
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:555–570
https://doi.org/10.1007/s10836-023-06088-1

MATLAB‑Open Source Tool Based Framework for Test Generation
for Digital Circuits Using Evolutionary Algorithms

Priyajit Bhattacharya1 · Rahul Bhattacharya1 · Himasree Deka1

Received: 29 March 2023 / Accepted: 6 October 2023 / Published online: 24 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
This paper proposes an automated framework for test generation for digital circuits, using evolutionary algorithms (EAs)
such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) targeting single stuck-at faults. The framework is
built in MATLAB environment in conjunction with an open-source fault simulator HOPE. Finding the best test pattern with
maximum fault coverage from a very large search space of digital tests is proven to be time effective in VLSI circuits using
EAs. This work emphasizes upon finding the best test pattern with maximum fault coverage in fewer iterations. This indeed
can significantly reduce the number of required test patterns to achieve a good fault coverage quickly. Unlike open source
ATPG tool ATALANTA which can generate tests only for combinational circuits, our EA based test generation framework
is able to generate test pattern for combinational as well as sequential circuits. The proposed framework has introduced
test generation for sequential circuits before and after their “netlist cutting”. In this context, an automated tool which can
perform “netlist cutting” for sequential circuits without altering the structure of combinational logic has been devised. The
quality of generated test patterns is verified through fault simulation of some of the ISCAS’85 combinational and ISCAS’89
sequential benchmark circuits. The work has also explored the efficacy of the best test pattern through variations of genetic
operators like crossover and mutation rate. Results show that the proposed GA and PSO outperforms the commonly known
open source ATPG tool ATALANTA.

Keywords Evolutionary algorithm · ATPG · Genetic algorithm · Particle swarm optimization · Stuck-at faults · Netlist cutting

1 Introduction

The progress of VLSI technology brings with it several chal-
lenges in testing a digital circuit. Chips can develop errors
as a result of flaws and imperfections in the manufactur-
ing process, and it is crucial to find those flaws before the
ICs are mounted on printed circuit boards. The number of
flaws/defects has grown over time as a result of the planned
chip's increased integration. Therefore, it is crucial to find

the problem at the device level in order to maximize the
reliability of the created chips. Additionally, numerous inde-
pendent studies have demonstrated that the cost of detecting
a failure in a circuit is far less expensive than detecting the
same failure inside a bigger circuit that contains the same
circuit as a subpart. High fault coverage must be attained so
that the fault level in chips is kept below a predetermined
value. However, to evaluate every potential defect in a chip,
it is practically not possible to produce test vectors. There-
fore, to facilitate the test generation process, defects are
modelled as faults. Due to its resemblance to real defects
and the computational options it provides for producing test
vectors, the stuck-at fault model is among the existing fault
models that is most widely recognized [16].

An Automatic Test Pattern Generator (ATPG) is a system
that analyses circuits and creates a series of test patterns.
As depicted in Fig. 1, there are two parts to it: a test vector
generator and a simulator for simulating faults. To put it
another way, ATPG is a technique used to identify an input
sequence, that when applied to a digital circuit, lets us to tell
the difference between a correct circuit and a faulty circuit.

Responsible editor: E. Amyeen

 * Rahul Bhattacharya
 rahul@iitism.ac.in

 Priyajit Bhattacharya
 priyajitdbhattacharya@gmail.com

 Himasree Deka
 himasreedeka2000@gmail.com

1 Dept. of Electronics Engg, Indian Institute of Technology
(Indian School of Mines), Dhanbad, India

http://orcid.org/0000-0001-9937-0308
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06088-1&domain=pdf

556 Journal of Electronic Testing (2023) 39:555–570

1 3

1.1 Open Source CAD Tools

ATPG tools like ATALANTA [38, 41] and FAULT [1],
which are open source, are available for education and
research purposes. The tools offer a variety of options, mak-
ing them excellent for use in teaching and the code can be
modified as per user requirements [22].

1.2 Licensed CAD Tools

Industry standard ATPG tools like “Modus" from Cadence
[9], "TestMAX" by Synopsys [39], and “Tessent FastScan"
by Siemens [40] are vastly used. These tools provide high
fault coverage in minimum time and have highly efficient
hardware utilization for ATPG.

In this paper, it has been discussed how digital circuit
testing can be done using evolutionary methods, which is
used to describe search, learning and optimization algo-
rithms generally. Among these methods, the key examples
include: genetic algorithms (GA), genetic programming
(GP), evolutionary strategy (ES), particle swarm optimiza-
tion (PSO) and ant colony optimization (ACO). The self-
adaptation and robustness of the evolutionary algorithms
are well recognized. These algorithms are widely utilized in
a variety of applications, including physical design, VLSI
testing, and many more that call for a planned, controlled
introduction of randomness throughout the solution-finding
process [10]. When there are no heuristic answers or when
they typically produce unconvincing results, the EA might
be used. Due to this, interest in evolutionary algorithms has
lately increased, especially in the areas of practical solving
of problems. EA’s offer satisfactory answers frequently and

are simple to apply in comparison to other global optimiza-
tion techniques.

As stated in [22], “Universities cannot always use profes-
sional ATPG tools in education due to high cost of licenses".
As found in literature, the test generation algorithms in [12,
14, 22] were written in languages like C, C + +, Python etc.
But the MATLAB environment has not been fully investi-
gated. Engineers and scientists can use the programming
environment in MATLAB to study, create, and test systems
and technologies that will change the world. Due to the
command line/graphical user interface, easy random num-
ber generation and its ability to interact with various CAD
tools, MATLAB proves to be an efficient environment for
test generation in digital circuits using GA [13].

2 Related Work and Major Contributions

2.1 Existing Approaches on Test Generation Using
Traditional ATPG Algorithms

Numerous studies have tackled the issue of creating a test
vector generator with elevated fault coverage and limited
test size. Socrates [33], Smart & Fast [2], Compactest [29]
were one of those earlier developed ATPG which focused
on identifying redundant faults and usage of dynamic com-
paction techniques. A. Raghuraman [30] has made a sug-
gestion that intends to create a method for getting a single
test pattern which can find all or the majority of defects in
a particular combinational circuit. After identifying faults
which are essential and independent, a test vector reduc-
tion based on faults is suggested in [20]. Essential test
vectors can find at least one distinct fault that no other test
vector can find. Then child test vectors which are essential
are filtered out from essential test vectors by a technique
as proposed in [23]. This resulted in an elevated number of
faults being detected by a compacted test set. The simplest
approach to determine the most perfect test sequence hav-
ing maximum fault coverage in VLSI circuits is exhaustive
testing. But it is not possible to produce all the 2n test
combinations for a circuit with n inputs. An alternative to
exhaustive tests is random pattern generation which uses
less test patterns overall. However, both methods generate
unnecessary tests because multiple vectors can detect the
same fault. Malaiya [24] presented an innovative method
of testing termed antirandom testing. In this method, a test
vector is selected so that it has a distance as large as pos-
sible from all the prior vectors. More faults can be found
by using two test vectors with a large hamming distance
between them. Although this method reduces test vectors,
but it is computationally intensive. For single stuck-at
(s–s-a) faults deterministic approach (for e.g., D Algo-
rithm, PODEM, FAN) follows random test generation, but

Fig. 1 ATPG Architecture

557Journal of Electronic Testing (2023) 39:555–570

1 3

due to its huge storage requirement and increased test vec-
tor switching activity, it does not fulfill the criteria. This
calls for the creation of a system that generates optimum
number of vectors for testing which can detect maximum
number of faults.

2.2 Existing Approaches on Test Generation Using
Evolutionary Algorithms

With the advent of evolutionary algorithms [36], test pat-
terns having better fault coverage compared to other tech-
niques are generated. GA being one of the evolutionary
algorithms is used to find optimum solution for a problem.
In [32] and [37], GA was originally applied as a framework
for test vector generation based on simulation, however only
combinational circuits were taken into account in [37]. The
test vectors generated by the CRIS test pattern generator [32]
had decreased fault coverages as compared to that produced
by a test vector generator based on deterministic approaches
because it used a logic simulator to analyze potential test
sequences. One defect was targeted at a time by another
innovative method of GA-based test generation [28], which
was then expanded to target 64 faults at once [11].

In [15], a genetic algorithm-based test pattern generat-
ing strategy was created to enable direct comparison with
random methods. It was observed that, although the random
generator gets more fault coverage quickly, but in the end,
GA detects additional faults. When dealing with circuits hav-
ing large number of inputs, the effectiveness of GA comes
into picture. GATEST [31], a test pattern generator based on
GA was accomplished around a fault simulator for sequential
circuit PROOFS [27]. Huge fault coverages and compacted
test vectors were achieved for combinational circuits, while
deterministic techniques would yield even better results.
One of the limitations was that GATEST could not identify
untestable faults. In [5], results were obtained for ISCAS’89
benchmark combinational circuit (C17) using GA. One single
stuck-at-fault is injected in C17 circuit and it was checked
how fast GA was able to develop a test pattern to detect that
fault. In [4], a genetic algorithm-based test pattern generator
was developed which detects both delay and single stuck at
faults for combinational circuits. In [3], the sequential circuits
are tested using the evolutionary algorithms GA, PSO and
Differential Evolution (DE) and the performance comparison
is made among them. In [17], in order to perform ATPG for
sequential circuits, a symbolic fault simulator is merged into
a Genetic Algorithm (GA) environment.

2.3 MATLAB based Approaches for Test Generation
for Digital Circuits

In [26], research has been made to develop an algorithm
based on test pattern generation using black box and some

deterministic approach in MATLAB. This algorithm
achieves high fault coverage with reduced test vector count
such that the vectors have large distance between them using
NQ1 rule 90 and NQ1 rule 150 [42]. The test patterns are
generated in MATLAB and their fault simulation are per-
formed through ATALANTA. The results for circuits C432,
C3540 and C6288 show that a smaller number of vectors
achieve high fault coverage (> 85%). In [34], a MATLAB
based D-Algorithm and PODEM algorithm has been devel-
oped for testing VLSI circuits. It is very tedious to imple-
ment these algorithms for complex circuits, so a library
based on Simulink has been developed. The paper [25]
explains a method for estimating a combinational circuit's
nets' testability, which can either be described at the gate-
level or at the component level. For each net in the network,
three weight functions—CC0 (combinational controllability
0), CO (combinational observability) and CC1 (combina-
tional controllability 1) are evaluated. The results are used
in an existing ATPG technique to speed up test creation.
MATLAB 7.0 has been used to implement the algorithm.
The method's efficacy is demonstrated by experimental find-
ings on the ISCAS’85 benchmark circuits.

2.4 Major Contributions

This work makes the following contributions, taking into
account numerous studies previously described in the litera-
ture for test pattern generation of digital circuits:

• This work emphasizes on searching the single best test
pattern with maximum fault coverage rather than a test
set, for a particular digital circuit. Knowing the best test
vector aids in compacting the test set size for achieving
a high fault coverage, since maximum of the faults are
detected by the best test vector and the remaining faults
require a small number of vectors to detect them. The test
generation framework for ATALANTA which uses a tra-
ditional ATPG (FAN) algorithm for test generation finds
the compact test set that can detect maximum number of
stuck-at faults in combinational circuits only, whereas
our EA based test generation framework is able to gen-
erate test pattern for combinational as well as sequential
circuits and can find the best test pattern with maximum
fault coverage rather than a test set. Moreover, the pro-
posed framework has been proven to provide fault cover-
age better than the open-source tool ATALANTA for the
best test pattern in nearly same number of iterations.

• Unlike other works as in [31, 35], where the GA imple-
mentation has been made in languages like C and C + +,
in this work a GA and a PSO based test pattern generator
has been devised using the well- established engineering
tool MATLAB to test benchmark combinational [7] as
well as sequential circuits [6].

558 Journal of Electronic Testing (2023) 39:555–570

1 3

• In this work the open-source fault simulator HOPE [21]
has been used which is an improvised version of the
PROOFS fault simulator used in [31]. The linking of
MATLAB with the HOPE simulator justifies the abil-
ity of MATLAB for interacting with other CAD tools
and opens up possibilities for exploration on test pattern
generation involving MATLAB as the main tool.

• The proposed framework has introduced test generation
for sequential circuits before and after their “netlist cut-
ting”. In this context, a MATLAB based EDA tool which
can perform “netlist cutting” for sequential circuits with-
out altering the structure of combinational logic has been
incorporated in the framework.

The arrangement of the remaining portion of paper is
as follows. Section 3 provides the entire test generation
framework of GA as well as PSO in MATLAB along with
an approach for test generation for sequential circuits. The
tabulation of the results for the benchmark combinational
and sequential circuits are presented in Sect. 4. Finally, the
paper is concluded in Sect. 5.

3 Test Generation Framework: Methodology
and Theoretical Background

3.1 Test Generation Framework‑An Overview

Figure 2 shows the overall framework of EA that has been
implemented in MATLAB for test generation for digital cir-
cuits. The inputs to the algorithm are:

• CktName – Name of the circuit to be simulated
• MaxIt – The maximum number of iterations through

which the EA iterates itself
• nPop – Initial number of random individuals to be generated
• mutrate – Mutation Rate in case of GA
• nbits – Number of input bits in the circuit
• TotFaults – Total number of faults in the circuit
• TotFlops – Total number of D flip flops in the circuit

An EA begins with generation of random individuals of
a population, which are then passed to the succeeding evo-
lutionary stages. Finally, the EA framework finds the best
test pattern which can detect the maximum number of s–s-a
faults as an optimal or sub-optimal solution. The efficacy of
the test pattern generated depends on the type of EA under
consideration. HOPE simulates the single test vector gener-
ated in each run and finds the number of faults detected by
that pattern, which contributes to the fitness evaluation of
a test vector, deciding its ability to proceed to the next gen-
eration. The output for this proposed framework after each
iteration is the best test vector with maximum fault coverage.

The common single stuck-at (s–s-a) fault model [8, 21, 38]
is considered in this framework for fault simulation using
HOPE fault simulator.

3.1.1 Combinational Circuit Testing

For combinational test generation, the inputs to the frame-
work are highlighted in only blue box in Fig. 2. The portion
highlighted in red indicates the fitness function evaluation
which requires the fault simulation of the generated test vec-
tors using HOPE simulator.

3.1.2 Sequential Circuit Testing

The main problem of testing sequential circuits is that it
is hard to initialize sequential circuits from primary inputs
(PIs) as shown in Fig. 3. On application of test vectors, it is
not possible to determine the output response of the circuit,
unless the flip -flops are initialized. In this framework, test
generation for the sequential circuit is performed before and
after cutting its netlist.

A. Sequential Circuit Testing before Netlist Cutting

For sequential circuits before netlist cutting, the test
vectors have been applied to HOPE simulator for fault

Fig. 2 Overall EA framework in MATLAB for test generation for
digital circuits

559Journal of Electronic Testing (2023) 39:555–570

1 3

simulation, with the condition that all the flip-flops are in
reset state, and then HOPE finds out the number of faults
detected by a single test vector generated by EA framework.
The entire set of inputs for sequential circuits without netlist
cutting are highlighted in orange colour.

Apart from the inputs for combinational test generation,
some extra inputs are also fed for test generation for sequen-
tial circuits without netlist cutting, as follows:

• TotFaults – Total number of faults in the circuit
• TotFlops – Total number of D flip-flops in the circuit

B. Sequential Circuit Testing after Netlist Cutting

Synchronous sequential circuits are usually tested using well
known techniques such as Design for Testability (DFT) [8]
which makes the flip-flops easily controllable and observa-
ble. A synchronous sequential circuit can be decomposed into

flip-flops and a combinational logic block (CLB) as shown
in Fig. 3. The outputs of the flip-flops are called pseudo
primary inputs (PPI’s) and the inputs of the flip-flops are
called pseudo primary outputs (PPO’s). Using the concept of
“netlist cutting”, flip-flops are removed from the netlist of a
sequential circuit. Thus, a sequential circuit is turned into a
combinational circuit. In this framework, a sequential circuit
after netlist cutting is treated as a CLB and PPIs and PPOs to
the CLB become PIs and POs respectively. As a result, the
number of inputs and outputs as well as the length of the test
pattern for each circuit increase after performing netlist cut-
ting. This is also clearly justified in Table 4. Though the test
pattern which is generated for sequential circuit after netlist
cutting cannot be directly applied to the circuit under test
(CUT), it can be useful for scan testing which makes PPIs
controllable through scan chain.

The concept of netlist cutting has been recently intro-
duced in FAULT [1], an open-source DFT tool chain that
mainly performs ATPG of combinational and sequential cir-
cuits, scan chain insertion and scan testing. Any sequential
circuit netlist undergoes two stage transformations, namely,
netlist flattening and netlist cutting, before it is ready for
ATPG. The various steps involved in FAULT for ATPG are
shown in Fig. 4. Referring to Fig. 4, the Verilog RTL ‘A’ is
first synthesized into a flatten netlist ‘B’ using Yosys synth
with the help of its own standard cell library. Then, the flat-
ten netlist ‘B’ is converted into pure combinational design
‘C’ using the concept of netlist cutting. This modified netlist
is used for the ATPG process done by PGen.

In this entire process, it is observed that the structure of
the original circuit gets changed in the beginning when syn-
thesis is done. Test patterns are generated based on the trans-
formed netlist structure. As a result, it is difficult to interpret

Fig. 3 Synchronous sequential circuit

Fig. 4 Stages of Netlist Conver-
sion for ATPG in FAULT

560 Journal of Electronic Testing (2023) 39:555–570

1 3

the generated tests due to augmentation of additional ports
and transformation of netlist structure. For structural testing,
it is essential to retain the original topology of the circuit
netlist intact throughout the entire ATPG process.

To overcome the limitations mentioned above, a MAT-
LAB based EDA tool has been incorporated. The tool can
be used to convert the bench file of the original sequential
netlist into the cut away version i.e., purely combinational
one without altering the topology of the original netlist as
shown in Fig. 5.

So, for test generation for the sequential circuits after
netlist cutting, the inputs to EA framework are the same as
that for the combinational circuits.

3.2 GA based Test Generation in MATLAB

In GA, an individual can be represented by a binary string
(e.g., 10,101), which makes it a great choice for test vector
generation in VLSI circuits. Using three basic operators,
namely, selection, crossover and mutation an individual
holds its existence from generation to the other. The perfor-
mance of GA depends on various operators [13]. Crosso-
ver operator is one of them. In this work, we have mainly
focused on three different types of crossover operators,
namely, single point crossover (SPC), double point crosso-
ver (DPC) and uniform crossover (UC).

The initial step involves the generation of random indi-
viduals (chromosomes) of a search space. These individuals
are analogous to the test vectors of a circuit. In this work
the test vectors are selected using Roulette Wheel Selection
method, in which the chance of an individual being selected
as parent is directly proportional to its fitness. After two
fittest individuals are selected as parents, different crosso-
ver operations are performed on them to produce two new
individuals (offspring) with a large probability Pc . Crosso-
ver operation is followed by mutation, where the bits of the

generated offspring are flipped in accordance with a prede-
fined mutation probability. In GA, mutation plays the pivotal
role of ensuring that some individuals of the population are
not lost as the algorithm progresses and that they are tested.

In this paper, the test generation of VLSI circuits in GA
has been engineered through the popularly used tool MAT-
LAB as illustrated in Fig. 6. After the generation of individ-
ual test vectors, they are simulated for checking their respec-
tive fitness using the open-source fault simulator HOPE for
both combinational and sequential circuits. Two main com-
ponents of GA are finding an accurate fitness function and
selection criteria.

3.2.1 Fitness Function

One crucial component of GA based test generation is the
fitness function, which guides the search process towards
finding the most suitable solutions. The fitness function
evaluation using the HOPE simulator is as described below:

• Combinational Circuits

For combinational circuits, the fitness simply refers to the
number of individual faults detected by that test vector using
the parallel fault simulation technique in HOPE.

• Sequential Circuits

The fitness function for sequential circuits after netlist
cutting is taken the same as that of Eq. (1). The fitness
function evaluation for sequential circuits before netlist
cutting has been done according to the one performed in
the fourth phase test generation in [36], where the fitness
of each individual test vector is calculated as:

(1)FF = Fd

Fig. 5 Stages of netlist conversion for ATPG in EA framework

561Journal of Electronic Testing (2023) 39:555–570

1 3

where,
FF represents the fitness function.
Fd represents the number of detected faults.
F represents the total faults in a circuit.
T represents the total flip-flops in a circuit.
L represents the length of test vector.

3.2.2 Roulette Wheel Selection

After the fitness evaluation of an individual is completed,
they are mapped to their corresponding probabilities using
Eq. (3) and (4). The following probabilities represent the
individual slots of the Roulette Wheel.

(2)FF = Fd + Fd∕FTL

where,
P(j) represents the probability corresponding to the fitness

of jth test vector. c(j) represents the fitness of jth test vector.
avgc is the average of the fitness of all test vectors of a

population.
f(j) represents the normalized fitness of jth test vector.
� is termed as selection pressure, whose value is assumed

to be unity in this work.
It is to be noted that the main cost of executing GA involves

calculating the fitness function. The GA operators (selection,
crossover and mutation) take minimal amount of time.

(3)P(j) = e−�f (j)

(4)f (j) = c(j)∕avgc

Fig. 6 GA implementation in
MATLAB – an insight view

562 Journal of Electronic Testing (2023) 39:555–570

1 3

Although it is essential to have an accurate fitness function
to achieve a good result, the large computation cost, especially
for complex circuits is better to be avoided.

3.3 PSO based Test Generation in MATLAB

PSO is a potent meta-heuristic technique used in optimiza-
tion, which is motivated by the nature of swarms as seen in
nature, such as fishes and birds. The concept behind PSO was
first introduced in [18] where a mathematical modelling of the
algorithm has been provided through the following equations.
These equations mimic the behavior to be shown by a group
of individuals in a population to reach to an optimum solution
of a problem.

where,
xij represents the position of the particle.
vij signifies the velocity of the particle.
pij represents the best position of the particle which it occu-

pied earlier.
gij represents the location of the best performing particle in

the neighborhood.
w, c1, c2 are the performance parameters of the PSO. rand

is a random number in [0,1], which is uniformly distributed.
In [18], introduction of PSO was made for use in the case

of search spaces having real values. Many problems designed
in real life features discrete variables in the search space. To
expand the usage of PSO in several domains, a binary version
of the same was established in [19], as any continuous or dis-
crete value problem can be imitated in binary form. Here, the
position and velocities of a particle are elucidated in terms of
change in probabilities of a bit being in a particular position
or another. The Eq. (5) remains unaltered in the binary version
of PSO, with the change that pij and xij are now integers in
{0,1} and vij lies in the range [0.0,1.0]. To accommodate vid
in this range, a transformation is made using sigmoid function
such that

The effective change in position is made by the rule defined
below as

xij = 1 if (rand < S
(

vij
)

)
else xij = 0;
The concept of binary PSO has been extended for use in

ATPG for digital circuits in this paper, where xij(xi1,xi2 , …, xin)
represents a test vector as illustrated in Fig. 7.

Due of the variance in fitness values across particles, gen-
erating test sequences at random may expand the search space.

(5)
vij = w ∗ vij + c1 ∗ rand ∗

(

pij − xij
)

+ c2 ∗ rand ∗ (gij − xij)

(6)xij = xij + vij

(7)S
(

vij
)

= 1∕1 + e−vij

Since PSO does not have a selection operation, so the velocity
of a particle is adjusted in accordance with its own previous
best performance and the best performance globally made by
all other particles. The algorithm will update the set of previ-
ously generated test patterns in each iteration before compar-
ing it with the global or local best solutions.

4 Results and Discussion

The efficacy of the test pattern generated using GA and PSO
in our proposed framework has been validated through fault
simulation using the fault simulator HOPE. The results are
presented for ISCAS’85 combinational circuits and ISCAS’89
sequential circuits. The test generation framework is built on a
PC with Windows 10 OS and an Intel Core i5 1.6 GHz proces-
sor and 8 GB RAM. The results obtained through simulation
of the combinational and sequential circuits are presented in
the following sections. Let Fdi be the number of faults detected
by a single test vector in ith iteration and fci be the associated
fault coverage. Let F represent the total number of s–s-a faults
in a given circuit.

So,

Let N be the number of iterations (runs) required for EA
and Fdmax be the maximum number of s–s-a faults detected by
a single test vector.

So,

and maximum fault coverage,

Average fault coverage for a single test vector after r num-
ber of iterations can be given by

4.1 Results: Simulation of Test Pattern
for Combinational Circuits

4.1.1 Simulation of Test Pattern Generated using GA

Test patterns were generated for ISCAS’85 combinational
circuits keeping the probability of crossover as unity, and
mutation rate of 0.02. Higher is the probability of crosso-
ver, faster will be the convergence rate of GA. The results
in Table 1 shows the performance of different crossover
schemes in terms of maximum number of faults detected

(8)fci(%) =
Fdi

F
∗ 100

(9)Fdmax = max{Fd1,Fd2, … .,FdN}

(10)fcmax(%) =
Fdmax

F
∗ 100

(11)fcavg =
1

r

∑

r
i=1

fci

563Journal of Electronic Testing (2023) 39:555–570

1 3

by a single pattern and number of iterations for which GA
is executed to find such pattern. From Table 1, it may be
observed that as the crossover schemes are varied, more effi-
cient single test vector can be obtained in a lesser or same
number of iterations. In case of C17 circuit with 7 primary
inputs, it has been observed that the fault coverage of a sin-
gle test remains unchanged across all crossover schemes,
but there is a variation in number of iterations in which the
best possible result is obtained. Significant improvement in
fault coverage of a single test vector is observed in case of
the rest of the circuits, in lesser or same number of iterations
with the variation in crossover schemes. The genetic opera-
tors are more efficient for circuits that have a large number
of primary inputs.

Next, the average fault coverage attained by a single test
vector along with the number of iterations required to attain
this average fault coverage for different mutation rates are
tabulated in Table 2. The GA can be distracted from the
local minima present in the search space by using mutation.
Without crossover operation, the behavior of mutation is like
a random search. The crucial task of replacing characters
in particular spots, that were previously off-track from the
population, is accomplished by mutation when paired with
selection and crossover, so that they can be tested in the cur-
rent context. However, good character combinations can also
be destroyed by mutation, so a balance must be maintained.
Figure 8 show how GA proves to be efficient in its ability
to achieve higher fault coverages in successive iterations for

Fig. 7 PSO implementation in MATLAB – an insight view

564 Journal of Electronic Testing (2023) 39:555–570

1 3

circuits C432 and C5315 respectively. Each generation proves
to derive better results than its previous one. It is observed
from the below Table 2 that as the mutation rate is lowered,
GA requires higher number of iterations to achieve the same
or nearly the same fcavg . This happens due to the fact that
as the mutation rate is decreased, there is a lesser chance of
altering a bit position in the test vector. As a result, some
good test vectors may be overlooked from the population and
remain untested. As a solution, the number of generations
through which the GA iterates itself have to be increased.

4.1.2 Simulation of Test Pattern Generated using PSO
and Comparison with GA and ATALANTA

The test patterns generated using PSO for some of the
ISCAS’85 benchmark combinational circuits have been

validated through fault simulation using HOPE. Table 3
compare the efficiacy of the test patterns generated using
GA and PSO uisng our proposed framework with the test
patterns generated using open-source ATPG tool ATAL-
ANTA. Each row of Table 3 presents the maximum number
of single stuck-at faults detected by the best test vector gen-
erated by ATALANTA, GA and PSO respectively along with
corresponding fault coverage and number of runs required in
each case. The best test vector in each case has been found
through iterating ATALANTA or EAs for several runs. The
results show that GA and PSO are better than ATALANTA
in terms of the maximum number of faults detected by a
single pattern in lesser or almost same number of iterations
for a given circuit. Figure 9 shows the execution of GA and
PSO on circuits C432 and C6288 respectively and justifies
the slower searching speed of GA in comparison with that
of PSO. The results, as tabulated in Table 3, show that PSO
results a significant better performance over GA in terms of
its ability in finding the best test vector with maximum fault
covergae for a given circuit. PSO is highly directed since it
allows a particle to depend on both its self experience and
the experiene of the entire group. On the contrary, GA based
search enables individuals to arrive at optimal solution col-
lectively, which results in gradual increase in time for test-
ing. As a result, PSO outperforms GA in terms of speed and
quaility of the solution.

4.2 Results: Simulation of Test Pattern
for Sequential Circuits

This section presents the results obtained on simulation of
GA and PSO on some of the ISCAS’89 benchmark sequen-
tial circuits (1) without performing netlist cutting and (2)
after cutting the netlist. The efficacy of the test pattern
generated using GA and PSO in our proposed framework

Table 1 Comparison among different crossover schemes on combina-
tional circuits

N*—Number of iterations required to achieve Fdmax

ISCAS’85
Circuits

SPC DPC UC
Fdmax

/ N*
Fdmax

/ N*
Fdmax

/ N*

C17 9 / 3 9 / 2 9 / 2
C432 109 / 5 109 / 5 121 / 5
C880 243 / 20 248 / 17 250 / 16
C1355 497 / 5 500 / 3 501 / 3
C1908 530 / 7 545 / 7 550 / 5
C2670 639 / 10 688 / 8 698 / 8
C3540 610 / 7 613 / 6 617 / 6
C5315 1020 / 9 1040 / 7 1073 / 6
C6288 2792 / 12 2795 / 12 2804 / 12
C7552 1714 / 6 1716 / 4 1740 / 4

Table 2 Mutation
rate comparison for
combinational circuits

R* – Number of iterations required to achieve the average fault coverage

ISCAS’85
Circuits

Mutation Rate

1/16 1/32 1/64 1/128

f cavg R* f cavg R* f cavg R* f cavg R*

C17 35.45 5 33.18 8 37.95 11 36.36 14
C432 17.14 10 18.29 13 18.35 17 17.73 22
C880 24.12 10 23.92 15 24.3 20 23.68 25
C1355 31.18 15 31.19 20 31.29 25 31.14 30
C1908 24.8 10 23.43 14 24.51 20 24.27 25
C2670 22 10 21.3 15 21.81 25 20.77 30
C3540 16.86 15 16.95 20 16.91 25 16.81 30
C5315 18.94 15 18.90 22 19.05 27 18.60 32
C6288 35.91 10 35.94 15 35.91 20 35.82 25
C7552 20.59 10 20.6 15 20.53 20 20.52 25

565Journal of Electronic Testing (2023) 39:555–570

1 3

has been validated through fault simulation using the fault
simulator HOPE which supports the fault simulation of
sequential circuits. It may be noted that after netlist cutting
the number of s-a faults detected in each run of GA or PSO
is significantly higher than that before cutting the netlist.
Many of the s–s-a faults which are undetected in a sequential
circuit (before cutting the netlist) lie on the signal lines in
the combinational logic block (CLB). Controllability and
observability of these signal lines demand assignment of
a specific set of logic vectors to PPIs. In this framework,
during fault simulation of the generated test pattern using
HOPE, all flip-flops are required to be either set or reset in
sequential circuits before cutting the netlist. This make PPIs
assignment forced to be either logic 1 or logic 0. Moreover,
the faults that are able to propagate only to PPOs but unable
to reach POs remain undetected in this case. On the con-
trary, the sequential circuits after netlist cutting are treated

as CLBs during fault simulation of the generated test pattern
using HOPE. So, the causes due to which many of the faults
are undetected in sequential circuits before cutting the netlist
are eliminated after cutting the netlist.

4.2.1 Simulation of Test Pattern Generated using GA

The parameters required for fitness function evaluation of
the sequential circuits, are shown in Table 4. Test patterns
were generated for ISCAS’89 circuits keeping the probabil-
ity of crossover as unity, and mutation rate of 0.02.

The results in Table 5 show the performance of differ-
ent crossover schemes for sequential circuits before and
after netlist cutting in terms of maximum number of faults
detected by a single pattern and number of iterations for
which GA is executed to find such pattern. From Table 5,
it may be observed that as the crossover schemes are varied

Fig. 8 Simulation of test patterns generated using GA for C432 and C5315 circuits

Table 3 Comparison of GA
and PSO with ATALANTA for
ISCAS’85 circuits

N*—Number of iterations required to achieve Fdmax

ISCAS’85
Circuits

ATALANTA GA PSO

Fdmax f cmax N* Fdmax Fdmax N* Fdmax f cmax N*

C17 8 36.36 3 9 40.9 2 9 40.9 1
C432 107 20.41 5 121 23.09 5 128 24.42 3
C880 248 26.32 21 250 26.5 16 278 29.5 5
C1355 494 31.38 3 501 31.83 3 505 32.08 2
C1908 532 28.31 5 550 29.27 5 571 30.3 5
C3540 576 16.80 8 617 18.0 6 626 18.2 6
C5315 1041 19.45 7 1073 20.05 6 1118 20.8 4
C6288 2768 35.74 19 2804 36.2 12 2912 37.6 8

566 Journal of Electronic Testing (2023) 39:555–570

1 3

from SPC to UC, more efficient single test vector can be
obtained in a lesser or same number of iterations. For S27
circuit, it is observed that Fdmax remains the same for all
three crossover schemes. This may be due to the fact that
S27 has only 4 PIs. Significant increase in Fdmax is observed
for S832, S1196 and S1238 with larger number of PIs. Next,
the average fault coverage attained by a single test vector
along with the number of iterations required to attain this
average fault coverage for different mutation rates are tabu-
lated in Table 6. From Table 6, a similar conclusion can be
reached as that of Table 2.

4.2.2 Simulation of Test Pattern Generated using PSO
and Comparison with GA and ATALANTA

The test patterns generated using PSO for some of the
ISCAS’89 benchmark circuits have been validated through
fault simulation using HOPE before and after netlist cutting.
Table 7 compare the efficacy of the test patterns generated

using GA and PSO using our proposed framework with
the test patterns generated using open-source ATPG tool
ATALANTA. It may be noted that ATALANTA is a com-
binational test pattern generator. So, it is not suitable for
sequential circuit before cutting its netlist. The results, as
tabulated in Table 7, shows that PSO results a significant
better performance compared to GA with respect to its
ability in finding Fdmax specifically for sequential circuits
after netlist cutting. However, in case of sequential circuits
without netlist cutting, PSO offers a mere improvement in
Fdmax only for the circuits S1196 and S5378. For the rest of
the circuits, the results of PSO are the same as that of GA.
This is because of the fact that many of the s-a faults remain
undetected in a sequential circuit before cutting the netlist.
EAs such as GA and PSO try to explore the possibilities
of finding the best test pattern which can detect maximum
number of s-a faults. In case of sequential circuits without
netlist cutting, there is no scope to explore PPIs for fault
detection as the flip-flops are either set or reset during fault
simulation. So, the chances of finding the best test pattern

Fig. 9 Simulation of test patterns generated using GA and PSO for C432 and C6288 circuits

Table 4 ISCAS’89 benchmark
circuit parameters

ISCAS’89
Circuits

No. of Flip
Flops (T)

Total stuck-
at-faults (F)

Before netlist cutting After netlist cutting

No. of
Inputs (L)

No. of
Outputs

No. of Inputs No. of Outputs

S27 3 32 4 1 7 4
S820 5 850 18 19 23 24
S832 5 870 18 19 23 24
S1196 18 1242 14 14 32 32
S1238 18 1355 14 14 32 32
S1488 6 1486 8 19 14 25
S5378 179 4603 35 49 214 228

567Journal of Electronic Testing (2023) 39:555–570

1 3

with nearly equal fault coverage using either GA or PSO
are almost same.

On the other hand, the results in Table 7 show that PSO
is better than GA and ATALANTA with respect to the

maximum number of faults detected by a single pattern in
lesser or almost same number of iterations for sequential
circuits after netlist cutting.

Table 5 Comparison of
different crossover schemes for
sequential circuits

N*—Number of iterations required to achieve Fdmax

ISCAS’89
Circuits

Before netlist cutting After netlist cutting

SPC DPC UC SPC DPC UC

F
dmax

/ N*
Fdmax

/ N*
Fdmax

/ N*
Fdmax

/ N*
Fdmax

/ N*
Fdmax

/ N*

S27 8 / 3 8/ 2 8 / 3 13 / 2 13 / 2 13 / 2
S820 52 / 4 53/ 3 54/ 3 74 / 2 79 / 1 81 / 2
S832 52/ 2 53/ 2 54/ 2 70 / 3 78 / 2 86 / 2
S1196 96 / 7 98/ 5 102/ 5 167 / 2 178 / 2 186 / 2
S1238 92/ 5 99/ 4 106/ 4 139 / 2 169 / 2 185 / 2
S1488 143/ 6 144/ 4 144/ 5 135 / 4 204 / 3 183 / 3
S5378 584/ 7 586 / 7 586 / 7 1078 / 2 1080 / 2 1096 / 2

Table 6 Mutation
rate comparison for
sequential circuits

R* – Number of iterations required to achieve the average fitness

ISCAS’89
Circuits

Before netlist cutting After netlist cutting

Mutation Rate Mutation Rate

1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

f cavg R* f cavg R* f cavg R* f cavg R* f cavg R* f cavg R* f cavg R* f cavg R*

S27 6.84 5 6.84 8 6.84 10 6.84 13 40 5 33.98 8 33.59 10 36.12 13
S820 0.59 8 0.58 10 0.61 15 0.60 17 8.09 8 7.91 10 7.91 15 8.08 17
S832 0.56 8 0.55 10 0.56 15 0.56 20 7.13 8 6.90 10 6.91 15 7.05 20
S1196 0.74 8 0.74 10 0.76 15 0.76 18 11.89 8 12.05 10 11.79 15 12.04 18
S1238 0.71 8 0.75 10 0.68 15 0.72 17 10.60 8 11.09 10 10.45 15 10.70 17
S1488 0.30 5 0.29 8 0.29 10 0.29 13 7.40 5 7.24 8 6.99 10 7.22 13
S5378 6.996 10 6.98 15 7.02 20 6.98 25 14.90 10 14.81 15 14.96 20 14.88 25

Table 7 Comparison of GA and PSO with ATALANTA for ISCAS’89 circuits

N*—Number of iterations required to achieve Fdmax

Circuits Before netlist cutting After netlist cutting

ATALANTA GA PSO ATALANTA GA PSO

Fdmax f cmax N* Fdmax f cmax N* Fdmax f cmax N* Fdmax f cmax N* Fdmax f cmax N*

S27 ATALANTA is not
suitable for sequential
circuits

8 25 3 8 25 3 13 40.62 2 13 40.62 2 14 43.75 1
S820 54 6.35 3 54 6.35 3 85 10 2 81 9.52 2 89 10.47 2
S832 54 6.21 2 54 6.21 1 86 9.89 2 86 9.89 2 89 10.22 1
S1196 102 8.21 5 107 8.61 4 180 14.49 2 186 14.97 2 213 17.14 2
S1238 106 7.82 4 106 7.82 4 190 14.02 2 185 13.65 2 221 16.31 2
S1488 144 9.69 5 144 9.69 5 176 11.84 3 204 13.72 3 225 15.14 3
S5378 586 12.73 7 587 12.75 6 1103 23.96 2 1096 23.81 2 1144 24.85 1

568 Journal of Electronic Testing (2023) 39:555–570

1 3

5 Conclusion

In this paper, two evolutionary algorithms for test pattern
generation for benchmark combinational and sequential
circuits are studied. GA and PSO algorithms are imple-
mented in MATLAB and the fault simulation is performed
in HOPE simulator. The results derived from both the
algorithms were compared with that obtained using the
well known open source ATPG tool ATALANTA. The
results highlight the better performance of PSO over GA
as well as ATALANTA for combinational circuits as well
as sequential circuits after netlist cutting. Since PSO pro-
vides both global and local searches, it is more efficient
than GA, in most optimization problems. The searching
speed of GA is slower and several adjustments are needed
to its parameters. The double point crossover scheme and
uniform crossover scheme increases the fault coverage of
a single test vector for maximum circuits. The complete
study in this paper recommends using a low value of muta-
tion rate to decrease the rate of randomness in the test
generation process. The fact that GA involves numerous
parameters that may be changed, implies that it provides
users much command over the search technique.

Genetic algorithm always tries to find solution through
evolution. Evolution is not a one way processs since natu-
ral lives many times evolve from an odd situtation, and do
not always experience a favourable situation. Even, it may
cause species to reach a dead end. The convergence princi-
ple is a significant phenomenon in GA. For instance, when
a user initiates a GA search to reach the target, the final
outcome may not be always the best possible one, and in
reality, better outcomes may exist. GA search may reach a
local optimum point, where it gets trapped and is unable to
move forward towards global optimum, which is the actual
target. Lastly, a method for test generation for sequential
circuits before and after their “netlist cutting” has been
presented. In this context, a EDA tool which can perform
“netlist cutting” for sequential circuits without altering
the structure of combinational logic has been introduced.

In this work, the efficacy of the EA based test gen-
eration framework is compared with that of well-known
open source ATPG tool ATALANTA. As a future exten-
sion of the work, the same can be compared with that of
commercially available industry standard ATPG tools. In
fact, comparison of results with that obtained using state-
of-the-art test generation tools may recommend tweak-
ing some of the parameters of evolutionary algorithms or
usage of more efficient technique like hybrid PSO (GA-
PSO) to make the framework more robust. Apart from this,
the EA based test generation framework can be further
explored through implementation of other evolutionary
algorithms such as Differential Evolution (DE) algorithm.

Funding The work is not funded by any external agency or organization.

Data Availability The resulting data may be available with the corre-
sponding author on reasonable request. No data repository is available
with the manuscript.

Declarations

Conflicts of Interests The authors declare that they have no confict of
interests.

References

 1. Abdelatty M, Gaber M, Shalan M (2021) Fault: Open-Source
EDA’s Missing DFT Toolchain. In: IEEE Design Test 38(2):45–
52. https:// doi. org/ 10. 1109/ MDAT. 2021. 30518 50

 2. Abramovici M, Kulikowski JJ, Menon PR, Miller DT (1986)
SMART And FAST: Test Generation for VLSI Scan-Design Cir-
cuits. In: IEEE Design Test Compt 3(4):43–54. https:// doi. org/ 10.
1109/ MDT. 1986. 294975

 3. Alateeq MM, Pedrycz W (2017) Analysis of optimization algo-
rithms in automated test pattern generation for sequential circuits.
In Proc. The IEEE Int Conf Sys Man Cybern (SMC). Banff, AB,
Canada 1834–1839. https:// doi. org/ 10. 1109/ SMC. 2017. 81228 83

 4. Arslan T, O'Dare MJ (1997) A genetic algorithm for multiple
fault model test generation for combinational VLSI circuits. In
Proc. Second International Conference On Genetic Algorithms
In Engineering Systems: Innovations And Applications. Glasgow,
UK, 462–466. https:// doi. org/ 10. 1049/ cp: 19971 224

 5. Baid A, Srivastava AK (2013) Generating test patterns for fault
detection in combinational circuits using genetic algorithm".
In Proc Students Conf Eng Sys (SCES), Allahabad, India, 1–4.
https:// doi. org/ 10. 1109/ SCES. 2013. 65475 06

 6. Brglez F, Bryan D, Kozminski K (1989) Combinational profiles
of sequential benchmark circuits. In Proc. The IEEE Int Symp
Circuits Syst (ISCAS), Portland, OR, USA, 3:1929–1934. https://
doi. org/ 10. 1109/ ISCAS. 1989. 100747

 7. Brglez F, Fujiwara H (1985) A neutral netlist of 10 combina-
tional benchmark circuits and a target translator in Fortran. In
Proc. IEEE Int Symp Circuits Sys (ISCAS’85), Kyoto, Japan

 8. Bushnell M, Agrawal V (2004) Essentials of electronic testing
for digital, memory and mixed-signal VLSI circuits. 17. Springer
Science & Business Media, ISBN:0–7923–7991–8.

 9. Cadence Modus DFT Software Solution from Cadence (2020)
[Online]. Available at: https:// www. caden ce. com/ en_ US/ home/
tools/ digit al- design- and- signo ff/ test/ modus- test. html

 10. Chandrasekara B (2013) Evolutionary Algorithms for Low
Power Test Pattern Generator. In: Int J Comp Appl (0975
– 8887) 66(7):1–6

 11. Corno F, Prinetto P, Rebaudengo M, Reorda MS (1996) GATTO:
a genetic algorithm for automatic test pattern generation for large
synchronous sequential circuits. In: IEEE Trans Comput-Aided
Des Integ Circuits Sys 15(8):991–1000. https:// doi. org/ 10. 1109/
43. 511578

 12. Fujiwara H (1985) Fan: A fanout-oriented test pattern generation
algorithm. In Proc. IEEE Int Symp Circuits and Syst 671–674

 13. Goldberg DE (1989) Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Reading, MA: Addison-Wesley, P.41
ISBN0–201–15767–5

 14. Hong SJ (1993) A 15-valued fast test generation for combinational
circuits. In Proc. IEEE 2nd Asian Test Symposium (ATS), Beijing,
China, 113–118. https:// doi. org/ 10. 1109/ ATS. 1993. 398789

https://doi.org/10.1109/MDAT.2021.3051850
https://doi.org/10.1109/MDT.1986.294975
https://doi.org/10.1109/MDT.1986.294975
https://doi.org/10.1109/SMC.2017.8122883
https://doi.org/10.1049/cp:19971224
https://doi.org/10.1109/SCES.2013.6547506
https://doi.org/10.1109/ISCAS.1989.100747
https://doi.org/10.1109/ISCAS.1989.100747
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/test/modus-test.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/test/modus-test.html
https://doi.org/10.1109/43.511578
https://doi.org/10.1109/43.511578
https://doi.org/10.1109/ATS.1993.398789

569Journal of Electronic Testing (2023) 39:555–570

1 3

 15. Ivask E, Raik J, Ubar R (1998) Comparison of Genetic and Ran-
dom Techniques for Test Pattern Generation. Masters Thesis,
Computer Engineering Department, Tallinn Technical University

 16. Kalyana RK (1997) Minimizing N-Detect Tests for Combinational
Circuits. M.SC Thesis, Auburn University, Auburn, Alabama

 17. Keim M, Drechsler N, Drechsler R, Becker B (2001) Combining
GAs and Symbolic Methods for High Quality Tests of Sequential
Circuits. In: J Electron Test 17:37–51. https:// doi. org/ 10. 1023/A:
10111 93725 824

 18. Kennedy J, Eberhart R (1995) Particle swarm optimization. In
Proc. ICNN'95 - Int Conf Neural Netw, Perth, WA, Australia,
4:1942–1948. https:// doi. org/ 10. 1109/ ICNN. 1995. 488968

 19. Kennedy J, Eberhart RC (1997) A discrete binary version of the
particle swarm algorithm. In Proc. The IEEE International Confer-
ence on Systems, Man, and Cybernetics. Computational Cybernet-
ics and Simulation, Orlando, FL, USA, 5:4104–4108. https:// doi.
org/ 10. 1109/ ICSMC. 1997. 637339

 20. Khera VK, Sharma RK, Gupta AK (2019) A heuristic fault based
optimization approach to reduce test vectors count in VLSI test-
ing. In: J King Saud Univ Comput Inf Sci-Elsevier 31(2):229–234.
https:// doi. org/ 10. 1016/j. jksuci. 2017. 02. 001

 21. Lee HK, Ha DS (1996) HOPE: an efficient parallel fault simulator
for synchronous sequential circuits. In: IEEE Trans Comput-Aided
Des Int Circuits Syst 15(9):1048–1058. https:// doi. org/ 10. 1109/
43. 536711

 22. Lipovský M, J. Švarc J, Gramatová E, Fišer P (2016) A new
user-friendly ATPG platform for digital circuits. In Proc. 2016
IEEE 19th International Symposium on Design and Diagnostics
of Electronic Circuits & Systems (DDECS), Kosice, Slovakia.
1–4. https:// doi. org/ 10. 1109/ DDECS. 2016. 74824 74

 23. Miyase K, Kajihara S (2004) XID: Don't care identification of test
patterns for combinational circuits. In: IEEE Trans Comput-Aided
Design Int Circuits Syst 23(2):321–326. https:// doi. org/ 10. 1109/
TCAD. 2003. 822103

 24. Malaiya YK (1995) "Antirandom testing: getting the most out
of black-box testing. In Proc. Sixth International Symposium on
Software Reliability Engineering. ISSRE'95, Toulouse, France.
86–95. https:// doi. org/ 10. 1109/ ISSRE. 1995. 497647

 25. Mehta U, Devashrayee NM, Dasgupta KS (2008) Implementa-
tion of Algorithm For Testability Measures Using MATLAB. In
Proc. 3rd International Conference on Advanced Computing &
Communication Technologies, ICACCT-2008, pp 1–5. Availai-
ble at: https:// www. acade mia. edu/ 57304 615/ Imple menta tion_ of_
Algor ithm_ For_ Testa bility_ Measu res_ Using_ MATLAB

 26. Musa EA, Karrar AE, Aain AK (2016) Test Pattern Generation
for Integrated Circuit Test Using Distance between Vectors. In:
Int J Sci Res (IJSR), ISSN(Online): 2319–7064, 5(5):2480–2485

 27. Niermann TM, Cheng WT, Patel JH (1990) PROOFS: a fast,
memory efficient sequential circuit fault simulator. In Proc. 27th
ACM/IEEE Design Automation Conference, Orlando, FL, USA,
535–540. https:// doi. org/ 10. 1109/ DAC. 1990. 114913

 28. Prinetto P, Rebaudengo M, Sonza Reorda M (1994) An automatic
test pattern generator for large sequential circuits based on Genetic
Algorithms. In Proc Int Test Conf, Washington, DC, USA, 240–
249. https:// doi. org/ 10. 1109/ TEST. 1994. 527955

 29. Pomeranz I, Reddy LN, Reddy SM (1993) COMPACTEST: a
method to generate compact test sets for combinational cir-
cuits. In: IEEE Transact Comput-Aided Design Int Circuits Syst
12(7):1040–1049. https:// doi. org/ 10. 1109/ 43. 238040

 30. Raghuraman A (2005) To Generate a Single Test Vector to detect
all/most number of faults in a given combinational circuit. [Online].
Availaible at: https:// view. offic eapps. live. com/ op/ view. aspx?
src= https% 3A% 2F% 2Fwww. eng. auburn. edu% 2F~agraw vd%
2 F CO U R S E % 2 F E 7 2 5 0 _ 0 5 % 2 F R E P O RTS _ P RO J %
2FRag huram an_ ATPG. doc& wdOri gin= BROWS ELINK

 31. Rudnick EM, Patel JH, Greenstein GS, Niermann TM (1997) A
genetic algorithm framework for test generation. In: IEEE Trans
Comput-Aided Des Int Circuits Sys 16(9):1034–1044. https://
doi. org/ 10. 1109/ 43. 658571

 32. Saab DG, Saab YG, Abraham JA (1992) CRIS: A test cultiva-
tion program for sequential VLSI circuits. In Proc. IEEE/ACM
International Conference on Computer-Aided Design, Santa
Clara, CA, USA, 216–219. https:// doi. org/ 10. 1109/ ICCAD.
1992. 279372

 33. Schulz MH, Trischler E, Sarfert TM (1988) SOCRATES: a highly
efficient automatic test pattern generation system. In: IEEE Trans
Comput-Aided Des Integr Circuits Syst 7(1):126–137. https:// doi.
org/ 10. 1109/ 43. 3140

 34. Singh GP, Lakha BS (2011) Simulink Library Development and
Implementation for VLSI Testing in Matlab. In Proc. International
Conference on High Performance Architecture and Grid Comput-
ing. HPAGC 2011. Communications in Computer and Information
Science169. Springer, Berlin, Heidelberg. https:// doi. org/ 10. 1007/
978-3- 642- 22577-2_ 31

 35. Singh R, Rajawat A (2012) Implementation of Genetic Algo-
rithm for Automatic Test Pattern Generation. In: Int J Sci Eng
Res 3(4):1–6, ISSN 2229–5518

 36. Skobtsov YA, Skobtsov VY (2011) 13 Evolutionary Test Genera-
tion Methods for Digital Devices. In: M. Adamsk, A. Barkalov.,
M. Węgrzyn. (eds) Design of Digital Systems and Devices. Lect
Notes Electr Eng 79:331–361. Springer, Berlin, Heidelberg. https://
doi. org/ 10. 1007/ 978-3- 642- 17545-9_ 13

 37. Srinivas M, Patnaik LM (1993) A Simulation-Based Test Gen-
eration Scheme Using Genetic Algorithms. In Proc. Sixth Inter-
national Conference on VLSI Design, Bombay, India 132–135.
https:// doi. org/ 10. 1109/ ICVD. 1993. 669663

 38. Thakar S (1993) On the generation of test patterns for combina-
tional circuits. M.SC Thesis, Virginia Tech

 39. TestMAX ATPG from Synopsys (2007) [Online]. Available
at:https:// www. synop sys. com/ imple menta tion- andsi gnoff/ test-
autom ation/ testm ax- atpg. html

 40. Tessent FastScan from Siemens (2019) [Online]. Available
at:https:// eda. sw. sieme ns. com/ en- US/ ic/ tesse nt/ test/ fasts can/

 41. User’s Guide for ATALANTA (1991) Virginia Polytechnic & State
University. Available at: https:// github. com/ hsluo yz/ Atala nta

 42. Wolfram S (1983) Statistical Mechanics of Cellular Automata.
Rev Mod Phys 55:601–644. https:// doi. org/ 10. 1103/ RevMo dPhys.
55. 601

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Priyajit Bhattacharya graduated with a B.Tech. degree in Electronics
and Communication Engineering in 2021 from Institute of Engineer-
ing& Management (IEM), Kolkata, India. He received his M.Tech.
degree in Electronics and Communication Engineering in 2023 from
Indian Institute of Technology (Indian School of Mines) Dhanbad,
India. He worked as a Research and Development Intern in Siemens EDA
(India) Pvt. Ltd. from July 2022 to December 2022. Currently he
is working as a Member of Technical Staff in Siemens EDA (India) Pvt.
Ltd. His research interests include Test & Verification of VLSI circuits,
FPGA based Software-Hardware Co-Simulation, Fault Emulation and
Electronic Design Automation (EDA).

https://doi.org/10.1023/A:1011193725824
https://doi.org/10.1023/A:1011193725824
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICSMC.1997.637339
https://doi.org/10.1109/ICSMC.1997.637339
https://doi.org/10.1016/j.jksuci.2017.02.001
https://doi.org/10.1109/43.536711
https://doi.org/10.1109/43.536711
https://doi.org/10.1109/DDECS.2016.7482474
https://doi.org/10.1109/TCAD.2003.822103
https://doi.org/10.1109/TCAD.2003.822103
https://doi.org/10.1109/ISSRE.1995.497647
https://www.academia.edu/57304615/Implementation_of_Algorithm_For_Testability_Measures_Using_MATLAB
https://www.academia.edu/57304615/Implementation_of_Algorithm_For_Testability_Measures_Using_MATLAB
https://doi.org/10.1109/DAC.1990.114913
https://doi.org/10.1109/TEST.1994.527955
https://doi.org/10.1109/43.238040
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.eng.auburn.edu%2F~agrawvd%2FCOURSE%2FE7250_05%2FREPORTS_PROJ%2FRaghuraman_ATPG.doc&wdOrigin=BROWSELINK
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.eng.auburn.edu%2F~agrawvd%2FCOURSE%2FE7250_05%2FREPORTS_PROJ%2FRaghuraman_ATPG.doc&wdOrigin=BROWSELINK
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.eng.auburn.edu%2F~agrawvd%2FCOURSE%2FE7250_05%2FREPORTS_PROJ%2FRaghuraman_ATPG.doc&wdOrigin=BROWSELINK
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.eng.auburn.edu%2F~agrawvd%2FCOURSE%2FE7250_05%2FREPORTS_PROJ%2FRaghuraman_ATPG.doc&wdOrigin=BROWSELINK
https://doi.org/10.1109/43.658571
https://doi.org/10.1109/43.658571
https://doi.org/10.1109/ICCAD.1992.279372
https://doi.org/10.1109/ICCAD.1992.279372
https://doi.org/10.1109/43.3140
https://doi.org/10.1109/43.3140
https://doi.org/10.1007/978-3-642-22577-2_31
https://doi.org/10.1007/978-3-642-22577-2_31
https://doi.org/10.1007/978-3-642-17545-9_13
https://doi.org/10.1007/978-3-642-17545-9_13
https://doi.org/10.1109/ICVD.1993.669663
https://www.synopsys.com/implementation-andsignoff/test-automation/testmax-atpg.html
https://www.synopsys.com/implementation-andsignoff/test-automation/testmax-atpg.html
https://eda.sw.siemens.com/en-US/ic/tessent/test/fastscan/
https://github.com/hsluoyz/Atalanta
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1103/RevModPhys.55.601

570 Journal of Electronic Testing (2023) 39:555–570

1 3

Rahul Bhattacharya is an Assistant Professor in the Department of Elec-
tronics Engineering at IIT(ISM) Dhanbad. He received the B.E. degree
in Electronics & Communication Engineering from NIT Durgapur in
2005 and M.S.(R) degree in Electrical Engineering from IIT Kharagpur
in 2012, respectively, and the Ph.D. degree from IIT(ISM) Dhanbad in
2019. Prior to joining IIT(ISM) Dhanbad, he spent some years in ST-
Ericsson India Pvt. Ltd. as a Senior Design Designer in the High-Speed
Link Validation group and as a research consultant in the Advanced
VLSI Design Laboratory at IIT Kharagpur. His research focuses on
FPGA Emulation of mixed-signal circuits, Fault modeling and diag-
nosis and VLSI circuits testing. Bhattacharya is the recipient of ADI
Innovation Fellowship Grant from Analog Devices India Pvt. Ltd.
for his exceptional research in the field of modelling, emulation and

verification. He also acts as a reviewer of various National and Inter-
national journals such as IEEE Open journal of the Solid State Circuits
Society, IEEE Transactions on VLSI Systems, IEEE Transactions on
Device and Materials Reliability, IEEE Transactions on Industrial Elec-
tronics, IEEE Access, the Proceedings of the National Academy of Sci-
ences, India, Section A: Physical Sciences, Springer etc.

Himasree Deka graduated with a B.Tech. degree in Electronics and
Tele Communication Engineering in 2022 from Assam Engineering
College, India. She is pursuing her M.Tech. degree in Electronics and
Communication Engineering since 2022 in Indian Institute of Technol-
ogy (Indian School of Mines) Dhanbad, India. Her research interests
include Testing of VLSI Circuits using Evolutionary Algorithms.

	MATLAB-Open Source Tool Based Framework for Test Generation for Digital Circuits Using Evolutionary Algorithms
	Abstract
	1 Introduction
	1.1 Open Source CAD Tools
	1.2 Licensed CAD Tools

	2 Related Work and Major Contributions
	2.1 Existing Approaches on Test Generation Using Traditional ATPG Algorithms
	2.2 Existing Approaches on Test Generation Using Evolutionary Algorithms
	2.3 MATLAB based Approaches for Test Generation for Digital Circuits
	2.4 Major Contributions

	3 Test Generation Framework: Methodology and Theoretical Background
	3.1 Test Generation Framework-An Overview
	3.1.1 Combinational Circuit Testing
	3.1.2 Sequential Circuit Testing

	3.2 GA based Test Generation in MATLAB
	3.2.1 Fitness Function
	3.2.2 Roulette Wheel Selection

	3.3 PSO based Test Generation in MATLAB

	4 Results and Discussion
	4.1 Results: Simulation of Test Pattern for Combinational Circuits
	4.1.1 Simulation of Test Pattern Generated using GA
	4.1.2 Simulation of Test Pattern Generated using PSO and Comparison with GA and ATALANTA

	4.2 Results: Simulation of Test Pattern for Sequential Circuits
	4.2.1 Simulation of Test Pattern Generated using GA
	4.2.2 Simulation of Test Pattern Generated using PSO and Comparison with GA and ATALANTA

	5 Conclusion
	References

