
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:465–485
https://doi.org/10.1007/s10836-023-06080-9

Structural and SCOAP Features Based Approach for Hardware Trojan
Detection Using SHAP and Light Gradient Boosting Model

Richa Sharma1 · G. K. Sharma1 · Manisha Pattanaik1 · V. S. S. Prashant1

Received: 23 March 2023 / Accepted: 16 August 2023 / Published online: 22 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Hardware Trojan (HT) is the most critical threat due to outsourcing of Integrated circuit designing phases. Existing machine
learning-based HT detection techniques at the pre-silicon IC phase use the structural or SCOAP gate-level netlist features
for detection. However, these techniques either fail to detect the always-on-Trojans or low SCOAP Trojans, thus provides
large false positives/negatives. Moreover, they fail to interpret the model prediction locally due to model-specific feature
importances, identify the best feature subset in large retraining rounds, and also drop some relevant features. Therefore, to
tackle these limitations, this paper proposes a new technique that utilizes structural and SCOAP features to detect HT from
the gate-level netlist. The proposed technique utilizes the fastest model Light Gradient Boosting that uses gradient-based
one-side sampling and exclusive feature bundling to reduce the computational time. Further, a model agnostic Shapley addi-
tive explanations (SHAP) is employed to identify each feature global and local impact on model prediction, thus making
the prediction transparent. Moreover, a quartile-based feature selection method is proposed, which uses SHAP to identify
the optimal feature set by keeping low retraining rounds. Experimental results show that the proposed technique accurately
detects always-on-Trojans and HT nets from Trust-Hub, DeTrust, DeTest and MIMIC based Trojan benchmarks.

Keywords Hardware trojan · Structural & SCOAP features · Machine learning · SHAP · Light gradient boosting

1 Introduction

Nowadays, in order to lessen the cost and expedite the pro-
cess, semiconductor firms mostly outsourced Integrated cir-
cuit (IC) supply chain phases to third party houses, which
makes them vulnerable to malicious Hardware Trojan (HT)
intrusion [5]. These external houses got ample chances to
insert HT in these IC phases, e.g., they either manipulate
the lithographic IC masks or modify the functioning of the

gate-level netlist by deliberately inserting the additional gates
in it [43]. An adversary designed the stealthiest Trojan, which
is triggered by the rarest input combinations to perform mali-
cious functions such as denial of service (DoS), sensitive
information leakage, tampering the circuit functionality, etc.
[3]. The presence of HT’s in the IC’s proves to be harm-
ful and life-threatening for various sensitive and real-life
applications such as self-driving vehicles [7], surveillance
systems [47], IoT [50], defense and cyber security systems
[48]. Therefore, to combat this attack, several countermeas-
ures are proposed by the researchers at both pre-silicon and
post-silicon IC phases [27, 44]. However, this paper mainly
focuses on the untrusted pre-silicon IC designing phase,
where an adversary alters the original gate-level netlist by
inserting the HT in it. Conventional verification approaches
such as UCI [17], FANCI [45] etc. flag the suspicious circuits
by performing the formal verification or functional analysis
on the circuits. However, these approaches suffer from low
extensibility, require large computational effort, fail to detect
implicit HTs, threshold dependent thus provide large false
positives/negatives because some Trojans smartly bypass
these verification/functional analysis [27, 40, 53].

Responsible Editor: U. Guin

 * Richa Sharma
 richa@iiitm.ac.in

 G. K. Sharma
 gksharma@iiitm.ac.in

 Manisha Pattanaik
 manishapattanaik@iiitm.ac.in

 V. S. S. Prashant
 vssprashant@gmail.com

1 ABV-Indian Institute of Information Technology
and Management, Gwalior 474015, India

http://orcid.org/0000-0003-4686-777X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06080-9&domain=pdf

466 Journal of Electronic Testing (2023) 39:465–485

1 3

Recently, gate level feature analysis-based approaches
are also reported, which tend to be faster and more accurate
than verification approaches [18, 22]. They mainly extracts
the structural/SCOAP features from gate-level netlist
and develop threshold or machine learning (ML) based
approach to identify the Trojan nets [15, 24, 32]. Hasegawa
et al. [16] extracts the structural features from gate-level
netlist and selects the best feature set to detect HT nets
using a Random forest classifier. Similarly, Salmani [35]
extracts the SCOAP values and applies k-means clustering
to perform detection. However, the use of only structural/
SCOAP features could not identify either the always-on-
Trojans or low SCOAP value Trojans. Therefore, Kok et al.
[24] combines structural and SCOAP features for detection
and train decision tree on feature subset chosen by Maxi-
mum relevance-Minimum redundancy method. However,
the use of model-specific feature importance by [16] gives
inconsistent ranking, whereas the relevancy method used
in [24] is affected by the outliers and sensitive to noise.
Further, they only provide the importance at the global
level and fail to identify the local feature contribution
and feature interaction during prediction [31]. Besides,
to identify the best feature subset, they follow the partial/
full iterative process by either dividing the feature set into
halves repetitively or including every feature iteratively to
compute performance which is time-consuming and may
drop out some relevant features. Moreover, the use of class
weighting/oversampling for class imbalance either makes
the model biased towards minority class or causes overfit-
ting. Besides, ML models used by them are nonresistant
to noise, complex, and time-consuming, which affects the
model training and generalization procedure.

Our previously developed approach [39] utilized
SCOAP features and the XGBoost model for HT detection.
To address class imbalance, we proposed a class weight-
ing scheme which gives higher weights to minority Trojan
inserted class. Additionally, we employed permutation fea-
ture importance to prioritize the features and introduced a
new mean feature selection method to identify the optimal
feature set. One of the main limitations is its reliance on
a limited feature set, which may result in the inability to
detect certain types of HTs, including the newly devel-
oped Trojans such as DeTest. These Trojans can reduce the
SCOAP feature values of Trojan nets to 10%, making them
more challenging to detect. Furthermore, the previous
approach lacks model explainability, as it only provides
global feature importance without detailed insights into
individual features’ contributions. This limitation hampers
our ability to understand the underlying factors influenc-
ing HT detection and may hinder the interpretability of
the results. Additionally, the use of mean in the feature
selection method introduces sensitivity to noise, which can

lead to the exclusion of relevant features and potentially
impact the overall performance of our approach. Moreo-
ver, the class weighting scheme we proposed to address
class imbalance may sometimes become biased towards
the Trojan class, resulting in an increased False Negative
Rate in certain cases. This imbalance can affect the overall
performance and accuracy of our approach.

Therefore, to overcome the above limitations, a new HT
detection technique is proposed in this paper, which utilizes
both structural and SCOAP features to identify the HT nets
from gate-level netlist. The proposed technique employs a
fast and efficient Light Gradient Boosting (LGB) model
which uses gradient-based one side sampling that focuses
on the undertrained samples by selecting the large gradi-
ent samples from the dataset and uses exclusive feature
bundling, which combines mutually exclusive features
into single bundle thus reduces the memory and time con-
sumption. Moreover, it grows the tree leaf-wise by choos-
ing the leaf with a maximum loss instead of level-wise,
thus building the tree faster and can handle the missing
values and overfitting by providing inbuilt support to
ensure correct training. Further, model agnostic Shapley
additive explanations (SHAP) is utilized that provide both
global and local feature contribution for every sample and
capture the interaction between features that helps to ana-
lyze which feature influences the LGB model predictions
most. Besides, a quartile-based feature selection method
is proposed, which identifies the optimal feature set using
SHAP feature importance by minimizing the model retrain-
ing rounds. Further, to avoid the limitations that arise in
oversampling/weighting, a combined sampling SMOTE-
Tomek Links is used, which apply oversampling and then
undersampling to balance classes. Finally, the proposed
technique is scalable because new features can be added
easily whenever new stealthy Trojans are designed. The
major contributions are given as follows:

1. A new LGB model-based HT detection technique is pro-
posed, which utilizes structural and SCOAP gate-level netlist
features during training for fast and accurate detection.

2. Thorough experimental analysis is carried out using
model agnostic SHAP to interpret which features inter-
acted and influenced the LGB model prediction most at
the global and local level.

3. A Quartile-based feature selection method is proposed
that selects the best subset of features using SHAP fea-
ture importance in minimum model retraining rounds.

4. Experimental evaluation on Trust-Hub, DeTrust, DeTest
benchmarks, always-on Trojans and MIMIC based Tro-
jan benchmarks provides on-an-average approximately
99% accuracy, nearly 0% false positive and 2% false
negative rates, respectively.

467Journal of Electronic Testing (2023) 39:465–485

1 3

The rest of the paper is organized as follows: Section 2
gives a literature review analysis of existing gate-level
netlist-based HT detection techniques. Section 3 discussed
HT features, attack model and problem statement. Sec-
tion 4 explains the proposed HT detection technique, which
includes LGB model learning followed by a new feature
selection method and HT detection algorithm. Experimental
results and comparative analysis is presented in Section 5.
Finally, Section 6 concludes the paper.

2 Literature Review: Analysis

Several HT detection techniques have been explored by the
researchers at different IC phases, and a detailed explana-
tion is given in [22, 28]. However, this section contains the
analysis of the existing gate-level netlist feature analysis-
based HT detection techniques. Oya et al. [32] proposed
a score-based technique, in which nine feature templates
are extracted, i.e., weak nets from the gate-level netlist, and
computed the score based on HT structure present in each
feature. Further, a score threshold is chosen to identify the
netlist as Trojan free (TF)/ Trojan inserted (TI). However, it
fails to detect smartly crafted Trojans that do not resemble
any weak net structure. Moreover, setting the correct thresh-
old is a cumbersome task that leads to large false positives
(FP)/ false negatives (FN). Hasegawa et al. [15] extracted the
five gate-level netlist structural features, and class weight-
ing is used that assign higher weights to the minor TI class
to identify the Trojan nets using a support vector machine
(SVM). However, they fail to accurately detect Trojan in sev-
eral benchmarks due to a lack of sufficient features. Besides,
the weighting scheme might get biased towards the TI class,
thus generating larger FP’s.

Further, 51 features are extracted by them in [16]
and feature importance is computed by Random Forest
Classifier (RFC). Besides, the features are divided into
halves iteratively until the best average F-measure is
achieved, and when the best set is obtained, a single fea-
ture is dropped from that set to compute the average (avg)
F-measure again, this process keeps on repeating for each
feature present in the set. Then the whole single feature
drop process is repeated on the new set until no further
improvement is seen and RFC is trained on the best set
for detection. However, model-specific feature importance
provides a ranking based on node splitting criterion, which
is inconsistent and could not identify the feature contribu-
tion locally, thus fail to interpret the model predictions
[31]. Besides, feature selection is time-consuming, and
a random division of feature sets may drop the relevant
features. Further, oversampling replicates the TI samples
multiple times, which tends the model to overfit, thus
fail to identify HT’s in many benchmarks. Furthermore,

the same previous best feature set is utilized by them in
[14], and neural network (NN) is trained for detection.
Since this technique uses the same features, thus provides
small true positives (TP)/ true negatives (TN) in many
benchmarks. Moreover, choosing the best set of neurons
in NN is time-consuming and complex. Wang et al. [46]
extracted the trigger net features and trained two XGBoost
models to detect combinational and sequential Trojans.
However, training two detection models is a tedious task,
and it achieves low detection accuracy and on-an-avg low
true TP/TN. Besides both [14] and [46] uses the similar
weighting scheme as used in [15], which also affects the
detection results. Similarly, Kurihara and Togawa [25]
extracted 25 structural trigger features, combined them
with 11 features, and trained the RFC model to detect HT
but provides lower recall in several benchmarks.

In contrast, Salmani [35] proposed COTD in which
SCOAP features from the circuits are extracted and then
k-means clustering is applied to identify the HT nets. How-
ever, this technique missed out on low SCOAP HT nets or
may predict high SCOAP TF nets as TI. Further, k-means
clustering is highly affected by noise and possess less gen-
eralization capability, which affect the detection rate. Simi-
larly, Xie at al. [49] also applies k-means clustering and
extracts the intercluster distance (one feature) from SCOAP
values and combines it with three other circuit primitive
features to perform the detection using SVM. However,
they randomly assign higher/lower weights to each feature
and fail to locate the HT specifically because the detection
is performed at the circuit level instead of the net level.
Further, oversampling makes the model prone to overfit,
and it incurs a large overhead due to the use of multiple
classifiers. Kok et al. [24], utilizes the SCOAP values of
combinational and sequential circuits as features, and for
class balancing, ADASYN is used which generates the syn-
thetic data for TI class to perform detection using Bagged
trees. However, some of the generated artificial data get
similar to the TF class, which affects the detection rate and
F-measure in several benchmarks.

 Our earlier work [39], use the same SCOAP features as
[24] and a new weighting scheme are used in class weighted
XG Boost classifier, which is trained on optimal feature set
selected by new feature selection method to detect HT nets.
Tebyanian et al. [42] proposed SC-COTD in which they also
use combinational and sequential SCOAP features and apply
k-means clustering with different cluster values. Finally, the
clustering results are fed to the decision-making system,
which identifies the circuits as Trojan-free/inserted based
on the majority voting scheme. Salmani [36] improved the
COTD by performing a multiple rounds of clustering and
post-processing technique is applied to reduce false positives.
Gaikwad et al. [12] propose a trust verification framework
using supervised learning to detect HTs.

468 Journal of Electronic Testing (2023) 39:465–485

1 3

Recently, DeTest [52] defeated SCOAP based techniques
by designing new Trojans, which decreases the SCOAP
values of HT nets up to 10% . Moreover, structural/SCOAP
features-based techniques fail to detect either always-on-
Trojans or low SCOAP HT nets. Kok et al. [23], com-
bines structural and SCOAP features, and the Maximum
relevance-Minimum redundancy method (MRMR) method
is applied for feature ranking. Further, features are included
iteratively, the highest accuracy feature subset is chosen,
and the Decision Tree model is trained for detection. How-
ever, MRMR is sensitive to outliers, and noise [20] which
affect the ranking process, and iterative feature selection
is also time-consuming. Moreover, data generated by
ADASYN also affects the detection accuracy.

3 Background

3.1 Structural & SCOAP HT Features

An adversary can implant different types of HT in the IC
designing phase with varying triggering mechanisms and
payload [3]. The functional Trojans possess trigger circuitry,
which, once activated by certain input conditions, executed
the payload and performed the desired malicious functions

[5]. Besides, there are also exist always-on-Trojans which
does not require any trigger to activate and continuously
execute the malicious functions all time [48]. However, these
HT’s exhibit some common traits through which they can be
detected, e.g., they might be connected to the low switching
activity nets, which are rarely triggered or contain larger fan-
ins [51]. Therefore, we have extracted several structural and
SCOAP features of combinational and sequential circuits
to detect HT nets. Structural features mainly give insight
about the connection that exists among several logic gates,
thus providing information about the HT’s present in the cir-
cuits. We have extracted the common structural features sug-
gested by existing techniques [16, 46] as shown in Table 1.
It has been analyzed that mostly combinational trigger cir-
cuits possess large logic gate fan-ins, thus feature fan_in_x
represents the number of logic gate fan-ins, x level away
from net n, where x ranges from (1 ≤ x ≤ 5). For example,
Table 2 shows the average fan-ins feature values of Trojan
and genuine nets of Trust-Hub benchmark RS232-T1400,
which shows that the Trojan nets possess higher fan-in val-
ues than genuine nets.

Similarly, for sequential triggered nets, the level of flip
flops is small because they are placed closely. Thus, fea-
tures in_flipflop_x/out_flipflop_x and in_nearest_flipFlop/
out_nearest_flipFlop indicates the number of flip-flops, x

Fig. 1 Structural features of gate-level netlist [15, 16]

Table 1 Structural features extracted from gate-level net-list

Structural Trojan Features Explanation(1 <= x <= 5)

fan_in_x Total logic-gate fan-ins, x-logic level away from net n
in_flipFlop_x & out_flipFlop_x Total number of flip-flops, x- logic level away from the input/output

side of the net n
in_nearest_flipFlop & out_nearest_flipFlop Minimum logic level to flip flops from input/output side of net n
in_loop_x & out_loop_x Total number of x-logic level loops, for the input/output side of net n
in_nearest_pin & out_nearest_pin Minimum logic level to the primary input/output from net n

469Journal of Electronic Testing (2023) 39:465–485

1 3

logic level away, and minimum level to flip-flops from input
and output side of net n. Further, Trojan nets may frequently
found close to primary inputs or primary output because
earlier is often used as a Trojan trigger and later used to
propagate malicious output. However, HTs can potentially be
located anywhere within in the circuit, including leveraging
scan-chains for insertion. But, in this paper we aim to detect
the Trojans resides close to primary input or primary output,
therefore, we extract the minimum level to primary input/
output (in_nearest_pin & out_nearest_pin) features from
net n. Besides, sequential HT often contains loops thus, the
feature in_loop_x/out_loop_x tells us the number of x-level
loops from the input and output side of net n. For example,
Fig. 1(a) shows the extracted feature values for target net n up
to level 2, it can be seen that the extracted fan-in feature value
(fan_in_2 = 4). The total number of flip-flops from the input
and output side of target net n, i.e., features in_flipFlop_2
& out_flipFlop_2 are 1. Moreover, the nearest input from
flip-flop A to target net n (in_nearest_flipFlop = 2) and the
nearest output from flip-flop B (out_nearest_flipFlop = 1).
Further, the level of nearest primary input (in_nearest_pin) is
two, and primary output (out_nearest_pin) is one. Similarly,
Fig. 1(b) shows the example of a three-level loop feature in a
circuit, it can be seen that Gate A is directly connected from
net n, and there also exists an input loop (in_loop_3 = 3),
i.e., the Gate A is three-level way from the net n.

However, the extracted 29 structural features alone fail
to detect all the Trojans completely and also could not iden-
tify the always-on-Trojans. Therefore, we also incorporate
SCOAP feature values because HT is mostly inserted at low
switching activity area, thus possess large controllability or
observability values [35]. We have extracted the SCOAP
values of both combinational and sequential circuits, i.e.,
combinational & sequential-0 controllability (CC0, SC0),
combinational & sequential-1 controllability (CC1, SC1),
combinational & sequential observability (CO, SO) using
the SCOAP method [13] to perform detection. Further,
Table 3 shows the average SCOAP feature values of Trojan
and genuine nets of Trust-Hub benchmark RS232-T1400,

which indicates that Trojan nets possess higher controllabil-
ity or observability values than genuine nets.

However, sometimes SCOAP values of Trojan nets also
become low, e.g., Trust-Hub benchmarks s35932-T200 and
s38584-T100 possess low SCOAP values than genuine nets.
Moreover, Trojans designed by DeTest [52] also reduces
the SCOAP values, which clearly shows that SCOAP fea-
tures alone are also not sufficient to detect Trojans precisely.
Therefore, we have combined both extracted 29 structural
and 6 SCOAP features for accurate Trojan detection.

3.2 LGB Model Based Learning

LGB model is an efficient and fastest ensemble model [21]
which uses effective gradient-based one-side sampling
(GOSS) and exclusive feature bundling (EFB) to reduce
computational time, thus provides improved learning and
accurate detection. Suppose there are N input training sam-
ples, LGB sequentially trains several base learners, i.e., T
decision trees (DT) in an additive manner using gradient
descent to minimize the loss (L), i.e., the gradient of L with
respect to (w.r.t) base learner model is decreasing. The cur-
rent base learner (PT) is trained on the pseudo-residuals
obtained by the previous base learner (P(T−1)) and the final
output is updated as given below:

where � is a learning rate that indicates gradient step size, xN
is the current input sample, and hT (xN) is a predictor function
of PT (xN) trained on the previous model residual. The above
equation shows that final prediction of PT (xN) is the sum-
mation of previous model prediction P(T−1)(xN) and current
hT (xN) prediction. For each PT , the classic GB model [11]
enumerates all presorted feature values to compute the infor-
mation gain of all possible splits in T, which is inefficient in
terms of time and memory. In comparison, XGboost [6] use
histogram-based splitting, which buckets the feature values
of samples into several bins and performs splitting using
these bins. However, it has been pointed out by [21] that gra-
dients denote the degree of error, i.e., samples that possess
small gradients are trained well and have low training error.

Therefore, to reduce the complexity and fasten the pro-
cess, LGB uses optimized histogram-based splitting by
applying the concept of GOSS which reduces the search
space by down-sampling the small gradients samples while
retaining the untrained large gradients samples which con-
tribute more during tree building. However, to maintain
the data distribution, it randomly chooses the small gra-
dient samples from the training dataset and follows the
leaf-wise tree growth approach instead of levelwise. More-
over, EFB bundles the mutually exclusive features, i.e.,
sparse features, into a single bundle to reduce the feature

(1)PT (xN) = P(T−1)(xN) + �hT (xN)

Table 2 Average fan-ins Values for RS232-T1400 circuit

Net Type fan_in_1 fan_in_2 fan_in_3 fan_in_4 fan_in_5

Genuine net 1.735 2.743 3.823 5.217 6.398
Trojan net 3.53 8.461 13.769 19.46 23.692

Table 3 Average SCOAP Values for RS232-T1400 circuit

Net Type (CC0, CC1) CO (SC0, SC1) SO

Genuine net (13.63, 39.67) 108.27 (1.202, 3.657) 9.488
Trojan net (416, 10.84) 1267.15 (41.15, 1) 125.92

470 Journal of Electronic Testing (2023) 39:465–485

1 3

dimensionality and to speed up the training. During each
iteration of PT , the gradients of samples are computed,
then instead of iterating through all the samples, GOSS
sort them based on their absolute gradients values and
selects top l% large gradient samples to make subset C and
randomly choose s% smaller gradient samples from the
remaining data to make subset D. Now, the variance gains
Vagm(o) of splitting mth feature at point o for any fixed tree
node is computed on samples present in C ∪ D given as:

where gi are the gradients, C
l
= {x

i
�C ∶ x

im
≤ o} , C

r
= {x

i
�C ∶

x
im

> o} , Dl = {xi�D ∶ xim ≤ o}, Dr = {xi𝜖D ∶ xim > o} are
the left and right child of the node respectively. Coefficient
(1 − a)

b
 is a constant multiplier that is used to normalize the

sum of small gradients to balance data distribution. In this
way, the LGB efficiently reduces the time and memory con-
sumption by effectively removing the small gradients sam-
ples using GOSS and reduces the feature dimensions by
combining the mutually exclusive features into a single bun-
dle using EFB.

4 Light Gradient Boosting Model Based HT
Detection Technique

This section explains the new HT detection technique which
detects the HT nets from IC gate-level netlist followed by a
proposed HT detection algorithm.

4.1 Attack Model and Problem Statement

To reduce the time and cost, semiconductor firms incorpo-
rate third-party IC’s/ external vendors in the pre-silicon IC

(2)
Vagm(o) =

1

N

� (
∑

xi�Cl
gi +

1 − a

b

∑
xi�Dl

gi)
2

Nm
l
(o)

+

(
∑

xi�Cr
gi +

1 − a

b

∑
xi�Dr

gi)
2

Nm
r
(o)

�

designing phase. An untrusted vendor has full access to the
IC gate-level netlist and may intentionally insert the HT by
adding the malicious gates. Our work in this paper mainly
focuses on determining the combinational and sequential
Trojans inserted by the untrusted vendors in the gate-level
netlist during IC pre-silicon designing phase. We have
formulated this HT detection problem as the classifica-
tion problem where our main aim is to classify the nets as
TI/TF in unknown gatelevel netlist using the LGB model.
The problem is stated as follows, suppose during train-
ing, we have ′m′ features of known gate-level netlist (train-
ing dataset), consisting of ′p′ TI nets and ′q′ TF nets with
labels. The proposed technique trained the LGB model on
optimal feature set obtained by proposed feature selection
method. Finally, during testing, the feature set of unknown
gate-level netlist is provided to the trained model which
predicted the correct classes of nets, i.e., TF/TI present in
the gate-level netlist.

4.2 Proposed HT Detection Technique

The proposed HT detection technique is shown in Fig. 2
which utilizes the LGB model and SHAP to detect the HT
inserted by the attackers in the gate-level netlist during IC
designing. Initially, the SCOAP and structural features of
circuits are extracted and stored with labels (More details
are provided in Section 5.1). Further, a combined sampling
SMOTE-Tomek Links [2] is used to tackle class imbal-
ance, which first oversamples the minority TI class using
SMOTE, and then Tomek-links undersample the unneces-
sary/noisy data, thus providing a more balanced training
dataset. Afterward, the LGB model is trained and SHAP
feature importance is computed, then the optimal feature
set is identified using a new feature selection method until
the best performance is obtained. Finally, the LGB model is
retrained on the best optimal feature set and provides predic-
tions for unseen test data. The overall technique is presented
in the following subsections.

Fig. 2 Proposed HT detection
technique

471Journal of Electronic Testing (2023) 39:465–485

1 3

4.2.1 LGB Model for HT Detection

The accurate identification of Trojan nets relies on two fac-
tors: the selection of the correct ML model and how its
hyperparameters are tuned during training according to the
HT detection problem. Therefore, an efficient LGB model
is utilized which focused mainly on large gradient sam-
ples during training and combines the mutually exclusive
features to improve and fasten the learning process. The
leaf-wise approach grows the asymmetric tree vertically by
choosing the leaf node with maximum loss (large gradi-
ents) while leaving the other nodes at the same level, thus
reducing more loss and converging faster. The leafwise tree
is shown in Fig. 3, it can be seen that the root node splits
feature out_nearest_pin with threshold 4.5 and after that,
instead of splitting every node at that level, it only splits left
child feature node CC0 while leaving the right child node
as a leaf. Further, it again splits the left child feature CO at
the next level and grows the tree only one side asymmetri-
cally instead of levelwise. Whereas the positive/negative
value in the leaf node shows its prediction values which
shows that the tree is trained on the previous tree residuals.

 We have applied the grid search to identify the correct
values of LGB model parameters. Grid search is a system-
atic approach that evaluates different combinations of hyper-
parameter values to determine the set of values that leads
to the highest performance according to a chosen evalua-
tion metric. To conduct the grid search, we defined a range
of potential values for each LGB model hyperparameter.
These hyperparameters, such as learning rate, maximum
depth, and number of estimators, play a crucial role in the
performance of the model. The grid search algorithm then
exhaustively evaluated all possible combinations of these
parameter values. The values that produced the best perfor-
mance are then selected as the final set of hyperparameters
for the LGB model. This process of fine-tuning the model

using grid search ensured that the LGB model is properly
trained to achieve the optimal performance in HT detection.
By exploring the hyperparameter space and considering all
provided parameter combinations, the grid search method-
ology enabled us to make data-driven decisions and select
the most effective parameter values. This rigorous approach
ensures that the LGB model is fine-tuned to attain the best
possible performance in HT detection.

We found that the following parameter values provide
the best performance for HT detection: n_estimators = 5000
which specifies the number of boosting iterations or the
number of decision trees to be built, max_depth = 4 which
controls the maximum depth of each individual decision
tree in the ensemble, num_leaves=40 determines the maxi-
mum number of leaves (terminal nodes) in each decision
tree. Further, the regularization (reg_�) is set to 0.5, which
prevents the model from overfitting. The learning rate (�)
is set to 0.01, which needs to be set properly because if its
value is too small, it slows down the process else, it skips
the global optimum solution. The model training takes place
with these optimal parameters, and the loss becomes mini-
mized iteratively, which finally provides the robust tree for
accurate detection.

4.2.2 New Feature Selection Method

Structural and SCOAP features define the essential traits of
TI/TF nets, but not all the features are equally important and
contribute to the prediction. Partially relevant, irrelevant,
and redundant features increase the model training time and
negatively impact the model performance therefore, it is nec-
essary to remove these features to improve the model predic-
tion. Besides, narrowing down the feature set also increases
model generalizability, avoids overfitting, and decreases the
model complexity by making it easier to interpret [41]. The
feature selection method used in existing techniques either
partition the feature-set into halves and compute F-score.
Then discard a single feature from the best set and keep on
repeating this procedure until the max F-score is obtained
[16] or compute all the feature subsets by iteratively add-
ing the features and choosing that subset which provides the
highest accuracy [23]. However, both these methods are time-
consuming because of their partial/complete iterative pro-
cess and dropped out some relevant features due to random
partition. Besides, the use of model-specific feature impor-
tance (FI) or relevancy method seems to be inconsistent and
inaccurate because the model-specific methods are based on
mean decrease impurity (MDI), which compute importance
based on splitting order that may change the scores of equally
important features [31]. Whereas the relevancy method ranks
the feature based on mutual information scores which are
affected by noise and outliers [20]. Moreover, they computed
collective global FI of all samples because they view ML Fig. 3 LGB leafwise tree growth

472 Journal of Electronic Testing (2023) 39:465–485

1 3

models as a black box, thus lacking thorough analysis of local
feature contribution for individual samples w.r.t prediction,
which is different for each sample. Further, it could not cap-
ture any feature interaction, i.e., which features are interacted
most and influence the prediction.

Therefore, a model agnostic approach SHAP [30] is
employed, which uncovers the black-box nature of any ML
model by explaining its predictions both locally and glob-
ally. It follows a game-theoretic approach that analyzes the
relationship between the features to identify the influence of
features on the individual sample. The usefulness of SHAP
can be explained by the fact that besides providing the global
FI’s, it also gives insight into the local explanations, i.e.,
what feature values affect the model predictions per sample.
SHAP possesses the intrinsic ability to understand the model
and dataset traits completely and explains the prediction for
any TI/TF instance x by calculating the sum of contributions
of individual features present in the feature set (fset). It is
an additive feature attribution method that uses the local
explainability property which expressed the complex predic-
tion model F(x) in terms of simple linear function explana-
tory surrogate model G(z�) as shown:

where m is the number of Trojan features present in fset , z′i
indicates whether Trojan feature i is present (1) or not (0), �i
estimates how the feature i contributed in the final prediction
and �0 indicates the model decision when all the features are
not considered. SHAP utilizes the concept of Shapley values
[29], but with an approximation for faster computation of
�i . It evaluates the importance of feature i by calculating
the difference between prediction made by model F(x) with
and without feature i across all possible feature coalitions,
which is expressed as:

where s ⊆ m is the feature subset. Weighting factor
|s|!(|m| − |s| − 1)!

m!
 counts the number of permutations of s.

Prediction difference of two models F(s∪{i})(x(s∪{i})) − Fs(xs)
represents the marginal contribution of including feature i
into s. This difference is computed for all possible subsets

(3)G(z�) = �0 +

m∑

i=1

�iz
�
i

z��(0, 1)m

(4)

𝜙i =
∑

s⊆m�{i}

|s|!(|m| − |s| − 1)!

m!
[F(s∪{i})(x(s∪{i})) − Fs(xs)]

s ⊆ m�{i} . Intuitively, model G can interpret both the local
and global importance by utilizing the average feature con-
tributions across all data.

Further, a new quartile based feature selection method
is proposed which identify the optimal feature subset using
SHAP FI’s. Proposed method identify the importance of each
feature present in the fset = (f1, f2, .., fk, ...fm) using SHAP and
then sorted the obtained global FI’s fi = (fi1, fi2..., fik, ...fim)
in ascending order. Afterwards fi is partitioned into three
quartiles Q1,Q2 and Q3 as shown in Fig. 4 which repre-
sents the median of the complete fi, first smallest fi′s from
(fi1 − fi(k−1)) before Q1 and last largest fi′s from (fi(k+1) − fim)
after Q1 respectively.

Quartiles are chosen because it divides the fi into four
equal groups, thus providing a clear view of the lower and
higher FI extremes groups. Moreover, quartiles use the
median for data division which is robust and less affected by
the outliers and noise [34]. Since our main aim is to identify
the optimal feature set (foptm), the proposed method focuses
on the Q2 quartile, which represents the median of the lowest
FI groups. We chose Q2 as the cut-off point and discarded all
the features whose fi < Q2 . Now, the model is retrained with
the newly obtained feature subset (fs) and the new accuracy
(nacc) and f-measure (nfmeas) is evaluated on validation data-
set (VaD). The obtained nacc and nfmeas is compared with the
previously evaluated accuracy (pacc) and f-measure (pfmeas)
which is initially calculated on fset . If the nacc > pacc and
nfmeas > pfmeas , then the obtained fs is better than fset . This
procedure is repeated and stopped when nacc < pacc and
nfmeas < pfmeas , which implies that previously obtained fs
is better than the current fs and it becomes the final foptm .
Finally, the model is again retrained with the previous foptm ,
which detects the HT with the highest accuracy on VaD.
The proposed method is robust, reliable, and faster than the
discussed feature selection methods as it does not partition
the FI randomly and retrains the model only a few times.
The whole proposed technique is presented in the form of
an HT detection algorithm discussed in the next subsection.

4.3 Proposed HT Detection Algorithm

 The proposed Algorithm 1 takes the IC dataset D which
consists of ′N′ samples and ′y′ true labels, number of trees
(T), k-fold rounds (K) as an input and provides test set accu-
racy TSacc as an output. The LGB model is initialized with

Fig. 4 Quartile division of
SHAP global FI

473Journal of Electronic Testing (2023) 39:465–485

1 3

constant value ′c′ which initially optimize the L. Preproc-
essing is applied on D (discussed in Section 5.1) and it is
divided into training (TrD) and testing (TeD) datasets. TrD
is shuffled and divided into K folds and during every fold,
(K − 1) folds are taken as training set TrDk and bth fold as
validation VaD datasets and sampling is applied on TrDk to
obtain balanced training dataset TrD′

k
 . Now, during every

iteration t, TrD′
k
 is processed by each LGB tree which apply

EFB and GOSS to minimize L. Now, the validation accu-
racy (Vacc) and f-measure (Vfmeas) is computed on VaD for

every fold. Finally, the model is trained and mean valida-
tion accuracy (MVacc) and f-measure (MVfmeas) is obtained.
Afterwards, SHAP FI is computed and stored in fi to com-
pute foptm . Besides, MVacc , MVfmeas , fset and fi are assigned to
pacc , pfmeas , foptm and fioptm . Further, Q2 is computed on fioptm
and features whose fioptm satisfy the condition are selected
from foptm and stored in fs and fis . LGB model is retrained
on obtained fs that compute MVacc and MVfmeas which is
stored in nacc and nfmeas . If it satisfies the condition given in
line no 25, then it shows that obtained fs gives better model
performance than previous foptm . This whole process i.e. line
number (19 − 26) is repeated and values are updated until
the condition is false. Now, the previous best feature subset
foptm is retrieved and LGB model is retrained on it. Finally,
TSacc is evaluated on TeD.

5 Experimental Results and Analysis

This section presents the experimental setup followed by the
results and comparative analysis of the proposed technique.

5.1 Dataset Description and Evaluation Measures

Dataset is created using 16 Trust-Hub benchmarks [37] that
contains combinational/sequential functional Trojans. Fur-
ther, to make the DeTrust benchmarks [53], we perform the
modification in 10 Trust-Hub benchmarks by inserting the
one flip-flop at each gate output of the trigger circuit as
suggested by [35]. Similarly, to show the Trojan designed
by DeTest [52], we modify the one Trust-Hub benchmark
s38417 − T100 by inserting the given logic in this circuit.
Finally, [35] also suggests to make always-on-Trojan by
removing the trigger part of the Trust-Hub s38417 − T300
benchmark whose payload is a ring oscillator Trojan. After-
ward, a python script is written to extract the SCOAP and
structural features, which converts the Verilog netlist of
these benchmarks into bench format. The converted netlist
is fed as an input to the structural features python script
and Testability measurement tool [38] which extracts the
features from each benchmark. All the extracted features are
stored, and each net is labeled as 0/1 accordingly to create
datasets, where 0 indicates TF class & 1 indicates TI class.

Further, preprocessing is applied, which checks for
duplicate values and identifies the redundant features using
Kendall’s Tau correlation (�) [1]. We found that four fea-
tures out_loop_2, 3, 4, 5 are highly correlated (𝜏 > 0.95) to
in_loop_2, 3, 4, 5 , so these four out_loop features are dis-
carded. Now, the datasets are divided into training (90%) and
testing (10%) sets using stratified train-test split and k-fold
cross-validation (cv) is applied which randomly choose the
(10%) VaD five times (k = 5) from the (90%) TrD for bet-
ter learning. Further, combined sampling SMOTE-Tomek Algorithm 1 Proposed HT detection algorithm

474 Journal of Electronic Testing (2023) 39:465–485

1 3

Links is applied to balance both the classes. However, to
avoid over-optimism [4], where similar data patterns coex-
ist in both TrD/VaD, the sampling technique is applied only
on the remaining (80%) TrD during k-fold cv to prevent the
occurring of similar data in VaD. Finally, the proposed tech-
nique (preprocessing + sampling + feature selection + LGB
model) is implemented in python using imblearn [26] and
scikit learn [33] libraries.

The following evaluation metrics are used to compute the
performance of the proposed technique, Accuracy =

(TP+TN)

(TP+FP+TN+FN)
 , represents the correctly predicted TI/TF sam-

ples out of total ones, Precision = TP

(TP+FP)
 shows the correctly

predicted TI samples out of total predicted TI samples, Recall
(True positive rate) = TP

(TP+FN)
 / True negative rate (TNR)=

TN

(TN+FP)
 , gives the percentage of TI/TF samples correctly pre-

dicted as TI/TF. Similarly, False positive rate (FPR)= FP

(TN+FP)

/False negative rate (FNR)= FN

(FN+TP)
 , shows how many TF/TI

samples are wrongly predicted as TI/TF, and F-measure=
2×P×R

(P+R)
 is the harmonic mean of precision and recall. Further,

to identify model bias, we use Receiver operating character-
istics and Area under curve (ROC-AUC) score, which shows
how good the LGB model is in TI/TF class separation.

5.2 Simulation Results and Analysis

5.2.1 SHAP Global and Local FI Analysis

A thorough SHAP FI analysis has been performed on Trust-
Hub benchmarks, and the LGB model is initially trained
with all 31 features. The global FI plots of SHAP, RFC,
and LGB are shown in Fig. 5, where the x and y-axis repre-
sent the mean SHAP/FI values and top 20 features arranged
in decreasing order of their importance. It can be analyzed
from the Fig. 5(a), (b) that out_nearest_flipFlop is the
most influential feature for both SHAP and RFC having 1.75
and 0.200 FI score respectively, whereas feature CO is most
important for LGB as shown in Fig. 5(c). Similarly, feature
SC1 contribute more in SHAP and LGB but not in RFC,
whereas in_nearest_pin is of medium importance for SHAP
but contributes little for both RFC and LGB, thus ranked
least in the plot. This difference in FI occurs because RFC
and LGB prioritize those features, which either reduces the
mean decrease in impurity factor or is best for splitting dur-
ing training, whereas SHAP analyzes each feature contribu-
tion during prediction.

These plots show the collective global FI on the whole dataset.
However, more information can be identified using the

SHAP summary plot shown in Fig. 6. It collectively shows
how each feature impact on prediction of all samples by
combining the above FI’s with feature effects, thus provid-
ing a more intrinsic view. The collection of several red and

blue points shows each sample’s high/low SHAP value w.r.t
each feature. Where x represents the SHAP values which
shows the distribution of per feature impact on every sample,
and the y axis shows the top 20 features. We have observed
that data points with low out_nearest_flipFlop values (blue)
fall into the positive SHAP value area, which influences the
model to predict those points as TI, whereas points that fall
into negative SHAP area possess high values (red), which
force the model prediction towards TF class. In contrast,
points that possess higher values for features CO, CC0, SO,
and SC0 also have positive SHAP values and influence the
model to predict TI and vice versa. It can be seen that model
learning goes well because TI samples possess large SCOAP
values, whereas mostly data points that are TF falls into the
left side of the plot. However, some points also possess low
values of the above SCOAP features but mixed with high-
value points on the right side, which shows those points are
TI nets having low SCOAP values. Similarly, other features
impact the data points towards correct prediction, but some
data points are clustered around zero SHAP values for fea-
tures CC1, in_flipFlop_2, out_flipFlop_1, in_flipFlop_1,
in_flipFlop_5 and fan_in_1 which shows that these features
do not have much impact on the model prediction process.

Further, SHAP dependence plots of the top three fea-
tures are shown in Fig. 7 which provides the in-depth local
details of how pairwise feature interactions impact the pre-
diction of each sample. The x and y-axis show the top three
features and their SHAP values, whereas it automatically
chooses the other feature for interaction shown on the right
side with color ranges from high to low. It can be analyzed
from Fig. 7(a) that out_nearest_flipFlop mainly interacts
with fan_in_5, and the data points are dispersed for differ-
ent feature values. Further, fan_in_5 highly interacts with
out_nearest_flipFlop when its value is minimum, and this
interaction is significantly reduced when the out_near-
est_flipFlop value increases, which also clarify that nets
have larger fan-ins and flipflop exist near output may be
TI. Similarly, data points are shown in Fig. 7(b), (c),
shows a positive linear relationship, and the corresponding
features CO & CC0 interacts with fan_in_2 & CO respec-
tively. It can be analyzed that in Fig. 7(b), features CO
highly interacts with feature fan_in_2 when their values
are high/medium, which increases the probability to pre-
dict that sample as TI. Similarly, in Fig. 7(c), feature CC0
mainly interacts with CO when its value is 0 or between
(0 − 1000), which indicates that some samples having low
CC0 values or vice versa may be TI.

Finally, SHAP force plots of individual TI and TF sam-
ples are shown in Fig. 8, which identifies how feature val-
ues locally impact individual sample prediction. It visual-
izes SHAP local feature contribution values as forces that
push the model prediction towards TI /TF class, where
base value and f(x) are the average and expected SHAP

475Journal of Electronic Testing (2023) 39:465–485

1 3

prediction scores, besides the axis, containing feature and
SHAP values. Higher f(x) value lead the model to predict TI
and vice-versa. Features represented in red color force the
model prediction towards higher value i.e. model predict 1
(TI class) whereas features presented in blue color pushes
the model prediction towards lower value i.e. model predict
0 (TF class). The Force plot of the TF sample is shown in
Fig. 8(a), it can be analyzed that its base value and pre-
dicted SHAP score are nearly 0 and −8.74 , whereas feature
in_nearest_pin only pushed this sample with higher force
(red) towards TI class. However, features CC0, CO, SC0,
SO, out_nearest_fipFlop, and fan_in_5 collectively apply
lower force (blue) to push this sample towards its expected
prediction value, i.e., correct TF class. Similarly, Fig. 8(b)
shows the force plot of the TI sample where in_nearest_pin
pushed the model prediction towards TF class. However, the
remaining features pushed this sample towards the TI class

with a higher force to shift its prediction from base value
(nearly 0) to its expected value (6.88).

5.2.2 Simulation Results of New Feature Selection Method

To identify foptm of Trust-Hub benchmarks, we utilized
the obtained SHAP global FI’s (fi), the respective scores
of all 31 features are shown in Table 4. It can be seen
that features out_loop_1, in_loop_1,2,3,4 and out_flip-
flop_4 possess zero importance scores, which shows they
contribute nothing during prediction thus discarded. The
obtained new MVacc and MVFmeas are 98% , which is greater
than the previous one, which is 97% and 97.7% . After-
ward, Q2 is computed from the remaining fi scores, and
those features are discarded whose fi < Q2 in every round
as shown in Table 5. It can be analyzed that in round 1,
the obtained Q2 values is 0.052 and the features whose

Fig. 5 Global FI plots of SHAP, Random Forest and Light GBM on TrustHub benchmarks

476 Journal of Electronic Testing (2023) 39:465–485

1 3

fi >= Q2 are selected, and the improved MVacc and MVFmeas
after retraining the model with new feature set is 99% and
97% . Similarly, at round 2 and 3 the respective Q2 values
are 0.161 & 0.262, and 14 features are selected in round
2 which achieve 99.48% MVacc and in round 3 only 10
features are selected with 99.7% MVacc and MVFmeas . Fur-
ther, in fourth round Q2 = 0.402 and only seven features
are selected which are out_nearest_flipFlop, CO, CC0,
SO, SC0, out_nearest_pin and fan_in_5 having accuracy
of 99.9% . However, in the fifth round the five features
are selected, but MVacc and MVFmeas drop down to 99%
and 98% , respectively, which eventually stop the process.
Finally, the foptm is obtained at round 4, and the model is
again retrained with the seven features present in foptm.

Besides, the comparative results on Trust-Hub bench-
marks are shown in Table 6, it can be seen that [16] selects
9 features (out_nearest_flipFlop, CO, SO, fan_in_3, CC0,
SC0, fan_in_5, out_nearest_pin, fan_in_4) in 12 rounds and
achieved 99.7% MVacc and 95.2% MVFmeas . Whereas [23]
selects 10 features but took 35 rounds due to its iterative
process. However, [39] only take six rounds and selects five
features but provides 96% MVFmeas because it is affected by
multicollinearity thus throws out some important features. In

contrast, proposed method select the best foptm amongst oth-
ers in only five rounds and also provides the highest MVacc
and MVFmeas . Similarly, eight best features (CC0, out_near-
est_flipFlop, SO, CO, SC0, in_nearest_pin, in_flipflop_5,
fan_in_5) are selected for DeTrust benchmarks.

5.2.3 Simulation Results of Proposed HT Detection Technique

The LGB model is trained on the obtained foptm , the training
process is shown in Fig. 9, it can be observed that initially,
the validation loss (0.10) is higher than the training loss
(0.05) but after every iteration, it decreases continuously
and become comparable to training loss which indicates
that model is trained correctly and generalizable on VaD.
Moreover, we apply early stopping, which stopped the model
training at iteration 4500 instead of 5000, because the model
performance on VaD is not improving after this iteration,
thus preventing the model from overfitting.

In terms of time complexity, the Light GBM (LGB)
model demonstrates efficient and scalable computation,
making it suitable for handling larger circuit sizes with-
out compromising performance. Our analysis reveals a
linear relationship between the circuit size and the time

Fig. 6 SHAP Summary Plot on
TrustHub benchmarks

477Journal of Electronic Testing (2023) 39:465–485

1 3

taken by the LGB model to process and generate results,
as depicted in Table 7. As the circuit size increases, there
is a corresponding increase in the processing time. For
example, the LGB model takes 383,404 microseconds for
the RS232-T1000 benchmark, while it takes significantly
more time, 4 s, 26748 microseconds for larger benchmark
s38584-T300. This linear relationship indicates that the time

complexity of the LGB model is directly proportional to the
circuit size. Despite the increase in processing time with
larger circuit sizes, it is important to note that the LGB
model still exhibits notably faster execution compared to the
other models utilized in our study. For instance, when con-
sidering the combined TrustHub dataset, the LGB model
completed training in only 19 s, while models such as

Fig. 7 SHAP Dependency plots of top three features (Local Feature interaction) on TrustHub benchmarks

Fig. 8 Local interpretability: SHAP Force Plot of individual TF and TI TrustHub samples

478 Journal of Electronic Testing (2023) 39:465–485

1 3

Random Forest (RFC), XGBoost, Support Vector Machines
(SVM), and Neural Networks (NN) took 24, 36, 49, and
60 s, respectively. This efficiency can be attributed to the
underlying design and algorithmic optimizations employed
by LGB model, which enable it to handle large datasets and
complex feature spaces more efficiently.

Afterward, the trained model gives predictions on the
TeD. Table 8 shows the simulation results of the proposed
technique on 17 Trust-Hub benchmarks. It can be analyzed
from the results that the proposed technique provides TPR
and TNR between (98 − 100%) in 14 Trust-Hub benchmarks
which indicates that almost all the TI and TF samples are
detected correctly from these benchmarks. However, pro-
posed technique misclassified some TI samples from RS232-
T1500, s35932-T300 and s15850-T100 benchmarks, thus
obtain 92.3% , 93.3% & 90.3 TPR respectively. The obtained
higher FNR rates 7.69% , 6.6% & 9.67% also confirmed this.
The observed decrease in False Negative Rate (FNR) can
be attributed to the presence of a smaller number of Trojan
Inserted (TI) samples in the test dataset compared to Trojan
Free (TF) samples. As a result, if the majority of the TI
samples are correctly predicted and only a few TI samples
are misclassified, it can lead to a higher FNR compared to
TF. This pattern can be analyzed from the confusion matrix
(CM) shown in Table 9 for the TrustHub circuits exhibiting
higher FNR. For instance, in the RS23-T1500 benchmark,
the CM shows 494 True Negative (TN) samples, 12 True
Positive (TP) samples, 0 False Positive (FP), and only 1
False Negative (FN) sample. Here, we can observe that only
one TI sample is incorrectly predicted as TF. However, since
there are only 12 TI samples in total, this misclassification
contributes to a higher FNR.

 Similarly, in the s35932-T300 and s15850-T100 circuits,
1 TI sample and 3 TI samples, respectively, are misclassi-
fied as TF. Due to the smaller number of TI samples in these
circuits, the FNR appears relatively higher compared to the
False Positive Rate (FPR), as TF samples are more numerous,
resulting in a lower FPR when only a small number of sam-
ples are misclassified. In contrast, if the same small number
of samples are misclassified as TI, it leads to a higher FNR
due to the smaller number of TI samples overall. Finally, it
can be analyzed that the observed variation in FNR com-
pared to FPR in the mentioned circuits can be attributed to
the differing number of TI and TF samples present in the
test dataset. The smaller number of TI samples can lead to a
higher FNR when only a few samples are misclassified, while
the larger number of TF samples provides a lower FPR when
only a small number of samples are misclassified.

Table 4 SHAP Global FI Score

Feature names Feature importance

out_nearest_flipFlop 1.8497
CO 1.8442
CC0 1.5836
SO 1.3459
SC0 0.8872
out_nearest_pin 0.7455
fan_in_5 0.4035
in_nearest_pin 0.4021
SC1 0.3315
fan_in_3 0.2773
fan_in_4 0.2475
fan_in_2 0.2384
in_nearest_flipFlop 0.2130
in_flipflop_4 0.1814
CC1 0.1414
in_flipflop_2 0.1331
out_flipflop_1 0.0565
in_flipflop_1 0.0534
in_flipflop_5 0.05277
fan_in_1 0.0293
out_flipflop_2 0.0263
in_loop_5 0.0217
in_flipflop_3 0.0182
out_flipflop_3 0.0063
out_flipflop_5 0.0015
out_loop_1 0.0000
in_loop_4 0.0000
in_loop_2 0.0000
in_loop_1 0.0000
out_flipflop_4 0.0000
in_loop_3 0.0000

Table 5 New Feature Selection Method Results on Trust-Hub benchmarks (%)

Rounds Q2 Discarded features Mean Vacc Mean F-meas

1 0.052 fan_in_1, out_flipflop_2, in_loop_5, in_flipflop_3, out_flipflop_3,
out_flipflop_5

99 97

2 0.161 CC1, in_flipflop_2, out_flipflop_1 in_flipflop_1, in_flipflop_5 99.48 99.49
3 0.262 fan_in_4, fan_in_2, in_nearest_flipFlop in_flipflop_4 99.7 99.7
4 0.402 in_nearest_pin, SC1, fan_in_3 99.9 99.9
5 0.816 out_nearest_pin, fan_in_5 99 98

479Journal of Electronic Testing (2023) 39:465–485

1 3

Besides, the obtained ROC-AUC score lies between
(95 − 100%), which represents that model prediction is not
biased towards the majority TF class. Moreover, there are
two benchmarks, s35932-T200 and s38584-T100, whose
Trojans possess low SCOAP values like TF nets which clev-
erly bypassed the SCOAP-based techniques. However, since
the proposed technique incorporates structural features, it
achieves 0% FPR/FNR, which means that all the low SCOAP
TI samples are easily detected along with TF samples.

Further, the ROC curves of both these benchmarks are
shown in Fig. 10 which plots the performances of the no
skill model and perfectly skill LGB model against TPR
and FPR. It can be seen from the Fig. 10(a), (b) that the
proposed technique approximately detect all TI/TF nets
from these benchmarks by covering the area of 100% and
99.98% respectively, which is very high as compared to the
no skill model which only covers 50% area. Upon analyzing
the results, we observe that the proposed technique achieves
excellent performance in terms of recall on TrustHub bench-
marks. In the best-case scenario, it achieves a perfect recall
rate of 100%, indicating that it successfully identifies all the
true positive samples. In the worst-case scenario, the recall
rate is 90%, indicating that it may miss a small portion of the
true positive samples. On average, the proposed technique
achieves a recall rate of 98.40% across all the benchmarks,

which demonstrates its overall effectiveness in detecting
hardware Trojans.

Further, the average comparative results of 17 Trust-Hub
benchmarks are shown in Table 10. It can be analyzed from
the results that structural feature-based technique [25] pro-
vides lower recall (69%) and higher FNR (30.7%) as com-
pared to [16, 46] which shows that the trigger net structural
features used by them are not good enough to detect TI
samples from these benchmarks. Though structural-based
techniques [16, 46] provides comparable performance but
higher FPR (8.35% & 6.23%) & FNR (11.39% & 12.25%)
indicates that many TI & TF samples are misclassified, thus
structural features alone are not sufficient. Similarly, it can
be observed that there is not much difference between the
accuracy obtained by SCOAP features-based techniques [24,
35, 42], which shows that accuracy alone is not a sufficient
measure to evaluate the performance. However, these tech-
niques almost correctly detect TF samples by providing TNR
between (96%-98%) but could not identify the TI samples
accurately. The ROC-AUC score, which lies between (90%-
93%), also indicates that many TI samples are missed.

On the other hand, [23] provides quite good results due to
the use of both structural and SCOAP features but lacks in
precision (93%) , recall (96.7%) , f-measure (94.8%) and FNR
(3.15%) due to lack of best feature set. In contrast, our pro-
posed technique achieves on-an-average accuracy of 99.4% ,
the lowest FPR/FNR of 0.33% , and 1.52% , respectively.
Further, it covers the 98.76% area and provides the highest
Recall (98%), TNR (99.4%), and f-measure (98%), which
shows that mostly TI and TF samples are predicted correctly.
Finally, the proposed technique provides 16.68%, 12.74%,

Table 6 Comparative results of new feature selection method on TrustHub
benchmarks (%)

Techniques Rounds Selected
Features

Mean Vacc Mean F-meas

Hasegawa et al.
[16]

12 9 99.7 95.2

Kok et al. [23] 35 10 98 97
Sharma et al. [39] 6 5 97 96
Proposed method 5 7 99.9 99.9

Fig. 9 LGB model training loss with early stopping

Table 7 Training Time of LGB model on different TrustHub circuits

TrustHub Benchmarks Training time

RS232-T1000 383404 microseconds
RS232-T1100 476577 microseconds
RS232-T1200 490951 microseconds
RS232-T1300 439998 microseconds
RS232-T1400 577096 microseconds
RS232-T1500 774231 microseconds
RS232-T1600 839915 microseconds
s15850-T100 1 s, 739366 microseconds
s35932-T100 2 s, 28332 microseconds
s35932-T200 2 s, 192710 microseconds
s35932-T300 2 s, 247536 microseconds
s38417-T100 2 s, 97314 microseconds
s38417-T200 2 s, 49864 microseconds
s38417-T300 2 s, 954530 microseconds
s38584-T100 2 s, 483484 microseconds
s38584-T200 2 s, 453586 microseconds
s38584-T300 4 s, 26748 microseconds

480 Journal of Electronic Testing (2023) 39:465–485

1 3

and 1.7% higher Recall than existing structural, SCOAP, and
combined features-based techniques.

Further, the average comparative results of techniques
[39] and [36] with the proposed technique on TrustHub
benchmarks are presented in Table 11. Upon analysis, it
can be observed that the proposed technique yields results
that are quite comparable to our previous work [39]. How-
ever, it is worth noting that the previous technique exhibits
a higher false positive rate (FPR) due to the class weight-
ing bias towards the minority TI class, leading to the mis-
classification of TF samples as TI. Furthermore, the pre-
vious approach performs well on TrustHub benchmarks

but struggles to accurately detect Trojans in other bench-
marks, specifically DeTest. This is because these Trojans
are designed to evade detection by reducing the SCOAP
values of Trojan nets to 10 percent. Moreover, the previous
approach lacks model interpretability and fails to provide
insights into the inner workings of the model. In contrast,
the proposed technique effectively combines different Trojan
features to cover a wide range of Trojan types and provides
model interpretability, thus shedding light on the model’s
decision-making process. Similarly, when compared to the
improved COTD technique [36], the proposed technique
demonstrates higher accuracy of 99.4%, better recall of

Fig. 10 ROC curves of s35932-T200 and s38584-T100

Table 8 Experimental results of the proposed technique on Trust-Hub benchmarks (%)

Trust-Hub Benchmarks Accuracy Precision Recall (TPR) F-measure ROC-AUC score TNR FPR FNR

RS232-T1000 100 100 100 100 100 100 0 0
RS232-T1100 98 90 100 90 99.09 98.19 1.8 0
RS232-T1200 99.35 98.6 100 99.3 99.38 98.76 1.23 0
RS232-T1300 100 100 100 100 100 100 0 0
RS232-T1400 100 100 100 100 100 100 0 0
RS232-T1500 99.80 100.00 92.31 96.00 96.15 100 0.00 7.69
RS232-T1600 99.3 93.33 100 96.55 99.66 99.33 0.66 0
s35932-T100 99.97 99.94 100 99.97 99.97 99.94 0.054 0
s35932-T200 100 100 100 100 100 100 0 0
s35932-T300 99.84 100 93.3 96.5 96.67 100 0 6.6
s38417-T100 99.96 99.96 99.96 99.95 99.96 99.95 0.042 0.04
s38417-T200 98 98.5 98 98 98 98.59 1.4 1.4
s38417-T300 100 100 100 100 100 100 0 0
s38584-T100 99.98 99.95 100 99.99 99.98 99.94 0.04 0
s38584-T200 97 96 99 97 95.12 95.48 0.045 0.57
s38584-T300 99.97 99.94 100 99.97 99.97 99.94 0.058 0
s15850-T100 98.8 96.55 90.322 93.33 95 99.69 0.3 9.67
Average 99.41 98.39 98.40 98 98.76 99.40 0.33 1.52

481Journal of Electronic Testing (2023) 39:465–485

1 3

98.3%, and lower FPR of 0.33. These results indicate that the
proposed technique performs comparatively well in terms of
detection performance.

The comparative results of the proposed technique and
the Hardware IP assurance technique [12] are presented in
Table 12. The evaluation of these results is based on the
number of false positives (FP) and false negatives (FN).
Upon analysis, it is evident that the proposed technique out-
performs [12] in terms of both FP and FN. In the RS232-
T1000 benchmark, the proposed technique achieves 0 FP
and 0 FN, while the [12] results in 4 FPs. Similarly, in the
RS232-T1100, RS232-T1200, RS232-T1400, and RS232-
T1600 benchmarks, the proposed technique achieves 0
FN, whereas the [12] exhibits non-zero FN values in these
respective benchmarks. However, in the s38417-T100 and
s38417-T200 benchmarks, the proposed technique records
1 FN, whereas the [12] achieves 0 FN. It is important to note
that overall, the proposed technique demonstrates superior
performance compared to [12].

Further, to check the efficacy of the proposed technique,
we also evaluate the results on 10 DeTrust benchmarks, as
shown in Table 13. It can be observed that the proposed
technique obtains accuracy between (96 − 100%) on these
benchmarks, thus achieving on-an-average 99.21% accuracy
and lower FPR (0.3%) . The proposed technique detects all
TI samples from five DeTrust benchmarks by providing 0%
FNR. In some cases, our proposed technique is unable to cor-
rectly identify certain TI samples from benchmarks RS232-
T1000, T1100, T1500, T1600, and s38417-T200, resulting in

higher FNR of 16.66%, 12.5%, 11.11%, and 6.25%, respec-
tively. The higher FNR can be attributed to the presence of a
small number of TI samples compared to TF samples in the
test dataset. For instance, let’s consider the RS232-T1000
circuit, which consists of 91 True Negative (TN) samples,
5 True Positive (TP) samples, 0 False Positive (FP), and 1
False Negative (FN) sample. In this case, only 1 TI sample
is incorrectly predicted as TF, resulting in a higher FNR of
16.66%. This higher FNR is influenced by the smaller num-
ber of TI samples compared to TF samples in the circuit. It
is worth noting that the presence of a smaller number of TI
samples can impact the FNR calculation, as misclassifying
even a few TI samples can result in a higher FNR percentage.
This is particularly evident when the number of TI samples is
significantly smaller than the number of TF samples. Finally,
it has been observed that the larger FNR values observed
in these specific benchmarks are a result of misclassifying
a small number of TI samples. The imbalance between the
number of TI and TF samples in test dataset in these cases
contributes to the higher FNR percentages.

Furthermore, we have evaluated the performance of
the proposed technique on DeTest benchmarks, which are
specifically designed to neutralize the effects of SCOAP

Table 9 TrustHub circuits with higher FNR

TrustHub circuits CM FNR

RS232-T1500 [494 0] [1 12] 7.69
s35932-T300 [630 0] [1 14] 6.6
s15850-T100 [328 1] [3 28] 9.67

Table 10 Average comparative results of different evaluation measures on Trust-Hub benchmarks (%)

Evaluation measures Structural feature based techniques SCOAP feature based techniques Combined features based
technique

Kurihara
et al. [25]

Hasegawa
et al. [16]

Wang et al. [46] Salmani
et al. [35]

Kok et al. [24] Tebyanian
et al. [42]

Kok et al. [23] Proposed
technique

Accuracy 94.06 90 92.4 97.2 96.6 96.7 97.8 99.4
Precision 81.41 89 74.4 79 84.13 93.5 93 98.3
Recall 69 88.4 87.75 82.93 83.64 90.4 96.7 98.4
F-measure 71.6 88.4 77.60 79 83.09 91.9 94.8 98
ROC-AUC score 81 89.4 90.89 90.7 90.27 93.3 97.8 98.76
TNR 98.8 91.6 93.6 98.8 97.72 96.66 99.3 99.4
FPR 1.13 8.35 6.23 1.15 1.45 3.28 0.31 0.33
FNR 30.7 11.39 12.25 17 16 9.47 3.15 1.52

Table 11 Average comparative results of existing and Proposed Techniques

Evaluation measures Sharma
et al. [39]

Salmani
et al. [36]

Proposed
Technique

Accuracy 99.03 96.92 99.4
Precision 98.27 95.86 98.3
Recall 99.06 98.13 98.4
F-measure 98.48 96.65 98
ROC-AUC score 98.76 96.54 98.76
TNR 98.84 96.52 99.4
FPR 1.152 1.63 0.33
FNR 0.93 1.28 1.52

482 Journal of Electronic Testing (2023) 39:465–485

1 3

features. The results, as shown in Table 14, demonstrate
the effectiveness of the proposed technique on these bench-
marks. Across the five DeTest benchmarks, the proposed
technique achieves recall rates ranging from 97% to 100%,
indicating its ability to detect almost all TI nets present in
these benchmarks. The FPR and FNR values range from
0% to 2%, suggesting that only a few TI and TF samples are
incorrectly predicted. On average, the proposed technique
achieves an accuracy of 98.77%, covers 98.768% area, and
provides a recall of 98.838%. These results indicate that the
structural features utilized in the proposed technique are
effective in detecting TI nets from DeTest circuits.

Furthermore, it is important to note that structural fea-
tures alone are not capable of identifying always-on Tro-
jans, as these Trojans do not involve triggers. To address
this limitation, the proposed technique incorporates SCOAP
features to detect the HT in the s38417-T300 always-on Tro-
jan circuit. By leveraging the SCOAP features, the proposed
technique achieves a remarkable performance with 100%
accuracy and 0% FPR and FNR in detecting the HT within
this specific circuit. This highlights the adaptability of the
proposed technique in utilizing different types of features to
effectively detect different types of Trojans.

Furthermore, to further evaluate the efficacy of the pro-
posed technique, we conducted tests on a set of 12 circuit
benchmarks generated by MIMIC [8, 9], which encompass
both combinational and sequential Trojans. The results
obtained in Table 15 demonstrate the strong performance
of the proposed technique in detecting HTs from these
benchmarks. The proposed technique achieves impressive
accuracy rates of 99-100% in most of the tested circuits.
Notably, it provides 100% recall in five specific circuits,
namely s953_T0000_C, s953_T0001_C, s953_T0101_S,
s1196_T0000_C, and s1238_T0000_C. These results
indicate that the proposed technique is highly effective in
identifying the presence of HTs within these circuits. How-
ever, it is important to note that the proposed technique
may exhibit higher FNR in certain circuits, ranging from
6% to 16%. This fluctuation in FNR primarily occurs due
to the smaller number of TI samples in the test dataset. In
such cases, even a misclassification of a small number of
Trojan samples results in a higher FNR, as the TI samples
are relatively fewer in number compared to the TF samples.
It is worth highlighting that despite this variation, the pro-
posed technique consistently demonstrates its capability to
detect a majority of HTs in the tested circuits, as indicated
by the high accuracy rates and recall values achieved. These
findings further validate the effectiveness of the proposed
technique in accurately detecting HTs from a diverse range
of circuit benchmarks, including those with different types
of Trojans and varying characteristics.

Finally, based on the analysis of the obtained results,
it is evident that the incorporation of multiple features in
the proposed technique significantly enhances the overall
detection capability. This amalgamation of features proves
to be a robust approach, particularly in scenarios where
existing single feature-based techniques may fall short.
The combination of features provides a more comprehen-
sive and robust detection capability, enhancing the overall
accuracy and reliability of the HT detection process. In our
future work, we recognize the need to continuously adapt

Table 12 Comparative Results of [12] and Proposed Technique

TrustHub Benchmarks Gaikwad et al. [12] Proposed
technique

FP FN FP FN

RS232-T1000 4 0 0 0
RS232-T1100 4 1 2 0
RS232-T1200 1 4 2 0
RS232-T1400 6 1 0 0
RS232-T1500 1 1 0 1
RS232-T1600 1 0 1 0
s38417-T100 6 0 1 1
s38417-T200 1 0 1 1

Table 13 Experimental results of the proposed technique on De-Trust benchmarks (%)

De-Trust Benchmarks Accuracy Precision Recall F- measure ROCAUC score TNR FPR FNR

RS232-T1000 98.97 100 83.33 90.90 90.3 100 0 16.66
RS232-T1100 98.99 100 87.5 93.33 92.78 100 0 12.5
RS232-T1200 99.61 94.29 100 97.05 96.84 99.58 0.41 0
RS232-T1300 100 100 100 100 100 100 0 0
RS232-T1400 99.24 87.5 100 93.33 92.93 99.2 0.8 0
RS232-T1500 99.49 100 88.89 94.11 93.85 100 0 11.11
RS232-T1600 99.97 100 83.33 90.90 90.89 100 0 16.66
s35932-T200 100 100 100 100 100 100 0 0
s38417-T100 99.34 98.61 100 99.3 99.38 98.75 1.2 0
s38417-T200 96.54 99.33 93.75 96.46 96.55 99.36 0.63 6.25
average 99.215 97.973 93.68 95.54213 95.35466 99.689 0.304 6.318

483Journal of Electronic Testing (2023) 39:465–485

1 3

and enhance the proposed technique to address emerging
challenges in HT detection. This includes incorporating
more features to identify newly developed Trojans such as
TAAL [19] and other evolving threats. As attackers con-
tinuously devise novel techniques and insert Trojans in
different forms with different triggers and payloads, it is
crucial to expand the capabilities of our technique to effec-
tively detect these new HTs. A particular challenge lies in
scenarios where Trojans possess triggers situated distant
from primary inputs or outputs. Our current methodology
is adept at identifying Trojans in proximity to primary
input or output. However, the possibility of Trojans design
with triggers farther afield necessitates further explora-
tion. To address this, we plan to diversify our technique’s
feature extraction and analysis mechanisms. By doing so,
we aim to broaden its scope, ensuring a comprehensive
coverage of Trojans irrespective of trigger location. Moreo-
ver, while our current technique excels at detecting Trojan
nets within the circuit, a crucial aspect that remains to be
addressed is the precise localization of these nets. Pinpoint-
ing the exact location of Trojan nets can greatly enhance
our approach’s efficacy. To achieve this, we intend to incor-
porate advanced techniques that can precisely pinpoint the
locations of these Trojan-infected nets. By doing so, we

will not only enhance the transparency of our approach but
also improve its overall detection capabilities.

Furthermore, we understand the importance of extending
the proposed technique to detect Trojans inserted in FPGA
netlists, as suggested by Cruz et al. [10]. This represents a
valuable direction for future research, considering the preva-
lence of FPGAs in various applications. By adapting and
extending our technique to handle FPGA netlists, we aim to
provide a comprehensive solution for HT detection across
different design domains.

6 Conclusion

This paper proposed a new LGB model-based HT detec-
tion technique for the pre-silicon IC designing phase,
which utilizes structural and SCOAP features to detect
Trojan nets from gate-level netlist. Further, a model
agnostic SHAP is utilized to interpret the model predic-
tions by identifying the global and local feature impact
on predictions. Moreover, a quartile-based feature selec-
tion method is proposed, which utilizes the SHAP FI
to identify the optimal feature set in minimum model
retraining rounds. Besides, combined SMOTE-Tomek

Table 14 Experimental results of the proposed technique on De-Test benchmarks (%)

De-Test Benchmarks Accuracy Precision Recall (TPR) F- measure ROC-AUC score TNR FPR FNR

RS232-T1200 98.31 99.17 97.56 98.36 98.34 99.12 0.87 2.43
RS232-T1300 100 100 100 100 100 100 0 0
RS232-T1400 98.35 98.42 98.42 98.42 98.35 98.27 1.72 1.57
RS232-T1600 98.5 98.2 98.8 98.49 98.5 98.2 1.79 1.2
s38417-T100 98.72 98.26 99.41 98.83 98.65 97.88 2.11 0.58
Average 98.776 98.81 98.838 98.82 98.768 98.694 1.298 1.156

Table 15 Proposed Technique Results on MIMIC based Trojan benchmarks

New Trojan Benchmarks Accuracy Precision Recall (TPR) F-measure ROC-AUC score TNR FPR FNR

s953_T0000_C 99.2 98.33 100 99.159 99.244 98.49 1.51 0
s953_T0001_C 100 100 100 100 100 100 0 0
s953_T0100_S 99.88 100 92.85 96.29 96.428 100 0 7.142
s953_T0101_S 100 100 100 100 100 100 0 0
s1196_T0000_C 99.56 99.11 100 99.55 99.57 99.15 0.846 0
s1196_T0001_C 99.43 99.56 99.27 99.417 99.429 99.59 0.415 0.726
s1196_T0100_S 99.8 99.7 99.89 99.79 99.8 99.7 0.299 0.1011
s1196_T0101_S 98 98 98 98 98 98.7 1.3 1.4
s1238_T0000_C 100 100 100 100 100 100 0 0
s1238_T0001_C 99.82 100 99.63 99.81 99.81 100 0 0.367
s1238_T0100_S 99.82 96.42 93.103 94.736 96.521 99.94 0.06 6.89
s1238_T0101_S 99.73 99.63 99.81 99.725 99.735 99.65 0.345 0.183
Average 99.603 99.23 98.547 98.874 99.045 99.6 0.398 1.4015

484 Journal of Electronic Testing (2023) 39:465–485

1 3

links sampling is applied, which effectively handles the
class imbalance by avoiding the limitations that arise in
weighting and oversampling. Finally, detailed global and
local feature analysis is carried out using SHAP on Trust-
Hub benchmarks, and feature interactions are captured,
which impact the LGB prediction the most. Experimental
analysis shows that the new feature selection method out-
performs the existing methods and identifies the optimal
features set, which provides the highest performance in
only five retraining rounds. Moreover, the proposed tech-
nique obtained on-an-average 98.4% recall on Trust-Hub
benchmarks, which is 16.68% and 12.74% higher than exist-
ing structural/SCOAP features-based techniques. Further,
the proposed technique achieves 99.21% accuracy on
DeTrust and effectively detects the Trojans from DeTest
benchmark, always-on-Trojans and newly developed Tro-
jan benchmarks generated by MIMIC.

Data Availability The Trust-Hub benchmarks analyzed during this
study are available at https:// trust- hub. org/. Besides, the Trojans bench-
marks generated by MIMIC are available at https:// cadfo rassu rance.
org/. Further, the DeTrust & DeTest benchmarks created during the
current study are available from the corresponding author on reason-
able request.

Declarations

Conflict of Interest The authors declare that there is no conflict of in-
terest in relation to this manuscript.

References

 1. Abdi H (2007) The kendall rank correlation coefficient. Encyclo-
pedia of Measurement and Statistics. Sage, Thousand Oaks, CA,
pp 508–510

 2. Batista GE, Bazzan AL, Monard MC et al (2003) Balancing train-
ing data for automated annotation of keywords: A case study. In
WOB, pp. 10–18

 3. Bhunia S, Hsiao MS, Banga M, Narasimhan S (2014) Hardware
trojan attacks: threat analysis and countermeasures. Proc IEEE
102(8):1229–1247

 4. Blagus R, Lusa L (2015) Joint use of over-and under-sampling tech-
niques and cross-validation for the development and assessment of
prediction models. BMC Bioinformatics 16(1):1–10

 5. Chakraborty RS, Narasimhan S, Bhunia S (2009) Hardware trojan:
Threats and emerging solutions. In 2009 IEEE International High
Level Design Validation and Test Workshop. IEEE, pp. 166–171

 6. Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting sys-
tem. In Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 785–794

 7. Clark GW, Doran MV, Andel TR (2017) Cybersecurity issues in
robotics. In 2017 IEEE Conference on Cognitive and Computational
Aspects of Situation Management (CogSIMA). IEEE, pp. 1–5

 8. Cruz J, Gaikwad P, Nair A, Chakraborty P, Bhunia S (2022) A
machine learning based automatic hardware trojan attack space
exploration and benchmarking framework. In 2022 Asian Hard-
ware Oriented Security and Trust Symposium (AsianHOST).
IEEE, pp. 1–6

 9. Cruz J, Gaikwad P, Nair A, Chakraborty P, Bhunia S (2022) Auto-
matic hardware trojan insertion using machine learning. arXiv
preprint arXiv: 2204. 08580

 10. Cruz J, Posada C, Masna NVR, Chakraborty P, Gaikwad P, Bhunia
S (2023) A framework for automated exploration of trojan attack
space in FPGA netlists. IEEE Trans Comput

 11. Friedman JH (2002) Stochastic gradient boosting. Comput Stat
Data Anal 38(4):367–378

 12. Gaikwad P, Cruz J, Chakraborty P, Bhunia S, Hoque T (2023)
Hardware IP assurance against trojan attacks with machine learn-
ing and post-processing. ACM J Emerg Technol Comput Syst

 13. Goldstein LH, Thigpen EL (1980) Scoap: Sandia controllability/
observability analysis program. In Proceedings of the 17th Design
Automation Conference pp. 190–196

 14. Hasegawaa K, Yanagisawa M, Togawa N (2017) Hardware trojans
classification for gate-level netlists using multi-layer neural net-
works. In On-Line Testing and Robust System Design (IOLTS),
2017 IEEE 23rd International Symposium on. IEEE, pp. 227–232

 15. Hasegawa K, Oya M, Yanagisawa M, Togawa N (2016) Hard-
ware trojans classification for gate-level netlists based on machine
learning. In On-Line Testing and Robust System Design (IOLTS),
2016 IEEE 22nd International Symposium on. IEEE, pp. 203–206

 16. Hasegawa K, Yanagisawa M, Togawa N (2017) Trojan-feature
extraction at gate-level netlists and its application to hardware-tro-
jan detection using random forest classifier. In Circuits and Systems
(ISCAS), 2017 IEEE International Symposium on. IEEE, pp. 1–4

 17. Hicks M, Finnicum M, King ST, Martin MM, Smith JM (2010)
Overcoming an untrusted computing base: Detecting and remov-
ing malicious hardware automatically. In Security and Privacy
(SP), 2010 IEEE Symposium on. IEEE, pp. 159–172

 18. Huang Z, Wang Q, Chen Y, Jiang X (2020) A survey on machine
learning against hardware trojan attacks: Recent advances and
challenges. IEEE Access 8:10796–10826

 19. Jain A, Zhou Z, Guin U (2021) Taal: Tampering attack on any key-
based logic locked circuits. ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES) 26(4):1–22

 20. Kalina J, Schlenker A (2015) A robust supervised variable selec-
tion for noisy high-dimensional data. BioMed Res Int 2015

 21. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY
(2017) Lightgbm: A highly efficient gradient boosting decision
tree. Adv Neural Inf Process Syst 30:3146–3154

 22. Khamitkar R, Dube R (2022) A survey on using machine learn-
ing to counter hardware trojan challenges. In ICT with Intelligent
Applications. Springer, pp. 539–547

 23. Kok CH, Ooi CY, Inoue M, Moghbel M, Dass SB, Choo HS, Ismail
N, Hussin FA (2019) Net classification based on testability and netlist
structural features for hardware trojan detection. In 2019 IEEE 28th
Asian Test Symposium (ATS). IEEE, pp. 105–1055

 24. Kok CH, Ooi CY, Moghbel M, Ismail N, Choo HS, Inoue M
(2019) Classification of trojan nets based on scoap values using
supervised learning. In 2019 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, pp. 1–5

 25. Kurihara T, Togawa N (2021) Hardware-trojan classification
based on the structure of trigger circuits utilizing random forests.
In 2021 IEEE 27th International Symposium on On-Line Testing
and Robust System Design (IOLTS). IEEE, pp. 1–4

 26. Lemaître G, Nogueira F, Aridas CK (2017) Imbalanced-learn:
A python toolbox to tackle the curse of imbalanced datasets in
machine learning. J Mach Learn Res 18(1):559–563

 27. Li H, Liu Q, Zhang J (2016) A survey of hardware trojan threat
and defense. Integration 55:426–437

 28. Liakos KG, Georgakilas GK, Moustakidis S, Sklavos N, Plessas FC
(2020) Conventional and machine learning approaches as countermeas-
ures against hardware trojan attacks. Microprocess Microsyst 103295

 29. Lipovetsky S, Conklin M (2001) Analysis of regression in game
theory approach. Appl Stoch Model Bus Ind 17(4):319–330

https://trust-hub.org/
https://cadforassurance.org/
https://cadforassurance.org/
http://arxiv.org/abs/2204.08580

485Journal of Electronic Testing (2023) 39:465–485

1 3

 30. Lundberg SM, Lee SI (2017) A unified approach to interpreting
model predictions. In Proceedings of the 31st international confer-
ence on neural information processing systems, pp. 4768–4777

 31. Man X, Chan EP (2021) The best way to select features? compar-
ing mda, lime, and shap. J Financ Data Sci 3(1):127–139

 32. Oya M, Shi Y, Yanagisawa M, Togawa N (2015) A score-based
classification method for identifying hardware-trojans at gate-level
netlists. In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition. EDA Consortium, pp. 465–470

 33. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al
(2011) Scikit-learn: Machine learning in python. J Mach Learn
Res 12:2825–2830

 34. Qi M, Fu Z, Chen F (2016) Research on a feature selection method
based on median impact value for modeling in thermal power
plants. Appl Therm Eng 94:472–477

 35. Salmani H (2017) Cotd: reference-free hardware trojan detection
and recovery based on controllability and observability in gate-
level netlist. IEEE Trans Inf Forensics Secur 12(2):338–350

 36. Salmani H (2022) The improved cotd technique for hardware tro-
jan detection in gate-level netlist. In Proceedings of the Great
Lakes Symposium on VLSI 2022:449–454

 37. Salmani H, Tehranipoor M, Karri R (2013) On design vulnerabil-
ity analysis and trust benchmarks development. In 2013 IEEE 31st
International Conference on Computer Design (ICCD). IEEE, pp.
471–474

 38. Samimi S (2016) Testability measurement tool
 39. Sharma R, Valivati NK, Sharma G, Pattanaik M (2020) A new

hardware trojan detection technique using class weighted xgboost
classifier. In 2020 24th International Symposium on VLSI Design
and Test (VDAT). IEEE, pp. 1–6

 40. Sturton C, Hicks M, Wagner D, King ST (2011) Defeating uci:
Building stealthy and malicious hardware. In Security and Privacy
(SP), 2011 IEEE Symposium on. IEEE, pp. 64–77

 41. Tang J, Alelyani S, Liu H (2014) Feature selection for classification:
A review. Data Classification: Algorithms and Applications 37

 42. Tebyanian M, Mokhtarpour A, Shafieinejad A (2021) Sc-cotd:
Hardware trojan detection based on sequential/combinational
testability features using ensemble classifier. J Electron Test
37(4):473–487

 43. Tehranipoor M, Koushanfar F (2010) A survey of hardware trojan
taxonomy and detection. IEEE Des Test Comput 27(1):10–25

 44. Venugopalan V, Patterson CD (2018) Surveying the hardware tro-
jan threat landscape for the internet-of-things. Journal of Hard-
ware and Systems Security 2(2):131–141

 45. Waksman A, Suozzo M, Sethumadhavan S (2013) Fanci: iden-
tification of stealthy malicious logic using boolean functional
analysis. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. ACM, pp. 697–708

 46. Wang Y, Han T, Han X, Liu P (2019) Ensemble-learning-based
hardware trojans detection method by detecting the trigger nets.
In 2019 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, pp. 1–5

 47. Wolf M, Serpanos D (2017) Safety and security in cyber-physical
systems and internet-of-things systems. Proc IEEE 106(1):9–20

 48. Xiao K, Forte D, Jin Y, Karri R, Bhunia S, Tehranipoor M (2016)
Hardware trojans: Lessons learned after one decade of research.
ACM Transactions on Design Automation of Electronic Systems
(TODAES) 22(1)6

 49. Xie X, Sun Y, Chen H, Ding Y (2017) Hardware trojans classifica-
tion based on controllability and observability in gate-level netlist.
IEICE Electron Expr 14(18):20170682–20170682

 50. Yang K, Forte D, Tehranipoor MM (2015) Protecting endpoint
devices in iot supply chain. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design. IEEE Press,
pp. 351–356

 51. Yang Y, Ye J, Cao Y, Zhang J, Li X, Li H, Hu Y (2020) Survey:
Hardware trojan detection for netlist. In 2020 IEEE 29th Asian Test
Symposium (ATS). IEEE, pp. 1–6

 52. Zhang N, Lv Z, Zhang Y, Li H, Zhang Y, Huang W (2020) Novel
design of hardware trojan: A generic approach for defeating test-
ability based detection. In 2020 IEEE 19th International Confer-
ence on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom). IEEE, pp. 162–173

 53. Zhang J, Yuan F, Xu Q (2014) Detrust: Defeating hardware trust
verification with stealthy implicitly-triggered hardware trojans. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. ACM, pp. 153–166

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Richa Sharma completed her B.E. in Computer Science & Engineering
from Maharana Pratap College of Technology, Gwalior, India, in 2011 and
completed her MTech. in Computer Science from Banasthali Vidyapith,
Jaipur, India, in 2014. Currently, she is a Ph.D. scholar at ABV-IIITM,
Gwalior. Her area of interest in research is Hardware security, Hardware
Trojan, Machine Learning. She is a student member of IEEE.

G. K. Sharma did his Master’s (Electronics & Communication Engi-
neering) and Ph.D. (Electronics & Computer Engineering) from IIT
Roorkee in 1981 and 1997, respectively. At present, he has been a
Professor at ABV-IIITM, Gwalior, Madhya Pradesh, since July 2000.
Previously, he was Professor and Head, Department of Computer Sci-
ence & Engineering at Thapar University, Punjab, from September
1996 to August 1999. He joined these positions initially on deputa-
tion from Central Electronics Engineering Research Institute (CEERI),
Pilani. Prof. Sharma also worked at the Institute of Microelectronic
Systems, Darmstadt University of Technology, Darmstadt, Germany,
under Indo-FRG Scientific & Technical Cooperation Programme for
a CSIR - KFA bilateral project “Advanced Research in CAD Tools
and VLSI Design”. His research interests include Low-Power VLSI
Design, Network-on-Chip (NoC) Design and Synthesis. Prof. Sharma
is a member of the IEEE and IEEE Computer Society.

Manisha Pattanaik received the Ph.D. degree from the Department of
Electronics and Electrical and communication engineering from IIT
Kharagpur, India, in 2005. She joined the information and communica-
tion technology faculty, ABV-IIITM, Gwalior, Madhya Pradesh, India,
in 2007, where she is currently a professor. She is the author or co-author
of more than 150 research papers in refereed journals and conferences.
Her research interests include Low Power/Low Voltage Electronics,
Nanoscale CMOS Device/Circuits/System Co-Design Characterization,
Design of Low Power Logic and Memory Leakage Power Reduction, and
Ground Bounce Noise Reduction Techniques and reliability aware high
performance energy- efficient embedded computing.

V. S. S. Prashant received the B.E. degree in Electrical Engineering
from Shri Shankaracharya Group of Institutions, Bhilai, India, in 2018
and has completed his M.Tech. in VLSI \& Embedded systems from
ABV-IIITM, Gwalior, India. His area of research interest is VLSI archi-
tecture design, Hardware security. Currently, he is working in Infosys
Ltd., Pune, India, as Digital Specialist Engineer.

	Structural and SCOAP Features Based Approach for Hardware Trojan Detection Using SHAP and Light Gradient Boosting Model
	Abstract
	1 Introduction
	2 Literature Review: Analysis
	3 Background
	3.1 Structural & SCOAP HT Features
	3.2 LGB Model Based Learning

	4 Light Gradient Boosting Model Based HT Detection Technique
	4.1 Attack Model and Problem Statement
	4.2 Proposed HT Detection Technique
	4.2.1 LGB Model for HT Detection
	4.2.2 New Feature Selection Method

	4.3 Proposed HT Detection Algorithm

	5 Experimental Results and Analysis
	5.1 Dataset Description and Evaluation Measures
	5.2 Simulation Results and Analysis
	5.2.1 SHAP Global and Local FI Analysis
	5.2.2 Simulation Results of New Feature Selection Method
	5.2.3 Simulation Results of Proposed HT Detection Technique

	6 Conclusion
	References

