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Abstract
This paper proposes an automated framework for test generation for digital circuits, using evolutionary algorithms (EAs) 
such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) targeting single stuck-at faults. The framework is 
built in MATLAB environment in conjunction with an open-source fault simulator HOPE. Finding the best test pattern with 
maximum fault coverage from a very large search space of digital tests is proven to be time effective in VLSI circuits using 
EAs. This work emphasizes upon finding the best test pattern with maximum fault coverage in fewer iterations. This indeed 
can significantly reduce the number of required test patterns to achieve a good fault coverage quickly. Unlike open source 
ATPG tool ATALANTA which can generate tests only for combinational circuits, our EA based test generation framework 
is able to generate test pattern for combinational as well as sequential circuits. The proposed framework has introduced 
test generation for sequential circuits before and after their “netlist cutting”. In this context, an automated tool which can 
perform “netlist cutting” for sequential circuits without altering the structure of combinational logic has been devised. The 
quality of generated test patterns is verified through fault simulation of some of the ISCAS’85 combinational and ISCAS’89 
sequential benchmark circuits. The work has also explored the efficacy of the best test pattern through variations of genetic 
operators like crossover and mutation rate. Results show that the proposed GA and PSO outperforms the commonly known 
open source ATPG tool ATALANTA.
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1 Introduction

The progress of VLSI technology brings with it several chal-
lenges in testing a digital circuit. Chips can develop errors 
as a result of flaws and imperfections in the manufactur-
ing process, and it is crucial to find those flaws before the 
ICs are mounted on printed circuit boards. The number of 
flaws/defects has grown over time as a result of the planned 
chip's increased integration. Therefore, it is crucial to find 

the problem at the device level in order to maximize the 
reliability of the created chips. Additionally, numerous inde-
pendent studies have demonstrated that the cost of detecting 
a failure in a circuit is far less expensive than detecting the 
same failure inside a bigger circuit that contains the same 
circuit as a subpart. High fault coverage must be attained so 
that the fault level in chips is kept below a predetermined 
value. However, to evaluate every potential defect in a chip, 
it is practically not possible to produce test vectors. There-
fore, to facilitate the test generation process, defects are 
modelled as faults. Due to its resemblance to real defects 
and the computational options it provides for producing test 
vectors, the stuck-at fault model is among the existing fault 
models that is most widely recognized [16].

An Automatic Test Pattern Generator (ATPG) is a system 
that analyses circuits and creates a series of test patterns. 
As depicted in Fig. 1, there are two parts to it: a test vector 
generator and a simulator for simulating faults. To put it 
another way, ATPG is a technique used to identify an input 
sequence, that when applied to a digital circuit, lets us to tell 
the difference between a correct circuit and a faulty circuit.
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1.1  Open Source CAD Tools

ATPG tools like ATALANTA [38, 41] and FAULT [1], 
which are open source, are available for education and 
research purposes. The tools offer a variety of options, mak-
ing them excellent for use in teaching and the code can be 
modified as per user requirements [22].

1.2  Licensed CAD Tools

Industry standard ATPG tools like “Modus" from Cadence 
[9], "TestMAX" by Synopsys [39], and “Tessent FastScan" 
by Siemens [40] are vastly used. These tools provide high 
fault coverage in minimum time and have highly efficient 
hardware utilization for ATPG.

In this paper, it has been discussed how digital circuit 
testing can be done using evolutionary methods, which is 
used to describe search, learning and optimization algo-
rithms generally. Among these methods, the key examples 
include: genetic algorithms (GA), genetic programming 
(GP), evolutionary strategy (ES), particle swarm optimiza-
tion (PSO) and ant colony optimization (ACO). The self-
adaptation and robustness of the evolutionary algorithms 
are well recognized. These algorithms are widely utilized in 
a variety of applications, including physical design, VLSI 
testing, and many more that call for a planned, controlled 
introduction of randomness throughout the solution-finding 
process [10]. When there are no heuristic answers or when 
they typically produce unconvincing results, the EA might 
be used. Due to this, interest in evolutionary algorithms has 
lately increased, especially in the areas of practical solving 
of problems. EA’s offer satisfactory answers frequently and 

are simple to apply in comparison to other global optimiza-
tion techniques.

As stated in [22], “Universities cannot always use profes-
sional ATPG tools in education due to high cost of licenses". 
As found in literature, the test generation algorithms in [12, 
14, 22] were written in languages like C, C + +, Python etc. 
But the MATLAB environment has not been fully investi-
gated. Engineers and scientists can use the programming 
environment in MATLAB to study, create, and test systems 
and technologies that will change the world. Due to the 
command line/graphical user interface, easy random num-
ber generation and its ability to interact with various CAD 
tools, MATLAB proves to be an efficient environment for 
test generation in digital circuits using GA [13].

2  Related Work and Major Contributions

2.1  Existing Approaches on Test Generation Using 
Traditional ATPG Algorithms

Numerous studies have tackled the issue of creating a test 
vector generator with elevated fault coverage and limited 
test size. Socrates [33], Smart & Fast [2], Compactest [29] 
were one of those earlier developed ATPG which focused 
on identifying redundant faults and usage of dynamic com-
paction techniques. A. Raghuraman [30] has made a sug-
gestion that intends to create a method for getting a single 
test pattern which can find all or the majority of defects in 
a particular combinational circuit. After identifying faults 
which are essential and independent, a test vector reduc-
tion based on faults is suggested in [20]. Essential test 
vectors can find at least one distinct fault that no other test 
vector can find. Then child test vectors which are essential 
are filtered out from essential test vectors by a technique 
as proposed in [23]. This resulted in an elevated number of 
faults being detected by a compacted test set. The simplest 
approach to determine the most perfect test sequence hav-
ing maximum fault coverage in VLSI circuits is exhaustive  
testing. But it is not possible to produce all the 2n test 
combinations for a circuit with n inputs. An alternative to 
exhaustive tests is random pattern generation which uses 
less test patterns overall. However, both methods generate 
unnecessary tests because multiple vectors can detect the 
same fault. Malaiya [24] presented an innovative method 
of testing termed antirandom testing. In this method, a test 
vector is selected so that it has a distance as large as pos-
sible from all the prior vectors. More faults can be found 
by using two test vectors with a large hamming distance 
between them. Although this method reduces test vectors, 
but it is computationally intensive. For single stuck-at 
(s–s-a) faults deterministic approach (for e.g., D Algo-
rithm, PODEM, FAN) follows random test generation, but 

Fig. 1  ATPG Architecture
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due to its huge storage requirement and increased test vec-
tor switching activity, it does not fulfill the criteria. This 
calls for the creation of a system that generates optimum 
number of vectors for testing which can detect maximum 
number of faults.

2.2  Existing Approaches on Test Generation Using 
Evolutionary Algorithms

With the advent of evolutionary algorithms [36], test pat-
terns having better fault coverage compared to other tech-
niques are generated. GA being one of the evolutionary 
algorithms is used to find optimum solution for a problem. 
In [32] and [37], GA was originally applied as a framework 
for test vector generation based on simulation, however only 
combinational circuits were taken into account in [37]. The 
test vectors generated by the CRIS test pattern generator [32] 
had decreased fault coverages as compared to that produced 
by a test vector generator based on deterministic approaches 
because it used a logic simulator to analyze potential test 
sequences. One defect was targeted at a time by another 
innovative method of GA-based test generation [28], which 
was then expanded to target 64 faults at once [11].

In [15], a genetic algorithm-based test pattern generat-
ing strategy was created to enable direct comparison with 
random methods. It was observed that, although the random 
generator gets more fault coverage quickly, but in the end, 
GA detects additional faults. When dealing with circuits hav-
ing large number of inputs, the effectiveness of GA comes 
into picture. GATEST [31], a test pattern generator based on 
GA was accomplished around a fault simulator for sequential 
circuit PROOFS [27]. Huge fault coverages and compacted 
test vectors were achieved for combinational circuits, while 
deterministic techniques would yield even better results. 
One of the limitations was that GATEST could not identify 
untestable faults. In [5], results were obtained for ISCAS’89 
benchmark combinational circuit (C17) using GA. One single 
stuck-at-fault is injected in C17 circuit and it was checked 
how fast GA was able to develop a test pattern to detect that 
fault. In [4], a genetic algorithm-based test pattern generator 
was developed which detects both delay and single stuck at 
faults for combinational circuits. In [3], the sequential circuits 
are tested using the evolutionary algorithms GA, PSO and 
Differential Evolution (DE) and the performance comparison 
is made among them. In [17], in order to perform ATPG for 
sequential circuits, a symbolic fault simulator is merged into 
a Genetic Algorithm (GA) environment.

2.3  MATLAB based Approaches for Test Generation 
for Digital Circuits

In [26], research has been made to develop an algorithm 
based on test pattern generation using black box and some 

deterministic approach in MATLAB. This algorithm 
achieves high fault coverage with reduced test vector count 
such that the vectors have large distance between them using 
NQ1 rule 90 and NQ1 rule 150 [42]. The test patterns are 
generated in MATLAB and their fault simulation are per-
formed through ATALANTA. The results for circuits C432, 
C3540 and C6288 show that a smaller number of vectors 
achieve high fault coverage (> 85%). In [34], a MATLAB 
based D-Algorithm and PODEM algorithm has been devel-
oped for testing VLSI circuits. It is very tedious to imple-
ment these algorithms for complex circuits, so a library 
based on Simulink has been developed. The paper [25] 
explains a method for estimating a combinational circuit's 
nets' testability, which can either be described at the gate-
level or at the component level. For each net in the network, 
three weight functions—CC0 (combinational controllability 
0), CO (combinational observability) and CC1 (combina-
tional controllability 1) are evaluated. The results are used 
in an existing ATPG technique to speed up test creation. 
MATLAB 7.0 has been used to implement the algorithm. 
The method's efficacy is demonstrated by experimental find-
ings on the ISCAS’85 benchmark circuits.

2.4  Major Contributions

This work makes the following contributions, taking into 
account numerous studies previously described in the litera-
ture for test pattern generation of digital circuits:

• This work emphasizes on searching the single best test 
pattern with maximum fault coverage rather than a test 
set, for a particular digital circuit. Knowing the best test 
vector aids in compacting the test set size for achieving 
a high fault coverage, since maximum of the faults are 
detected by the best test vector and the remaining faults 
require a small number of vectors to detect them. The test 
generation framework for ATALANTA which uses a tra-
ditional ATPG (FAN) algorithm for test generation finds 
the compact test set that can detect maximum number of 
stuck-at faults in combinational circuits only, whereas 
our EA based test generation framework is able to gen-
erate test pattern for combinational as well as sequential 
circuits and can find the best test pattern with maximum 
fault coverage rather than a test set. Moreover, the pro-
posed framework has been proven to provide fault cover-
age better than the open-source tool ATALANTA for the 
best test pattern in nearly same number of iterations.

• Unlike other works as in [31, 35], where the GA imple-
mentation has been made in languages like C and C + +, 
in this work a GA and a PSO based test pattern generator 
has been devised using the well- established engineering 
tool MATLAB to test benchmark combinational [7] as 
well as sequential circuits [6].
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• In this work the open-source fault simulator HOPE [21] 
has been used which is an improvised version of the 
PROOFS fault simulator used in [31]. The linking of 
MATLAB with the HOPE simulator justifies the abil-
ity of MATLAB for interacting with other CAD tools 
and opens up possibilities for exploration on test pattern 
generation involving MATLAB as the main tool.

• The proposed framework has introduced test generation 
for sequential circuits before and after their “netlist cut-
ting”. In this context, a MATLAB based EDA tool which 
can perform “netlist cutting” for sequential circuits with-
out altering the structure of combinational logic has been 
incorporated in the framework.

The arrangement of the remaining portion of paper is 
as follows. Section 3 provides the entire test generation 
framework of GA as well as PSO in MATLAB along with 
an approach for test generation for sequential circuits. The 
tabulation of the results for the benchmark combinational 
and sequential circuits are presented in Sect. 4. Finally, the 
paper is concluded in Sect. 5.

3  Test Generation Framework: Methodology 
and Theoretical Background

3.1  Test Generation Framework‑An Overview

Figure 2 shows the overall framework of EA that has been 
implemented in MATLAB for test generation for digital cir-
cuits. The inputs to the algorithm are:

• CktName – Name of the circuit to be simulated
• MaxIt – The maximum number of iterations through 

which the EA iterates itself
• nPop – Initial number of random individuals to be generated
• mutrate – Mutation Rate in case of GA
• nbits – Number of input bits in the circuit
• TotFaults – Total number of faults in the circuit
• TotFlops – Total number of D flip flops in the circuit

An EA begins with generation of random individuals of 
a population, which are then passed to the succeeding evo-
lutionary stages. Finally, the EA framework finds the best 
test pattern which can detect the maximum number of s–s-a 
faults as an optimal or sub-optimal solution. The efficacy of 
the test pattern generated depends on the type of EA under 
consideration. HOPE simulates the single test vector gener-
ated in each run and finds the number of faults detected by 
that pattern, which contributes to the fitness evaluation of 
a test vector, deciding its ability to proceed to the next gen-
eration. The output for this proposed framework after each 
iteration is the best test vector with maximum fault coverage. 

The common single stuck-at (s–s-a) fault model [8, 21, 38] 
is considered in this framework for fault simulation using 
HOPE fault simulator.

3.1.1  Combinational Circuit Testing

For combinational test generation, the inputs to the frame-
work are highlighted in only blue box in Fig. 2. The portion 
highlighted in red indicates the fitness function evaluation 
which requires the fault simulation of the generated test vec-
tors using HOPE simulator.

3.1.2  Sequential Circuit Testing

The main problem of testing sequential circuits is that it 
is hard to initialize sequential circuits from primary inputs 
(PIs) as shown in Fig. 3. On application of test vectors, it is 
not possible to determine the output response of the circuit, 
unless the flip -flops are initialized. In this framework, test 
generation for the sequential circuit is performed before and 
after cutting its netlist.

A. Sequential Circuit Testing before Netlist Cutting

For sequential circuits before netlist cutting, the test 
vectors have been applied to HOPE simulator for fault 

Fig. 2  Overall EA framework in MATLAB for test generation for 
digital circuits
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simulation, with the condition that all the flip-flops are in 
reset state, and then HOPE finds out the number of faults 
detected by a single test vector generated by EA framework. 
The entire set of inputs for sequential circuits without netlist 
cutting are highlighted in orange colour.

Apart from the inputs for combinational test generation, 
some extra inputs are also fed for test generation for sequen-
tial circuits without netlist cutting, as follows:

• TotFaults – Total number of faults in the circuit
• TotFlops – Total number of D flip-flops in the circuit

B. Sequential Circuit Testing after Netlist Cutting

Synchronous sequential circuits are usually tested using well 
known techniques such as Design for Testability (DFT) [8] 
which makes the flip-flops easily controllable and observa-
ble. A synchronous sequential circuit can be decomposed into 

flip-flops and a combinational logic block (CLB) as shown 
in Fig. 3. The outputs of the flip-flops are called pseudo 
primary inputs (PPI’s) and the inputs of the flip-flops are 
called pseudo primary outputs (PPO’s). Using the concept of 
“netlist cutting”, flip-flops are removed from the netlist of a 
sequential circuit. Thus, a sequential circuit is turned into a 
combinational circuit. In this framework, a sequential circuit 
after netlist cutting is treated as a CLB and PPIs and PPOs to 
the CLB become PIs and POs respectively. As a result, the 
number of inputs and outputs as well as the length of the test 
pattern for each circuit increase after performing netlist cut-
ting. This is also clearly justified in Table 4. Though the test 
pattern which is generated for sequential circuit after netlist 
cutting cannot be directly applied to the circuit under test 
(CUT), it can be useful for scan testing which makes PPIs 
controllable through scan chain.

The concept of netlist cutting has been recently intro-
duced in FAULT [1], an open-source DFT tool chain that 
mainly performs ATPG of combinational and sequential cir-
cuits, scan chain insertion and scan testing. Any sequential 
circuit netlist undergoes two stage transformations, namely, 
netlist flattening and netlist cutting, before it is ready for 
ATPG. The various steps involved in FAULT for ATPG are 
shown in Fig. 4. Referring to Fig. 4, the Verilog RTL ‘A’ is 
first synthesized into a flatten netlist ‘B’ using Yosys synth 
with the help of its own standard cell library. Then, the flat-
ten netlist ‘B’ is converted into pure combinational design 
‘C’ using the concept of netlist cutting. This modified netlist 
is used for the ATPG process done by PGen.

In this entire process, it is observed that the structure of 
the original circuit gets changed in the beginning when syn-
thesis is done. Test patterns are generated based on the trans-
formed netlist structure. As a result, it is difficult to interpret 

Fig. 3  Synchronous sequential circuit

Fig. 4  Stages of Netlist Conver-
sion for ATPG in FAULT
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the generated tests due to augmentation of additional ports 
and transformation of netlist structure. For structural testing, 
it is essential to retain the original topology of the circuit 
netlist intact throughout the entire ATPG process.

To overcome the limitations mentioned above, a MAT-
LAB based EDA tool has been incorporated. The tool can 
be used to convert the bench file of the original sequential 
netlist into the cut away version i.e., purely combinational 
one without altering the topology of the original netlist as 
shown in Fig. 5.

So, for test generation for the sequential circuits after 
netlist cutting, the inputs to EA framework are the same as 
that for the combinational circuits.

3.2  GA based Test Generation in MATLAB

In GA, an individual can be represented by a binary string 
(e.g., 10,101), which makes it a great choice for test vector 
generation in VLSI circuits. Using three basic operators, 
namely, selection, crossover and mutation an individual 
holds its existence from generation to the other. The perfor-
mance of GA depends on various operators [13]. Crosso-
ver operator is one of them. In this work, we have mainly 
focused on three different types of crossover operators, 
namely, single point crossover (SPC), double point crosso-
ver (DPC) and uniform crossover (UC).

The initial step involves the generation of random indi-
viduals (chromosomes) of a search space. These individuals 
are analogous to the test vectors of a circuit. In this work 
the test vectors are selected using Roulette Wheel Selection 
method, in which the chance of an individual being selected 
as parent is directly proportional to its fitness. After two 
fittest individuals are selected as parents, different crosso-
ver operations are performed on them to produce two new 
individuals (offspring) with a large probability Pc . Crosso-
ver operation is followed by mutation, where the bits of the 

generated offspring are flipped in accordance with a prede-
fined mutation probability. In GA, mutation plays the pivotal 
role of ensuring that some individuals of the population are 
not lost as the algorithm progresses and that they are tested.

In this paper, the test generation of VLSI circuits in GA 
has been engineered through the popularly used tool MAT-
LAB as illustrated in Fig. 6. After the generation of individ-
ual test vectors, they are simulated for checking their respec-
tive fitness using the open-source fault simulator HOPE for 
both combinational and sequential circuits. Two main com-
ponents of GA are finding an accurate fitness function and 
selection criteria.

3.2.1  Fitness Function

One crucial component of GA based test generation is the 
fitness function, which guides the search process towards 
finding the most suitable solutions. The fitness function 
evaluation using the HOPE simulator is as described below:

• Combinational Circuits

For combinational circuits, the fitness simply refers to the 
number of individual faults detected by that test vector using 
the parallel fault simulation technique in HOPE.

• Sequential Circuits

The fitness function for sequential circuits after netlist 
cutting is taken the same as that of Eq. (1). The fitness 
function evaluation for sequential circuits before netlist 
cutting has been done according to the one performed in 
the fourth phase test generation in [36], where the fitness 
of each individual test vector is calculated as:

(1)FF = Fd

Fig. 5  Stages of netlist conversion for ATPG in EA framework
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where,
FF represents the fitness function.
Fd represents the number of detected faults.
F represents the total faults in a circuit.
T represents the total flip-flops in a circuit.
L represents the length of test vector.

3.2.2  Roulette Wheel Selection

After the fitness evaluation of an individual is completed, 
they are mapped to their corresponding probabilities using 
Eq. (3) and (4). The following probabilities represent the 
individual slots of the Roulette Wheel.

(2)FF = Fd + Fd∕FTL

where,
P(j) represents the probability corresponding to the fitness 

of  jth test vector. c(j) represents the fitness of  jth test vector.
avgc is the average of the fitness of all test vectors of a 

population.
f(j) represents the normalized fitness of  jth test vector.
� is termed as selection pressure, whose value is assumed 

to be unity in this work.
It is to be noted that the main cost of executing GA involves 

calculating the fitness function. The GA operators (selection, 
crossover and mutation) take minimal amount of time.

(3)P(j) = e−�f (j)

(4)f (j) = c(j)∕avgc

Fig. 6  GA implementation in 
MATLAB – an insight view
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Although it is essential to have an accurate fitness function 
to achieve a good result, the large computation cost, especially 
for complex circuits is better to be avoided.

3.3  PSO based Test Generation in MATLAB

PSO is a potent meta-heuristic technique used in optimiza-
tion, which is motivated by the nature of swarms as seen in 
nature, such as fishes and birds. The concept behind PSO was 
first introduced in [18] where a mathematical modelling of the 
algorithm has been provided through the following equations. 
These equations mimic the behavior to be shown by a group 
of individuals in a population to reach to an optimum solution 
of a problem.

where,
xij represents the position of the particle.
vij signifies the velocity of the particle.
pij represents the best position of the particle which it occu-

pied earlier.
gij represents the location of the best performing particle in 

the neighborhood.
w,  c1,  c2 are the performance parameters of the PSO. rand 

is a random number in [0,1], which is uniformly distributed.
In [18], introduction of PSO was made for use in the case 

of search spaces having real values. Many problems designed 
in real life features discrete variables in the search space. To 
expand the usage of PSO in several domains, a binary version 
of the same was established in [19], as any continuous or dis-
crete value problem can be imitated in binary form. Here, the 
position and velocities of a particle are elucidated in terms of 
change in probabilities of a bit being in a particular position 
or another. The Eq. (5) remains unaltered in the binary version  
of PSO, with the change that pij and xij are now integers in 
{0,1} and vij lies in the range [0.0,1.0]. To accommodate vid 
in this range, a transformation is made using sigmoid function 
such that

The effective change in position is made by the rule defined 
below as

xij = 1 if (rand < S
(

vij
)

)
else xij = 0;
The concept of binary PSO has been extended for use in 

ATPG for digital circuits in this paper, where xij(xi1,xi2 , …, xin ) 
represents a test vector as illustrated in Fig. 7.

Due of the variance in fitness values across particles, gen-
erating test sequences at random may expand the search space. 

(5)
vij = w ∗ vij + c1 ∗ rand ∗

(

pij − xij
)

+ c2 ∗ rand ∗ (gij − xij)

(6)xij = xij + vij

(7)S
(

vij
)

= 1∕1 + e−vij

Since PSO does not have a selection operation, so the velocity 
of a particle is adjusted in accordance with its own previous 
best performance and the best performance globally made by 
all other particles. The algorithm will update the set of previ-
ously generated test patterns in each iteration before compar-
ing it with the global or local best solutions.

4  Results and Discussion

The efficacy of the test pattern generated using GA and PSO 
in our proposed framework has been validated through fault 
simulation using the fault simulator HOPE. The results are 
presented for ISCAS’85 combinational circuits and ISCAS’89 
sequential circuits. The test generation framework is built on a 
PC with Windows 10 OS and an Intel Core i5 1.6 GHz proces-
sor and 8 GB RAM. The results obtained through simulation 
of the combinational and sequential circuits are presented in 
the following sections. Let Fdi be the number of faults detected 
by a single test vector in  ith iteration and fci be the associated 
fault coverage. Let F represent the total number of s–s-a faults 
in a given circuit.

So,

Let N be the number of iterations (runs) required for EA 
and Fdmax be the maximum number of s–s-a faults detected by 
a single test vector.

So,

and maximum fault coverage,

Average fault coverage for a single test vector after r num-
ber of iterations can be given by

4.1  Results: Simulation of Test Pattern 
for Combinational Circuits

4.1.1  Simulation of Test Pattern Generated using GA

Test patterns were generated for ISCAS’85 combinational 
circuits keeping the probability of crossover as unity, and 
mutation rate of 0.02. Higher is the probability of crosso-
ver, faster will be the convergence rate of GA. The results 
in Table 1 shows the performance of different crossover 
schemes in terms of maximum number of faults detected 

(8)fci(%) =
Fdi

F
∗ 100

(9)Fdmax = max{Fd1,Fd2, … .,FdN}

(10)fcmax(%) =
Fdmax

F
∗ 100

(11)fcavg =
1

r

∑

r
i=1

fci
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by a single pattern and number of iterations for which GA 
is executed to find such pattern. From Table 1, it may be 
observed that as the crossover schemes are varied, more effi-
cient single test vector can be obtained in a lesser or same 
number of iterations. In case of C17 circuit with 7 primary 
inputs, it has been observed that the fault coverage of a sin-
gle test remains unchanged across all crossover schemes, 
but there is a variation in number of iterations in which the 
best possible result is obtained. Significant improvement in 
fault coverage of a single test vector is observed in case of 
the rest of the circuits, in lesser or same number of iterations 
with the variation in crossover schemes. The genetic opera-
tors are more efficient for circuits that have a large number 
of primary inputs.

Next, the average fault coverage attained by a single test 
vector along with the number of iterations required to attain 
this average fault coverage for different mutation rates are 
tabulated in Table 2. The GA can be distracted from the 
local minima present in the search space by using mutation. 
Without crossover operation, the behavior of mutation is like 
a random search. The crucial task of replacing characters 
in particular spots, that were previously off-track from the 
population, is accomplished by mutation when paired with 
selection and crossover, so that they can be tested in the cur-
rent context. However, good character combinations can also 
be destroyed by mutation, so a balance must be maintained. 
Figure 8 show how GA proves to be efficient in its ability 
to achieve higher fault coverages in successive iterations for 

Fig. 7  PSO implementation in MATLAB – an insight view
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circuits C432 and C5315 respectively. Each generation proves 
to derive better results than its previous one. It is observed 
from the below Table 2 that as the mutation rate is lowered, 
GA requires higher number of iterations to achieve the same 
or nearly the same fcavg . This happens due to the fact that 
as the mutation rate is decreased, there is a lesser chance of 
altering a bit position in the test vector. As a result, some 
good test vectors may be overlooked from the population and 
remain untested. As a solution, the number of generations 
through which the GA iterates itself have to be increased.

4.1.2  Simulation of Test Pattern Generated using PSO 
and Comparison with GA and ATALANTA

The test patterns generated using PSO for some of the 
ISCAS’85 benchmark combinational circuits have been 

validated through fault simulation using HOPE. Table 3 
compare the efficiacy of the test patterns generated using 
GA and PSO uisng our proposed framework with the test 
patterns generated using open-source ATPG tool ATAL-
ANTA. Each row of Table 3 presents the maximum number 
of single stuck-at faults detected by the best test vector gen-
erated by ATALANTA, GA and PSO respectively along with 
corresponding fault coverage and number of runs required in 
each case. The best test vector in each case has been found 
through iterating ATALANTA or EAs for several runs. The 
results show that GA and PSO are better than ATALANTA 
in terms of the maximum number of faults detected by a 
single pattern in lesser or almost same number of iterations 
for a given circuit. Figure 9 shows the execution of GA and 
PSO on circuits C432 and C6288 respectively and justifies 
the slower searching speed of GA in comparison with that 
of PSO. The results, as tabulated in Table 3, show that PSO 
results a significant better performance over GA in terms of 
its ability in finding the best test vector with maximum fault 
covergae for a given circuit. PSO is highly directed since it 
allows a particle to depend on both its self experience and 
the experiene of the entire group. On the contrary, GA based 
search enables individuals to arrive at optimal solution col-
lectively, which results in gradual increase in time for test-
ing. As a result, PSO outperforms GA in terms of speed and 
quaility of the solution.

4.2  Results: Simulation of Test Pattern 
for Sequential Circuits

This section presents the results obtained on simulation of 
GA and PSO on some of the ISCAS’89 benchmark sequen-
tial circuits (1) without performing netlist cutting and (2) 
after cutting the netlist. The efficacy of the test pattern 
generated using GA and PSO in our proposed framework 

Table 1  Comparison among different crossover schemes on combina-
tional circuits

N*—Number of iterations required to achieve Fdmax

ISCAS’85 
Circuits

SPC DPC UC
Fdmax

/ N*
Fdmax

/ N*
Fdmax

/ N*

C17 9 / 3 9 / 2 9 / 2
C432 109 / 5 109 / 5 121 / 5
C880 243 / 20 248 / 17 250 / 16
C1355 497 / 5 500 / 3 501 / 3
C1908 530 / 7 545 / 7 550 / 5
C2670 639 / 10 688 / 8 698 / 8
C3540 610 / 7 613 / 6 617 / 6
C5315 1020 / 9 1040 / 7 1073 / 6
C6288 2792 / 12 2795 / 12 2804 / 12
C7552 1714 / 6 1716 / 4 1740 / 4

Table 2  Mutation  
rate comparison for 
combinational circuits

R* – Number of iterations required to achieve the average fault coverage

ISCAS’85 
Circuits

Mutation Rate

1/16 1/32 1/64 1/128

f cavg R* f cavg R* f cavg R* f cavg R*

C17 35.45 5 33.18 8 37.95 11 36.36 14
C432 17.14 10 18.29 13 18.35 17 17.73 22
C880 24.12 10 23.92 15 24.3 20 23.68 25
C1355 31.18 15 31.19 20 31.29 25 31.14 30
C1908 24.8 10 23.43 14 24.51 20 24.27 25
C2670 22 10 21.3 15 21.81 25 20.77 30
C3540 16.86 15 16.95 20 16.91 25 16.81 30
C5315 18.94 15 18.90 22 19.05 27 18.60 32
C6288 35.91 10 35.94 15 35.91 20 35.82 25
C7552 20.59 10 20.6 15 20.53 20 20.52 25
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has been validated through fault simulation using the fault 
simulator HOPE which supports the fault simulation of 
sequential circuits. It may be noted that after netlist cutting 
the number of s-a faults detected in each run of GA or PSO 
is significantly higher than that before cutting the netlist. 
Many of the s–s-a faults which are undetected in a sequential 
circuit (before cutting the netlist) lie on the signal lines in 
the combinational logic block (CLB). Controllability and 
observability of these signal lines demand assignment of 
a specific set of logic vectors to PPIs. In this framework, 
during fault simulation of the generated test pattern using 
HOPE, all flip-flops are required to be either set or reset in 
sequential circuits before cutting the netlist. This make PPIs 
assignment forced to be either logic 1 or logic 0. Moreover, 
the faults that are able to propagate only to PPOs but unable 
to reach POs remain undetected in this case. On the con-
trary, the sequential circuits after netlist cutting are treated 

as CLBs during fault simulation of the generated test pattern 
using HOPE. So, the causes due to which many of the faults 
are undetected in sequential circuits before cutting the netlist 
are eliminated after cutting the netlist.

4.2.1  Simulation of Test Pattern Generated using GA

The parameters required for fitness function evaluation of 
the sequential circuits, are shown in Table 4. Test patterns 
were generated for ISCAS’89 circuits keeping the probabil-
ity of crossover as unity, and mutation rate of 0.02.

The results in Table 5 show the performance of differ-
ent crossover schemes for sequential circuits before and 
after netlist cutting in terms of maximum number of faults 
detected by a single pattern and number of iterations for 
which GA is executed to find such pattern. From Table 5, 
it may be observed that as the crossover schemes are varied 

Fig. 8  Simulation of test patterns generated using GA for C432 and C5315 circuits

Table 3  Comparison of GA 
and PSO with ATALANTA for 
ISCAS’85 circuits

N*—Number of iterations required to achieve Fdmax

ISCAS’85 
Circuits

ATALANTA GA PSO

Fdmax f cmax N* Fdmax Fdmax N* Fdmax f cmax  N*

C17 8 36.36 3 9 40.9 2 9 40.9 1
C432 107 20.41 5 121 23.09 5 128 24.42 3
C880 248 26.32 21 250 26.5 16 278 29.5 5
C1355 494 31.38 3 501 31.83 3 505 32.08 2
C1908 532 28.31 5 550 29.27 5 571 30.3 5
C3540 576 16.80 8 617 18.0 6 626 18.2 6
C5315 1041 19.45 7 1073 20.05 6 1118 20.8 4
C6288 2768 35.74 19 2804 36.2 12 2912 37.6 8
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from SPC to UC, more efficient single test vector can be 
obtained in a lesser or same number of iterations. For S27 
circuit, it is observed that Fdmax remains the same for all 
three crossover schemes. This may be due to the fact that 
S27 has only 4 PIs. Significant increase in Fdmax is observed 
for S832, S1196 and S1238 with larger number of PIs. Next, 
the average fault coverage attained by a single test vector 
along with the number of iterations required to attain this 
average fault coverage for different mutation rates are tabu-
lated in Table 6. From Table 6, a similar conclusion can be 
reached as that of Table 2.

4.2.2  Simulation of Test Pattern Generated using PSO 
and Comparison with GA and ATALANTA

The test patterns generated using PSO for some of the 
ISCAS’89 benchmark circuits have been validated through 
fault simulation using HOPE before and after netlist cutting. 
Table 7 compare the efficacy of the test patterns generated 

using GA and PSO using our proposed framework with 
the test patterns generated using open-source ATPG tool 
ATALANTA. It may be noted that ATALANTA is a com-
binational test pattern generator. So, it is not suitable for 
sequential circuit before cutting its netlist. The results, as 
tabulated in Table 7, shows that PSO results a significant 
better performance compared to GA with respect to its 
ability in finding Fdmax specifically for sequential circuits 
after netlist cutting. However, in case of sequential circuits 
without netlist cutting, PSO offers a mere improvement in 
Fdmax only for the circuits S1196 and S5378. For the rest of 
the circuits, the results of PSO are the same as that of GA. 
This is because of the fact that many of the s-a faults remain 
undetected in a sequential circuit before cutting the netlist. 
EAs such as GA and PSO try to explore the possibilities 
of finding the best test pattern which can detect maximum 
number of s-a faults. In case of sequential circuits without 
netlist cutting, there is no scope to explore PPIs for fault 
detection as the flip-flops are either set or reset during fault 
simulation. So, the chances of finding the best test pattern 

Fig. 9  Simulation of test patterns generated using GA and PSO for C432 and C6288 circuits

Table 4  ISCAS’89 benchmark 
circuit parameters

ISCAS’89 
Circuits

No. of Flip 
Flops (T)

Total stuck-
at-faults (F)

Before netlist cutting After netlist cutting

No. of 
Inputs (L)

No. of 
Outputs

No. of Inputs No. of Outputs

S27 3 32 4 1 7 4
S820 5 850 18 19 23 24
S832 5 870 18 19 23 24
S1196 18 1242 14 14 32 32
S1238 18 1355 14 14 32 32
S1488 6 1486 8 19 14 25
S5378 179 4603 35 49 214 228
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with nearly equal fault coverage using either GA or PSO 
are almost same.

On the other hand, the results in Table 7 show that PSO 
is better than GA and ATALANTA with respect to the 

maximum number of faults detected by a single pattern in 
lesser or almost same number of iterations for sequential 
circuits after netlist cutting.

Table 5  Comparison of 
different crossover schemes for 
sequential circuits

N*—Number of iterations required to achieve Fdmax

ISCAS’89 
Circuits

Before netlist cutting After netlist cutting

SPC DPC UC SPC DPC UC

F
dmax

/ N*
Fdmax

/ N*
Fdmax

/ N*
Fdmax

/ N*
Fdmax

/ N*
Fdmax

/ N*

S27 8 / 3 8/ 2 8 / 3 13 / 2 13 / 2 13 / 2
S820 52 / 4 53/ 3 54/ 3 74 / 2 79 / 1 81 / 2
S832 52/ 2 53/ 2 54/ 2 70 / 3 78 / 2 86 / 2
S1196 96 / 7 98/ 5 102/ 5 167 / 2 178 / 2 186 / 2
S1238 92/ 5 99/ 4 106/ 4 139 / 2 169 / 2 185 / 2
S1488 143/ 6 144/ 4 144/ 5 135 / 4 204 / 3 183 / 3
S5378 584/ 7 586 / 7 586 / 7 1078 / 2 1080 / 2 1096 / 2

Table 6  Mutation  
rate comparison for  
sequential circuits

R* – Number of iterations required to achieve the average fitness

ISCAS’89 
Circuits

Before netlist cutting After netlist cutting

Mutation Rate Mutation Rate

1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

f cavg R* f cavg R* f cavg R* f cavg R* f cavg R* f cavg R* f cavg R* f cavg R*

S27 6.84 5 6.84 8 6.84 10 6.84 13 40 5 33.98 8 33.59 10 36.12 13
S820 0.59 8 0.58 10 0.61 15 0.60 17 8.09 8 7.91 10 7.91 15 8.08 17
S832 0.56 8 0.55 10 0.56 15 0.56 20 7.13 8 6.90 10 6.91 15 7.05 20
S1196 0.74 8 0.74 10 0.76 15 0.76 18 11.89 8 12.05 10 11.79 15 12.04 18
S1238 0.71 8 0.75 10 0.68 15 0.72 17 10.60 8 11.09 10 10.45 15 10.70 17
S1488 0.30 5 0.29 8 0.29 10 0.29 13 7.40 5 7.24 8 6.99 10 7.22 13
S5378 6.996 10 6.98 15 7.02 20 6.98 25 14.90 10 14.81 15 14.96 20 14.88 25

Table 7  Comparison of GA and PSO with ATALANTA for ISCAS’89 circuits

N*—Number of iterations required to achieve Fdmax

Circuits Before netlist cutting After netlist cutting

ATALANTA GA PSO ATALANTA GA PSO

Fdmax f cmax N* Fdmax f cmax N* Fdmax f cmax N* Fdmax f cmax N* Fdmax f cmax N*

S27 ATALANTA is not 
suitable for sequential 
circuits

8 25 3 8 25 3 13 40.62 2 13 40.62 2 14 43.75 1
S820 54 6.35 3 54 6.35 3 85 10 2 81 9.52 2 89 10.47 2
S832 54 6.21 2 54 6.21 1 86 9.89 2 86 9.89 2 89 10.22 1
S1196 102 8.21 5 107 8.61 4 180 14.49 2 186 14.97 2 213 17.14 2
S1238 106 7.82 4 106 7.82 4 190 14.02 2 185 13.65 2 221 16.31 2
S1488 144 9.69 5 144 9.69 5 176 11.84 3 204 13.72 3 225 15.14 3
S5378 586 12.73 7 587 12.75 6 1103 23.96 2 1096 23.81 2 1144 24.85 1
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5  Conclusion

In this paper, two evolutionary algorithms for test pattern 
generation for benchmark combinational and sequential 
circuits are studied. GA and PSO algorithms are imple-
mented in MATLAB and the fault simulation is performed 
in HOPE simulator. The results derived from both the 
algorithms were compared with that obtained using the 
well known open source ATPG tool ATALANTA. The 
results highlight the better performance of PSO over GA 
as well as ATALANTA for combinational circuits as well 
as sequential circuits after netlist cutting. Since PSO pro-
vides both global and local searches, it is more efficient 
than GA, in most optimization problems. The searching 
speed of GA is slower and several adjustments are needed 
to its parameters. The double point crossover scheme and 
uniform crossover scheme increases the fault coverage of 
a single test vector for maximum circuits. The complete 
study in this paper recommends using a low value of muta-
tion rate to decrease the rate of randomness in the test 
generation process. The fact that GA involves numerous 
parameters that may be changed, implies that it provides 
users much command over the search technique.

Genetic algorithm always tries to find solution through 
evolution. Evolution is not a one way processs since natu-
ral lives many times evolve from an odd situtation, and do 
not always experience a favourable situation. Even, it may 
cause species to reach a dead end. The convergence princi-
ple is a significant phenomenon in GA. For instance, when 
a user initiates a GA search to reach the target, the final 
outcome may not be always the best possible one, and in 
reality, better outcomes may exist. GA search may reach a 
local optimum point, where it gets trapped and is unable to 
move forward towards global optimum, which is the actual 
target. Lastly, a method for test generation for sequential 
circuits before and after their “netlist cutting” has been 
presented. In this context, a EDA tool which can perform 
“netlist cutting” for sequential circuits without altering 
the structure of combinational logic has been introduced.

In this work, the efficacy of the EA based test gen-
eration framework is compared with that of well-known 
open source ATPG tool ATALANTA. As a future exten-
sion of the work, the same can be compared with that of 
commercially available industry standard ATPG tools. In 
fact, comparison of results with that obtained using state-
of-the-art test generation tools may recommend tweak-
ing some of the parameters of evolutionary algorithms or 
usage of more efficient technique like hybrid PSO (GA-
PSO) to make the framework more robust. Apart from this, 
the EA based test generation framework can be further 
explored through implementation of other evolutionary 
algorithms such as Differential Evolution (DE) algorithm.
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