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Abstract
The high energy particles in the space environment will perturb integrated circuits, resulting in system errors or even failures, 
which is also known as single event effects (SEE). To ensure the normal operation of space systems, it is first necessary to 
detect these errors. However, detection algorithms also bring additional overhead to the system and reduce its performance. 
Therefore, we aim to find a trade-off between reliability and performance. To this end, we propose a quantitative evaluation 
model for detection methods that evaluates the reliability gain of different detection methods under the same overhead. Our 
method allocates the optimal detection method to the corresponding code segment based on the quantitative results, thereby 
achieving a trade-off between reliability and performance. Experimental results show that the average energy efficiency of 
our trade-off method is 91.34%, which is 21.49% higher than the other methods.

Keywords  Single-event effects · Soft error · Fault-tolerant system · Reliability · Trade-off · Software-based detection techniques

1  Introduction

Radiation hardened technology are essential for integrated 
circuits working in space, the reason is that integrated cir-
cuits will be perturbed in space due to the hit of high energy 
particle, which is also called single event effects (SEE). One 
typical type of SEEs is single event upset (SEU), the phe-
nomenon of SEU is the logic state of sequential logic flips 
from "0" to "1" (and vice versa), which may cause system 
failures [3, 7, 11, 18, 29].

Fortunately, SEU is one kind of soft error and can be 
recovered. The first step of recovery operation is detecting 
these soft errors. There is a large amount of literature on  

this classic topic [1, 2, 8, 10, 33]. However, detecting these 
soft errors will increase execution time, which means the deg-
radation of system performance [9, 13, 21, 22, 24, 27, 31, 37]. 
For example, error detection by diverse data and duplicated 
instructions (EDDDDI) improves the reliability, but brings 
a huge overhead of execution time [24]. Translator for reli-
able software (ThOR) [30] implements code redundancy at C 
Code level. Because of the utilizing of high-level languages, 
this method is less difficult to implement. But due to the 
coarse-grained of high-level languages, the overhead of this  
method is higher than that of EDDDDI.

Therefore, implementing trade-off between reliability and  
performance has attracted more and more attentions. Reli-
able Code Compiler (RECCO) [6] and Partial Software 
Protection [42] implement the trade-off by only detecting 
the key variables and codes, such as variables or code seg-
ment that are used multiple times, but the key variables and 
codes are selected manually. Ref. [34] proposes a quanti-
tative method to evaluate the detection method, however, 
this method does not consider the trade-off strategy between 
multiple detection methods.

Motived by this problem, a trade-off mechanism between 
reliability and performance for data-flow soft error detec-
tion is proposed in this paper. The main contributions of this 
paper are as follow:
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1.	 A mathematical model is developed to evaluate the 
detection methods. Based on this, a quantitative evalua-
tion method is proposed to measure the detection energy 
efficiency of different types of detection methods.

2.	 We have implemented an automated test platform to 
find the optimal configuration of the proposed detection 
method according to the energy efficiency of different 
types of detection methods.

3.	 With the help of presented quantitative evaluation 
method and automated test platform, the optimal con-
figuration of the detection methods can be obtained, and 
then the trade-off between reliability and performance 
can be realized more effectively.

4.	 The final results show that the average energy efficiency 
of our trade-off method is 91.34%, RECCO is 75.42%, 
partial software protection is 85.82%, EDDDDI is 
66.34%, ThOR is 48.49%, and Fault Screening is 73.22%. 
This suggests that our trade-off method works better.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief overview of related works. Section 3 
presents relevant mathematical models, and Section 4 presents 
the proposed trade-off strategy. Section 5 discusses experi-
mental results, and conclusions are made in Section 6.

2 � Related Works

Software-based soft error detection methods are divided 
into two types: program redundancy and assertion detection. 
Table 1 provides examples of two types of detection methods.

The fundamental concept of program redundancy detec-
tion methods is to detect errors by comparing the results of 
original code with the result of modified code. Currently, 
there are various program redundancy detection methods, 
such as software fault tolerance (SWIFT) [31], error detec-
tion through repeated instructions (EDDI) [23] and EDDDDI 
[24]. At the source code level, the detection methods include 
ThOR [30] and RECCO [4-6, 6].

Another low overhead soft error detection method is 
assertion detection. The fundamental concept of assertion 
detection is to extract assertions that meet the specific 
characteristics of the program, and then add the assertion 
detection code to the program. Compared with the code 
redundancy method, the overhead of assertion detection 
is significantly reduced. However, the reliability improve-
ment of this method is not obvious, and it is not gener-
ally applicable. Some typical examples are the assertion 
detection method based on variable type proposed by Hiller 
et al. [13] and the fault screening method proposed by Paul 
Racunas et al. [28].

In summary, most previous studies have considered the 
reliability and performance trade-off only via one detec-
tion method, without considering the allocation between 
different detection methods. Some studies considering the 
trade-off between different detection methods [36], how-
ever, this study focused on the micro-architecture level rather 
than the software level. One interesting study is a system-
level cross-layer early reliability analysis framework called 
‘SyRA’ [38], which considered the application of a cross-
layer combination of two protection mechanisms. However, 
their study focuses on the combination of hardware-based 
method and software-based method, they still did not con-
sider how to make a trade-off with different software-based 
detection methods.

3 � System Reliability and Overhead Model

In this paper, we present a quantitative evaluation method 
of the detection method. The reliability and performance 
trade-off is achieved by assigning code redundancy, asser-
tion detection or without using detection methods to each 
BBs, as shown in Fig. 1.

In order to achieve a trade-off between system reliability 
and performance, the first step is to calculate the reliabil-
ity and overhead of the system. There are many studies in 
this field. However, since this paper focuses on the trade-off 
mechanism between reliability and performance, to simplify 
the calculation process, we adopt a simple reliability analysis 
model proposed by Savino et al. in [32]. It is worth noting 
that the accuracy of reliability analysis model will not sig-
nificantly impact the trade-off mechanism or the final result. 
We will elaborate on this further in Section 4.

In this paper, we use "R" to represent the reliability of the 
system, which indicates the probability of the program being 

Table 1   Example of ThOR redundancy detection methods and Fault 
Screening assertion detection methods

ThOR redundancy detection method Fault Screening assertion 
detection method

Original code Modified code

int a, b; int a0, b0, b1, b1; int a, b;
a = 1;b = 1;

a = b; a0 = b0; assert(a + b = = 2);
a1 = b1;
if(b0! = b1); int c;

for(c = 1;c < 100;c++)
error(); c+ = a + b;

a = b + c; a0 = b0 + c0; assert(c > = 0);
a1 = b1 + c1;
if( (b0! = b1) || (c0! = c1))
error();
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executed correctly. We use "O" to represent the overhead 
brought by the introduction of detection methods, which is 
defined as the ratio between the execution time of the pro-
gram with added detection code and execution time of the 
original program.

3.1 � System Reliability Assessment

We divide a complete program into basic blocks (BBs). BBs 
are code segments that are executed in sequence with only 
one parameter entry and exit. In this context, a program 
comprises n functions denoted as Fi (1 ≤ i ≤ n), a function 
comprises m BBs denoted as BBij (1 ≤ j ≤ m), and a BB com-
prises I instructions denoted as Iijk (1 ≤ k ≤ l). The correct 
execution of each instruction is an independent event; thus, 
reliability can be expressed as the probability of several 
instructions being executed correctly, as follows.

where R represents the probability of the program executing 
correctly, PC represents the probability of correct execution: 
PC

(

Fi

)

 represents the probability of function Fi executing 
correctly, PC

(

BBij

)

 represents the probability of BBij exe-
cuting correctly, and PC

(

Iijk
)

 represents the probability of 
instruction Iijk executing correctly.

According to Eq. (1), the reliability of BB is determined 
by the reliability of each instruction within the BB, and these 

(1)
R =

∏n

i=1
PC

(

Fi

)

=

∏n

i=1

∏m

j=1
PC

(

BBij

)

=

∏n

i=1

∏m

j=1

∏l

k=1
PC

(

Iijk
)

reliabilities can be obtained through Savino et al.’s statistical 
systematic reliability assessment study [32].

On this basis, we will further consider the improvement 
of reliability by detection methods. After considering the 
detection method, there are two situations that a BB per-
forms correctly: 1) when it executes correctly itself; 2) when 
it executes incorrectly itself but the detection method detects 
the error. However, in both cases, it is necessary to ensure 
that the detection method executes correctly. The reason is 
if the detection method executes incorrectly, even if the pro-
gram itself executes correctly, the BB will ultimately execute 
incorrectly. These are expressed mathematically as follows.

where PMdet represents the probability that the detection 
method can detect an error. Next, we will introduce two 
reinforcement methods into our reliability calculation for-
mula: we assume that the detection probability using the 
code redundancy method is 1, and the detection probability 
using the assertion detection method is PMdet. We will dis-
cuss the PMdet in detail in Section 4.1.

The set of BBs using the code redundancy method 
is A =

{

Bi1, Bi2, ⋯ Bij, ⋯

}

 (1 ≤ i ≤ n, 1 ≤ j ≤ m), according 
to the hypothesis in the last paragraph, all the reliabilities of 
BBs that belong to A are 1. The set of BBs using the assertion 
detection method is B =

{

Bi1, Bi2, ⋯ Bij, ⋯

}

 (1 ≤ i ≤ n, 
1 ≤ j ≤ m). Thus, the reliability after using detection method 
is expressed as follows.

(2)
PC

(

BBij

)

=
{

PC

(

BBij

)

+
(

1 − PC

(

BBij

))

× PMdet

}

×
∏

PC

(

Idijk
)

Fig. 1   Example of allocating the 
apposite method to each BBs
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where Id represents the additional detection instructions of 
the detection method, and PC(Id) represents the probability 
of Id being correctly executed. The symbol '1 × ' is due to we 
assume that the reliability of the BBs using code redundancy 
being 100% (1).

3.2 � System Overhead Assessment

We define the overhead of system as time overhead, which 
is the ratio of execution time after using the detection 
methods to the execution time of source program. We use 
the clock cycle to represent the execution time.

where O represents the time overhead, Tdet represents the 
overhead of the execution time after using the detection 
methods, and Tsource represents the execution time of the 
source program.

The code redundancy method adds redundant code 
and detection code to the source code, while the assertion 
method only adds detection code without redundant code. 
Therefore, the execution time of source code is expressed 
as follows.

where tBij represents the execution time of a BB without 
using any detection methods.

The execution time after using detection methods is 
expressed as follows.

where tdet represents the the execution time of the code 
increased by detection methods.

Thus, from Eqs. (4), (5), and (6), the system overhead 
O is expressed as follows.
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∏n
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(3)
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∏
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(4)O = Tdet∕Tsource

(5)Tsource =
∑n

i=1

∑m

j=1
tBij

(6)

Tdet =
∑n

i=1

{

∑
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(

2 × tBij + tdet
)

+
∑

j∈B

(
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)
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∑
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}

(7)

O =
{
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tBij
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}}

4 � Proposed System Reliability 
and Performance Trade‑Off Strategy

In this section, we introduce how to achieving a trade-off 
between reliability and performance for the entire system. 
First, we use system reliability analysis tools (such as 'SyRA' 
[38], 'Flodam' [15], and 'SoftArch' [19]) to calculate the reli-
ability and execution time of the source BB, as well as the 
reliability and execution time of each BB after using detection 
methods. Then, we compute the improvement rate of reliability 
and the increase rate of overhead for each BB. Next, we com-
pute the energy efficiency of different methods and assign the 
method with higher energy efficiency to each BB. BBs with 
high reliability do not adopt any detection methods to further 
reduce overhead Finally, if engineers have different require-
ments for reliability or performance, we can reassign the result 
based on these requirements. Figure 2 shows the process flow 
of our trade-off strategy.

Since the system reliability analysis tool is only used in the 
first stage (computing reliability and execution time), it is easy 
to change another tools to increase the accuracy of reliability. 
Thus, our trade-off strategy is not strongly dependent on the 
system reliability analysis tool.

4.1 � Reliability Improvement Rate

The reliability improvement rate of a BB is defined as follows.

where Rimp represents the reliability improvement rate of a 
BB, Rdet represents the reliability of a BB after using detec-
tion methods, Rsource represents the source reliability.

In combination with Eq. (3), the reliability increases rate 
Rimp for the assertion detection method is given as follows.

where et represents the execution time.
For the BBs using the code redundancy method, the reli-

ability increase rate Rimp is expressed as follows.

The detection probability of assertion detection (PMdet) 
can be calculated according to the concept of error masking 
parameter [20], which refers to the error detection rate of the 
detection method. An example of PMdet calculation is shown 
here using the detection relationship of equality. The result 
of correct execution of program is denoted as x, the result of 
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(
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− 1
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incorrect execution of program is denoted as x′, and the detec-
tion assertion is given as x = a; thus, x′ = x ± 2k ≠ a. Therefore, 
x′ = a cannot be satisfied; thus, the PMdet is 100%. Ref. [36] 
has provided a detailed approach to computing PMdet, so we 
will not provide too many explanations in this paper.

However, most BBs have more than one variable, thus, 
we must consider how to calculate PMdet for a BB with 
multiple variables. In a BB where each variable is exe-
cuted correctly is an event that is independent of other 
events, we assume a BB contains n variables. Addition-
ally, the detection probability for each variable is denoted 
PMdet (vn). Then, we can get the PMdet for the basic block 
as follows.

 If a BB has two variables: a and b, the PMdet of a is 0.5, the 
PMdet of b is 1, then according to Eq. (11), the PMdet of this 
BB will be: PMdet (a)*PMdet (b) = 0.5*1 = 0.5.

4.2 � Overhead Increase Rate

According to the assumption made in Section 3 (assume 
that the detection probability PMdet using the program 
redundancy method is 100%) and Eq. (7), the overhead 
increase rate for the BBs using the assertion detection 
method is expressed as follows.

(11)PMdet =
∏n

i=1
PMdet

(

vi
)

Fig. 2   Trade-off strategy process flow. Note: input (red), output (green), detection methods (blue), computational tasks (light gray)
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 For BBs using the program redundancy method, the over-
head increase rate is given as follows.

4.3 � Energy Efficiency of Detection Method

To configure the detection method, we define the ratio 
of reliability improvement rate to the overhead increase 
rate of each BB as the energy efficiency. This means that 
for a BB, the detection method increases the overhead by 
a part in exchange for improving the reliability. Higher 
efficiency means that the detection method incurs a small 
overhead increase in exchange for a significant improve-
ment in reliability. Note that we can select a more efficient 
detection method to reduce the overhead of the system on 
the premise of ensuring high reliability.

According to Eqs. (4) and (8), the energy efficiency of 
the detection methods is expressed as follows.

where S represents the energy efficiency of detection method.

4.4 � Selection of BBs Without Detection Method

Some BBs will contain fewer instructions and have less 
execution time, which means they have a high reliability. 
Therefore, we can choose not to use any detection method 
for these basic blocks, which will reduce system over-
head. We set a BB self-reliability threshold PBr, for BBs 
with self-reliability greater than PBr, there is no detection 
method is used Ref. [42] has determined that an effective 
trade-off between system reliability and performance can 
be obtained when the PBr value is selected as the top 20% 
of the basic block's self-reliability. The number of BBs 
without using the detection method is calculated as fol-
lows [42].

where X represents the number of BBs without using any 
detection method.

4.5 � Example of Trade‑Off Mechanism

To illustrate our trade-off mechanism more clearly, we 
present an example of using a real program to achieve the 
trade-off. This program contains 11 BBs and is running on 
the ARM Cortex-M3 architecture. First, we use a System 

(12)O =
{(

tdet + tBij
)

× (et)
}

∕
{

tBij × (et)
}

(13)O =
{(

2 × tdet + tBij
)

× (et)
}

∕
{

tBij × (et)
}

(14)S = Rimp∕O =
{(

Rdet∕Rsource

)

− 1
}

∕
{

Tdet∕Tsource
}

(15)X = (Number of all basic blocks) × 20%

Reliability Analysis Tool to compute the source reliability 
(Rsource), source execution time (Tsource), as well as the reli-
ability (Rdet) and execution time (Tdet) after using detection 
method. The results are reported in Table 2 and Table 3. 
Then, we compute the reliability improvement rate (Rimp) 
and overhead increase rate (O) for each method using differ-
ent detection methods. The results are reported in Table 4. 
Next, we calculate the energy efficiency (S) of each method 
and report the results in Table 5. Finally, we assign the 
detection method with the higher energy efficiency (S) to 
each BB and select the 20% of BBs with the highest reli-
ability without using any detection methods. The results are 
reported in Table 6.

4.6 �  Reassign According to the Demand 
of Reliability or Overhead

In some cases, engineers may have a higher demand for reli-
ability or performance. They can achieve higher reliability by 
sacrificing system performance, and vice versa. Ref. [42] real-
izes this process by simply added or subtracted redundant BBs.

We have designed a reassignment process to make our 
trade-off mechanism more flexible. We first define two 
variables that represent the demand of reliability (dor) and 
demand of performance (dop). The relationship between the 
two variables is described by Eq. (16), where both variables 
range from 0 to 2. In the default case, both variables are 
set to 1, indicating an equal demand for reliability and per-
formance. When one variable increases, the other variable 
decreases accordingly.

In order to realize the reassign process, dor is ralated to 
Sre, dop is related to Sasrt. We add dor and dop to Eq. (14).

(16)dor = 2 − dop

Table 2   The Rsource and Tsource 
of each BB

BBs Rsource (%) Tsource 
(Clock 
cycles)

BB1 87.69 9
BB2 82.05 21
BB3 78.11 25
BB4 89.07 13
BB5 77.86 26
BB6 69.12 44
BB7 96.69 5
BB8 92.12 6
BB9 91.30 12
BB10 75.53 32
BB11 90.55 12
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where Sasrt represents the energy efficiency when using 
assertion detection method, Sre represents the energy effi-
ciency when using redundancy detection method.

We add dop to Eq. (15):

where X’ represents the number of BBs without using any 
detection methods after reassignment.

Through analysis of Eqs. (17), (18), and (19), we can infer 
that when engineers have more demand for reliability, they 
can input a higher value for dor, according to Eq. (16), dop 

(17)Sasrt = dop ×
(

Rimp∕O
)

(18)Sre = dor ×
(

Rimp∕O
)

(19)X� = dop × (Number of all basic blocks) × 20%

will decrease. Since dor is related to Sre and X’, and dop is 
related to Sasrt, the value of Sre will be higher than the default 
case. This means that more BBs will be assigned to use 
the code redundancy method, fewer BBs will be assigned 
to use the assertion detection method, and less number of 
BBs will be assigned without using any detection method. 
Therefore, the system reliability will increase at the expense 
of performance.

5 � Experimental Result

In Section 5.1, we describe how the experiment be set up, 
Section 5.2 and Section 5.3 compares the reliability and 
overhead of our method with the previous works, Section 5.4 
shows the result of reassignment when the values of dor and 
dop are adjusted.

Table 3   The Rdet and Tdet of 
each BB

BBs Rdet of program 
redundancy (%)

Rdet of assertion 
detection (%)

Tdet of program 
redundancy (Clock cycles)

Tdet of assertion 
detection (Clock 
cycles)

BB1 99.91 98.14 22 13
BB2 99.91 91.24 46 25
BB3 99.91 89.33 54 29
BB4 99.91 97.41 30 17
BB5 99.91 86.37 56 30
BB6 99.82 65.55 184 96
BB7 99.91 99.91 14 9
BB8 99.91 99.12 16 10
BB9 99.91 97.91 28 16
BB10 99.82 88.89 136 72
BB11 99.91 97.83 28 16

Table 4   The Rimp and O of each BB

BBs Rimp of 
program 
redundancy 
(%)

Rimp of 
assertion 
detection (%)

O of program 
redundancy 
(%)

O of assertion 
detection (%)

BB1 13.93 11.92 244.44 144.44
BB2 21.76 11.19 219.05 119.05
BB3 27.91 14.37 216.00 116.00
BB4 12.17 9.36 230.77 130.77
BB5 28.33 10.93 215.38 115.38
BB6 44.41 -5.01 418.18 218.18
BB7 3.33 3.33 280.00 180.00
BB8 8.46 7.59 266.67 166.67
BB9 9.44 7.24 233.33 133.33
BB10 32.16 17.69 425.00 225.00
BB11 10.34 8.05 233.33 133.33

Table 5   The S of each BB

BBs S of code redundancy S of assertion 
detection

BB1 0.0570 0.0825
BB2 0.0994 0.0940
BB3 0.1292 0.1238
BB4 0.0527 0.0715
BB5 0.1315 0.0948
BB6 0.1062 -0.023
BB7 0.0119 0.0185
BB8 0.0317 0.0456
BB9 0.0404 0.0543
BB10 0.0757 0.0786
BB11 0.0443 0.0603
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5.1 �  Experimental Set Up

We chose STM32CubeIDE as the experimental platform, 
which is an integrated development environment for STM32 
products. Through Serial Wire Debug (SWD), we can simu-
late faults caused by space radiation and observe the current 
state of the system.

In this experiment, fault injection was performed on a 
real STM32F103c6t6 device connected to the host PC 
through SWD. The host PC controlled the process of the 
STM32F103c6t6 device. To simulate the fault, we used "step 
into" to iterate through every instruction and changed the 
value of every register through SWD.

Figure 3 shows the experimental process. The win-
dow on the left displays the C code, the window in the 
middle shows the corresponding assembly code, and the 
window on the right shows all the registers of the ARM 
Cortex-M3. We can change the value of these registers 
through this window. Faults are injected into the program 
by break-point debugging. By viewing and comparing the 
final result and the running status of the program, we could 
judge whether an SDC error occurs, and whether the SDC 
error is detected or not.

The test program are the program written by ourselves, 
Matrix Multiplication, Qsort, and Rad2deg from the 
MiBench test set [12]. Single event setup (SEU) is a com-
mon soft error, so our experiment uses SEU as soft error 
model. We injected 272 SEU errors into each program. 
According to Ref. [17], the confidence level of our result is 
95%, and error margin is 5%.

We selected three detection methods and two trade-off 
methods to contrast with our trade-off method. The detec-
tion methods include EDDDDI, implementing error detec-
tion by diverse data and duplicated instructions, ThOR, a 
source code-level redundancy method, and Fault Screen-
ing, which performs value range assertion detection for 
variables. The trade-off methods include RECCO, which 
implements trade-off by only detecting the key variables, 
and partial software protection, which only detects the key 
code segments.

Table 6   The final assign result 
of each BB

BBs Detection method

BB1 assertion
BB2 redundancy
BB3 redundancy
BB4 assertion
BB5 redundancy
BB6 redundancy
BB7 without use
BB8 without use
BB9 assertion
BB10 assertion
BB11 assertion

Fig. 3   The experiment platform STM32CubeIDE
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5.2 � Reliability

We use fault injection to test the reliability of our system. The 
reliability of some programs has been evaluated in Ref. [34], 
on this basis, we added our program as a test program. We also 
added Fault Screening and two trade-off methods, RECCO 
and partial software protection, to compare with our trade-off 
method. The result of fault injection is shown in Fig. 4.

Based on the effects of injected faults, we classify the 
types of errors into the following four categories:

Correct Result (CR): The fault does not change the output.
Hard Fault (HF): The injected fault is detected by default 
fault exception handlers in the ARM Cortex processor family.
Detected Fault (DF): The injected fault is detected by 
the detection methods used for data flow error detection.
Undetected Fault (UDF): The injected fault is not detected 
and it changes the output of the program.

Through analysis of the results, we found that the unde-
tected rates of the two Redundant code methods are both 
below 2%, the average undetected rate of Fault Screening 
is 28.15%. The average undetected rate of the two trade-off 
methods is 9.83%, while the average undetected rate of our 

method is 14.67%. Our trade-off method uses both Redun-
dant code and assertion detection, and some code segments 
do not use any detection method, so our undetected rate is 
12.67% higher than redundant detection methods and 13.48% 
lower than assertion detection method. Compared to the two 
trade-off methods, our trade-off method increased the unde-
tected rate by 4.84%, the reason is in some code segments, 
we use assertion detection instead of program redundancy.

5.3 � Overhead

We use the ratio of clock cycles after using a detection 
method to the clock cycles of the source program to repre-
sent the overhead of the detection method. The result of the 
overhead is shown in Fig. 5.

Through analysis of the results, we found that due to the 
coarse-grained of high-level languages, the average overhead 
of Thor is the highest at 389.5%. The average overhead of 
EDDDDI is 289.25%. The average overhead of Fault Screen-
ing is the lowest at 110.41%. The average overhead of the 
two trade-off methods is 223.4%, and the average overhead 
of our method is only 178.06%. Due to the use of two detec-
tion methods and some code without any detection method, 
the overhead of our trade-off method is 45.34% lower than 

Fig. 4   Result of fault inject result
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the other two trade-off methods and 61.6% lower than pro-
gram redundancy methods, which means that our method 
has a higher performance than other trade-off methods and 
program redundancy methods.

In order to more clearly compare the advantages of our 
trade-off method, we use the definition of energy efficiency 
of detection method in Eq. (14) to characterize the effect of 
trade-off method. A higher energy efficiency means the trade-
off method can bring higher reliability improvement with the 
same overhead. Therefore, the higher energy efficiency the 
better effect of trade-off. We calculated the energy efficiency 
of different methods under different test program. The final 
results show that the average energy efficiency of our trade-
off method is 91.34%, RECCO is 75.42%, partial software 
protection is 85.82%, EDDDDI is 66.34%, ThOR is 48.49%, 
and Fault Screening is 73.22%. The energy efficiency of 
our trade-off method is 15.93% and 5.52% higher than two 
trade-off methods (RECCO, partial software protection), and 
25.01%, 42.85%, 18.12% higher than the detection methods 
without implement trade-off (EDDDDI, ThOR, Fault Screen-
ing). The experimental results are showed in Table 7.

5.4 � Results of Reassign

In this section, we demonstrate the final trade-off results 
when the values of dop and dor are adjusted. Since fault 
injection is time-consuming and complex, reliability is 
measured by the probability of program been executed cor-
rectly rather than the detection rate in this section. To illus-
trate the change in energy efficiency S (see Eq. (14)) when 
dor and dop change in our trade-off method. We define the 
average energy efficiency of each BB as S:

where Sn represents the energy efficiency of the nth BB, n 
represents the number of BBs.

As shown in Table 8, when dor gradually increases and 
dop gradually decreases, reliability and overhead both 
increase. When dor is 0 and dop is 2, the reliability of all 
programs is the lowest, with an average of 27.68%. However, 
the average overhead is 120.12% which is also the lowest. 
It is worthy to note that even if dor is 0, 60% of BBs will 

(20)S =

∑

Sn

n

Fig. 5   Result of Overhead

Table 7   Result of S Program Our
mesthod

RECCO Partial 
software 
protection

EDDDDI ThOR Fault Screening

Our Program 90.38% 82.14% 123.60% 72.95% 44.14% 78.40%
Matrix Multiplication 135.94% 92.17% 102.89% 81.84% 57.60% 78.26%
Qsort 77.35% 66.84% 65.58% 55.24% 48.71% 67.57%
Rad2deg 61.70% 60.52% 51.20% 55.31% 43.52% 68.65%
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still be allocated the assertion detection method, so a certain 
overhead is still needed.

When dor and dop are both 1, the average reliability 
increases to 75.66% and the average overhead increases to 
178.03%. Compared with dor is 0 and dop is 2, the aver-
age reliability increases by 47.98%, the average overhead 
increases by 57.91%. Due to the improvement of dor, 
more BBs use the program redundancy detection methods, 
because the program redundancy detection methods can 
bring more reliability improvements.

Finally, when the dor is 2 and the dop is 0, the average 
reliability is 95.75%, but the average overhead also increases 
to 215.72%. This indicates that when dor is 2, most of the 
BBs use the program redundancy detection methods to get 
the most reliability improvements.

We use S to characterize the effect of the trade-off 
method. When dor increases from 0 to 1, S gradually 
increases, when dor and dop are both 1, S reaches the maxi-
mum, when dor increases from 1 to 2, S gradually decreases. 
The result shows that when dor and dop are both 1, our 
trade-off method achieves the optimal configuration of 
detection methods for each BBs. The value of S is much 
smaller than the value of S in Section 5.3, because S is the 
energy efficiency of the overall program, S is the average of 
the energy efficiency of each BB.

In conclusion, when dor is 0 and dop is 2, the average 
value of reliability is 27.68%, and the average value of over-
head is 120.12%. When dor is 2 and dop is 0, the average 
value of reliability and overhead are 95.75% and 215.72%, 
respectively. S represents the average energy efficiency of 
each BB (see Eq. (20)). The higher S is, the better the trade-
off effect is. Only when dor and dop are both 1, S reaches the 
maximum value. The result shows that our trade-off method 
achieves the optimal configuration of detection methods for 
each BBs when dor and dop are both 1.

In the experimental results, we observed a significant 
difference in program reliability. For example, Qsort pro-
gram had an initial reliability of 81.989%, while Rad2deg 
program had an initial reliability of only 0.005%. This is 
because Rad2deg program has a large number of loop struc-
tures that are prone to errors. Conversely, Qsort program is 
a non-arithmetic program with a high probability of correct 
execution for each basic block, resulting in higher reliability 
compared to arithmetic programs.

By reassigning the demand of reliability and perfor-
mance, engineers have more choices when prioritizing 
between these two factors. This enables them to better meet 
the requirements of the actual system.

6 � Conclusion

In this paper, we propose a general trade-off method for 
software-based soft error detection that quantifies the evalu-
ation of detection methods. The trade-off method considers 
the allocation between code redundancy and assertion detec-
tion methods.

We used the ratio of the reliability improvement rate to the 
overhead increase rate to characterize the effect of trade-off. 
Experimental results show that the average energy efficiency 
of our trade-off method is 91.34%, which is 21.49% higher 
than the other methods. This suggests that our trade-off method 
works better. Additionally, the trade-off method has flexible 
scalability and can be executed simultaneously with other 
methods, such as [16], to further achieve an effective trade-off 
between the reliability and performance of the system.

Future studies could use the machine learning method 
[16] to enable a dynamic analysis of the program BB. In 
this paper, only the data flow detection method was con-
sidered, the control flow detection method [35] should be 

Table 8   Results of R, O and S 
when the values of dop and dor 
are adjusted

dor dop Our Program Matrix Multiplication

R O S R O S

0. 00 2. 00 26.44% 111.38% 5.27% 2.28% 103.62% 6.20%
0.5 1.5 31.24% 114.23% 5.92% 60.12% 170.18% 7.49%
1. 00 1. 00 72.17% 175.59% 14.96% 66.11% 175.17% 7.88%
1.5 0.5 95.65% 215.31% 6.98% 85.87% 209.54% 6.78%
2. 00 0. 00 98.83% 218.50% 7.09% 93.51% 222.00% 6.88%

dor dop Qsort Rad2deg

R O S R O S

0. 00 2. 00 81.98% 138.52% 2.64% 0.00% 126.94% 3.10%
0.5 1.5 90.15% 153.57% 2.76% 31.25% 174.59% 3.36%
1. 00 1. 00 94.15% 172.52% 3.04% 70.20% 188.83% 5.28%
1.5 0.5 96.54% 195.25% 2.54% 88.96% 198.65% 4.15%
2. 00 0. 00 98.83% 217.58% 2.57% 91.82% 204.80% 3.91%
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considered in the future. The mathematical model for the 
reliability evaluation still needs improvement. At present, 
there have been a large number of related studies, such as 
the Markov chain model [14, 26], the Petri network model 
[39, 41], etc. We will also observe the experimental results 
using different level of fault injection, similar studies can be 
referred to literature [25, 40].

As the number of human-launched spacecraft increases 
each year, the chip cost of spacecraft becomes more impor-
tant to the industry. The previous detection method caused 
large time overhead, which is unacceptable for embedded 
space control systems with high real-time performance. 
Therefore, this paper proposes an effective trade-off strategy 
to reduce time overhead, which helps to replace high-cost, 
low-performance aerospace-grade chips with low-cost, high-
performance space-class chips in space systems.
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