off method. We define the
average energy efficiency of each BB as S:

where Sn represents the energy efficiency of the nth BB, n
represents the number of BBs.

As shown in Table 8, when dor gradually increases and
dop gradually decreases, reliability and overhead both
increase. When dor is 0 and dop is 2, the reliability of all
programs is the lowest, with an average of 27.68%. However,
the average overhead is 120.12% which is also the lowest.
It is worthy to note that even if dor is 0, 60% of BBs will

(20)S =

∑

Sn

n

Fig. 5   Result of Overhead

Table 7   Result of S Program Our
mesthod

RECCO Partial
software
protection

EDDDDI ThOR Fault Screening

Our Program 90.38% 82.14% 123.60% 72.95% 44.14% 78.40%
Matrix Multiplication 135.94% 92.17% 102.89% 81.84% 57.60% 78.26%
Qsort 77.35% 66.84% 65.58% 55.24% 48.71% 67.57%
Rad2deg 61.70% 60.52% 51.20% 55.31% 43.52% 68.65%

593Journal of Electronic Testing (2023) 39:583–595	

1 3

still be allocated the assertion detection method, so a certain
overhead is still needed.

When dor and dop are both 1, the average reliability
increases to 75.66% and the average overhead increases to
178.03%. Compared with dor is 0 and dop is 2, the aver-
age reliability increases by 47.98%, the average overhead
increases by 57.91%. Due to the improvement of dor,
more BBs use the program redundancy detection methods,
because the program redundancy detection methods can
bring more reliability improvements.

Finally, when the dor is 2 and the dop is 0, the average
reliability is 95.75%, but the average overhead also increases
to 215.72%. This indicates that when dor is 2, most of the
BBs use the program redundancy detection methods to get
the most reliability improvements.

We use S to characterize the effect of the trade-off
method. When dor increases from 0 to 1, S gradually
increases, when dor and dop are both 1, S reaches the maxi-
mum, when dor increases from 1 to 2, S gradually decreases.
The result shows that when dor and dop are both 1, our
trade-off method achieves the optimal configuration of
detection methods for each BBs. The value of S is much
smaller than the value of S in Section 5.3, because S is the
energy efficiency of the overall program, S is the average of
the energy efficiency of each BB.

In conclusion, when dor is 0 and dop is 2, the average
value of reliability is 27.68%, and the average value of over-
head is 120.12%. When dor is 2 and dop is 0, the average
value of reliability and overhead are 95.75% and 215.72%,
respectively. S represents the average energy efficiency of
each BB (see Eq. (20)). The higher S is, the better the trade-
off effect is. Only when dor and dop are both 1, S reaches the
maximum value. The result shows that our trade-off method
achieves the optimal configuration of detection methods for
each BBs when dor and dop are both 1.

In the experimental results, we observed a significant
difference in program reliability. For example, Qsort pro-
gram had an initial reliability of 81.989%, while Rad2deg
program had an initial reliability of only 0.005%. This is
because Rad2deg program has a large number of loop struc-
tures that are prone to errors. Conversely, Qsort program is
a non-arithmetic program with a high probability of correct
execution for each basic block, resulting in higher reliability
compared to arithmetic programs.

By reassigning the demand of reliability and perfor-
mance, engineers have more choices when prioritizing
between these two factors. This enables them to better meet
the requirements of the actual system.

6 � Conclusion

In this paper, we propose a general trade-off method for
software-based soft error detection that quantifies the evalu-
ation of detection methods. The trade-off method considers
the allocation between code redundancy and assertion detec-
tion methods.

We used the ratio of the reliability improvement rate to the
overhead increase rate to characterize the effect of trade-off.
Experimental results show that the average energy efficiency
of our trade-off method is 91.34%, which is 21.49% higher
than the other methods. This suggests that our trade-off method
works better. Additionally, the trade-off method has flexible
scalability and can be executed simultaneously with other
methods, such as [16], to further achieve an effective trade-off
between the reliability and performance of the system.

Future studies could use the machine learning method
[16] to enable a dynamic analysis of the program BB. In
this paper, only the data flow detection method was con-
sidered, the control flow detection method [35] should be

Table 8   Results of R, O and S
when the values of dop and dor
are adjusted

dor dop Our Program Matrix Multiplication

R O S R O S

0. 00 2. 00 26.44% 111.38% 5.27% 2.28% 103.62% 6.20%
0.5 1.5 31.24% 114.23% 5.92% 60.12% 170.18% 7.49%
1. 00 1. 00 72.17% 175.59% 14.96% 66.11% 175.17% 7.88%
1.5 0.5 95.65% 215.31% 6.98% 85.87% 209.54% 6.78%
2. 00 0. 00 98.83% 218.50% 7.09% 93.51% 222.00% 6.88%

dor dop Qsort Rad2deg

R O S R O S

0. 00 2. 00 81.98% 138.52% 2.64% 0.00% 126.94% 3.10%
0.5 1.5 90.15% 153.57% 2.76% 31.25% 174.59% 3.36%
1. 00 1. 00 94.15% 172.52% 3.04% 70.20% 188.83% 5.28%
1.5 0.5 96.54% 195.25% 2.54% 88.96% 198.65% 4.15%
2. 00 0. 00 98.83% 217.58% 2.57% 91.82% 204.80% 3.91%

594	 Journal of Electronic Testing (2023) 39:583–595

1 3

considered in the future. The mathematical model for the
reliability evaluation still needs improvement. At present,
there have been a large number of related studies, such as
the Markov chain model [14, 26], the Petri network model
[39, 41], etc. We will also observe the experimental results
using different level of fault injection, similar studies can be
referred to literature [25, 40].

As the number of human-launched spacecraft increases
each year, the chip cost of spacecraft becomes more impor-
tant to the industry. The previous detection method caused
large time overhead, which is unacceptable for embedded
space control systems with high real-time performance.
Therefore, this paper proposes an effective trade-off strategy
to reduce time overhead, which helps to replace high-cost,
low-performance aerospace-grade chips with low-cost, high-
performance space-class chips in space systems.

Acknowledgements  This work was supported in part by National
Natural Science Foundation of China (No. 61106029).

Funding  The authors declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data Availability Statement  The data that support the findings of this study
are available from the corresponding author upon reasonable request.

Declarations 

Competing interests  The authors declare no competing interests.

References

	 1.	 Aranda LA, Reviriego P, Maestro JA (2018) A Comparison of
Dual Modular Redundancy and Concurrent Error Detection in
Finite Impulse Response Filters Implemented in SRAM-Based
FPGAs Through Fault Injection. IEEE Trans Circuits Syst II
Express Briefs 65(3):376–380. https://​doi.​org/​10.​1109/​TCSII.​
2017.​27174​90

	 2.	 Argyrides C, Ferreira RR, Lisboa CA, Carro L (2011) Decimal
Hamming: A Software-Implemented Technique to Cope with
Soft Errors. IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems 2011:11–17.
https://​doi.​org/​10.​1109/​DFT.​2011.​35

	 3.	 Baumann RC (2005) Radiation-induced soft errors in advanced
semiconductor technologies. IEEE Trans Device Mater Reliab
5(3):305–316. https://​doi.​org/​10.​1109/​TDMR.​2005.​853449

	 4.	 Benso A, Chiusano S, Prinetto P (2000) A software develop-
ment kit for dependable applications in embedded systems.
Proceedings International Test Conference 2000 (IEEE Cat.
No.00CH37159) 170–178. https://​doi.​org/​10.​1109/​TEST.​2000.​
894204

	 5.	 Benso A, Chiusano S, Prinetto P, Tagliaferri L (2000) A C/C++
source-to-source compiler for dependable applications. Proceed-
ing International Conference on Dependable Systems and Net-
works. DSN 71–78. https://​doi.​org/​10.​1109/​ICDSN.​2000.​857517

	 6.	 Benso A, Di Carlo S, Di Natale G, Prinetto P, Taghaferri L (2003)
Data criticality estimation in software applications. International

Test Conference, 2003. Proceedings ITC 2003:802–810. https://​
doi.​org/​10.​1109/​TEST.​2003.​12709​12

	 7.	 Chukov GV et al (2014) SEE Testing Results for RF and Micro-
wave ICs. IEEE Radiation Effects Data Workshop (REDW)
2014:1–3. https://​doi.​org/​10.​1109/​REDW.​2014.​70045​89

	 8.	 Das A, Touba NA (2019) Efficient One-Step Decodable Lim-
ited Magnitude Error Correcting Codes for Multilevel Cell Main
Memories. IEEE Trans Nanotechnol 18:575–583. https://​doi.​org/​
10.​1109/​TNANO.​2019.​29171​39

	 9.	 Didehban M, Shrivastava A, Lokam SRD (2017) NEMESIS:
A software approach for computing in presence of soft errors.
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD) 2017:297–304. https://​doi.​org/​10.​1109/​ICCAD.​2017.​
82037​92

	10.	 Fleetwood DM (2021) Radiation Effects in a Post-Moore World.
IEEE Trans Nucl Sci 68(5):509–545. https://​doi.​org/​10.​1109/​
TNS.​2021.​30534​24

	11.	 González CJ, Chenet CP, Budelon M, Vaz RG, Gonçalez O,
Balen TR (2017) Evaluation of a mixed-signal design diversity
system under radiation effects. 2017 18th IEEE Latin American
Test Symposium (LATS) 1–6. https://​doi.​org/​10.​1109/​LATW.​
2017.​79067​51

	12.	 Guthaus MR, Ringenberg JS, Ernst D, Austin TM, Mudge T,
Brown RB (2001) MiBench: A free, commercially representative
embedded benchmark suite. Proceedings of the Fourth Annual
IEEE International Workshop on Workload Characterization.
WWC-4 (Cat. No.01EX538) 3–14. https://​doi.​org/​10.​1109/​WWC.​
2001.​990739

	13.	 Hiller M (2000) Executable assertions for detecting data errors in
embedded control systems. Proceeding International Conference
on Dependable Systems and Networks. DSN 24–33. https://​doi.​
org/​10.​1109/​ICDSN.​2000.​857510

	14.	 Huang Y, Pan X, Hu L (2015) Rapid assessment of system-of-
systems(SoS) mission reliability based on Markov chains. First
International Conference on Reliability Systems Engineering
(ICRSE) 2015:1–6. https://​doi.​org/​10.​1109/​ICRSE.​2015.​73664​52

	15.	 Kritikakou A, Sentieys O, Hubert G, Helen Y, Coulon JF, Deroux-
Dauphin P (2022) Flodam: Cross-Layer Reliability Analysis Flow
for Complex Hardware Designs 2022 Design, Automation & Test
in Europe Conference & Exhibition (DATE) 819–824. https://​doi.​
org/​10.​23919/​DATE5​4114.​2022.​97745​41

	16.	 Laguna I, Schulz M, Richards DF, Calhoun J, Olson L (2016)
IPAS: Intelligent protection against silent output corruption in
scientific applications. IEEE/ACM International Symposium on
Code Generation and Optimization (CGO) 2016:227–238

	17.	 Leveugle R, Calvez A, Maistri P, Vanhauwaert P (2009) Statisti-
cal fault injection: Quantified error and confidence. 2009 Design,
Automation & Test in Europe Conference & Exhibition, pp. 502-
506. https://​doi.​org/​10.​1109/​DATE.​2009.​50907​16

	18.	 Li J, Reviriego P, Xiao L, Wu H (2021) Protecting Memories
against Soft Errors: The Case for Customizable Error Correc-
tion Codes. In IEEE Trans Emerg Topics Comput 9(2):651–
663. https://​doi.​org/​10.​1109/​TETC.​2019.​29531​39

	19.	 Li X, Adve SV, Bose P, Rivers JA (2005) SoftArch: an architecture-
level tool for modeling and analyzing soft errors. 2005 International
Conference on Dependable Systems and Networks (DSN'05) 496–
505. https://​doi.​org/​10.​1109/​DSN.​2005.​88

	20.	 Ma J, Duan Z, Tang L (2019) A Methodology to Assess Output
Vulnerability Factors for Detecting Silent Data Corruption. IEEE
Access 7:118135–118145. https://​doi.​org/​10.​1109/​ACCESS.​2019.​
29368​93

	21.	 Mittal S, Vetter JS (2016) A Survey of Techniques for Modeling and
Improving Reliability of Computing Systems. In IEEE Trans Par-
allel Distrib Syst 27(4):1226–1238. https://​doi.​org/​10.​1109/​TPDS.​
2015.​24261​79

https://doi.org/10.1109/TCSII.2017.2717490
https://doi.org/10.1109/TCSII.2017.2717490
https://doi.org/10.1109/DFT.2011.35
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/TEST.2000.894204
https://doi.org/10.1109/TEST.2000.894204
https://doi.org/10.1109/ICDSN.2000.857517
https://doi.org/10.1109/TEST.2003.1270912
https://doi.org/10.1109/TEST.2003.1270912
https://doi.org/10.1109/REDW.2014.7004589
https://doi.org/10.1109/TNANO.2019.2917139
https://doi.org/10.1109/TNANO.2019.2917139
https://doi.org/10.1109/ICCAD.2017.8203792
https://doi.org/10.1109/ICCAD.2017.8203792
https://doi.org/10.1109/TNS.2021.3053424
https://doi.org/10.1109/TNS.2021.3053424
https://doi.org/10.1109/LATW.2017.7906751
https://doi.org/10.1109/LATW.2017.7906751
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/ICDSN.2000.857510
https://doi.org/10.1109/ICDSN.2000.857510
https://doi.org/10.1109/ICRSE.2015.7366452
https://doi.org/10.23919/DATE54114.2022.9774541
https://doi.org/10.23919/DATE54114.2022.9774541
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1109/TETC.2019.2953139
https://doi.org/10.1109/DSN.2005.88
https://doi.org/10.1109/ACCESS.2019.2936893
https://doi.org/10.1109/ACCESS.2019.2936893
https://doi.org/10.1109/TPDS.2015.2426179
https://doi.org/10.1109/TPDS.2015.2426179

595Journal of Electronic Testing (2023) 39:583–595	

1 3

	22.	 Nahmsuk O (2001) Software implemented hardware fault toler-
ance. Ph.D. Dissertation. Stanford University, Stanford, CA, USA.
Advisor(s) Edward J Mccluskey

	23.	 Oh N, Shirvani PP, McCluskey EJ (2002) Error detection by dupli-
cated instructions in super-scalar processors. IEEE Trans Reliab
51(1):63–75. https://​doi.​org/​10.​1109/​24.​994913

	24.	 Oh N, Mitra S, McCluskey EJ (2002) ED/sup 4/I: error detection
by diverse data and duplicated instructions. IEEE Trans Comput
51(2):180–199. https://​doi.​org/​10.​1109/​12.​980007

	25.	 Palazzi L, Li G, Fang B, Pattabiraman K (2019) A Tale of Two
Injectors: End-to-End Comparison of IR-Level and Assembly-Level
Fault Injection 2019 IEEE 30th International Symposium on Soft-
ware Reliability Engineering (ISSRE) 151–162. https://​doi.​org/​10.​
1109/​ISSRE.​2019.​00024

	26.	 Pham T, Defago X (2013) Reliability Prediction for Component-
Based Software Systems with Architectural-Level Fault Tolerance
Mechanisms 2013 International Conference on Availability, Reli-
ability and Security 11–20. https://​doi.​org/​10.​1109/​ARES.​2013.8

	27.	 Philip Shirvani P, Edward McCluskey J (1998) Fault-Tolerant Sys-
tems in A Space Environment: The CRC ARGOS Project. CRC
Tech Rep No. 98-2 (CSL TR No. 98-774)

	28.	 Racunas P, Constantinides K, Manne S, Mukherjee SS (2007)
Perturbation-based Fault Screening 2007 IEEE 13th International
Symposium on High Performance Computer Architecture 169–
180 https://​doi.​org/​10.​1109/​HPCA.​2007.​346195

	29.	 Raji M, Sabet MA, Ghavami B (2019) Soft Error Reliability
Improvement of Digital Circuits by Exploiting a Fast Gate Sizing
Scheme. IEEE Access 7:66485–66495. https://​doi.​org/​10.​1109/​
ACCESS.​2019.​29025​05

	30.	 Rebaudengo M, Reorda MS, Violante M, Torchiano M (2001) A
source-to-source compiler for generating dependable software.
Proceedings First IEEE International Workshop on Source Code
Analysis and Manipulation 33–42. https://​doi.​org/​10.​1109/​SCAM.​
2001.​972664

	31.	 Reis GA, Chang J, Vachharajani N, Rangan R, August DI (2005)
SWIFT: software implemented fault tolerance. Int Symp Code Gen
Opt 243–254. https://​doi.​org/​10.​1109/​CGO.​2005.​34

	32.	 Savino A, Di Carlo S, Politano G, Benso A, Bosio A, Di Natale G
(2012) Statistical Reliability Estimation of Microprocessor-Based
Systems. IEEE Trans Comput 61(11):1521–1534. https://​doi.​org/​
10.​1109/​TC.​2011.​188

	33.	 Shoji T, Nishida S, Hamada K, Tadano H (2015) Cosmic ray neutron-
induced single-event burnout in power devices. IET Power Electron
8:2315–2321. https://​doi.​org/​10.​1049/​iet-​pel.​2014.​0977

	34.	 Thati VB, Vankeirsbilck J, Penneman N, Pissoort D, Boydens J
(2018) CDFEDT: Comparison of Data Flow Error Detection Tech-
niques in Embedded Systems: an Empirical Study. In Proceedings of
the 13th International Conference on Availability, Reliability and Secu-
rity (ARES 2018). Association for Computing Machinery, New York,
NY, USA, Article 23, 1–9. https://​doi.​org/​10.​1145/​32308​33.​32308​54

	35.	 Thati VB, Vankeirsbilck J, Pissoort D, Boydens J (2019) Hybrid
Technique for Soft Error Detection in Dependable Embedded Soft-
ware: a First Experiment. IEEE XXVIII International Scientific
Conference Electronics (ET) 2019:1–4. https://​doi.​org/​10.​1109/​
ET.​2019.​88784​97

	36.	 Tselonis S, Kaliorakis M, Foutris N, Papadimitriou G, Gizopoulos D
(2016) Microprocessor reliability-performance tradeoffs assessment
at the microarchitecture level 2016 IEEE 34th VLSI Test Sympo-
sium (VTS) 1–6. https://​doi.​org/​10.​1109/​VTS.​2016.​74773​00

	37.	 Turner JB, Agardy FJ (1994) The Advanced Research and Global
Observation Satellite Program (ARGOS). Proc Space Prog Tech-
nolConf 1994–4580

	38.	 Vallero A et al. (2019) SyRA: Early System Reliability Analysis for
Cross-Layer Soft Errors Resilience in Memory Arrays of Micro-
processor Systems. In IEEE Transactions on Computer 68(5):765–
783. https://​doi.​org/​10.​1109/​TC.​2018.​28872​25

	39.	 Wang Y, Li M, Li L (2013) The Research of System Reliability
Calculation Method Based on the Improved Petri Net. Int Conf Inf
Technol Appl 2013:279–281. https://​doi.​org/​10.​1109/​ITA.​2013.​72

	40.	 Wei J, Thomas A, Li G, Pattabiraman K (2014) Quantifying the
Accuracy of High-Level Fault Injection Techniques for Hardware
Faults 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks 375–382. https://​doi.​org/​10.​
1109/​DSN.​2014.2

	41.	 Wu X, Yu H (2019) A Petri Net Modeling Approach for Reliability
of PMS with Time Redundancy 2019 IEEE 19th International Con-
ference on Software Quality, Reliability and Security Companion
(QRS-C) 249–254. https://​doi.​org/​10.​1109/​QRS-C.​2019.​00055

	42.	 Xiong L, Tan Q (2011) A Configurable Approach to Tolerate Soft
Errors via Partial Software Protection. IEEE Ninth International
Symposium on Parallel and Distributed Processing with Applica-
tions Workshops 2011:260–265. https://​doi.​org/​10.​1109/​ISPAW.​
2011.​45

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Zhenyu Zhao  is currently working toward the B.S. degree in Micro-
electronics Science and Engineering with the Department of Electronic
and Information Engineering, Nanjing University of Aeronautics and
Astronautics, Nanjing, China.

Xin Chen   received the B.S. degree in Electronic Science and Tech-
nology from Southeast University, Nanjing, China, in 2005, the PhD
degree in Microelectronics and solid-state electronics from Southeast
University, Nanjing, China, in 2010.

Yufan Lu  received the B.S. degree in Electronic Information Engineer-
ing from Nanjing Tech University, Nanjing, China, in 2016, the M.S.
degree in Circuit and System from Nanjing University of Aeronaut-
ics and Astronautics, Nanjing, China, in 2019, and the Ph.D. degree
in Computing and Electronic Systems from the University of Essex,
United Kingdom, in 2023.

https://doi.org/10.1109/24.994913
https://doi.org/10.1109/12.980007
https://doi.org/10.1109/ISSRE.2019.00024
https://doi.org/10.1109/ISSRE.2019.00024
https://doi.org/10.1109/ARES.2013.8
https://doi.org/10.1109/HPCA.2007.346195
https://doi.org/10.1109/ACCESS.2019.2902505
https://doi.org/10.1109/ACCESS.2019.2902505
https://doi.org/10.1109/SCAM.2001.972664
https://doi.org/10.1109/SCAM.2001.972664
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1109/TC.2011.188
https://doi.org/10.1109/TC.2011.188
https://doi.org/10.1049/iet-pel.2014.0977
https://doi.org/10.1145/3230833.3230854
https://doi.org/10.1109/ET.2019.8878497
https://doi.org/10.1109/ET.2019.8878497
https://doi.org/10.1109/VTS.2016.7477300
https://doi.org/10.1109/TC.2018.2887225
https://doi.org/10.1109/ITA.2013.72
https://doi.org/10.1109/DSN.2014.2
https://doi.org/10.1109/DSN.2014.2
https://doi.org/10.1109/QRS-C.2019.00055
https://doi.org/10.1109/ISPAW.2011.45
https://doi.org/10.1109/ISPAW.2011.45

	Trade-off Mechanism Between Reliability and Performance for Data-flow Soft Error Detection
	Abstract
	1 Introduction
	2 Related Works
	3 System Reliability and Overhead Model
	3.1 System Reliability Assessment
	3.2 System Overhead Assessment

	4 Proposed System Reliability and Performance Trade-Off Strategy
	4.1 Reliability Improvement Rate
	4.2 Overhead Increase Rate
	4.3 Energy Efficiency of Detection Method
	4.4 Selection of BBs Without Detection Method
	4.5 Example of Trade-Off Mechanism
	4.6 Reassign According to the Demand of Reliability or Overhead

	5 Experimental Result
	5.1 Experimental Set Up
	5.2 Reliability
	5.3 Overhead
	5.4 Results of Reassign

	6 Conclusion
	Acknowledgements
	References

