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Abstract
Nowadays, System on Chip (SOC) based devices such as smartphones, tablets, cameras, and others are commonly used. 
The cost of these devices is determined by the expenses associated with their manufacturing and testing. In modern manu-
facturing technology, SOC-based devices have more cores embedded within them. However, testing these numerous cores 
thoroughly can be quite expensive and can sometimes cost more than the manufacturing itself. To make these devices more 
affordable for people from economically weaker backgrounds, it is necessary to come up with an efficient testing strategy 
that can help reduce the costs. In this study, we introduce a new method of testing the SOC incompletely instead of testing it 
thoroughly. This method involves compromising on the test quality, which may result in errors in the output. Incomplete test-
ing is performed only for those cores of the SOC that can tolerate such errors. For example, incomplete testing is performed 
for the cores that are responsible for multimedia applications such as image or video display, where a slight compromise in 
the quality can be tolerated by human eyes. This incomplete testing helps to reduce the Test Power Consumption (TP), Test 
Access Time (TAT), and Test Data Volume (TDV) while compromising with the Fault Coverage (FC).

Keywords  SOC · Power aware testing · Test data volume · Test access time · Fault coverage · TAM

1  Introduction

The SOC is widely utilized in various products, including 
smart phones, tablets, and digital cameras. These products 
undergo rigorous testing to meet customers’ demands for 
affordability and versatility. Due to SOCs, digital devices 
now have the capability to perform a wide range of tasks, 
such as paying bills, booking tickets, and taking photos and 
videos. In order to afford these devices, some low-income 
customers may compromise on certain aspects, such as 

accepting lower screen resolutions or sacrificing multimedia 
applications. Additionally, the fast-paced nature of today’s 
world means that new models are frequently introduced, 
leading customers to replace their devices frequently. Con-
sequently, most customers do not require devices that are 
durable for long periods; rather, they prioritize economic 
devices. Testing plays a critical role in achieving cost-
effectiveness. As the number of applications in a product 
increases, more cores are added to the SOC, which can affect 
other factors such as TDV, TAT, and TP. An efficient testing 
method can help reduce the overall cost of a product.

To recede TDV, TAT and TP various compression 
techniques are proposed. The most popular methods for 
reducing TDV are compression and compaction. In various 
research papers, compression techniques have been proposed, 
such as Golomb codes-based test vector compression and 
decompression mechanism in [5, 9], and [7] to encode 
precomputed test vectors for cores in the SOC. Run-length 
encoding-based compression for test resource partitioning 
has been proposed in [8] to reduce TDV, TP, and TAT. The 
use of Huffman coding techniques for compression has 
also been discussed in [20] and [27]. Compression-based 
techniques aim to minimize the area overhead introduced 
by coder and decoder circuits. Similarly, the selective 
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Huffman coding and complementary Huffman coding-
based compression method has been discussed in [41]. 
Compaction techniques, such as test vector reordering and 
don’t care bit filling, have also been found effective for 
reducing TDV. For instance, in [25], test vector reordering 
has been used to increase fault coverage and minimize the 
number of test vectors needed to cover all the faults. Don’t 
care bit filling has also been found effective for reducing 
TDV, as shown in [30] and [29], where X compactor has 
been introduced. Some methods have also used compression 
and compaction techniques simultaneously to reduce TDV, 
such as run-length coding and hamming-based test vector 
reordering implemented in [28]. In [2], a hybrid technique 
has been introduced, which uses a block-matching algorithm 
to rearrange test vector blocks in subsequent test patterns 
to separate low-frequency and high-frequency data sets of 
test vectors. Other compression and compaction techniques 
have also been proposed in [24, 40], and [1]. All of these 
well-known compression and compaction techniques greatly 
reduce test data volume, but require a decompresser on a 
chip which adds area overhead. With the increasing size of 
SOC, the size of TDV also increases, resulting in a higher 
probability of bit flipping and power consumption. Several 
methods have been proposed to reduce TP, such as assigning 
binary values to don’t care bits and compressing test data 
using Golomb code [6], filling don’t care bits and using run 
length coding compression [36], predicting the impact of 
filling don’t care bits on capture power [23], and enhancing 
the correlation between successive test vectors to reduce 
power profiles [33]. The large size of test vector sets due to 
the increasing number of cores in SOC makes storing and 
transporting test vector data a challenge, which impacts TAT 
and TP. As a result, storage of TDV, area overhead, software 
program storage, large TAT, and large TP are the main testing 
challenges nowadays. Several approaches have been utilized 
to overcome challenges posed by large TDV, TAT, and TP. 
These approaches have employed heuristic techniques, 
such as those put forth in [11, 17], and [16]. A potential 
solution using Genetic algorithms (GA) is presented in [11] 
for managing test scheduling and test access mechanism 
partition in SOCs. In [17], a GA-based strategy is proposed 
for jointly optimizing test scheduling and wrapper design 
while adhering to power constraints for core-based SOCs. 
Finally, method in [16] suggests a GA-based methodology for 
modular testing of hierarchical SOCs that comprise of earlier 
generation SOCs as embedded mega cores. To improve TDV, 
TAT and TP, designers have used various methods, including 
approximate computing techniques. These techniques relax 
the requirement for exact computation and instead aim for 
acceptable levels of accuracy. This results in significant 
improvements in TAT and TP performance without a 
significant increase in cost [26]. For example, the Approx-
Multiply-Accumulate(MAC) unit is an approximate circuit 

proposed in [13] that utilizes the concept of approximate 
computing. It uses an approximate hybrid redundant adder 
to perform internal multiplication and addition operations, 
which reduces hardware size and TP with a slight tradeoff 
in computation error. In another method, a MAC arithmetic 
architecture, introduced in  [32], reduces the number of 
intermediate partial components generated during arithmetic 
operations by a factor of 2, resulting in improved speed and 
reduced hardware cost. These methods, as explained in [13] 
and [32], are based on the idea that certain systems can 
tolerate output errors to some extent, and exploiting this 
can lead to significant benefits in terms of reduced hardware 
area and TP. Conventional methods to test digital circuits are 
given in [39]. Another approximate aware testing method is 
proposed for approximate circuits in [10], which involves 
a fault classification algorithm that categorizes faults into 
two groups: approximation-redundant faults and non-
approximation faults. This method has some limitations 
because Automatic Test Pattern Generation(ATPG) tools 
prioritize the shortest propagation paths of faults to the 
primary outputs, which may result in incorrect classification 
of non-approximation faults that propagate to multiple 
primary outputs as approximation-redundant faults. To 
address this limitation, another ATPG methodology for 
approximate circuits is introduced in [15]. This methodology 
is based on boolean satisfiability and takes into account the 
quality of the output as well as the difference between non-
approximation faults and approximation-redundant faults. 
The utilization of approximate testing is beneficial in various 
fault-tolerant applications such as audio, video, graphics, 
and wireless communications, as mentioned in [37]. In [12], 
a case study is presented where a mobile device receives 
streaming H.264 video over a WCDMA wireless channel. 
The video compression algorithms take advantage of the 
temporal correlation of image sequences and assume that 
adjacent pictures have small differences, allowing many parts 
of the current frame to be borrowed from previously decoded 
frames stored in the decoded picture buffer (DPB). However, 
the DPB requires a large memory space and can dominate 
the SOC design of H.264. To reduce TP, H.264 uses spatial 
redundancy and allows some errors to occur at the chip level. 
Another example is a wireless communication application 
discussed in [14]. In this application, data is received and 
digitized, then presented to the baseband digital modem, 
which estimates the transmitted stream and presents it to 
the decoding section. Channel decoders correct errors and 
generate an error-free stream depending on the application. 
Redundancy is inherent to data stream communication in 
wireless communication, and data buffering memories 
within an SOC must be error-tolerant as the data stored in 
them will eventually be processed by the channel decoder. 
These data buffering memories constitute the majority of 
the memory in wireless applications. Multi-Level Cells 
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STT-RAM [35], neural networks [38], and convolutional 
neural networks [31] are some of the other applications 
suitable for approximate testing at both the circuit and system 
levels. The utilization of approximate circuits can accelerate 
computation and enhance testing metrics. However, 
designing such circuits is a demanding, intricate, and time-
consuming task that necessitates a thorough comprehension 
of the circuit. Furthermore, testing these circuits is complex 
because specialized techniques are required to verify that the 
outcomes meet the requirements of the intended application.

In this paper, we propose a testing method that tests 
the SOC incompletely and tolerates errors in output with-
out modifying the circuit’s behavior, unlike approximate 
circuits. This testing method demonstrates a significant 
improvement in testing parameters, such as TDV, TAT, and 
TP, with only a minor compromise in the quality of test-
ing. Section 2 describes the problem statement, while sec-
tion 3 outlines the proposed method. Sections 4, 5, and 6 
demonstrate the impact of incomplete testing on FC, TDV, 
TAT, and TP. Section 8 presents the experimental results, 
section 9 provides the conclusion, and section 10 explores 
future work.

2 � Problem Formulation

Given a SOC, generate reduced test vectors set for incom-
plete testing of SOC to reduced TDV, TAT, TP and maximize 
the fault coverage.

3 � Proposed Method

To understand our proposed method we first focus on Fig. 1 
which is nothing but the multiplication of two 3-bit binary 
numbers. Figure 1 displays two 3-bit binary numbers, A2, 
A1, A0 and B2, B1, B0, where A0 and B0 are the Least 
Significant Bits (LSBs). These numbers are multiplied to 
produce six bits, P5 to P0, with P0 being the LSB and 
P4 the Most Significant Bit (MSB). Each bit in the output 
has a weight. Figure 1 illustrates the implementation of a 

multiplier circuit using adders. When multiplying two 3-bit 
numbers, A2, A1, A0 and B2, B1, B0, the factors are gen-
erated and added to obtain the result. As depicted in Fig. 1, 
the LSB P0, is equivalent to B0A0. Similarly, P1 is the sum 
of B1A0 and B0A1, P2 is sum of B2A0, B1A1, and B0A2, 
P3 is sum of B1A2 and B2A1, and the MSB P4, is B2A2.

The implementation of the 3-bit multiplier circuit is 
shown in Fig. 2 where B2, B1, and B0 and A2, A1, A0 are 
applied to input pins and the multiplication outcome is dis-
played on output pins as P4, P3, P2, P1, and P0. Consider 
the example shown in Fig. 3, where two 3-bit binary num-
bers 110 and 101 are multiplied, resulting in an output of 
11110. Suppose we allow for an error in the LSB P0, since 
its weight is the smallest and therefore, its error would have 
the least impact on the output value.

Let’s also assume that we allow for errors in P0, P1, 
and P2, and that these errors cause the output bits P2, 
P1, and P0 to be reversed, resulting in a value of 001 
instead of 110. Therefore, the final output of the multi-
plier will be 11001 instead of 11110, with a value of 25 
instead of 30. The percentage error will be calculated 
as ((30 − 25) ÷ 30) × 100 = 16.66% . The multiplier cir-
cuit depicted in Fig. 4a is composed of several blocks, 
each with an internal circuit illustrated in Fig.  4b, 

Fig. 1   Multiplication of two 3 bit numbers

Fig. 2   3 bit multiplier

Fig. 3   Example of multiplication of 3 bit numbers
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containing an AND gate and a full adder. The output 
pins of the multiplier are P5, P4, P3, P2, P1, and P0. To 
ensure complete testing, all nine blocks corresponding 
to all output bits need to be tested after implementa-
tion, which would require nine units of power if each 
block takes one unit of power to test. However, if errors 
in output bits P2, P1, and P0 are tolerable, the corre-
sponding blocks or circuit elements can be left untested, 
reducing TDV, TAT and TP. As shown in Fig. 4c com-
ponents in block 2, responsible for output P0, can be 
left untested if errors on this output pin are tolerable. 
So, the EX-OR gate inside block 2 shown in Fig. 4d will 
not be tested. For output P1, blocks 3 and 6 need to be 
tested but the EX-OR gate inside block 6 can remain 
untested since it impacts only output P1 and not the 
other outputs. Similarly, for output P2, blocks 4 and 7 
is tested completely, but the EX-OR gate in block 10 
responsible for the value on output P1 will not be tested. 
By this way we can test the SOC incompletely for the 
least significant outputs.

Outline of the proposed method is given below. Pro-
posed method can be easily understood by the example 
of circuit c17.

3.1 � Step 1:

Design the circuit as shown in Fig. 6 from the benchmark 
circuit description given in Fig. 5. This circuit consists 
of five input lines, two output lines and six NAND gates.

Fig. 4   Multiplier circuit

Fig. 5   Benchmark circuit of c17
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3.2 � Step 2:

Create a graph that represents the circuit in Fig.  6 by 
using input pins, output pins, and gates. Five input nodes 
I2, I3, I6, I7 and I1 connected to input lines INPUT(G2gat), 
INPUT(G3gat), INPUT(G6gat), INPUT(G7gat) and 
INPUT(G1gat) respectively and two output nodes O23 
and O22 connected to output lines OUTPUT(G23gat) and 
OUTPUT(G22gat) are created. Six nodes G23 , G22 , G10 , G19 , 
G16 and G11 corresponding to six NAND gates are created.

3.3 � Step 3:

Now we have an equivalent graph of the c17 circuit avail-
able in Fig. 7.

Our objective is to trace a backtrack path from the fault 
tolerable output back to the input while ensuring that the 
gates and connections on this path do not affect other com-
ponents of the circuit. By doing so, we can guarantee the 
accuracy of all other outputs except for the output pin O23 . 
Assuming O23 can tolerate errors, there is no need to test 
it. To obtain this backtrack path, we follow Algorithm 1 
and Algorithm 2.

Algorithm 1 takes the circuit’s equivalent graph as 
input and outputs a path from the output to the input pin. 
O23 is the least significant output pin that can tolerate 
errors. All the circuit components that O23 depends on, 
need not to be tested if it does not require accuracy on 
this output pin. Gate G23 determines the value on O23 , 
which depends on gates G16 and G19 . Gate G19 remains 
untested since it does not affect any other component, 
but G16 cannot be left untested as errors in it will impact 
O22 . G11 cannot be left untested either, as errors in it will 
affect G16 and, in turn, O22 . We can leave input pin I7 
untested since it does not affect any other component 

Fig. 6   c17 circuit

Fig. 7   Equivalent graph of c17 circuit
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except G19 . As shown in Fig. 8, the path obtained using 
Algorithm  1 is O23 → G23 → G19 → I7 , and hardware 
components on this path will not be tested. This incom-
plete testing will have impact on testing parameters like 
FC, TDV, TAT and TP.

4 � Impact on Fault Coverage (FC)

After acquiring the path, we eliminate the components along 
it and conduct a fault simulation.

As seen in Fig. 9, the NAND gates G23 and G19 , as 
well as the output pin O23 and input pin I7 , all located on 
the path O23 → G23 → G19 → I7 , will not undergo testing. 
Figure 10 shows the the circuit description of modified 
circuit for incomplete testing after removing components 
located on the backtrack path.

In Fig. 11, a list of multiple stuck-at-faults is pro-
vided. The total number of faults for complete testing 
amounts to 22 and 6 of them related to the excluded 
components, such as G16gat → G23gat∕1 , G23gat/1, 
G23gat/0, G11gat → G19gat∕1 , G19gat/1, and G7gat/1, 
will remain untested.

Therefore, after excluding these faults, the incomplete 
testing will account for a total of 16 faults, resulting in a fault 
coverage reduction of 27.27%. Similarly, for all the cores, a 
slight compromise with the fault coverage will occur.

5 � Impact on TDV

TDV will be reduced in two ways. There are two possible 
cases.

5.1 � Case 1: When Backtrack Path Does Not 
Terminate on Any Input Node

We can skip testing the circuit elements that lie on the 
discovered path. By doing so, we reduce the number of 
required test vectors. For instance, to test the c17 circuit 
we originally needed seven test patterns to cover all pos-
sible faults as shown in Fig. 12. However, by using our 
incomplete testing method, we can reduce the number of 
test vectors to five as shown in Fig. 13.

Fig. 8   Backtrack path for c17 circuit

Fig. 9   Equivalent graph of c17 
circuit for testing

Fig. 10   c17 benchmark circuit incomplete testing
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5.2 � Case 2: When Backtrack Path Terminates on Any 
Input Node

The algorithm identifies a path from an output pin to an 
input pin, indicating that this input pin only affects that spe-
cific output pin and not others. Therefore, we can skip testing 
that output pin by not applying a test bit to its corresponding 

input pin. This method reduces the number of test vectors 
and number of bits in each test vector.

For example, suppose the c17 circuit with five input 
pins originally required seven test vectors with five bits 
each, but using our incomplete testing method, we only 
need five test vectors with four bits per vector. Figure 12 
shows the set of test vectors we generated to test the 
c17 circuit’s input pins, including I1 , I2 , I3 , I6 , and I7 . 
Our reduction in test vectors is achieved by excluding 
the test bit corresponding to input pin I7 from all the 
test vectors located on the backtrack path obtained from 
Algorithm 1. This is because input pin I7 is excluded 
from the circuit during incomplete testing, as shown 
in Fig. 13. As mentioned earlier, there are two ways to 
reduce TDV. For instance, in Fig. 14, for complete test-
ing, the c17 circuit has 7 test vectors, each consisting 
of 5 bits, resulting in a TDV of 7 × 5 = 35 bits. On the 
other hand, for incomplete test shown in Fig. 15 circuit 
c17 has 5 test vectors, each with 4 bits, resulting in a 
TDV of 5 × 4 = 20 bits. Employing an incomplete test can 
yield significant TDV savings, which can be calculated 
as ((35 − 20) ÷ 35) × 100 = 42.85%.

Fig. 11   c17 benchmark circuit incomplete testing

Fig. 12   Test vector set for c17 benchmark circuit

Fig. 13   Modified test vector set for c17 benchmark circuit

Fig. 14   Test patterns for c17 
benchmark circuit in complete 
testing
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6 � Impact on TAT​

6.1 � Computation of TAT​

In order to determine the TAT, we have devised an integer Par-
ticle Swarm Optimization (PSO) method. This technique was 
introduced by James Kennedy and Russell Eberhart in 1995 
for the optimization of continuous nonlinear functions [21]. 
Another version of PSO that is designed for binary variables is 
known as Binary PSO [22]. To calculate the TAT accurately, 
we must schedule the cores optimally. This involves finding 
the best possible assignment of cores to the test buses avail-
able in the SOC. Suppose an SOC has NC cores, NB test buses, 
and bus widths of w1,w2, ...,wNB

 . In this case, we require an 
optimal assignment of cores to test buses that results in the 
minimum TAT. To accomplish this, we propose a PSO-based 
scheduling method, which is outlined below.

6.1.1 � Particle Structure

In our PSO model, the particle is represented by an NC bit 
array, with each value being an integer between 1 and NB . 
For example, if there are 6 cores and 2 test buses, the particle 
would be a 6-bit array. Each bit of the array corresponds to a 
core and has a value of either 1 or 2, indicating whether test 
bus 1 or test bus 2 is assigned to that core. Thus, the particle 
structure would be as follows:

This assignment implies that cores 1, 5, and 6 are allo-
cated to test bus 2, while cores 2, 3, 4, 7, and 8 are allocated 
to test bus 1. We then compute the TAT for each assignment 
and sum them together. The total sum represents the TAT 
for the entire SOC, with an optimal distribution of cores to 
the given buses as represented by the particle.

6.1.2 � Initial Population and Position

Population size is 50 for our experiments. All the particles 
are filled randomly with values between 1 to NB.

6.1.3 � Fitness Function

Suppose a SOC has Nc cores and Nb test buses, with each bus 
having a width of w1 , w2 , w3 , ..... or wNb

 . If a core in the SOC 
has ni inputs and mi outputs, and the width of the test bus is 
greater than the number of core terminals, then we can connect 
the core pins and test bus in parallel. However, if the width of 
the test bus is less than the core terminals, then serialization is 
necessary to apply test vectors [4, 19]. Considering the worst-
case scenario where all wj − 1 lines in a bus are connected to 
wj − 1 core pins in parallel, and the last line in the test bus is 
connected to the remaining �i − wj + 1 core terminals seri-
ally. If core i is assigned to test bus j with a width of wj , then 
the TAT Tij in cycles can be calculated using the following 
equation [3, 18]:

where �i = MAX(mi, ni)

mi = number of inputs of core i, 0 < i ≤ Nc

ni = number of outputs of core i, 0 < i ≤ Nc

where core i contains fi flip-flops and Ni internal scan chains.
pi is number of test patterns.
TAT for SOC is summation of TAT for each core where 

each core is optimally allocated to test bus.

Fitness function of our PSO based scheduling algorithm is 
to minimize T .

6.2 � Reduction in TAT​

TAT will be reduced in two ways in incomplete testing.

6.2.1 � When Backtrack Path Does Not Terminate on Any 
Input Node

Suppose pr number of test pattern removed from test vector 
set in incomplete testing then reduced TAT will calculated 
as follows:

where �i = MAX(mi, ni)

(1)Tij =

{
ti, if(𝜓i ≤ wj)

ti × (𝜓i − wj + 1), if(𝜓i > wj)

(2)ti =

⎧⎪⎨⎪⎩

pi, for combinational

core

(pi + 1) × fi∕Ni + pi, for cores with

internal scan chain

(3)T = max
j

Nc∑
i=1

Tij, where 1 ≤ j ≤ Nb

(4)Tij =

{
ti, if(𝜓i ≤ wj)

ti × (𝜓i − wj + 1), if(𝜓i > wj)

Fig. 15   Test patterns for c17 
benchmark circuit in incomplete 
testing



395Journal of Electronic Testing (2023) 39:387–402	

1 3

mi = number of inputs of core i, 0 < i ≤ Nc

ni = number of outputs of core i, 0 < i ≤ Nc

where core i contains fi flip-flops and Ni internal scan chains.
pi is the number of test patterns.

6.2.2 � When Backtrack Path Terminates on Any Input Node

The Algorithm 1 identifies a path from an output pin to 
an input pin, indicating that this input pin only affects 
that specific output pin and not others. Therefore, we can 
skip testing that output pin by not applying a test bit to its 
corresponding input pin. Suppose there are L number of 
bit positions where test bits will be removed from all the 
test vector then

After removing bits from the L designated bit positions in 
all test vectors, reduced TAT will be calculated as follows :

Net reduction in TAT after incomplete testing will be cal-
culated as follows:

7 � Impact on TP

7.1 � Computation of TP

The TP can be calculated using a metric derived by calcu-
lating the switching activities in the test vector bits , which 
refer to transitions from 1 to 0 or from 0 to 1 [34]. Test 
vectors can be applied to the cores in two ways:

(5)ti =

⎧
⎪⎨⎪⎩

pi − pr, for combinational core

((pi − pr) + 1) × fi∕Ni + (pi − pr),

for cores with internal scan chain

(6)𝜓i =

{
mi − L, if(mi > ni)

ni, if(mi < ni)

(7)Tij =

⎧
⎪⎪⎨⎪⎪⎩

ti, if(𝜓i ≤ wj)

ti × ((mi − L) − wj + 1),

if(𝜓i > wj)and(mi > ni)

ti × (ni − wj + 1),

if(𝜓i > wj)and(mi < ni)

(8)Sij =

⎧
⎪⎪⎨⎪⎪⎩

Zero, if(𝜓i ≤ wj)

ti × ((L) − wj + 1),

if(𝜓i > wj)and(mi > ni)

Zero,

if(𝜓i > wj)and(mi < ni)

7.1.1 � Parallel Application

When test bits are applied to the core in parallel, transitions 
can be calculated using the hamming distance between two 
test vectors. For example, if we have two vectors, 0 1 1 1 1 
and 1 1 1 1 0, and they are applied in parallel one after the 
other, the total number of transitions from 0 to 1 or 1 to 0 
would be two.

7.1.2 � Serial Application

Alternatively, test vectors can be applied sequentially to the 
wrapper chain, as shown in Fig. 16. In Fig. 16 two test vec-
tors, 100 and 010 have been applied serially to the wrapper 
chain. The total number of transitions is three in this way.

Figure 17 presents a general illustration of serially shifting 
two test vectors, namely X1,X2,X3, ...,Xn and Y1 , Y2 , Y3 , ..., Yn . 
In Eq. (9a), the term t11 represents the transition in the first 
wrapper cell, as shown in Fig. 17. On the other hand, the term 
t1j in Eq. (9b) is obtained from the upper triangle of the matrix 
illustrated in Fig. 17, while the term ti1 in Eq. (9d) is derived 
from the lower triangle of the matrix depicted in Fig. 18. 

(9a)t11 = X1 ⊕ YN

(9b)t1j = Xj−1 ⊕ Xj (1 < j ≤ N)

Fig. 16   Transition during shift in of first and second test vector [34]

Fig. 17   Transition matrix [34]
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To get the number of transitions a n × n transition 
matrix T(X, Y) defined in Eq. (10) [34]

where tij = 1, if transition occurs in jth wrapper cell in ith 
clock cycle, otherwise tij = 0.

(9c)ti1 = YN−i+2 ⊕ YN−i+1 (1 < i ≤ N)

(9d)tij = t(i−1)(j−1) (1 < i, j ≤ N)

(10)T(X, Y) =

⎛⎜⎜⎝

t11 ... t1n
∶ ∶

tn1 ... tnn

⎞⎟⎟⎠

To determine the total number of transitions in the 
sequential application of test vectors to the wrapper 
chain, Eq. (11) is utilized, whereby the summation of 
all transition components in the transition matrix is per-
formed. In this equation, trtotal represents the total number 
of transitions.

Total Number of Transitions ( trtotal ) [34]:

7.2 � TAM Architecture for Incomplete Testing

A test architecture design for applying a test vector to core 
is shown in Fig. 18.

The test vectors are applied to the core using a wrapper 
chain, which consists of a series of wrapper boundary cells 
(WBCs) connected together. Test vectors can be applied to 
the input pins through the connected WBC.

The internal structure of the WBC is depicted in 
Fig. 19. A WBC can insert a test bit to a core or can be 
transparent to the test bit. When WBC is transparent to 
the test bit then it simply transfers that test bit to the 
next WBC in the wrapper chain instead of inserting it 
into the core input pin. The core has five input pins, the 
wrapper chain associated with these input pins comprises 
five WBCs, namely W4,W3,W2,W1, and W0. and test bus 
of width three is considered in Fig. 18. Test bus width is 
three means that there are three wires in test bus namely 
1, 2 and 3. Two out of these three test wires 1 and 2 are 
connected to WBC W4 and W3 respectively while bus wire 
3 is connected to WBC W2 W2 and W1 serially. So if we 
shift any test vector bit to W2 then it can be shifted serially 
to W1 or W0 (Fig. 20).

(11)trtotal =

n∑
i=1

n∑
j=1

tij

Fig. 18   TAM architecture for complete testing

Fig. 19   Wrapper Boundary Cell
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7.3 � Reduction in TP in Incomplete Testing

Consider the example depicted in Fig. 12, where input 
pins I2, I3, I6, I7, and I1 of core c17 are fed with test vec-
tors b4, b3, b2, b1, and b0 respectively. Test vector bits b4 
and b3 are transported through test bus wires 1 and 2 and 
applied to input pins I2 and I3 via WBC W4 and W3 in par-
allel, while test vector bits b2, b1, and b0 are transported 
on test bus wire 3 and applied to input pins I6, I1, and I7 
through WBCs W2,W1, and W0 sequentially. As a result, 
when test vectors are applied one after another, the transi-
tions in test bit values will be calculated in two ways: the 
transition in W4 and W3 will be calculated by hamming 
distance due to parallel insertion, and the transition in 
WBCs W2,W1, and W0 will be calculated by Eq. (11) due 
to serial insertion. This will result in a reduction of TP 
consumption in two ways. Firstly, in incomplete testing, a 
smaller number of test vectors will lead to fewer bit flips, 
ultimately reducing TP. Secondly, in incomplete testing, 
pin I7 will not be tested, and test WBC W1 will become 
transparent to input bits. Consequently, all the bit flips in 
WBC W1 corresponding to input pin I7 will be eliminated 
straightforwardly. Fewer transitions will reduce the TP.

8 � Experimental Results

To conduct the experiments, the SOC was utilized, and 
the ISCAS’85 and ISCAS’89 benchmark circuits were 
employed for testing purposes [42]. The experiment program 
was coded in C++, while the test patterns were generated 
using ATALANTA [43]. Additionally, the HOPE simulator 

was utilized for fault simulation [44]. All the experiments 
were carried out on the SOC shown in Fig. 21, which con-
sists of eight cores (c880, c2670, c432, c6288, s27, s298, 
s444, s520) and two test buses. The total bus width of 48 is 
distributed between both buses.

8.1 � Results for FC and TDV

The results for FC and TDV are presented in Table 1. Test 
patterns and fault lists were generated for all the cores. 
For complete testing a backtracking approach was used to 
exclude hardware components associated with the backtrack 
path from testing explained in section 4. Faults correspond-
ing to excluded hardwares is also removed. The total number 
of faults for complete and incomplete testing are displayed 
in columns 2 and 4 of Table 1, respectively, while the fault 
reduction is shown in column 6. The TDV can be calculated 
as the product of the number of test vectors and the num-
ber of bits in a test vector. The total TDV for complete and 
incomplete testing are shown in columns 3 and 5, respec-
tively, while the reduction in TDV is shown in column 7. 
The TDV comparison between complete and incomplete 
testing is provided in Table 1. For cores c880, c2670, c432, 
c6288, s27, s298, s444, and s520 the TDV reduction is 
27.78%, 45.87%, 52.17%, 40.96%, 33.33%, 39.29%, 43.33% 
and 48.77% respectively, while the fault coverage is compro-
mised up to 0.76%, 3.50%, 1.89%, 0.87%, 18.75%, 12.01%, 
0.84% and 15.14% respectively.

8.2 � Results for TAT​

Table 2 presents the TAT for the optimal allocation of cores 
to the test buses in the SOC. We used a PSO-based schedul-
ing algorithm proposed in section 6.1 for the optimal allo-
cation. The test bus has a width of 48, and we conducted 
experiments for various bus width distributions, such as 

Fig. 20   Modified TAM architecture for incomplete testing

Fig. 21   SOC used for experiments
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(1,47), (4,44), (28,20), (24,24), (32,16), and (40,8), which 
are shown in the first column of Table 3. The optimal core-
to-bus allocation is depicted in columns 2 and 4, and the 
TAT for complete and incomplete testing is represented 
in columns 3 and 5, respectively. The reduction in TAT is 
shown in column 6. For example, in row 1 of Table 2, the 
bus width distribution between two test buses is (1,47), and 
the optimal core-to-test bus allocation is 11122121, which 
indicates that test bus 1 is allocated to core 1, 2, 3, 6, and 8, 
while test bus 2 is allocated to core 4, 5, and 7. The TAT for 
this optimal distribution of 11122121 is minimized TAT for 
SOC, which is 57863 cycles for complete testing and 30074 
cycles for incomplete testing. The TAT can be calculated in 
real-time according to the system’s frequency. The reduc-
tion in TAT for this optimal distribution is shown in row 
1, column 6, which is 48.03% for SOC. Similarly, TAT is 
calculated for other combinations of test bus width distribu-
tions, and for each distribution, the savings are around 48% 
on average, which is significant.

8.3 � Results for TP

8.3.1 � TP for Complete Testing

Table 3 shows the TP results obtained from experiments con-
ducted to calculate the TP for complete testing using differ-
ent random bus width distributions and optimal core-to-bus 

scheduling, as described in section 7.1. In column 2, the 
TP is calculated for all eight cores and the SOC, where the 
bus width distribution is (1,47), and the core-to-bus alloca-
tion is 11122121. The TP calculated for cores c880, c2670, 
c432, c6288, s27, s298, s444, and s520 are 44779, 187377, 
5090603, 7475138, 223, 10303, 651, and 38519, respec-
tively. The TP for complete testing of the SOC is 12847593, 
11178947, 11373648, 11127686, 12180563, and 12222238 
for bus width distributions of (1,47), (4,44), (28,20), (24,24), 
(32,16), and (40,8), respectively.

8.3.2 � TP for Incomplete Testing

The results of experiments for calculating TP for incom-
plete testing with various bus width distributions and opti-
mal core-to-bus scheduling are presented in Table 4. The 
calculations were performed using the method described in 
section 7.1. In column 2 of the table, the TP for all eight 
cores and SOC is shown for the bus width distribution of (1, 
47) and core to bus allocation of 11122121. The TP values 
for individual cores such as c880, c2670, c432, c6288, s27, 
s298, s444, and s520 are 31978, 97835, 2154776, 4302353, 
112, 6549, 346, and 22443 respectively. The TP for incom-
plete testing of SOC is 6616392, 5858528, 5746942, 
5602130, 6316776, and 6241246 for different bus width 
distributions, namely, (1, 47), (4, 44), (28, 20), (24, 24), 
(32, 16), and (40, 8) respectively.

Table 1   Results for FC and 
TDV

Cores No of faults in 
complete testing

TDV for 
complete 
testing

No. of faults 
in incomplete 
testing

TDV for 
incomplete 
testing

Fault 
reduction 
(%)

TDV 
reduction 
(%)

c432 524 2592 520 1872 0.76 27.78
c880 942 6000 909 3248 3.50 45.87
c2670 2747 45435 2695 21733 1.89 52.17
c7552 7550 74313 7484 43878 0.87 40.96
s27 32 63 26 42 18.75 33.33
s298 308 952 271 578 12.01 39.29
s444 474 1320 470 748 0.84 43.33
s520 555 2688 471 1377 15.14 48.77

Table 2   Results for TAT​ Buswidth 
distribution

Optimal allocation TAT for SOC 
(complete test)

Optimal allocation TAT for SOC 
(incomplete test)

Reduction 
in TAT 
(%)

(1, 47) 11122121 57863 11122121 30074 48.03
(4, 44) 11122111 58885 11122111 30679 47.90
(28, 20) 22212222 64620 22212222 34080 47.26
(24, 24) 22212222 66056 22212222 34932 47.12
(32, 16) 22212222 63184 22212222 33228 47.41
(40, 8) 22212222 60312 22212222 31524 47.73
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8.3.3 � Comparison of TP for Complete  
and Incomplete Testing

The TP results for both complete and incomplete testing are 
presented in Table 5. Column 1 and 2 display the bus width 
distribution and optimal core-to-bus allocation, respec-
tively. Column 3 and 5 show the TP of SOC for complete 
and incomplete testing, respectively. Finally, column 6 dis-
plays the reduction in TP. For instance, row 1 of Table 5 
demonstrates the bus width distribution of (1,47), with the 
optimal core-to-bus allocation of 11122121. The TP for this 
optimal distribution is 12847593 for complete testing and 
6616392 for incomplete testing. Row 1, column 6 of Table 5 

indicates a TP reduction of 48.50% for SOC. Similarly, TP is 
calculated for other test bus width distribution combinations. 
For the bus width distribution of (24,24), the saving is up 
to 49.66%. On average, the saving for other distributions is 
also around 49%, which is highly significant.

9 � Conclusion

As per our knowledge, proposed method is novel and ben-
eficial in various fault-tolerant applications, including 
audio, video, graphics, wireless communications, multi-
level cell STT-RAM, and neural networks. In such cases, 

Table 3   Results for TP for 
complete testing

Bus width distribution (1, 47) (4, 44) (28, 20) (24, 24) (32, 16) (40, 8)
Optimal allocation 11122121 11122111 22212222 22212222 22212222 22212222

Cores TP TP TP TP TP TP
c432 44779 37605 50050 50050 1945 50050
c880 187377 187377 55698 69008 187377 138426
c2670 5090603 3417327 5178381 5178381 4464549 5178381
c7552 7475138 7475138 6068577 5809305 7475138 6831883
s27 223 73 341 341 33 341
s298 10303 10303 463 463 10303 3019
s444 651 12605 18881 18881 2699 18881
s526 38519 38519 1257 1257 38519 1257
SOC 12847593 11178947 11373648 11127686 12180563 12222238

Table 4   Results for TP for 
incomplete testing

Bus width distribution (1, 47) (4, 44) (28, 20) (24, 24) (32, 16) (40, 8)
Optimal allocation 11122121 11122111 22212222 22212222 22212222 22212222

Cores TP TP TP TP TP TP
c432.pat 31978 27402 36088 36088 1456 36088
c880.pat 97835 97835 28209 35299 97835 71851
c2670.pat 2154776 1395630 2196792 2196792 1884964 2196792
c7552.pat 4302353 4302353 3474765 3322563 4302353 3923667
s27.pat 112 30 199 199 16 199
s298.pat 6549 6549 277 277 6549 2037
s444.pat 346 6286 9949 9949 1160 9949
s526.pat 22443 22443 663 963 22443 663
SOC 6616392 5858528 5746942 5602130 6316776 6241246

Table 5   Results for comparison 
of TP

Bus width 
Distribution

Optimal allocation TP for SOC 
(complete test)

Optimal allocation TP for SOC 
(incomplete test)

Reduction 
in TP (%)

(1, 47) 11122121 12847593 11122121 6616392 48.50
(4, 44) 11122111 11178947 11122111 5858528 47.59
(28, 20) 22212222 11373648 22212222 5746942 49.47
(24, 24) 22212222 11127686 22212222 5602130 49.66
(32, 16) 22212222 12180563 22212222 6316776 48.14
(40, 8) 22212222 12222238 22212222 6241246 48.94
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if some output bits can tolerate errors, computation can be 
faster. Nevertheless, this strategy can be particularly useful 
for large SOC devices where extensive testing may not be 
practical due to TAT and TP constraints. Incomplete testing 
is a useful tool for optimizing testing parameters such as 
TDV, TAT, and TP, with a minor compromise in FC. This 
approach is not only faster but also cost-effective, which can 
increase customer access to devices. It. Our research shows 
that incomplete testing can reduce TDV, TAT, and TP by up 
to 52%, 48%, and 50%, respectively, with a trade-off of 1% 
to 10% in FC.

10 � Future Work

The current paper focuses only on stuck-at-faults, but in 
future research, we can explore other types of faults such as 
bridge faults, delay faults etc. Furthermore, our method can 
be extended to 3D hierarchical SOCs. Additionally, we can 
propose an incomplete testing approach for specific applica-
tions such as image processing and more generally, digital 
signal processing, wireless communication and other error 
tolerant applications.
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