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Abstract
Hardware Trojan (HT) is the most critical threat due to outsourcing of Integrated circuit designing phases. Existing machine 
learning-based HT detection techniques at the pre-silicon IC phase use the structural or SCOAP gate-level netlist features 
for detection. However, these techniques either fail to detect the always-on-Trojans or low SCOAP Trojans, thus provides 
large false positives/negatives. Moreover, they fail to interpret the model prediction locally due to model-specific feature 
importances, identify the best feature subset in large retraining rounds, and also drop some relevant features. Therefore, to 
tackle these limitations, this paper proposes a new technique that utilizes structural and SCOAP features to detect HT from 
the gate-level netlist. The proposed technique utilizes the fastest model Light Gradient Boosting that uses gradient-based 
one-side sampling and exclusive feature bundling to reduce the computational time. Further, a model agnostic Shapley addi-
tive explanations (SHAP) is employed to identify each feature global and local impact on model prediction, thus making 
the prediction transparent. Moreover, a quartile-based feature selection method is proposed, which uses SHAP to identify 
the optimal feature set by keeping low retraining rounds. Experimental results show that the proposed technique accurately 
detects always-on-Trojans and HT nets from Trust-Hub, DeTrust, DeTest and MIMIC based Trojan benchmarks.
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1 Introduction

Nowadays, in order to lessen the cost and expedite the pro-
cess, semiconductor firms mostly outsourced Integrated cir-
cuit (IC) supply chain phases to third party houses, which 
makes them vulnerable to malicious Hardware Trojan (HT) 
intrusion [5]. These external houses got ample chances to 
insert HT in these IC phases, e.g., they either manipulate 
the lithographic IC masks or modify the functioning of the 

gate-level netlist by deliberately inserting the additional gates 
in it [43]. An adversary designed the stealthiest Trojan, which 
is triggered by the rarest input combinations to perform mali-
cious functions such as denial of service (DoS), sensitive 
information leakage, tampering the circuit functionality, etc. 
[3]. The presence of HT’s in the IC’s proves to be harm-
ful and life-threatening for various sensitive and real-life 
applications such as self-driving vehicles [7], surveillance 
systems [47], IoT [50], defense and cyber security systems 
[48]. Therefore, to combat this attack, several countermeas-
ures are proposed by the researchers at both pre-silicon and 
post-silicon IC phases [27, 44]. However, this paper mainly 
focuses on the untrusted pre-silicon IC designing phase, 
where an adversary alters the original gate-level netlist by 
inserting the HT in it. Conventional verification approaches 
such as UCI [17], FANCI [45] etc. flag the suspicious circuits 
by performing the formal verification or functional analysis 
on the circuits. However, these approaches suffer from low 
extensibility, require large computational effort, fail to detect 
implicit HTs, threshold dependent thus provide large false 
positives/negatives because some Trojans smartly bypass 
these verification/functional analysis [27, 40, 53].
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Recently, gate level feature analysis-based approaches 
are also reported, which tend to be faster and more accurate 
than verification approaches [18, 22]. They mainly extracts 
the structural/SCOAP features from gate-level netlist 
and develop threshold or machine learning (ML) based 
approach to identify the Trojan nets [15, 24, 32]. Hasegawa 
et al. [16] extracts the structural features from gate-level 
netlist and selects the best feature set to detect HT nets 
using a Random forest classifier. Similarly, Salmani [35] 
extracts the SCOAP values and applies k-means clustering 
to perform detection. However, the use of only structural/
SCOAP features could not identify either the always-on-
Trojans or low SCOAP value Trojans. Therefore, Kok et al. 
[24] combines structural and SCOAP features for detection 
and train decision tree on feature subset chosen by Maxi-
mum relevance-Minimum redundancy method. However, 
the use of model-specific feature importance by [16] gives 
inconsistent ranking, whereas the relevancy method used 
in [24] is affected by the outliers and sensitive to noise. 
Further, they only provide the importance at the global 
level and fail to identify the local feature contribution 
and feature interaction during prediction [31]. Besides, 
to identify the best feature subset, they follow the partial/
full iterative process by either dividing the feature set into 
halves repetitively or including every feature iteratively to 
compute performance which is time-consuming and may 
drop out some relevant features. Moreover, the use of class 
weighting/oversampling for class imbalance either makes 
the model biased towards minority class or causes overfit-
ting. Besides, ML models used by them are nonresistant 
to noise, complex, and time-consuming, which affects the 
model training and generalization procedure.

Our previously developed approach [39] utilized 
SCOAP features and the XGBoost model for HT detection. 
To address class imbalance, we proposed a class weight-
ing scheme which gives higher weights to minority Trojan 
inserted class. Additionally, we employed permutation fea-
ture importance to prioritize the features and introduced a 
new mean feature selection method to identify the optimal 
feature set. One of the main limitations is its reliance on 
a limited feature set, which may result in the inability to 
detect certain types of HTs, including the newly devel-
oped Trojans such as DeTest. These Trojans can reduce the 
SCOAP feature values of Trojan nets to 10%, making them 
more challenging to detect. Furthermore, the previous 
approach lacks model explainability, as it only provides 
global feature importance without detailed insights into 
individual features’ contributions. This limitation hampers 
our ability to understand the underlying factors influenc-
ing HT detection and may hinder the interpretability of 
the results. Additionally, the use of mean in the feature 
selection method introduces sensitivity to noise, which can 

lead to the exclusion of relevant features and potentially 
impact the overall performance of our approach. Moreo-
ver, the class weighting scheme we proposed to address 
class imbalance may sometimes become biased towards 
the Trojan class, resulting in an increased False Negative 
Rate in certain cases. This imbalance can affect the overall 
performance and accuracy of our approach.

Therefore, to overcome the above limitations, a new HT 
detection technique is proposed in this paper, which utilizes 
both structural and SCOAP features to identify the HT nets 
from gate-level netlist. The proposed technique employs a 
fast and efficient Light Gradient Boosting (LGB) model 
which uses gradient-based one side sampling that focuses 
on the undertrained samples by selecting the large gradi-
ent samples from the dataset and uses exclusive feature 
bundling, which combines mutually exclusive features 
into single bundle thus reduces the memory and time con-
sumption. Moreover, it grows the tree leaf-wise by choos-
ing the leaf with a maximum loss instead of level-wise, 
thus building the tree faster and can handle the missing 
values and overfitting by providing inbuilt support to 
ensure correct training. Further, model agnostic Shapley 
additive explanations (SHAP) is utilized that provide both 
global and local feature contribution for every sample and 
capture the interaction between features that helps to ana-
lyze which feature influences the LGB model predictions 
most. Besides, a quartile-based feature selection method 
is proposed, which identifies the optimal feature set using 
SHAP feature importance by minimizing the model retrain-
ing rounds. Further, to avoid the limitations that arise in 
oversampling/weighting, a combined sampling SMOTE-
Tomek Links is used, which apply oversampling and then 
undersampling to balance classes. Finally, the proposed 
technique is scalable because new features can be added 
easily whenever new stealthy Trojans are designed. The 
major contributions are given as follows: 

1. A new LGB model-based HT detection technique is pro-
posed, which utilizes structural and SCOAP gate-level netlist 
features during training for fast and accurate detection.

2. Thorough experimental analysis is carried out using 
model agnostic SHAP to interpret which features inter-
acted and influenced the LGB model prediction most at 
the global and local level.

3. A Quartile-based feature selection method is proposed 
that selects the best subset of features using SHAP fea-
ture importance in minimum model retraining rounds.

4. Experimental evaluation on Trust-Hub, DeTrust, DeTest 
benchmarks, always-on Trojans and MIMIC based Tro-
jan benchmarks provides on-an-average approximately 
99% accuracy, nearly 0% false positive and 2% false 
negative rates, respectively.
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The rest of the paper is organized as follows: Section 2 
gives a literature review analysis of existing gate-level 
netlist-based HT detection techniques. Section 3 discussed 
HT features, attack model and problem statement. Sec-
tion 4 explains the proposed HT detection technique, which 
includes LGB model learning followed by a new feature 
selection method and HT detection algorithm. Experimental 
results and comparative analysis is presented in Section 5. 
Finally, Section 6 concludes the paper.

2  Literature Review: Analysis

Several HT detection techniques have been explored by the 
researchers at different IC phases, and a detailed explana-
tion is given in [22, 28]. However, this section contains the 
analysis of the existing gate-level netlist feature analysis-
based HT detection techniques. Oya et al. [32] proposed 
a score-based technique, in which nine feature templates 
are extracted, i.e., weak nets from the gate-level netlist, and 
computed the score based on HT structure present in each 
feature. Further, a score threshold is chosen to identify the 
netlist as Trojan free (TF)/ Trojan inserted (TI). However, it 
fails to detect smartly crafted Trojans that do not resemble 
any weak net structure. Moreover, setting the correct thresh-
old is a cumbersome task that leads to large false positives 
(FP)/ false negatives (FN). Hasegawa et al. [15] extracted the 
five gate-level netlist structural features, and class weight-
ing is used that assign higher weights to the minor TI class 
to identify the Trojan nets using a support vector machine 
(SVM). However, they fail to accurately detect Trojan in sev-
eral benchmarks due to a lack of sufficient features. Besides, 
the weighting scheme might get biased towards the TI class, 
thus generating larger FP’s.

Further, 51 features are extracted by them in [16] 
and feature importance is computed by Random Forest 
Classifier (RFC). Besides, the features are divided into 
halves iteratively until the best average F-measure is 
achieved, and when the best set is obtained, a single fea-
ture is dropped from that set to compute the average (avg) 
F-measure again, this process keeps on repeating for each 
feature present in the set. Then the whole single feature 
drop process is repeated on the new set until no further 
improvement is seen and RFC is trained on the best set 
for detection. However, model-specific feature importance 
provides a ranking based on node splitting criterion, which 
is inconsistent and could not identify the feature contribu-
tion locally, thus fail to interpret the model predictions 
[31]. Besides, feature selection is time-consuming, and 
a random division of feature sets may drop the relevant 
features. Further, oversampling replicates the TI samples 
multiple times, which tends the model to overfit, thus 
fail to identify HT’s in many benchmarks. Furthermore, 

the same previous best feature set is utilized by them in 
[14], and neural network (NN) is trained for detection. 
Since this technique uses the same features, thus provides 
small true positives (TP)/ true negatives (TN) in many 
benchmarks. Moreover, choosing the best set of neurons 
in NN is time-consuming and complex. Wang et al. [46] 
extracted the trigger net features and trained two XGBoost 
models to detect combinational and sequential Trojans. 
However, training two detection models is a tedious task, 
and it achieves low detection accuracy and on-an-avg low 
true TP/TN. Besides both [14] and [46] uses the similar 
weighting scheme as used in [15], which also affects the 
detection results. Similarly, Kurihara and Togawa [25] 
extracted 25 structural trigger features, combined them 
with 11 features, and trained the RFC model to detect HT 
but provides lower recall in several benchmarks.

In contrast, Salmani [35] proposed COTD in which 
SCOAP features from the circuits are extracted and then 
k-means clustering is applied to identify the HT nets. How-
ever, this technique missed out on low SCOAP HT nets or 
may predict high SCOAP TF nets as TI. Further, k-means 
clustering is highly affected by noise and possess less gen-
eralization capability, which affect the detection rate. Simi-
larly, Xie at al. [49] also applies k-means clustering and 
extracts the intercluster distance (one feature) from SCOAP  
values and combines it with three other circuit primitive 
features to perform the detection using SVM. However, 
they randomly assign higher/lower weights to each feature 
and fail to locate the HT specifically because the detection 
is performed at the circuit level instead of the net level. 
Further, oversampling makes the model prone to overfit, 
and it incurs a large overhead due to the use of multiple 
classifiers. Kok et al. [24], utilizes the SCOAP values of 
combinational and sequential circuits as features, and for 
class balancing, ADASYN is used which generates the syn-
thetic data for TI class to perform detection using Bagged 
trees. However, some of the generated artificial data get 
similar to the TF class, which affects the detection rate and 
F-measure in several benchmarks.

 Our earlier work [39], use the same SCOAP features as 
[24] and a new weighting scheme are used in class weighted 
XG Boost classifier, which is trained on optimal feature set 
selected by new feature selection method to detect HT nets. 
Tebyanian et al. [42] proposed SC-COTD in which they also 
use combinational and sequential SCOAP features and apply 
k-means clustering with different cluster values. Finally, the 
clustering results are fed to the decision-making system, 
which identifies the circuits as Trojan-free/inserted based 
on the majority voting scheme. Salmani [36] improved the 
COTD by performing a multiple rounds of clustering and 
post-processing technique is applied to reduce false positives. 
Gaikwad et al. [12] propose a trust verification framework 
using supervised learning to detect HTs.
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Recently, DeTest [52] defeated SCOAP based techniques 
by designing new Trojans, which decreases the SCOAP 
values of HT nets up to 10% . Moreover, structural/SCOAP 
features-based techniques fail to detect either always-on-
Trojans or low SCOAP HT nets. Kok et al. [23], com-
bines structural and SCOAP features, and the Maximum  
relevance-Minimum redundancy method (MRMR) method 
is applied for feature ranking. Further, features are included 
iteratively, the highest accuracy feature subset is chosen, 
and the Decision Tree model is trained for detection. How-
ever, MRMR is sensitive to outliers, and noise [20] which 
affect the ranking process, and iterative feature selection 
is also time-consuming. Moreover, data generated by 
ADASYN also affects the detection accuracy.

3  Background

3.1  Structural & SCOAP HT Features

An adversary can implant different types of HT in the IC 
designing phase with varying triggering mechanisms and 
payload [3]. The functional Trojans possess trigger circuitry, 
which, once activated by certain input conditions, executed 
the payload and performed the desired malicious functions 

[5]. Besides, there are also exist always-on-Trojans which 
does not require any trigger to activate and continuously 
execute the malicious functions all time [48]. However, these 
HT’s exhibit some common traits through which they can be 
detected, e.g., they might be connected to the low switching 
activity nets, which are rarely triggered or contain larger fan-
ins [51]. Therefore, we have extracted several structural and 
SCOAP features of combinational and sequential circuits 
to detect HT nets. Structural features mainly give insight 
about the connection that exists among several logic gates, 
thus providing information about the HT’s present in the cir-
cuits. We have extracted the common structural features sug-
gested by existing techniques [16, 46] as shown in Table 1. 
It has been analyzed that mostly combinational trigger cir-
cuits possess large logic gate fan-ins, thus feature fan_in_x 
represents the number of logic gate fan-ins, x level away 
from net n, where x ranges from ( 1 ≤ x ≤ 5 ). For example, 
Table 2 shows the average fan-ins feature values of Trojan 
and genuine nets of Trust-Hub benchmark RS232-T1400, 
which shows that the Trojan nets possess higher fan-in val-
ues than genuine nets.

Similarly, for sequential triggered nets, the level of flip 
flops is small because they are placed closely. Thus, fea-
tures in_flipflop_x/out_flipflop_x and in_nearest_flipFlop/
out_nearest_flipFlop indicates the number of flip-flops, x 

Fig. 1  Structural features of gate-level netlist [15, 16]

Table 1  Structural features extracted from gate-level net-list

Structural Trojan Features Explanation(1 <= x <= 5)

fan_in_x Total logic-gate fan-ins, x-logic level away from net n
in_flipFlop_x & out_flipFlop_x Total number of flip-flops, x- logic level away from the input/output 

side of the net n
in_nearest_flipFlop & out_nearest_flipFlop Minimum logic level to flip flops from input/output side of net n
in_loop_x & out_loop_x Total number of x-logic level loops, for the input/output side of net n
in_nearest_pin & out_nearest_pin Minimum logic level to the primary input/output from net n
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logic level away, and minimum level to flip-flops from input 
and output side of net n. Further, Trojan nets may frequently 
found close to primary inputs or primary output because 
earlier is often used as a Trojan trigger and later used to 
propagate malicious output. However, HTs can potentially be 
located anywhere within in the circuit, including leveraging 
scan-chains for insertion. But, in this paper we aim to detect 
the Trojans resides close to primary input or primary output, 
therefore, we extract the minimum level to primary input/
output (in_nearest_pin & out_nearest_pin) features from 
net n. Besides, sequential HT often contains loops thus, the 
feature in_loop_x/out_loop_x tells us the number of x-level 
loops from the input and output side of net n. For example, 
Fig. 1(a) shows the extracted feature values for target net n up 
to level 2, it can be seen that the extracted fan-in feature value 
(fan_in_2 = 4). The total number of flip-flops from the input 
and output side of target net n, i.e., features in_flipFlop_2 
& out_flipFlop_2 are 1. Moreover, the nearest input from 
flip-flop A to target net n (in_nearest_flipFlop = 2) and the 
nearest output from flip-flop B (out_nearest_flipFlop = 1). 
Further, the level of nearest primary input (in_nearest_pin) is 
two, and primary output (out_nearest_pin) is one. Similarly, 
Fig. 1(b) shows the example of a three-level loop feature in a 
circuit, it can be seen that Gate A is directly connected from 
net n, and there also exists an input loop (in_loop_3 = 3 ), 
i.e., the Gate A is three-level way from the net n.

However, the extracted 29 structural features alone fail 
to detect all the Trojans completely and also could not iden-
tify the always-on-Trojans. Therefore, we also incorporate 
SCOAP feature values because HT is mostly inserted at low 
switching activity area, thus possess large controllability or 
observability values [35]. We have extracted the SCOAP 
values of both combinational and sequential circuits, i.e., 
combinational & sequential-0 controllability (CC0, SC0), 
combinational & sequential-1 controllability (CC1, SC1), 
combinational & sequential observability (CO, SO) using 
the SCOAP method [13] to perform detection. Further, 
Table 3 shows the average SCOAP feature values of Trojan 
and genuine nets of Trust-Hub benchmark RS232-T1400, 

which indicates that Trojan nets possess higher controllabil-
ity or observability values than genuine nets.

However, sometimes SCOAP values of Trojan nets also 
become low, e.g., Trust-Hub benchmarks s35932-T200 and 
s38584-T100 possess low SCOAP values than genuine nets. 
Moreover, Trojans designed by DeTest [52] also reduces 
the SCOAP values, which clearly shows that SCOAP fea-
tures alone are also not sufficient to detect Trojans precisely. 
Therefore, we have combined both extracted 29 structural 
and 6 SCOAP features for accurate Trojan detection.

3.2  LGB Model Based Learning

LGB model is an efficient and fastest ensemble model [21] 
which uses effective gradient-based one-side sampling 
(GOSS) and exclusive feature bundling (EFB) to reduce 
computational time, thus provides improved learning and 
accurate detection. Suppose there are N input training sam-
ples, LGB sequentially trains several base learners, i.e., T 
decision trees (DT) in an additive manner using gradient 
descent to minimize the loss (L), i.e., the gradient of L with 
respect to (w.r.t) base learner model is decreasing. The cur-
rent base learner (PT ) is trained on the pseudo-residuals 
obtained by the previous base learner (P(T−1)) and the final 
output is updated as given below:

where � is a learning rate that indicates gradient step size, xN 
is the current input sample, and hT (xN) is a predictor function 
of PT (xN) trained on the previous model residual. The above 
equation shows that final prediction of PT (xN) is the sum-
mation of previous model prediction P(T−1)(xN) and current 
hT (xN) prediction. For each PT , the classic GB model [11] 
enumerates all presorted feature values to compute the infor-
mation gain of all possible splits in T, which is inefficient in 
terms of time and memory. In comparison, XGboost [6] use 
histogram-based splitting, which buckets the feature values 
of samples into several bins and performs splitting using 
these bins. However, it has been pointed out by [21] that gra-
dients denote the degree of error, i.e., samples that possess 
small gradients are trained well and have low training error.

Therefore, to reduce the complexity and fasten the pro-
cess, LGB uses optimized histogram-based splitting by 
applying the concept of GOSS which reduces the search 
space by down-sampling the small gradients samples while 
retaining the untrained large gradients samples which con-
tribute more during tree building. However, to maintain 
the data distribution, it randomly chooses the small gra-
dient samples from the training dataset and follows the 
leaf-wise tree growth approach instead of levelwise. More-
over, EFB bundles the mutually exclusive features, i.e., 
sparse features, into a single bundle to reduce the feature 

(1)PT (xN) = P(T−1)(xN) + �hT (xN)

Table 2  Average fan-ins Values for RS232-T1400 circuit

Net Type fan_in_1 fan_in_2 fan_in_3 fan_in_4 fan_in_5

Genuine net 1.735 2.743 3.823 5.217 6.398
Trojan net 3.53 8.461 13.769 19.46 23.692

Table 3  Average SCOAP Values for RS232-T1400 circuit

Net Type (CC0, CC1) CO (SC0, SC1) SO

Genuine net (13.63, 39.67) 108.27 (1.202, 3.657) 9.488
Trojan net (416, 10.84) 1267.15 (41.15, 1) 125.92
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dimensionality and to speed up the training. During each 
iteration of PT  , the gradients of samples are computed, 
then instead of iterating through all the samples, GOSS 
sort them based on their absolute gradients values and 
selects top l% large gradient samples to make subset C and 
randomly choose s% smaller gradient samples from the 
remaining data to make subset D. Now, the variance gains 
Vagm(o) of splitting mth feature at point o for any fixed tree 
node is computed on samples present in C ∪ D given as:

where gi are the gradients, C
l
= {x

i
�C ∶ x

im
≤ o} , C

r
= {x

i
�C ∶

x
im

> o} , Dl = {xi�D ∶ xim ≤ o}, Dr = {xi𝜖D ∶ xim > o} are 
the left and right child of the node respectively. Coefficient 
(1 − a)

b
 is a constant multiplier that is used to normalize the 

sum of small gradients to balance data distribution. In this 
way, the LGB efficiently reduces the time and memory con-
sumption by effectively removing the small gradients sam-
ples using GOSS and reduces the feature dimensions by 
combining the mutually exclusive features into a single bun-
dle using EFB.

4  Light Gradient Boosting Model Based HT 
Detection Technique

This section explains the new HT detection technique which 
detects the HT nets from IC gate-level netlist followed by a 
proposed HT detection algorithm.

4.1  Attack Model and Problem Statement

To reduce the time and cost, semiconductor firms incorpo-
rate third-party IC’s/ external vendors in the pre-silicon IC 
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designing phase. An untrusted vendor has full access to the 
IC gate-level netlist and may intentionally insert the HT by 
adding the malicious gates. Our work in this paper mainly 
focuses on determining the combinational and sequential 
Trojans inserted by the untrusted vendors in the gate-level 
netlist during IC pre-silicon designing phase. We have 
formulated this HT detection problem as the classifica-
tion problem where our main aim is to classify the nets as 
TI/TF in unknown gatelevel netlist using the LGB model. 
The problem is stated as follows, suppose during train-
ing, we have ′m′ features of known gate-level netlist (train-
ing dataset), consisting of ′p′ TI nets and ′q′ TF nets with 
labels. The proposed technique trained the LGB model on 
optimal feature set obtained by proposed feature selection 
method. Finally, during testing, the feature set of unknown 
gate-level netlist is provided to the trained model which 
predicted the correct classes of nets, i.e., TF/TI present in 
the gate-level netlist.

4.2  Proposed HT Detection Technique

The proposed HT detection technique is shown in Fig. 2 
which utilizes the LGB model and SHAP to detect the HT 
inserted by the attackers in the gate-level netlist during IC 
designing. Initially, the SCOAP and structural features of 
circuits are extracted and stored with labels (More details 
are provided in Section 5.1). Further, a combined sampling 
SMOTE-Tomek Links [2] is used to tackle class imbal-
ance, which first oversamples the minority TI class using 
SMOTE, and then Tomek-links undersample the unneces-
sary/noisy data, thus providing a more balanced training 
dataset. Afterward, the LGB model is trained and SHAP 
feature importance is computed, then the optimal feature 
set is identified using a new feature selection method until 
the best performance is obtained. Finally, the LGB model is 
retrained on the best optimal feature set and provides predic-
tions for unseen test data. The overall technique is presented 
in the following subsections.

Fig. 2  Proposed HT detection 
technique
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4.2.1  LGB Model for HT Detection

The accurate identification of Trojan nets relies on two fac-
tors: the selection of the correct ML model and how its 
hyperparameters are tuned during training according to the 
HT detection problem. Therefore, an efficient LGB model 
is utilized which focused mainly on large gradient sam-
ples during training and combines the mutually exclusive 
features to improve and fasten the learning process. The 
leaf-wise approach grows the asymmetric tree vertically by 
choosing the leaf node with maximum loss (large gradi-
ents) while leaving the other nodes at the same level, thus 
reducing more loss and converging faster. The leafwise tree 
is shown in Fig. 3, it can be seen that the root node splits 
feature out_nearest_pin with threshold 4.5 and after that, 
instead of splitting every node at that level, it only splits left 
child feature node CC0 while leaving the right child node  
as a leaf. Further, it again splits the left child feature CO at 
the next level and grows the tree only one side asymmetri-
cally instead of levelwise. Whereas the positive/negative 
value in the leaf node shows its prediction values which 
shows that the tree is trained on the previous tree residuals.

 We have applied the grid search to identify the correct 
values of LGB model parameters. Grid search is a system-
atic approach that evaluates different combinations of hyper-
parameter values to determine the set of values that leads 
to the highest performance according to a chosen evalua-
tion metric. To conduct the grid search, we defined a range  
of potential values for each LGB model hyperparameter. 
These hyperparameters, such as learning rate, maximum 
depth, and number of estimators, play a crucial role in the 
performance of the model. The grid search algorithm then 
exhaustively evaluated all possible combinations of these 
parameter values. The values that produced the best perfor-
mance are then selected as the final set of hyperparameters 
for the LGB model. This process of fine-tuning the model 

using grid search ensured that the LGB model is properly 
trained to achieve the optimal performance in HT detection. 
By exploring the hyperparameter space and considering all 
provided parameter combinations, the grid search method-
ology enabled us to make data-driven decisions and select 
the most effective parameter values. This rigorous approach 
ensures that the LGB model is fine-tuned to attain the best 
possible performance in HT detection.

We found that the following parameter values provide 
the best performance for HT detection: n_estimators = 5000 
which specifies the number of boosting iterations or the 
number of decision trees to be built, max_depth = 4 which 
controls the maximum depth of each individual decision 
tree in the ensemble, num_leaves=40 determines the maxi-
mum number of leaves (terminal nodes) in each decision 
tree. Further, the regularization (reg_�) is set to 0.5, which 
prevents the model from overfitting. The learning rate (�) 
is set to 0.01, which needs to be set properly because if its 
value is too small, it slows down the process else, it skips 
the global optimum solution. The model training takes place 
with these optimal parameters, and the loss becomes mini-
mized iteratively, which finally provides the robust tree for 
accurate detection.

4.2.2  New Feature Selection Method

Structural and SCOAP features define the essential traits of 
TI/TF nets, but not all the features are equally important and 
contribute to the prediction. Partially relevant, irrelevant, 
and redundant features increase the model training time and 
negatively impact the model performance therefore, it is nec-
essary to remove these features to improve the model predic-
tion. Besides, narrowing down the feature set also increases 
model generalizability, avoids overfitting, and decreases the 
model complexity by making it easier to interpret [41]. The 
feature selection method used in existing techniques either 
partition the feature-set into halves and compute F-score. 
Then discard a single feature from the best set and keep on 
repeating this procedure until the max F-score is obtained 
[16] or compute all the feature subsets by iteratively add-
ing the features and choosing that subset which provides the 
highest accuracy [23]. However, both these methods are time-
consuming because of their partial/complete iterative pro-
cess and dropped out some relevant features due to random 
partition. Besides, the use of model-specific feature impor-
tance (FI) or relevancy method seems to be inconsistent and 
inaccurate because the model-specific methods are based on 
mean decrease impurity (MDI), which compute importance 
based on splitting order that may change the scores of equally 
important features [31]. Whereas the relevancy method ranks 
the feature based on mutual information scores which are 
affected by noise and outliers [20]. Moreover, they computed 
collective global FI of all samples because they view ML Fig. 3  LGB leafwise tree growth
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models as a black box, thus lacking thorough analysis of local 
feature contribution for individual samples w.r.t prediction, 
which is different for each sample. Further, it could not cap-
ture any feature interaction, i.e., which features are interacted 
most and influence the prediction.

Therefore, a model agnostic approach SHAP [30] is 
employed, which uncovers the black-box nature of any ML 
model by explaining its predictions both locally and glob-
ally. It follows a game-theoretic approach that analyzes the 
relationship between the features to identify the influence of 
features on the individual sample. The usefulness of SHAP 
can be explained by the fact that besides providing the global 
FI’s, it also gives insight into the local explanations, i.e., 
what feature values affect the model predictions per sample. 
SHAP possesses the intrinsic ability to understand the model 
and dataset traits completely and explains the prediction for 
any TI/TF instance x by calculating the sum of contributions 
of individual features present in the feature set ( fset ). It is 
an additive feature attribution method that uses the local 
explainability property which expressed the complex predic-
tion model F(x) in terms of simple linear function explana-
tory surrogate model G(z�) as shown:

where m is the number of Trojan features present in fset , z′i 
indicates whether Trojan feature i is present (1) or not (0), �i 
estimates how the feature i contributed in the final prediction 
and �0 indicates the model decision when all the features are 
not considered. SHAP utilizes the concept of Shapley values 
[29], but with an approximation for faster computation of 
�i . It evaluates the importance of feature i by calculating 
the difference between prediction made by model F(x) with 
and without feature i across all possible feature coalitions, 
which is expressed as:

where s ⊆ m is the feature subset. Weighting factor 
|s|!(|m| − |s| − 1)!

m!
 counts the number of permutations of s. 

Prediction difference of two models F(s∪{i})(x(s∪{i})) − Fs(xs) 
represents the marginal contribution of including feature i 
into s. This difference is computed for all possible subsets 

(3)G(z�) = �0 +

m∑

i=1

�iz
�
i

z��(0, 1)m

(4)

𝜙i =
∑

s⊆m�{i}

|s|!(|m| − |s| − 1)!

m!
[F(s∪{i})(x(s∪{i})) − Fs(xs)]

s ⊆ m�{i} . Intuitively, model G can interpret both the local 
and global importance by utilizing the average feature con-
tributions across all data.

Further, a new quartile based feature selection method 
is proposed which identify the optimal feature subset using 
SHAP FI’s. Proposed method identify the importance of each 
feature present in the fset = (f1, f2, .., fk, ...fm) using SHAP and 
then sorted the obtained global FI’s fi = (fi1, fi2..., fik, ...fim) 
in ascending order. Afterwards fi is partitioned into three 
quartiles Q1,Q2 and Q3 as shown in Fig. 4 which repre-
sents the median of the complete fi, first smallest fi′s from 
(fi1 − fi(k−1)) before Q1 and last largest fi′s from (fi(k+1) − fim) 
after Q1 respectively.

Quartiles are chosen because it divides the fi into four 
equal groups, thus providing a clear view of the lower and 
higher FI extremes groups. Moreover, quartiles use the 
median for data division which is robust and less affected by 
the outliers and noise [34]. Since our main aim is to identify 
the optimal feature set ( foptm ), the proposed method focuses 
on the Q2 quartile, which represents the median of the lowest 
FI groups. We chose Q2 as the cut-off point and discarded all 
the features whose fi < Q2 . Now, the model is retrained with 
the newly obtained feature subset ( fs ) and the new accuracy 
( nacc ) and f-measure (nfmeas) is evaluated on validation data-
set (VaD). The obtained nacc and nfmeas is compared with the 
previously evaluated accuracy ( pacc ) and f-measure ( pfmeas ) 
which is initially calculated on fset . If the nacc > pacc and 
nfmeas > pfmeas , then the obtained fs is better than fset . This 
procedure is repeated and stopped when nacc < pacc and 
nfmeas < pfmeas , which implies that previously obtained fs 
is better than the current fs and it becomes the final foptm . 
Finally, the model is again retrained with the previous foptm , 
which detects the HT with the highest accuracy on VaD. 
The proposed method is robust, reliable, and faster than the 
discussed feature selection methods as it does not partition 
the FI randomly and retrains the model only a few times. 
The whole proposed technique is presented in the form of 
an HT detection algorithm discussed in the next subsection.

4.3  Proposed HT Detection Algorithm

 The proposed Algorithm 1 takes the IC dataset D which 
consists of ′N′ samples and ′y′ true labels, number of trees 
(T), k-fold rounds (K) as an input and provides test set accu-
racy TSacc as an output. The LGB model is initialized with 

Fig. 4  Quartile division of 
SHAP global FI
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constant value ′c′ which initially optimize the L. Preproc-
essing is applied on D (discussed in Section 5.1) and it is 
divided into training (TrD) and testing (TeD) datasets. TrD 
is shuffled and divided into K folds and during every fold, 
(K − 1) folds are taken as training set TrDk and bth fold as 
validation VaD datasets and sampling is applied on TrDk to 
obtain balanced training dataset TrD′

k
 . Now, during every 

iteration t, TrD′
k
 is processed by each LGB tree which apply 

EFB and GOSS to minimize L. Now, the validation accu-
racy ( Vacc ) and f-measure ( Vfmeas ) is computed on VaD for 

every fold. Finally, the model is trained and mean valida-
tion accuracy ( MVacc ) and f-measure ( MVfmeas ) is obtained. 
Afterwards, SHAP FI is computed and stored in fi to com-
pute foptm . Besides, MVacc , MVfmeas , fset and fi are assigned to 
pacc , pfmeas , foptm and fioptm . Further, Q2 is computed on fioptm 
and features whose fioptm satisfy the condition are selected 
from foptm and stored in fs and fis . LGB model is retrained 
on obtained fs that compute MVacc and MVfmeas which is 
stored in nacc and nfmeas . If it satisfies the condition given in 
line no 25, then it shows that obtained fs gives better model 
performance than previous foptm . This whole process i.e. line 
number (19 − 26) is repeated and values are updated until 
the condition is false. Now, the previous best feature subset 
foptm is retrieved and LGB model is retrained on it. Finally, 
TSacc is evaluated on TeD.

5  Experimental Results and Analysis

This section presents the experimental setup followed by the 
results and comparative analysis of the proposed technique.

5.1  Dataset Description and Evaluation Measures

Dataset is created using 16 Trust-Hub benchmarks [37] that 
contains combinational/sequential functional Trojans. Fur-
ther, to make the DeTrust benchmarks [53], we perform the 
modification in 10 Trust-Hub benchmarks by inserting the 
one flip-flop at each gate output of the trigger circuit as 
suggested by [35]. Similarly, to show the Trojan designed 
by DeTest [52], we modify the one Trust-Hub benchmark 
s38417 − T100 by inserting the given logic in this circuit. 
Finally, [35] also suggests to make always-on-Trojan by 
removing the trigger part of the Trust-Hub s38417 − T300 
benchmark whose payload is a ring oscillator Trojan. After-
ward, a python script is written to extract the SCOAP and 
structural features, which converts the Verilog netlist of 
these benchmarks into bench format. The converted netlist 
is fed as an input to the structural features python script 
and Testability measurement tool [38] which extracts the 
features from each benchmark. All the extracted features are 
stored, and each net is labeled as 0/1 accordingly to create 
datasets, where 0 indicates TF class & 1 indicates TI class.

Further, preprocessing is applied, which checks for 
duplicate values and identifies the redundant features using 
Kendall’s Tau correlation ( � ) [1]. We found that four fea-
tures out_loop_2, 3, 4, 5 are highly correlated (𝜏 > 0.95) to 
in_loop_2, 3, 4, 5 , so these four out_loop features are dis-
carded. Now, the datasets are divided into training (90%) and 
testing (10%) sets using stratified train-test split and k-fold 
cross-validation (cv) is applied which randomly choose the 
(10%) VaD five times (k = 5) from the (90%) TrD for bet-
ter learning. Further, combined sampling SMOTE-Tomek Algorithm 1  Proposed HT detection algorithm
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Links is applied to balance both the classes. However, to 
avoid over-optimism [4], where similar data patterns coex-
ist in both TrD/VaD, the sampling technique is applied only 
on the remaining (80%) TrD during k-fold cv to prevent the 
occurring of similar data in VaD. Finally, the proposed tech-
nique (preprocessing + sampling + feature selection + LGB 
model) is implemented in python using imblearn [26] and 
scikit learn [33] libraries.

The following evaluation metrics are used to compute the 
performance of the proposed technique, Accuracy = 

(TP+TN)

(TP+FP+TN+FN)
 , represents the correctly predicted TI/TF sam-

ples out of total ones, Precision = TP

(TP+FP)
 shows the correctly 

predicted TI samples out of total predicted TI samples, Recall 
(True positive rate) = TP

(TP+FN)
 / True negative rate (TNR)= 

TN

(TN+FP)
 , gives the percentage of TI/TF samples correctly pre-

dicted as TI/TF. Similarly, False positive rate (FPR)= FP

(TN+FP)

/False negative rate (FNR)= FN

(FN+TP)
 , shows how many TF/TI 

samples are wrongly predicted as TI/TF, and F-measure= 
2×P×R

(P+R)
 is the harmonic mean of precision and recall. Further, 

to identify model bias, we use Receiver operating character-
istics and Area under curve (ROC-AUC) score, which shows 
how good the LGB model is in TI/TF class separation.

5.2  Simulation Results and Analysis

5.2.1  SHAP Global and Local FI Analysis

A thorough SHAP FI analysis has been performed on Trust-
Hub benchmarks, and the LGB model is initially trained 
with all 31 features. The global FI plots of SHAP, RFC, 
and LGB are shown in Fig. 5, where the x and y-axis repre-
sent the mean SHAP/FI values and top 20 features arranged 
in decreasing order of their importance. It can be analyzed 
from the Fig.  5(a), (b) that out_nearest_flipFlop is the  
most influential feature for both SHAP and RFC having 1.75 
and 0.200 FI score respectively, whereas feature CO is most 
important for LGB as shown in Fig. 5(c). Similarly, feature 
SC1 contribute more in SHAP and LGB but not in RFC, 
whereas in_nearest_pin is of medium importance for SHAP 
but contributes little for both RFC and LGB, thus ranked 
least in the plot. This difference in FI occurs because RFC 
and LGB prioritize those features, which either reduces the 
mean decrease in impurity factor or is best for splitting dur-
ing training, whereas SHAP analyzes each feature contribu-
tion during prediction.

These plots show the collective global FI on the whole dataset.
However, more information can be identified using the 

SHAP summary plot shown in Fig. 6. It collectively shows 
how each feature impact on prediction of all samples by 
combining the above FI’s with feature effects, thus provid-
ing a more intrinsic view. The collection of several red and 

blue points shows each sample’s high/low SHAP value w.r.t 
each feature. Where x represents the SHAP values which 
shows the distribution of per feature impact on every sample, 
and the y axis shows the top 20 features. We have observed 
that data points with low out_nearest_flipFlop values (blue) 
fall into the positive SHAP value area, which influences the 
model to predict those points as TI, whereas points that fall 
into negative SHAP area possess high values (red), which 
force the model prediction towards TF class. In contrast, 
points that possess higher values for features CO, CC0, SO, 
and SC0 also have positive SHAP values and influence the 
model to predict TI and vice versa. It can be seen that model 
learning goes well because TI samples possess large SCOAP 
values, whereas mostly data points that are TF falls into the 
left side of the plot. However, some points also possess low 
values of the above SCOAP features but mixed with high-
value points on the right side, which shows those points are 
TI nets having low SCOAP values. Similarly, other features 
impact the data points towards correct prediction, but some 
data points are clustered around zero SHAP values for fea-
tures CC1, in_flipFlop_2, out_flipFlop_1, in_flipFlop_1, 
in_flipFlop_5 and fan_in_1 which shows that these features 
do not have much impact on the model prediction process.

Further, SHAP dependence plots of the top three fea-
tures are shown in Fig. 7 which provides the in-depth local 
details of how pairwise feature interactions impact the pre-
diction of each sample. The x and y-axis show the top three 
features and their SHAP values, whereas it automatically 
chooses the other feature for interaction shown on the right 
side with color ranges from high to low. It can be analyzed 
from Fig. 7(a) that out_nearest_flipFlop mainly interacts 
with fan_in_5, and the data points are dispersed for differ-
ent feature values. Further, fan_in_5 highly interacts with 
out_nearest_flipFlop when its value is minimum, and this 
interaction is significantly reduced when the out_near-
est_flipFlop value increases, which also clarify that nets 
have larger fan-ins and flipflop exist near output may be  
TI. Similarly, data points are shown in Fig.  7(b), (c), 
shows a positive linear relationship, and the corresponding  
features CO & CC0 interacts with fan_in_2 & CO respec-
tively. It can be analyzed that in Fig. 7(b), features CO 
highly interacts with feature fan_in_2 when their values 
are high/medium, which increases the probability to pre-
dict that sample as TI. Similarly, in Fig. 7(c), feature CC0 
mainly interacts with CO when its value is 0 or between 
( 0 − 1000 ), which indicates that some samples having low 
CC0 values or vice versa may be TI.

Finally, SHAP force plots of individual TI and TF sam-
ples are shown in Fig. 8, which identifies how feature val-
ues locally impact individual sample prediction. It visual-
izes SHAP local feature contribution values as forces that 
push the model prediction towards TI /TF class, where 
base value and f(x) are the average and expected SHAP 
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prediction scores, besides the axis, containing feature and 
SHAP values. Higher f(x) value lead the model to predict TI 
and vice-versa. Features represented in red color force the 
model prediction towards higher value i.e. model predict 1 
(TI class) whereas features presented in blue color pushes 
the model prediction towards lower value i.e. model predict 
0 (TF class). The Force plot of the TF sample is shown in 
Fig. 8(a), it can be analyzed that its base value and pre-
dicted SHAP score are nearly 0 and −8.74 , whereas feature 
in_nearest_pin only pushed this sample with higher force 
(red) towards TI class. However, features CC0, CO, SC0, 
SO, out_nearest_fipFlop, and fan_in_5 collectively apply 
lower force (blue) to push this sample towards its expected 
prediction value, i.e., correct TF class. Similarly, Fig. 8(b) 
shows the force plot of the TI sample where in_nearest_pin 
pushed the model prediction towards TF class. However, the 
remaining features pushed this sample towards the TI class 

with a higher force to shift its prediction from base value 
(nearly 0) to its expected value (6.88).

5.2.2  Simulation Results of New Feature Selection Method

To identify foptm of Trust-Hub benchmarks, we utilized 
the obtained SHAP global FI’s (fi), the respective scores 
of all 31 features are shown in Table 4. It can be seen 
that features out_loop_1, in_loop_1,2,3,4 and out_flip-
flop_4 possess zero importance scores, which shows they 
contribute nothing during prediction thus discarded. The 
obtained new MVacc and MVFmeas are 98% , which is greater 
than the previous one, which is 97% and 97.7% . After-
ward, Q2 is computed from the remaining fi scores, and 
those features are discarded whose fi < Q2 in every round 
as shown in Table 5. It can be analyzed that in round 1, 
the obtained Q2 values is 0.052 and the features whose 

Fig. 5  Global FI plots of SHAP, Random Forest and Light GBM on TrustHub benchmarks
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fi >= Q2 are selected, and the improved MVacc and MVFmeas 
after retraining the model with new feature set is 99% and 
97% . Similarly, at round 2 and 3 the respective Q2 values 
are 0.161 & 0.262, and 14 features are selected in round 
2 which achieve 99.48% MVacc and in round 3 only 10 
features are selected with 99.7% MVacc and MVFmeas . Fur-
ther, in fourth round Q2 = 0.402 and only seven features 
are selected which are out_nearest_flipFlop, CO, CC0, 
SO, SC0, out_nearest_pin and fan_in_5 having accuracy 
of 99.9% . However, in the fifth round the five features 
are selected, but MVacc and MVFmeas drop down to 99% 
and 98% , respectively, which eventually stop the process. 
Finally, the foptm is obtained at round 4, and the model is 
again retrained with the seven features present in foptm.

Besides, the comparative results on Trust-Hub bench-
marks are shown in Table 6, it can be seen that [16] selects 
9 features (out_nearest_flipFlop, CO, SO, fan_in_3, CC0, 
SC0, fan_in_5, out_nearest_pin, fan_in_4) in 12 rounds and 
achieved 99.7% MVacc and 95.2% MVFmeas . Whereas [23] 
selects 10 features but took 35 rounds due to its iterative 
process. However, [39] only take six rounds and selects five 
features but provides 96% MVFmeas because it is affected by 
multicollinearity thus throws out some important features. In 

contrast, proposed method select the best foptm amongst oth-
ers in only five rounds and also provides the highest MVacc 
and MVFmeas . Similarly, eight best features (CC0, out_near-
est_flipFlop, SO, CO, SC0, in_nearest_pin, in_flipflop_5, 
fan_in_5) are selected for DeTrust benchmarks.

5.2.3  Simulation Results of Proposed HT Detection Technique

The LGB model is trained on the obtained foptm , the training 
process is shown in Fig. 9, it can be observed that initially, 
the validation loss (0.10) is higher than the training loss 
(0.05) but after every iteration, it decreases continuously 
and become comparable to training loss which indicates 
that model is trained correctly and generalizable on VaD. 
Moreover, we apply early stopping, which stopped the model 
training at iteration 4500 instead of 5000, because the model 
performance on VaD is not improving after this iteration, 
thus preventing the model from overfitting.

In terms of time complexity, the Light GBM (LGB) 
model demonstrates efficient and scalable computation, 
making it suitable for handling larger circuit sizes with-
out compromising performance. Our analysis reveals a 
linear relationship between the circuit size and the time 

Fig. 6  SHAP Summary Plot on 
TrustHub benchmarks
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taken by the LGB model to process and generate results, 
as depicted in Table 7. As the circuit size increases, there 
is a corresponding increase in the processing time. For 
example, the LGB model takes 383,404 microseconds for 
the RS232-T1000 benchmark, while it takes significantly 
more time, 4 s, 26748 microseconds for larger benchmark 
s38584-T300. This linear relationship indicates that the time 

complexity of the LGB model is directly proportional to the 
circuit size. Despite the increase in processing time with 
larger circuit sizes, it is important to note that the LGB 
model still exhibits notably faster execution compared to the 
other models utilized in our study. For instance, when con-
sidering the combined TrustHub dataset, the LGB model 
completed training in only 19  s, while models such as 

Fig. 7  SHAP Dependency plots of top three features (Local Feature interaction) on TrustHub benchmarks

Fig. 8  Local interpretability: SHAP Force Plot of individual TF and TI TrustHub samples
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Random Forest (RFC), XGBoost, Support Vector Machines 
(SVM), and Neural Networks (NN) took 24, 36, 49, and 
60 s, respectively. This efficiency can be attributed to the 
underlying design and algorithmic optimizations employed 
by LGB model, which enable it to handle large datasets and 
complex feature spaces more efficiently.

Afterward, the trained model gives predictions on the 
TeD. Table 8 shows the simulation results of the proposed 
technique on 17 Trust-Hub benchmarks. It can be analyzed 
from the results that the proposed technique provides TPR 
and TNR between ( 98 − 100% ) in 14 Trust-Hub benchmarks 
which indicates that almost all the TI and TF samples are 
detected correctly from these benchmarks. However, pro-
posed technique misclassified some TI samples from RS232-
T1500, s35932-T300 and s15850-T100 benchmarks, thus 
obtain 92.3% , 93.3% & 90.3 TPR respectively. The obtained 
higher FNR rates 7.69% , 6.6% & 9.67% also confirmed this. 
The observed decrease in False Negative Rate (FNR) can 
be attributed to the presence of a smaller number of Trojan 
Inserted (TI) samples in the test dataset compared to Trojan 
Free (TF) samples. As a result, if the majority of the TI 
samples are correctly predicted and only a few TI samples 
are misclassified, it can lead to a higher FNR compared to 
TF. This pattern can be analyzed from the confusion matrix 
(CM) shown in Table 9 for the TrustHub circuits exhibiting 
higher FNR. For instance, in the RS23-T1500 benchmark, 
the CM shows 494 True Negative (TN) samples, 12 True 
Positive (TP) samples, 0 False Positive (FP), and only 1 
False Negative (FN) sample. Here, we can observe that only 
one TI sample is incorrectly predicted as TF. However, since 
there are only 12 TI samples in total, this misclassification 
contributes to a higher FNR.

 Similarly, in the s35932-T300 and s15850-T100 circuits, 
1 TI sample and 3 TI samples, respectively, are misclassi-
fied as TF. Due to the smaller number of TI samples in these 
circuits, the FNR appears relatively higher compared to the 
False Positive Rate (FPR), as TF samples are more numerous, 
resulting in a lower FPR when only a small number of sam-
ples are misclassified. In contrast, if the same small number 
of samples are misclassified as TI, it leads to a higher FNR 
due to the smaller number of TI samples overall. Finally, it 
can be analyzed that the observed variation in FNR com-
pared to FPR in the mentioned circuits can be attributed to 
the differing number of TI and TF samples present in the 
test dataset. The smaller number of TI samples can lead to a 
higher FNR when only a few samples are misclassified, while 
the larger number of TF samples provides a lower FPR when 
only a small number of samples are misclassified.

Table 4  SHAP Global FI Score

Feature names Feature importance

out_nearest_flipFlop 1.8497
CO 1.8442
CC0 1.5836
SO 1.3459
SC0 0.8872
out_nearest_pin 0.7455
fan_in_5 0.4035
in_nearest_pin 0.4021
SC1 0.3315
fan_in_3 0.2773
fan_in_4 0.2475
fan_in_2 0.2384
in_nearest_flipFlop 0.2130
in_flipflop_4 0.1814
CC1 0.1414
in_flipflop_2 0.1331
out_flipflop_1 0.0565
in_flipflop_1 0.0534
in_flipflop_5 0.05277
fan_in_1 0.0293
out_flipflop_2 0.0263
in_loop_5 0.0217
in_flipflop_3 0.0182
out_flipflop_3 0.0063
out_flipflop_5 0.0015
out_loop_1 0.0000
in_loop_4 0.0000
in_loop_2 0.0000
in_loop_1 0.0000
out_flipflop_4 0.0000
in_loop_3 0.0000

Table 5  New Feature Selection Method Results on Trust-Hub benchmarks (%)

Rounds Q2 Discarded features Mean Vacc Mean F-meas

1 0.052 fan_in_1, out_flipflop_2, in_loop_5, in_flipflop_3, out_flipflop_3, 
out_flipflop_5

99 97

2 0.161 CC1, in_flipflop_2, out_flipflop_1 in_flipflop_1, in_flipflop_5 99.48 99.49
3 0.262 fan_in_4, fan_in_2, in_nearest_flipFlop in_flipflop_4 99.7 99.7
4 0.402 in_nearest_pin, SC1, fan_in_3 99.9 99.9
5 0.816 out_nearest_pin, fan_in_5 99 98
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Besides, the obtained ROC-AUC score lies between 
( 95 − 100% ), which represents that model prediction is not 
biased towards the majority TF class. Moreover, there are 
two benchmarks, s35932-T200 and s38584-T100, whose 
Trojans possess low SCOAP values like TF nets which clev-
erly bypassed the SCOAP-based techniques. However, since 
the proposed technique incorporates structural features, it 
achieves 0% FPR/FNR, which means that all the low SCOAP 
TI samples are easily detected along with TF samples.

Further, the ROC curves of both these benchmarks are 
shown in Fig. 10 which plots the performances of the no 
skill model and perfectly skill LGB model against TPR  
and FPR. It can be seen from the Fig. 10(a), (b) that the 
proposed technique approximately detect all TI/TF nets 
from these benchmarks by covering the area of 100% and 
99.98% respectively, which is very high as compared to the 
no skill model which only covers 50% area. Upon analyzing 
the results, we observe that the proposed technique achieves 
excellent performance in terms of recall on TrustHub bench-
marks. In the best-case scenario, it achieves a perfect recall 
rate of 100%, indicating that it successfully identifies all the 
true positive samples. In the worst-case scenario, the recall 
rate is 90%, indicating that it may miss a small portion of the 
true positive samples. On average, the proposed technique 
achieves a recall rate of 98.40% across all the benchmarks, 

which demonstrates its overall effectiveness in detecting 
hardware Trojans.

Further, the average comparative results of 17 Trust-Hub 
benchmarks are shown in Table 10. It can be analyzed from 
the results that structural feature-based technique [25] pro-
vides lower recall (69%) and higher FNR (30.7%) as com-
pared to [16, 46] which shows that the trigger net structural 
features used by them are not good enough to detect TI 
samples from these benchmarks. Though structural-based 
techniques [16, 46] provides comparable performance but 
higher FPR (8.35% & 6.23%) & FNR (11.39% & 12.25%) 
indicates that many TI & TF samples are misclassified, thus 
structural features alone are not sufficient. Similarly, it can 
be observed that there is not much difference between the 
accuracy obtained by SCOAP features-based techniques [24, 
35, 42], which shows that accuracy alone is not a sufficient 
measure to evaluate the performance. However, these tech-
niques almost correctly detect TF samples by providing TNR 
between (96%-98%) but could not identify the TI samples 
accurately. The ROC-AUC score, which lies between (90%-
93%), also indicates that many TI samples are missed.

On the other hand, [23] provides quite good results due to 
the use of both structural and SCOAP features but lacks in 
precision (93%) , recall (96.7%) , f-measure (94.8%) and FNR 
(3.15%) due to lack of best feature set. In contrast, our pro-
posed technique achieves on-an-average accuracy of 99.4% , 
the lowest FPR/FNR of 0.33% , and 1.52% , respectively. 
Further, it covers the 98.76% area and provides the highest 
Recall (98%), TNR (99.4%), and f-measure (98%), which 
shows that mostly TI and TF samples are predicted correctly. 
Finally, the proposed technique provides 16.68%, 12.74%, 

Table 6  Comparative results of new feature selection method on TrustHub 
benchmarks (%)

Techniques Rounds Selected 
Features

Mean Vacc Mean F-meas

Hasegawa et al. 
[16]

12 9 99.7 95.2

Kok et al. [23] 35 10 98 97
Sharma et al. [39] 6 5 97 96
Proposed method 5 7 99.9 99.9

Fig. 9  LGB model training loss with early stopping

Table 7  Training Time of LGB model on different TrustHub circuits

TrustHub Benchmarks Training time

RS232-T1000 383404 microseconds
RS232-T1100 476577 microseconds
RS232-T1200 490951 microseconds
RS232-T1300 439998 microseconds
RS232-T1400 577096 microseconds
RS232-T1500 774231 microseconds
RS232-T1600 839915 microseconds
s15850-T100 1 s, 739366 microseconds
s35932-T100 2 s, 28332 microseconds
s35932-T200 2 s, 192710 microseconds
s35932-T300 2 s, 247536 microseconds
s38417-T100 2 s, 97314 microseconds
s38417-T200 2 s, 49864 microseconds
s38417-T300 2 s, 954530 microseconds
s38584-T100 2 s, 483484 microseconds
s38584-T200 2 s, 453586 microseconds
s38584-T300 4 s, 26748 microseconds
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and 1.7% higher Recall than existing structural, SCOAP, and 
combined features-based techniques.

Further, the average comparative results of techniques 
[39] and [36] with the proposed technique on TrustHub 
benchmarks are presented in Table 11. Upon analysis, it 
can be observed that the proposed technique yields results 
that are quite comparable to our previous work [39]. How-
ever, it is worth noting that the previous technique exhibits 
a higher false positive rate (FPR) due to the class weight-
ing bias towards the minority TI class, leading to the mis-
classification of TF samples as TI. Furthermore, the pre-
vious approach performs well on TrustHub benchmarks 

but struggles to accurately detect Trojans in other bench-
marks, specifically DeTest. This is because these Trojans 
are designed to evade detection by reducing the SCOAP 
values of Trojan nets to 10 percent. Moreover, the previous 
approach lacks model interpretability and fails to provide 
insights into the inner workings of the model. In contrast, 
the proposed technique effectively combines different Trojan 
features to cover a wide range of Trojan types and provides 
model interpretability, thus shedding light on the model’s 
decision-making process. Similarly, when compared to the 
improved COTD technique [36], the proposed technique 
demonstrates higher accuracy of 99.4%, better recall of 

Fig. 10  ROC curves of s35932-T200 and s38584-T100

Table 8  Experimental results of the proposed technique on Trust-Hub benchmarks (%)

Trust-Hub Benchmarks Accuracy Precision Recall (TPR) F-measure ROC-AUC score TNR FPR FNR

RS232-T1000 100 100 100 100 100 100 0 0
RS232-T1100 98 90 100 90 99.09 98.19 1.8 0
RS232-T1200 99.35 98.6 100 99.3 99.38 98.76 1.23 0
RS232-T1300 100 100 100 100 100 100 0 0
RS232-T1400 100 100 100 100 100 100 0 0
RS232-T1500 99.80 100.00 92.31 96.00 96.15 100 0.00 7.69
RS232-T1600 99.3 93.33 100 96.55 99.66 99.33 0.66 0
s35932-T100 99.97 99.94 100 99.97 99.97 99.94 0.054 0
s35932-T200 100 100 100 100 100 100 0 0
s35932-T300 99.84 100 93.3 96.5 96.67 100 0 6.6
s38417-T100 99.96 99.96 99.96 99.95 99.96 99.95 0.042 0.04
s38417-T200 98 98.5 98 98 98 98.59 1.4 1.4
s38417-T300 100 100 100 100 100 100 0 0
s38584-T100 99.98 99.95 100 99.99 99.98 99.94 0.04 0
s38584-T200 97 96 99 97 95.12 95.48 0.045 0.57
s38584-T300 99.97 99.94 100 99.97 99.97 99.94 0.058 0
s15850-T100 98.8 96.55 90.322 93.33 95 99.69 0.3 9.67
Average 99.41 98.39 98.40 98 98.76 99.40 0.33 1.52
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98.3%, and lower FPR of 0.33. These results indicate that the 
proposed technique performs comparatively well in terms of 
detection performance.

The comparative results of the proposed technique and 
the Hardware IP assurance technique [12] are presented in 
Table 12. The evaluation of these results is based on the 
number of false positives (FP) and false negatives (FN). 
Upon analysis, it is evident that the proposed technique out-
performs [12] in terms of both FP and FN. In the RS232-
T1000 benchmark, the proposed technique achieves 0 FP 
and 0 FN, while the [12] results in 4 FPs. Similarly, in the 
RS232-T1100, RS232-T1200, RS232-T1400, and RS232-
T1600 benchmarks, the proposed technique achieves 0 
FN, whereas the [12] exhibits non-zero FN values in these 
respective benchmarks. However, in the s38417-T100 and 
s38417-T200 benchmarks, the proposed technique records 
1 FN, whereas the [12] achieves 0 FN. It is important to note 
that overall, the proposed technique demonstrates superior 
performance compared to [12].

Further, to check the efficacy of the proposed technique, 
we also evaluate the results on 10 DeTrust benchmarks, as 
shown in Table 13. It can be observed that the proposed 
technique obtains accuracy between ( 96 − 100% ) on these 
benchmarks, thus achieving on-an-average 99.21% accuracy 
and lower FPR (0.3%) . The proposed technique detects all 
TI samples from five DeTrust benchmarks by providing 0% 
FNR. In some cases, our proposed technique is unable to cor-
rectly identify certain TI samples from benchmarks RS232-
T1000, T1100, T1500, T1600, and s38417-T200, resulting in 

higher FNR of 16.66%, 12.5%, 11.11%, and 6.25%, respec-
tively. The higher FNR can be attributed to the presence of a 
small number of TI samples compared to TF samples in the 
test dataset. For instance, let’s consider the RS232-T1000 
circuit, which consists of 91 True Negative (TN) samples, 
5 True Positive (TP) samples, 0 False Positive (FP), and 1 
False Negative (FN) sample. In this case, only 1 TI sample 
is incorrectly predicted as TF, resulting in a higher FNR of 
16.66%. This higher FNR is influenced by the smaller num-
ber of TI samples compared to TF samples in the circuit. It 
is worth noting that the presence of a smaller number of TI 
samples can impact the FNR calculation, as misclassifying 
even a few TI samples can result in a higher FNR percentage. 
This is particularly evident when the number of TI samples is 
significantly smaller than the number of TF samples. Finally, 
it has been observed that the larger FNR values observed 
in these specific benchmarks are a result of misclassifying 
a small number of TI samples. The imbalance between the 
number of TI and TF samples in test dataset in these cases 
contributes to the higher FNR percentages.

Furthermore, we have evaluated the performance of 
the proposed technique on DeTest benchmarks, which are 
specifically designed to neutralize the effects of SCOAP 

Table 9  TrustHub circuits with higher FNR

TrustHub circuits CM FNR

RS232-T1500 [494 0] [1 12] 7.69
s35932-T300 [630 0] [1 14] 6.6
s15850-T100 [328 1] [3 28] 9.67

Table 10  Average comparative results of different evaluation measures on Trust-Hub benchmarks (%)

Evaluation measures Structural feature based techniques SCOAP feature based techniques Combined features based 
technique

Kurihara 
et al. [25]

Hasegawa 
et al. [16]

Wang et al. [46] Salmani 
et al. [35]

Kok et al. [24] Tebyanian 
et al. [42]

Kok et al. [23] Proposed 
technique

Accuracy 94.06 90 92.4 97.2 96.6 96.7 97.8 99.4
Precision 81.41 89 74.4 79 84.13 93.5 93 98.3
Recall 69 88.4 87.75 82.93 83.64 90.4 96.7 98.4
F-measure 71.6 88.4 77.60 79 83.09 91.9 94.8 98
ROC-AUC score 81 89.4 90.89 90.7 90.27 93.3 97.8 98.76
TNR 98.8 91.6 93.6 98.8 97.72 96.66 99.3 99.4
FPR 1.13 8.35 6.23 1.15 1.45 3.28 0.31 0.33
FNR 30.7 11.39 12.25 17 16 9.47 3.15 1.52

Table 11  Average comparative results of existing and Proposed Techniques

Evaluation measures Sharma 
et al. [39]

Salmani 
et al. [36]

Proposed 
Technique

Accuracy 99.03 96.92 99.4
Precision 98.27 95.86 98.3
Recall 99.06 98.13 98.4
F-measure 98.48 96.65 98
ROC-AUC score 98.76 96.54 98.76
TNR 98.84 96.52 99.4
FPR 1.152 1.63 0.33
FNR 0.93 1.28 1.52
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features. The results, as shown in Table 14, demonstrate 
the effectiveness of the proposed technique on these bench-
marks. Across the five DeTest benchmarks, the proposed 
technique achieves recall rates ranging from 97% to 100%, 
indicating its ability to detect almost all TI nets present in 
these benchmarks. The FPR and FNR values range from 
0% to 2%, suggesting that only a few TI and TF samples are 
incorrectly predicted. On average, the proposed technique 
achieves an accuracy of 98.77%, covers 98.768% area, and 
provides a recall of 98.838%. These results indicate that the 
structural features utilized in the proposed technique are 
effective in detecting TI nets from DeTest circuits.

Furthermore, it is important to note that structural fea-
tures alone are not capable of identifying always-on Tro-
jans, as these Trojans do not involve triggers. To address 
this limitation, the proposed technique incorporates SCOAP 
features to detect the HT in the s38417-T300 always-on Tro-
jan circuit. By leveraging the SCOAP features, the proposed 
technique achieves a remarkable performance with 100% 
accuracy and 0% FPR and FNR in detecting the HT within 
this specific circuit. This highlights the adaptability of the 
proposed technique in utilizing different types of features to  
effectively detect different types of Trojans.

Furthermore, to further evaluate the efficacy of the pro-
posed technique, we conducted tests on a set of 12 circuit 
benchmarks generated by MIMIC [8, 9], which encompass  
both combinational and sequential Trojans. The results 
obtained in Table 15 demonstrate the strong performance 
of the proposed technique in detecting HTs from these 
benchmarks. The proposed technique achieves impressive 
accuracy rates of 99-100% in most of the tested circuits. 
Notably, it provides 100% recall in five specific circuits, 
namely s953_T0000_C, s953_T0001_C, s953_T0101_S, 
s1196_T0000_C, and s1238_T0000_C. These results  
indicate that the proposed technique is highly effective in 
identifying the presence of HTs within these circuits. How-
ever, it is important to note that the proposed technique 
may exhibit higher FNR in certain circuits, ranging from 
6% to 16%. This fluctuation in FNR primarily occurs due 
to the smaller number of TI samples in the test dataset. In 
such cases, even a misclassification of a small number of 
Trojan samples results in a higher FNR, as the TI samples 
are relatively fewer in number compared to the TF samples. 
It is worth highlighting that despite this variation, the pro-
posed technique consistently demonstrates its capability to 
detect a majority of HTs in the tested circuits, as indicated 
by the high accuracy rates and recall values achieved. These 
findings further validate the effectiveness of the proposed 
technique in accurately detecting HTs from a diverse range 
of circuit benchmarks, including those with different types 
of Trojans and varying characteristics.

Finally, based on the analysis of the obtained results, 
it is evident that the incorporation of multiple features in 
the proposed technique significantly enhances the overall 
detection capability. This amalgamation of features proves 
to be a robust approach, particularly in scenarios where 
existing single feature-based techniques may fall short. 
The combination of features provides a more comprehen-
sive and robust detection capability, enhancing the overall 
accuracy and reliability of the HT detection process. In our 
future work, we recognize the need to continuously adapt 

Table 12  Comparative Results of [12] and Proposed Technique

TrustHub Benchmarks Gaikwad et al. [12] Proposed 
technique

FP FN FP FN

RS232-T1000 4 0 0 0
RS232-T1100 4 1 2 0
RS232-T1200 1 4 2 0
RS232-T1400 6 1 0 0
RS232-T1500 1 1 0 1
RS232-T1600 1 0 1 0
s38417-T100 6 0 1 1
s38417-T200 1 0 1 1

Table 13  Experimental results of the proposed technique on De-Trust benchmarks (%)

De-Trust Benchmarks Accuracy Precision Recall F- measure ROCAUC score TNR FPR FNR

RS232-T1000 98.97 100 83.33 90.90 90.3 100 0 16.66
RS232-T1100 98.99 100 87.5 93.33 92.78 100 0 12.5
RS232-T1200 99.61 94.29 100 97.05 96.84 99.58 0.41 0
RS232-T1300 100 100 100 100 100 100 0 0
RS232-T1400 99.24 87.5 100 93.33 92.93 99.2 0.8 0
RS232-T1500 99.49 100 88.89 94.11 93.85 100 0 11.11
RS232-T1600 99.97 100 83.33 90.90 90.89 100 0 16.66
s35932-T200 100 100 100 100 100 100 0 0
s38417-T100 99.34 98.61 100 99.3 99.38 98.75 1.2 0
s38417-T200 96.54 99.33 93.75 96.46 96.55 99.36 0.63 6.25
average 99.215 97.973 93.68 95.54213 95.35466 99.689 0.304 6.318
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and enhance the proposed technique to address emerging 
challenges in HT detection. This includes incorporating 
more features to identify newly developed Trojans such as 
TAAL [19] and other evolving threats. As attackers con-
tinuously devise novel techniques and insert Trojans in 
different forms with different triggers and payloads, it is 
crucial to expand the capabilities of our technique to effec-
tively detect these new HTs. A particular challenge lies in 
scenarios where Trojans possess triggers situated distant 
from primary inputs or outputs. Our current methodology  
is adept at identifying Trojans in proximity to primary 
input or output. However, the possibility of Trojans design  
with triggers farther afield necessitates further explora-
tion. To address this, we plan to diversify our technique’s  
feature extraction and analysis mechanisms. By doing so, 
we aim to broaden its scope, ensuring a comprehensive  
coverage of Trojans irrespective of trigger location. Moreo-
ver, while our current technique excels at detecting Trojan 
nets within the circuit, a crucial aspect that remains to be 
addressed is the precise localization of these nets. Pinpoint-
ing the exact location of Trojan nets can greatly enhance  
our approach’s efficacy. To achieve this, we intend to incor-
porate advanced techniques that can precisely pinpoint the 
locations of these Trojan-infected nets. By doing so, we 

will not only enhance the transparency of our approach but  
also improve its overall detection capabilities.

Furthermore, we understand the importance of extending 
the proposed technique to detect Trojans inserted in FPGA 
netlists, as suggested by Cruz et al. [10]. This represents a 
valuable direction for future research, considering the preva-
lence of FPGAs in various applications. By adapting and 
extending our technique to handle FPGA netlists, we aim to 
provide a comprehensive solution for HT detection across 
different design domains.

6  Conclusion

This paper proposed a new LGB model-based HT detec-
tion technique for the pre-silicon IC designing phase, 
which utilizes structural and SCOAP features to detect 
Trojan nets from gate-level netlist. Further, a model 
agnostic SHAP is utilized to interpret the model predic-
tions by identifying the global and local feature impact 
on predictions. Moreover, a quartile-based feature selec-
tion method is proposed, which utilizes the SHAP FI 
to identify the optimal feature set in minimum model 
retraining rounds. Besides, combined SMOTE-Tomek 

Table 14  Experimental results of the proposed technique on De-Test benchmarks (%)

De-Test Benchmarks Accuracy Precision Recall (TPR) F- measure ROC-AUC score TNR FPR FNR

RS232-T1200 98.31 99.17 97.56 98.36 98.34 99.12 0.87 2.43
RS232-T1300 100 100 100 100 100 100 0 0
RS232-T1400 98.35 98.42 98.42 98.42 98.35 98.27 1.72 1.57
RS232-T1600 98.5 98.2 98.8 98.49 98.5 98.2 1.79 1.2
s38417-T100 98.72 98.26 99.41 98.83 98.65 97.88 2.11 0.58
Average 98.776 98.81 98.838 98.82 98.768 98.694 1.298 1.156

Table 15  Proposed Technique Results on MIMIC based Trojan benchmarks

New Trojan Benchmarks Accuracy Precision Recall (TPR) F-measure ROC-AUC score TNR FPR FNR

s953_T0000_C 99.2 98.33 100 99.159 99.244 98.49 1.51 0
s953_T0001_C 100 100 100 100 100 100 0 0
s953_T0100_S 99.88 100 92.85 96.29 96.428 100 0 7.142
s953_T0101_S 100 100 100 100 100 100 0 0
s1196_T0000_C 99.56 99.11 100 99.55 99.57 99.15 0.846 0
s1196_T0001_C 99.43 99.56 99.27 99.417 99.429 99.59 0.415 0.726
s1196_T0100_S 99.8 99.7 99.89 99.79 99.8 99.7 0.299 0.1011
s1196_T0101_S 98 98 98 98 98 98.7 1.3 1.4
s1238_T0000_C 100 100 100 100 100 100 0 0
s1238_T0001_C 99.82 100 99.63 99.81 99.81 100 0 0.367
s1238_T0100_S 99.82 96.42 93.103 94.736 96.521 99.94 0.06 6.89
s1238_T0101_S 99.73 99.63 99.81 99.725 99.735 99.65 0.345 0.183
Average 99.603 99.23 98.547 98.874 99.045 99.6 0.398 1.4015
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links sampling is applied, which effectively handles the 
class imbalance by avoiding the limitations that arise in 
weighting and oversampling. Finally, detailed global and 
local feature analysis is carried out using SHAP on Trust-
Hub benchmarks, and feature interactions are captured, 
which impact the LGB prediction the most. Experimental 
analysis shows that the new feature selection method out-
performs the existing methods and identifies the optimal 
features set, which provides the highest performance in 
only five retraining rounds. Moreover, the proposed tech-
nique obtained on-an-average 98.4% recall on Trust-Hub 
benchmarks, which is 16.68% and 12.74% higher than exist-
ing structural/SCOAP features-based techniques. Further, 
the proposed technique achieves 99.21% accuracy on 
DeTrust and effectively detects the Trojans from DeTest 
benchmark, always-on-Trojans and newly developed Tro-
jan benchmarks generated by MIMIC.

Data Availability  The Trust-Hub benchmarks analyzed during this 
study are available at https:// trust- hub. org/. Besides, the Trojans bench-
marks generated by MIMIC are available at https:// cadfo rassu rance. 
org/. Further, the DeTrust & DeTest benchmarks created during the 
current study are available from the corresponding author on reason-
able request.
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