
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:387–402
https://doi.org/10.1007/s10836-023-06067-6

Incomplete Testing of SOC

Kunwer Mrityunjay Singh1  · Jatindra Deka1 · Santosh Biswas2

Received: 28 January 2023 / Accepted: 27 April 2023 / Published online: 29 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Nowadays, System on Chip (SOC) based devices such as smartphones, tablets, cameras, and others are commonly used.
The cost of these devices is determined by the expenses associated with their manufacturing and testing. In modern manu-
facturing technology, SOC-based devices have more cores embedded within them. However, testing these numerous cores
thoroughly can be quite expensive and can sometimes cost more than the manufacturing itself. To make these devices more
affordable for people from economically weaker backgrounds, it is necessary to come up with an efficient testing strategy
that can help reduce the costs. In this study, we introduce a new method of testing the SOC incompletely instead of testing it
thoroughly. This method involves compromising on the test quality, which may result in errors in the output. Incomplete test-
ing is performed only for those cores of the SOC that can tolerate such errors. For example, incomplete testing is performed
for the cores that are responsible for multimedia applications such as image or video display, where a slight compromise in
the quality can be tolerated by human eyes. This incomplete testing helps to reduce the Test Power Consumption (TP), Test
Access Time (TAT), and Test Data Volume (TDV) while compromising with the Fault Coverage (FC).

Keywords  SOC · Power aware testing · Test data volume · Test access time · Fault coverage · TAM

1  Introduction

The SOC is widely utilized in various products, including
smart phones, tablets, and digital cameras. These products
undergo rigorous testing to meet customers’ demands for
affordability and versatility. Due to SOCs, digital devices
now have the capability to perform a wide range of tasks,
such as paying bills, booking tickets, and taking photos and
videos. In order to afford these devices, some low-income
customers may compromise on certain aspects, such as

accepting lower screen resolutions or sacrificing multimedia
applications. Additionally, the fast-paced nature of today’s
world means that new models are frequently introduced,
leading customers to replace their devices frequently. Con-
sequently, most customers do not require devices that are
durable for long periods; rather, they prioritize economic
devices. Testing plays a critical role in achieving cost-
effectiveness. As the number of applications in a product
increases, more cores are added to the SOC, which can affect
other factors such as TDV, TAT, and TP. An efficient testing
method can help reduce the overall cost of a product.

To recede TDV, TAT and TP various compression
techniques are proposed. The most popular methods for
reducing TDV are compression and compaction. In various
research papers, compression techniques have been proposed,
such as Golomb codes-based test vector compression and
decompression mechanism in [5, 9], and [7] to encode
precomputed test vectors for cores in the SOC. Run-length
encoding-based compression for test resource partitioning
has been proposed in [8] to reduce TDV, TP, and TAT. The
use of Huffman coding techniques for compression has
also been discussed in [20] and [27]. Compression-based
techniques aim to minimize the area overhead introduced
by coder and decoder circuits. Similarly, the selective

Responsible Editor: K. Chakrabarty

Jatindra Deka and Santosh Biswas contributed equally to this work.

 *	 Kunwer Mrityunjay Singh
	 mrityunjay.jkit@gmail.com

	 Jatindra Deka
	 jatin@iitg.ac.in

	 Santosh Biswas
	 santoshbiswas402@yahoo.com

1	 Department of Computer Science, IIT, Guwahati 781039,
Assam, India

2	 Department of Electrical Engineering and Computer Science,
IIT, Bhilai 492015, Chhattisgarh, India

http://orcid.org/0000-0003-1979-0826
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06067-6&domain=pdf

388	 Journal of Electronic Testing (2023) 39:387–402

1 3

Huffman coding and complementary Huffman coding-
based compression method has been discussed in [41].
Compaction techniques, such as test vector reordering and
don’t care bit filling, have also been found effective for
reducing TDV. For instance, in [25], test vector reordering
has been used to increase fault coverage and minimize the
number of test vectors needed to cover all the faults. Don’t
care bit filling has also been found effective for reducing
TDV, as shown in [30] and [29], where X compactor has
been introduced. Some methods have also used compression
and compaction techniques simultaneously to reduce TDV,
such as run-length coding and hamming-based test vector
reordering implemented in [28]. In [2], a hybrid technique
has been introduced, which uses a block-matching algorithm
to rearrange test vector blocks in subsequent test patterns
to separate low-frequency and high-frequency data sets of
test vectors. Other compression and compaction techniques
have also been proposed in [24, 40], and [1]. All of these
well-known compression and compaction techniques greatly
reduce test data volume, but require a decompresser on a
chip which adds area overhead. With the increasing size of
SOC, the size of TDV also increases, resulting in a higher
probability of bit flipping and power consumption. Several
methods have been proposed to reduce TP, such as assigning
binary values to don’t care bits and compressing test data
using Golomb code [6], filling don’t care bits and using run
length coding compression [36], predicting the impact of
filling don’t care bits on capture power [23], and enhancing
the correlation between successive test vectors to reduce
power profiles [33]. The large size of test vector sets due to
the increasing number of cores in SOC makes storing and
transporting test vector data a challenge, which impacts TAT
and TP. As a result, storage of TDV, area overhead, software
program storage, large TAT, and large TP are the main testing
challenges nowadays. Several approaches have been utilized
to overcome challenges posed by large TDV, TAT, and TP.
These approaches have employed heuristic techniques,
such as those put forth in [11, 17], and [16]. A potential
solution using Genetic algorithms (GA) is presented in [11]
for managing test scheduling and test access mechanism
partition in SOCs. In [17], a GA-based strategy is proposed
for jointly optimizing test scheduling and wrapper design
while adhering to power constraints for core-based SOCs.
Finally, method in [16] suggests a GA-based methodology for
modular testing of hierarchical SOCs that comprise of earlier
generation SOCs as embedded mega cores. To improve TDV,
TAT and TP, designers have used various methods, including
approximate computing techniques. These techniques relax
the requirement for exact computation and instead aim for
acceptable levels of accuracy. This results in significant
improvements in TAT and TP performance without a
significant increase in cost [26]. For example, the Approx-
Multiply-Accumulate(MAC) unit is an approximate circuit

proposed in [13] that utilizes the concept of approximate
computing. It uses an approximate hybrid redundant adder
to perform internal multiplication and addition operations,
which reduces hardware size and TP with a slight tradeoff
in computation error. In another method, a MAC arithmetic
architecture, introduced in [32], reduces the number of
intermediate partial components generated during arithmetic
operations by a factor of 2, resulting in improved speed and
reduced hardware cost. These methods, as explained in [13]
and [32], are based on the idea that certain systems can
tolerate output errors to some extent, and exploiting this
can lead to significant benefits in terms of reduced hardware
area and TP. Conventional methods to test digital circuits are
given in [39]. Another approximate aware testing method is
proposed for approximate circuits in [10], which involves
a fault classification algorithm that categorizes faults into
two groups: approximation-redundant faults and non-
approximation faults. This method has some limitations
because Automatic Test Pattern Generation(ATPG) tools
prioritize the shortest propagation paths of faults to the
primary outputs, which may result in incorrect classification
of non-approximation faults that propagate to multiple
primary outputs as approximation-redundant faults. To
address this limitation, another ATPG methodology for
approximate circuits is introduced in [15]. This methodology
is based on boolean satisfiability and takes into account the
quality of the output as well as the difference between non-
approximation faults and approximation-redundant faults.
The utilization of approximate testing is beneficial in various
fault-tolerant applications such as audio, video, graphics,
and wireless communications, as mentioned in [37]. In [12],
a case study is presented where a mobile device receives
streaming H.264 video over a WCDMA wireless channel.
The video compression algorithms take advantage of the
temporal correlation of image sequences and assume that
adjacent pictures have small differences, allowing many parts
of the current frame to be borrowed from previously decoded
frames stored in the decoded picture buffer (DPB). However,
the DPB requires a large memory space and can dominate
the SOC design of H.264. To reduce TP, H.264 uses spatial
redundancy and allows some errors to occur at the chip level.
Another example is a wireless communication application
discussed in [14]. In this application, data is received and
digitized, then presented to the baseband digital modem,
which estimates the transmitted stream and presents it to
the decoding section. Channel decoders correct errors and
generate an error-free stream depending on the application.
Redundancy is inherent to data stream communication in
wireless communication, and data buffering memories
within an SOC must be error-tolerant as the data stored in
them will eventually be processed by the channel decoder.
These data buffering memories constitute the majority of
the memory in wireless applications. Multi-Level Cells

389Journal of Electronic Testing (2023) 39:387–402	

1 3

STT-RAM [35], neural networks [38], and convolutional
neural networks [31] are some of the other applications
suitable for approximate testing at both the circuit and system
levels. The utilization of approximate circuits can accelerate
computation and enhance testing metrics. However,
designing such circuits is a demanding, intricate, and time-
consuming task that necessitates a thorough comprehension
of the circuit. Furthermore, testing these circuits is complex
because specialized techniques are required to verify that the
outcomes meet the requirements of the intended application.

In this paper, we propose a testing method that tests
the SOC incompletely and tolerates errors in output with-
out modifying the circuit’s behavior, unlike approximate
circuits. This testing method demonstrates a significant
improvement in testing parameters, such as TDV, TAT, and
TP, with only a minor compromise in the quality of test-
ing. Section 2 describes the problem statement, while sec-
tion 3 outlines the proposed method. Sections 4, 5, and 6
demonstrate the impact of incomplete testing on FC, TDV,
TAT, and TP. Section 8 presents the experimental results,
section 9 provides the conclusion, and section 10 explores
future work.

2 � Problem Formulation

Given a SOC, generate reduced test vectors set for incom-
plete testing of SOC to reduced TDV, TAT, TP and maximize
the fault coverage.

3 � Proposed Method

To understand our proposed method we first focus on Fig. 1
which is nothing but the multiplication of two 3-bit binary
numbers. Figure 1 displays two 3-bit binary numbers, A2,
A1, A0 and B2, B1, B0, where A0 and B0 are the Least
Significant Bits (LSBs). These numbers are multiplied to
produce six bits, P5 to P0, with P0 being the LSB and
P4 the Most Significant Bit (MSB). Each bit in the output
has a weight. Figure 1 illustrates the implementation of a

multiplier circuit using adders. When multiplying two 3-bit
numbers, A2, A1, A0 and B2, B1, B0, the factors are gen-
erated and added to obtain the result. As depicted in Fig. 1,
the LSB P0, is equivalent to B0A0. Similarly, P1 is the sum
of B1A0 and B0A1, P2 is sum of B2A0, B1A1, and B0A2,
P3 is sum of B1A2 and B2A1, and the MSB P4, is B2A2.

The implementation of the 3-bit multiplier circuit is
shown in Fig. 2 where B2, B1, and B0 and A2, A1, A0 are
applied to input pins and the multiplication outcome is dis-
played on output pins as P4, P3, P2, P1, and P0. Consider
the example shown in Fig. 3, where two 3-bit binary num-
bers 110 and 101 are multiplied, resulting in an output of
11110. Suppose we allow for an error in the LSB P0, since
its weight is the smallest and therefore, its error would have
the least impact on the output value.

Let’s also assume that we allow for errors in P0, P1,
and P2, and that these errors cause the output bits P2,
P1, and P0 to be reversed, resulting in a value of 001
instead of 110. Therefore, the final output of the multi-
plier will be 11001 instead of 11110, with a value of 25
instead of 30. The percentage error will be calculated
as ((30 − 25) ÷ 30) × 100 = 16.66% . The multiplier cir-
cuit depicted in Fig. 4a is composed of several blocks,
each with an internal circuit illustrated in Fig. 4b,

Fig. 1   Multiplication of two 3 bit numbers

Fig. 2   3 bit multiplier

Fig. 3   Example of multiplication of 3 bit numbers

390	 Journal of Electronic Testing (2023) 39:387–402

1 3

containing an AND gate and a full adder. The output
pins of the multiplier are P5, P4, P3, P2, P1, and P0. To
ensure complete testing, all nine blocks corresponding
to all output bits need to be tested after implementa-
tion, which would require nine units of power if each
block takes one unit of power to test. However, if errors
in output bits P2, P1, and P0 are tolerable, the corre-
sponding blocks or circuit elements can be left untested,
reducing TDV, TAT and TP. As shown in Fig. 4c com-
ponents in block 2, responsible for output P0, can be
left untested if errors on this output pin are tolerable.
So, the EX-OR gate inside block 2 shown in Fig. 4d will
not be tested. For output P1, blocks 3 and 6 need to be
tested but the EX-OR gate inside block 6 can remain
untested since it impacts only output P1 and not the
other outputs. Similarly, for output P2, blocks 4 and 7
is tested completely, but the EX-OR gate in block 10
responsible for the value on output P1 will not be tested.
By this way we can test the SOC incompletely for the
least significant outputs.

Outline of the proposed method is given below. Pro-
posed method can be easily understood by the example
of circuit c17.

3.1 � Step 1:

Design the circuit as shown in Fig. 6 from the benchmark
circuit description given in Fig. 5. This circuit consists
of five input lines, two output lines and six NAND gates.

Fig. 4   Multiplier circuit

Fig. 5   Benchmark circuit of c17

391Journal of Electronic Testing (2023) 39:387–402	

1 3

3.2 � Step 2:

Create a graph that represents the circuit in Fig. 6 by
using input pins, output pins, and gates. Five input nodes
I2, I3, I6, I7 and I1 connected to input lines INPUT(G2gat),
INPUT(G3gat), INPUT(G6gat), INPUT(G7gat) and
INPUT(G1gat) respectively and two output nodes O23
and O22 connected to output lines OUTPUT(G23gat) and
OUTPUT(G22gat) are created. Six nodes G23 , G22 , G10 , G19 ,
G16 and G11 corresponding to six NAND gates are created.

3.3 � Step 3:

Now we have an equivalent graph of the c17 circuit avail-
able in Fig. 7.

Our objective is to trace a backtrack path from the fault
tolerable output back to the input while ensuring that the
gates and connections on this path do not affect other com-
ponents of the circuit. By doing so, we can guarantee the
accuracy of all other outputs except for the output pin O23 .
Assuming O23 can tolerate errors, there is no need to test
it. To obtain this backtrack path, we follow Algorithm 1
and Algorithm 2.

Algorithm 1 takes the circuit’s equivalent graph as
input and outputs a path from the output to the input pin.
O23 is the least significant output pin that can tolerate
errors. All the circuit components that O23 depends on,
need not to be tested if it does not require accuracy on
this output pin. Gate G23 determines the value on O23 ,
which depends on gates G16 and G19 . Gate G19 remains
untested since it does not affect any other component,
but G16 cannot be left untested as errors in it will impact
O22 . G11 cannot be left untested either, as errors in it will
affect G16 and, in turn, O22 . We can leave input pin I7
untested since it does not affect any other component

Fig. 6   c17 circuit

Fig. 7   Equivalent graph of c17 circuit

392	 Journal of Electronic Testing (2023) 39:387–402

1 3

except G19 . As shown in Fig. 8, the path obtained using
Algorithm 1 is O23 → G23 → G19 → I7 , and hardware
components on this path will not be tested. This incom-
plete testing will have impact on testing parameters like
FC, TDV, TAT and TP.

4 � Impact on Fault Coverage (FC)

After acquiring the path, we eliminate the components along
it and conduct a fault simulation.

As seen in Fig. 9, the NAND gates G23 and G19 , as
well as the output pin O23 and input pin I7 , all located on
the path O23 → G23 → G19 → I7 , will not undergo testing.
Figure 10 shows the the circuit description of modified
circuit for incomplete testing after removing components
located on the backtrack path.

In Fig. 11, a list of multiple stuck-at-faults is pro-
vided. The total number of faults for complete testing
amounts to 22 and 6 of them related to the excluded
components, such as G16gat → G23gat∕1 , G23gat/1,
G23gat/0, G11gat → G19gat∕1 , G19gat/1, and G7gat/1,
will remain untested.

Therefore, after excluding these faults, the incomplete
testing will account for a total of 16 faults, resulting in a fault
coverage reduction of 27.27%. Similarly, for all the cores, a
slight compromise with the fault coverage will occur.

5 � Impact on TDV

TDV will be reduced in two ways. There are two possible
cases.

5.1 � Case 1: When Backtrack Path Does Not
Terminate on Any Input Node

We can skip testing the circuit elements that lie on the
discovered path. By doing so, we reduce the number of
required test vectors. For instance, to test the c17 circuit
we originally needed seven test patterns to cover all pos-
sible faults as shown in Fig. 12. However, by using our
incomplete testing method, we can reduce the number of
test vectors to five as shown in Fig. 13.

Fig. 8   Backtrack path for c17 circuit

Fig. 9   Equivalent graph of c17
circuit for testing

Fig. 10   c17 benchmark circuit incomplete testing

393Journal of Electronic Testing (2023) 39:387–402	

1 3

5.2 � Case 2: When Backtrack Path Terminates on Any
Input Node

The algorithm identifies a path from an output pin to an
input pin, indicating that this input pin only affects that spe-
cific output pin and not others. Therefore, we can skip testing
that output pin by not applying a test bit to its corresponding

input pin. This method reduces the number of test vectors
and number of bits in each test vector.

For example, suppose the c17 circuit with five input
pins originally required seven test vectors with five bits
each, but using our incomplete testing method, we only
need five test vectors with four bits per vector. Figure 12
shows the set of test vectors we generated to test the
c17 circuit’s input pins, including I1 , I2 , I3 , I6 , and I7 .
Our reduction in test vectors is achieved by excluding
the test bit corresponding to input pin I7 from all the
test vectors located on the backtrack path obtained from
Algorithm 1. This is because input pin I7 is excluded
from the circuit during incomplete testing, as shown
in Fig. 13. As mentioned earlier, there are two ways to
reduce TDV. For instance, in Fig. 14, for complete test-
ing, the c17 circuit has 7 test vectors, each consisting
of 5 bits, resulting in a TDV of 7 × 5 = 35 bits. On the
other hand, for incomplete test shown in Fig. 15 circuit
c17 has 5 test vectors, each with 4 bits, resulting in a
TDV of 5 × 4 = 20 bits. Employing an incomplete test can
yield significant TDV savings, which can be calculated
as ((35 − 20) ÷ 35) × 100 = 42.85%.

Fig. 11   c17 benchmark circuit incomplete testing

Fig. 12   Test vector set for c17 benchmark circuit

Fig. 13   Modified test vector set for c17 benchmark circuit

Fig. 14   Test patterns for c17
benchmark circuit in complete
testing

394	 Journal of Electronic Testing (2023) 39:387–402

1 3

6 � Impact on TAT​

6.1 � Computation of TAT​

In order to determine the TAT, we have devised an integer Par-
ticle Swarm Optimization (PSO) method. This technique was
introduced by James Kennedy and Russell Eberhart in 1995
for the optimization of continuous nonlinear functions [21].
Another version of PSO that is designed for binary variables is
known as Binary PSO [22]. To calculate the TAT accurately,
we must schedule the cores optimally. This involves finding
the best possible assignment of cores to the test buses avail-
able in the SOC. Suppose an SOC has NC cores, NB test buses,
and bus widths of w1,w2, ...,wNB

 . In this case, we require an
optimal assignment of cores to test buses that results in the
minimum TAT. To accomplish this, we propose a PSO-based
scheduling method, which is outlined below.

6.1.1 � Particle Structure

In our PSO model, the particle is represented by an NC bit
array, with each value being an integer between 1 and NB .
For example, if there are 6 cores and 2 test buses, the particle
would be a 6-bit array. Each bit of the array corresponds to a
core and has a value of either 1 or 2, indicating whether test
bus 1 or test bus 2 is assigned to that core. Thus, the particle
structure would be as follows:

This assignment implies that cores 1, 5, and 6 are allo-
cated to test bus 2, while cores 2, 3, 4, 7, and 8 are allocated
to test bus 1. We then compute the TAT for each assignment
and sum them together. The total sum represents the TAT
for the entire SOC, with an optimal distribution of cores to
the given buses as represented by the particle.

6.1.2 � Initial Population and Position

Population size is 50 for our experiments. All the particles
are filled randomly with values between 1 to NB.

6.1.3 � Fitness Function

Suppose a SOC has Nc cores and Nb test buses, with each bus
having a width of w1 , w2 , w3 , or wNb

 . If a core in the SOC
has ni inputs and mi outputs, and the width of the test bus is
greater than the number of core terminals, then we can connect
the core pins and test bus in parallel. However, if the width of
the test bus is less than the core terminals, then serialization is
necessary to apply test vectors [4, 19]. Considering the worst-
case scenario where all wj − 1 lines in a bus are connected to
wj − 1 core pins in parallel, and the last line in the test bus is
connected to the remaining �i − wj + 1 core terminals seri-
ally. If core i is assigned to test bus j with a width of wj , then
the TAT Tij in cycles can be calculated using the following
equation [3, 18]:

where �i = MAX(mi, ni)

mi = number of inputs of core i, 0 < i ≤ Nc

ni = number of outputs of core i, 0 < i ≤ Nc

where core i contains fi flip-flops and Ni internal scan chains.
pi is number of test patterns.
TAT for SOC is summation of TAT for each core where

each core is optimally allocated to test bus.

Fitness function of our PSO based scheduling algorithm is
to minimize T .

6.2 � Reduction in TAT​

TAT will be reduced in two ways in incomplete testing.

6.2.1 � When Backtrack Path Does Not Terminate on Any
Input Node

Suppose pr number of test pattern removed from test vector
set in incomplete testing then reduced TAT will calculated
as follows:

where �i = MAX(mi, ni)

(1)Tij =

{
ti, if(𝜓i ≤ wj)

ti × (𝜓i − wj + 1), if(𝜓i > wj)

(2)ti =

⎧⎪⎨⎪⎩

pi, for combinational

core

(pi + 1) × fi∕Ni + pi, for cores with

internal scan chain

(3)T = max
j

Nc∑
i=1

Tij, where 1 ≤ j ≤ Nb

(4)Tij =

{
ti, if(𝜓i ≤ wj)

ti × (𝜓i − wj + 1), if(𝜓i > wj)

Fig. 15   Test patterns for c17
benchmark circuit in incomplete
testing

395Journal of Electronic Testing (2023) 39:387–402	

1 3

mi = number of inputs of core i, 0 < i ≤ Nc

ni = number of outputs of core i, 0 < i ≤ Nc

where core i contains fi flip-flops and Ni internal scan chains.
pi is the number of test patterns.

6.2.2 � When Backtrack Path Terminates on Any Input Node

The Algorithm 1 identifies a path from an output pin to
an input pin, indicating that this input pin only affects
that specific output pin and not others. Therefore, we can
skip testing that output pin by not applying a test bit to its
corresponding input pin. Suppose there are L number of
bit positions where test bits will be removed from all the
test vector then

After removing bits from the L designated bit positions in
all test vectors, reduced TAT will be calculated as follows :

Net reduction in TAT after incomplete testing will be cal-
culated as follows:

7 � Impact on TP

7.1 � Computation of TP

The TP can be calculated using a metric derived by calcu-
lating the switching activities in the test vector bits , which
refer to transitions from 1 to 0 or from 0 to 1 [34]. Test
vectors can be applied to the cores in two ways:

(5)ti =

⎧
⎪⎨⎪⎩

pi − pr, for combinational core

((pi − pr) + 1) × fi∕Ni + (pi − pr),

for cores with internal scan chain

(6)𝜓i =

{
mi − L, if(mi > ni)

ni, if(mi < ni)

(7)Tij =

⎧
⎪⎪⎨⎪⎪⎩

ti, if(𝜓i ≤ wj)

ti × ((mi − L) − wj + 1),

if(𝜓i > wj)and(mi > ni)

ti × (ni − wj + 1),

if(𝜓i > wj)and(mi < ni)

(8)Sij =

⎧
⎪⎪⎨⎪⎪⎩

Zero, if(𝜓i ≤ wj)

ti × ((L) − wj + 1),

if(𝜓i > wj)and(mi > ni)

Zero,

if(𝜓i > wj)and(mi < ni)

7.1.1 � Parallel Application

When test bits are applied to the core in parallel, transitions
can be calculated using the hamming distance between two
test vectors. For example, if we have two vectors, 0 1 1 1 1
and 1 1 1 1 0, and they are applied in parallel one after the
other, the total number of transitions from 0 to 1 or 1 to 0
would be two.

7.1.2 � Serial Application

Alternatively, test vectors can be applied sequentially to the
wrapper chain, as shown in Fig. 16. In Fig. 16 two test vec-
tors, 100 and 010 have been applied serially to the wrapper
chain. The total number of transitions is three in this way.

Figure 17 presents a general illustration of serially shifting
two test vectors, namely X1,X2,X3, ...,Xn and Y1 , Y2 , Y3 , ..., Yn .
In Eq. (9a), the term t11 represents the transition in the first
wrapper cell, as shown in Fig. 17. On the other hand, the term
t1j in Eq. (9b) is obtained from the upper triangle of the matrix
illustrated in Fig. 17, while the term ti1 in Eq. (9d) is derived
from the lower triangle of the matrix depicted in Fig. 18.

(9a)t11 = X1 ⊕ YN

(9b)t1j = Xj−1 ⊕ Xj (1 < j ≤ N)

Fig. 16   Transition during shift in of first and second test vector [34]

Fig. 17   Transition matrix [34]

396	 Journal of Electronic Testing (2023) 39:387–402

1 3

To get the number of transitions a n × n transition
matrix T(X, Y) defined in Eq. (10) [34]

where tij = 1, if transition occurs in jth wrapper cell in ith
clock cycle, otherwise tij = 0.

(9c)ti1 = YN−i+2 ⊕ YN−i+1 (1 < i ≤ N)

(9d)tij = t(i−1)(j−1) (1 < i, j ≤ N)

(10)T(X, Y) =

⎛⎜⎜⎝

t11 ... t1n
∶ ∶

tn1 ... tnn

⎞⎟⎟⎠

To determine the total number of transitions in the
sequential application of test vectors to the wrapper
chain, Eq. (11) is utilized, whereby the summation of
all transition components in the transition matrix is per-
formed. In this equation, trtotal represents the total number
of transitions.

Total Number of Transitions ( trtotal ) [34]:

7.2 � TAM Architecture for Incomplete Testing

A test architecture design for applying a test vector to core
is shown in Fig. 18.

The test vectors are applied to the core using a wrapper
chain, which consists of a series of wrapper boundary cells
(WBCs) connected together. Test vectors can be applied to
the input pins through the connected WBC.

The internal structure of the WBC is depicted in
Fig. 19. A WBC can insert a test bit to a core or can be
transparent to the test bit. When WBC is transparent to
the test bit then it simply transfers that test bit to the
next WBC in the wrapper chain instead of inserting it
into the core input pin. The core has five input pins, the
wrapper chain associated with these input pins comprises
five WBCs, namely W4,W3,W2,W1, and W0. and test bus
of width three is considered in Fig. 18. Test bus width is
three means that there are three wires in test bus namely
1, 2 and 3. Two out of these three test wires 1 and 2 are
connected to WBC W4 and W3 respectively while bus wire
3 is connected to WBC W2 W2 and W1 serially. So if we
shift any test vector bit to W2 then it can be shifted serially
to W1 or W0 (Fig. 20).

(11)trtotal =

n∑
i=1

n∑
j=1

tij

Fig. 18   TAM architecture for complete testing

Fig. 19   Wrapper Boundary Cell

397Journal of Electronic Testing (2023) 39:387–402	

1 3

7.3 � Reduction in TP in Incomplete Testing

Consider the example depicted in Fig. 12, where input
pins I2, I3, I6, I7, and I1 of core c17 are fed with test vec-
tors b4, b3, b2, b1, and b0 respectively. Test vector bits b4
and b3 are transported through test bus wires 1 and 2 and
applied to input pins I2 and I3 via WBC W4 and W3 in par-
allel, while test vector bits b2, b1, and b0 are transported
on test bus wire 3 and applied to input pins I6, I1, and I7
through WBCs W2,W1, and W0 sequentially. As a result,
when test vectors are applied one after another, the transi-
tions in test bit values will be calculated in two ways: the
transition in W4 and W3 will be calculated by hamming
distance due to parallel insertion, and the transition in
WBCs W2,W1, and W0 will be calculated by Eq. (11) due
to serial insertion. This will result in a reduction of TP
consumption in two ways. Firstly, in incomplete testing, a
smaller number of test vectors will lead to fewer bit flips,
ultimately reducing TP. Secondly, in incomplete testing,
pin I7 will not be tested, and test WBC W1 will become
transparent to input bits. Consequently, all the bit flips in
WBC W1 corresponding to input pin I7 will be eliminated
straightforwardly. Fewer transitions will reduce the TP.

8 � Experimental Results

To conduct the experiments, the SOC was utilized, and
the ISCAS’85 and ISCAS’89 benchmark circuits were
employed for testing purposes [42]. The experiment program
was coded in C++, while the test patterns were generated
using ATALANTA [43]. Additionally, the HOPE simulator

was utilized for fault simulation [44]. All the experiments
were carried out on the SOC shown in Fig. 21, which con-
sists of eight cores (c880, c2670, c432, c6288, s27, s298,
s444, s520) and two test buses. The total bus width of 48 is
distributed between both buses.

8.1 � Results for FC and TDV

The results for FC and TDV are presented in Table 1. Test
patterns and fault lists were generated for all the cores.
For complete testing a backtracking approach was used to
exclude hardware components associated with the backtrack
path from testing explained in section 4. Faults correspond-
ing to excluded hardwares is also removed. The total number
of faults for complete and incomplete testing are displayed
in columns 2 and 4 of Table 1, respectively, while the fault
reduction is shown in column 6. The TDV can be calculated
as the product of the number of test vectors and the num-
ber of bits in a test vector. The total TDV for complete and
incomplete testing are shown in columns 3 and 5, respec-
tively, while the reduction in TDV is shown in column 7.
The TDV comparison between complete and incomplete
testing is provided in Table 1. For cores c880, c2670, c432,
c6288, s27, s298, s444, and s520 the TDV reduction is
27.78%, 45.87%, 52.17%, 40.96%, 33.33%, 39.29%, 43.33%
and 48.77% respectively, while the fault coverage is compro-
mised up to 0.76%, 3.50%, 1.89%, 0.87%, 18.75%, 12.01%,
0.84% and 15.14% respectively.

8.2 � Results for TAT​

Table 2 presents the TAT for the optimal allocation of cores
to the test buses in the SOC. We used a PSO-based schedul-
ing algorithm proposed in section 6.1 for the optimal allo-
cation. The test bus has a width of 48, and we conducted
experiments for various bus width distributions, such as

Fig. 20   Modified TAM architecture for incomplete testing

Fig. 21   SOC used for experiments

398	 Journal of Electronic Testing (2023) 39:387–402

1 3

(1,47), (4,44), (28,20), (24,24), (32,16), and (40,8), which
are shown in the first column of Table 3. The optimal core-
to-bus allocation is depicted in columns 2 and 4, and the
TAT for complete and incomplete testing is represented
in columns 3 and 5, respectively. The reduction in TAT is
shown in column 6. For example, in row 1 of Table 2, the
bus width distribution between two test buses is (1,47), and
the optimal core-to-test bus allocation is 11122121, which
indicates that test bus 1 is allocated to core 1, 2, 3, 6, and 8,
while test bus 2 is allocated to core 4, 5, and 7. The TAT for
this optimal distribution of 11122121 is minimized TAT for
SOC, which is 57863 cycles for complete testing and 30074
cycles for incomplete testing. The TAT can be calculated in
real-time according to the system’s frequency. The reduc-
tion in TAT for this optimal distribution is shown in row
1, column 6, which is 48.03% for SOC. Similarly, TAT is
calculated for other combinations of test bus width distribu-
tions, and for each distribution, the savings are around 48%
on average, which is significant.

8.3 � Results for TP

8.3.1 � TP for Complete Testing

Table 3 shows the TP results obtained from experiments con-
ducted to calculate the TP for complete testing using differ-
ent random bus width distributions and optimal core-to-bus

scheduling, as described in section 7.1. In column 2, the
TP is calculated for all eight cores and the SOC, where the
bus width distribution is (1,47), and the core-to-bus alloca-
tion is 11122121. The TP calculated for cores c880, c2670,
c432, c6288, s27, s298, s444, and s520 are 44779, 187377,
5090603, 7475138, 223, 10303, 651, and 38519, respec-
tively. The TP for complete testing of the SOC is 12847593,
11178947, 11373648, 11127686, 12180563, and 12222238
for bus width distributions of (1,47), (4,44), (28,20), (24,24),
(32,16), and (40,8), respectively.

8.3.2 � TP for Incomplete Testing

The results of experiments for calculating TP for incom-
plete testing with various bus width distributions and opti-
mal core-to-bus scheduling are presented in Table 4. The
calculations were performed using the method described in
section 7.1. In column 2 of the table, the TP for all eight
cores and SOC is shown for the bus width distribution of (1,
47) and core to bus allocation of 11122121. The TP values
for individual cores such as c880, c2670, c432, c6288, s27,
s298, s444, and s520 are 31978, 97835, 2154776, 4302353,
112, 6549, 346, and 22443 respectively. The TP for incom-
plete testing of SOC is 6616392, 5858528, 5746942,
5602130, 6316776, and 6241246 for different bus width
distributions, namely, (1, 47), (4, 44), (28, 20), (24, 24),
(32, 16), and (40, 8) respectively.

Table 1   Results for FC and
TDV

Cores No of faults in
complete testing

TDV for
complete
testing

No. of faults
in incomplete
testing

TDV for
incomplete
testing

Fault
reduction
(%)

TDV
reduction
(%)

c432 524 2592 520 1872 0.76 27.78
c880 942 6000 909 3248 3.50 45.87
c2670 2747 45435 2695 21733 1.89 52.17
c7552 7550 74313 7484 43878 0.87 40.96
s27 32 63 26 42 18.75 33.33
s298 308 952 271 578 12.01 39.29
s444 474 1320 470 748 0.84 43.33
s520 555 2688 471 1377 15.14 48.77

Table 2   Results for TAT​ Buswidth
distribution

Optimal allocation TAT for SOC
(complete test)

Optimal allocation TAT for SOC
(incomplete test)

Reduction
in TAT
(%)

(1, 47) 11122121 57863 11122121 30074 48.03
(4, 44) 11122111 58885 11122111 30679 47.90
(28, 20) 22212222 64620 22212222 34080 47.26
(24, 24) 22212222 66056 22212222 34932 47.12
(32, 16) 22212222 63184 22212222 33228 47.41
(40, 8) 22212222 60312 22212222 31524 47.73

399Journal of Electronic Testing (2023) 39:387–402	

1 3

8.3.3 � Comparison of TP for Complete
and Incomplete Testing

The TP results for both complete and incomplete testing are
presented in Table 5. Column 1 and 2 display the bus width
distribution and optimal core-to-bus allocation, respec-
tively. Column 3 and 5 show the TP of SOC for complete
and incomplete testing, respectively. Finally, column 6 dis-
plays the reduction in TP. For instance, row 1 of Table 5
demonstrates the bus width distribution of (1,47), with the
optimal core-to-bus allocation of 11122121. The TP for this
optimal distribution is 12847593 for complete testing and
6616392 for incomplete testing. Row 1, column 6 of Table 5

indicates a TP reduction of 48.50% for SOC. Similarly, TP is
calculated for other test bus width distribution combinations.
For the bus width distribution of (24,24), the saving is up
to 49.66%. On average, the saving for other distributions is
also around 49%, which is highly significant.

9 � Conclusion

As per our knowledge, proposed method is novel and ben-
eficial in various fault-tolerant applications, including
audio, video, graphics, wireless communications, multi-
level cell STT-RAM, and neural networks. In such cases,

Table 3   Results for TP for
complete testing

Bus width distribution (1, 47) (4, 44) (28, 20) (24, 24) (32, 16) (40, 8)
Optimal allocation 11122121 11122111 22212222 22212222 22212222 22212222

Cores TP TP TP TP TP TP
c432 44779 37605 50050 50050 1945 50050
c880 187377 187377 55698 69008 187377 138426
c2670 5090603 3417327 5178381 5178381 4464549 5178381
c7552 7475138 7475138 6068577 5809305 7475138 6831883
s27 223 73 341 341 33 341
s298 10303 10303 463 463 10303 3019
s444 651 12605 18881 18881 2699 18881
s526 38519 38519 1257 1257 38519 1257
SOC 12847593 11178947 11373648 11127686 12180563 12222238

Table 4   Results for TP for
incomplete testing

Bus width distribution (1, 47) (4, 44) (28, 20) (24, 24) (32, 16) (40, 8)
Optimal allocation 11122121 11122111 22212222 22212222 22212222 22212222

Cores TP TP TP TP TP TP
c432.pat 31978 27402 36088 36088 1456 36088
c880.pat 97835 97835 28209 35299 97835 71851
c2670.pat 2154776 1395630 2196792 2196792 1884964 2196792
c7552.pat 4302353 4302353 3474765 3322563 4302353 3923667
s27.pat 112 30 199 199 16 199
s298.pat 6549 6549 277 277 6549 2037
s444.pat 346 6286 9949 9949 1160 9949
s526.pat 22443 22443 663 963 22443 663
SOC 6616392 5858528 5746942 5602130 6316776 6241246

Table 5   Results for comparison
of TP

Bus width
Distribution

Optimal allocation TP for SOC
(complete test)

Optimal allocation TP for SOC
(incomplete test)

Reduction
in TP (%)

(1, 47) 11122121 12847593 11122121 6616392 48.50
(4, 44) 11122111 11178947 11122111 5858528 47.59
(28, 20) 22212222 11373648 22212222 5746942 49.47
(24, 24) 22212222 11127686 22212222 5602130 49.66
(32, 16) 22212222 12180563 22212222 6316776 48.14
(40, 8) 22212222 12222238 22212222 6241246 48.94

400	 Journal of Electronic Testing (2023) 39:387–402

1 3

if some output bits can tolerate errors, computation can be
faster. Nevertheless, this strategy can be particularly useful
for large SOC devices where extensive testing may not be
practical due to TAT and TP constraints. Incomplete testing
is a useful tool for optimizing testing parameters such as
TDV, TAT, and TP, with a minor compromise in FC. This
approach is not only faster but also cost-effective, which can
increase customer access to devices. It. Our research shows
that incomplete testing can reduce TDV, TAT, and TP by up
to 52%, 48%, and 50%, respectively, with a trade-off of 1%
to 10% in FC.

10 � Future Work

The current paper focuses only on stuck-at-faults, but in
future research, we can explore other types of faults such as
bridge faults, delay faults etc. Furthermore, our method can
be extended to 3D hierarchical SOCs. Additionally, we can
propose an incomplete testing approach for specific applica-
tions such as image processing and more generally, digital
signal processing, wireless communication and other error
tolerant applications.

Data Availability  The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on
reasonable request. All data generated or analysed during this study are
included in this published article.

Declarations 

Competing Interests  The authors have no relevant financial or non-
financial interests to disclose. The authors have no competing interests to
declare that are relevant to the content of this article. All authors certify
that they have no affiliations with or involvement in any organization or
entity with any financial interest or non-financial interest in the subject
matter or materials discussed in this manuscript. The authors have no
financial or proprietary interests in any material discussed in this article.

References

	 1.	 Alampally S, Venkatesh RT, Shanmugasundaram P, Parekhji RA,
Agrawal VD (2011) An efficient test data reduction technique
through dynamic pattern mixing across multiple fault models. In
29th VLSI Test Symposium, pp 285–290

	 2.	 Biswas SN, Das SR, Petriu EM (2014) On system-on-chip test-
ing using hybrid test vector compression. IEEE Trans Instru-
ment Measure 63(11):2611–2619

	 3.	 Chakrabarty K (2000) Design of system-on-a-chip test access
architectures using integer linear programming. In Proceedings
18th IEEE VLSI Test Symposium, IEEE, pp 127–134

	 4.	 Chakrabarty K (2001) Optimal test access architectures for
system-on-a-chip. ACM Trans Des Autom Electron Syst
(TODAES) 6(1):26–49

	 5.	 Chandra A, Chakrabarty K (2000) Test data compression for
system-on-a-chip using Golomb codes. In Proceedings of 18th
IEEE VLSI Test Symposium, pp 113–120

	 6.	 Chandra A, Chakrabarty K (2001) Combining low-power scan
testing and test data compression for system-on-a-chip. In Pro-
ceedings of the 38th Design Automation Conference (IEEE Cat.
No. 01CH37232), pp 166–169

	 7.	 Chandra A, Chakrabarty K (2001) System-on-a-chip test-
data compression and decompression architectures based on
Golomb codes. IEEE Trans Comput Aided Des Integr Circ Syst
20(3):355–368

	 8.	 Chandra A, Chakrabarty K (2002) Reduction of SOC test data
volume, scan power and testing time using alternating run-
length codes. In Proceedings of 2002 Design Automation Con-
ference (IEEE Cat. No. 02CH37324), pp 673–678

	 9.	 Chandra A, Chakrabarty K (2002) Test data compression and
decompression based on internal scan chains and Golomb
coding. IEEE Trans Comput Aided Des Integr Circ Syst
21(6):715–722

	10.	 Chandrasekharan A, Eggersglüß S, Große D, Drechsler R (2018)
Approximation-aware testing for approximate circuits. In 2018
23rd Asia and South Pacific Design Automation Conference
(ASP-DAC), pp 239–244

	11.	 Chattopadhyay S, Reddy KS (2003) Genetic algorithm based test
scheduling and test access mechanism design for system-on-chips.
In Proceedings of 16th International Conference on VLSI Design,
2003. pp 341–346

	12.	 Djahromi A, Eltawil A, Kurdahi F (2007) Exploiting fault toler-
ance towards power efficient wireless multimedia applications.
In 2007 4th IEEE Consumer Communications And Networking
Conference, pp 400–404

	13.	 Dutt S, Chauhan A, Bhadoriya R, Nandi S, Trivedi G (2015) A
high-performance energy-efficient hybrid redundant mac for error-
resilient applications. In 2015 28th International Conference on
VLSI Design. IEEE, pp 351–356

	14.	 Eltawil A, Kurdahi F (2005) Improving effective yield through
error tolerant system design. In 2005 12th IEEE International
Conference on Electronics, Circuits and Systems, pp 1–4

	15.	 Gebregiorgis A, Tahoori M (2019) Test pattern generation for
approximate circuits based on Boolean satisfiability. In 2019
Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp 1028–1033

	16.	 Giri C, Tipparthi DKR, Chattopadhyay S (2007) Genetic algo-
rithm based approach for hierarchical SOC test scheduling. In
2007 International Conference on Computing: Theory and Appli-
cations (ICCTA’07), pp 141–145

	17.	 Giri C, Sarkar S, Chattopadhyay S (2007) A genetic algorithm
based heuristic technique for power constrained test scheduling in
core-based SOCs. In 2007 IFIP International Conference on Very
Large Scale Integration, pp 320–323

	18.	 Harmanani HM, Sawan R (2007) Test bus assignment, sizing,
and partitioning for system-on-chip. Can J Electr Comput Eng
32(3):165–175

	19.	 Iyengar V, Chakrabarty K, Marinissen EJ (2002) Test wrapper
and test access mechanism co-optimization for system-on-chip. J
Electron Test 18(2):213–230

	20.	 Jas A, Ghosh-Dastidar J, Ng ME, Touba NA (2003) An efficient
test vector compression scheme using selective Huffman coding.
IEEE Trans Comput Aided Des Integr Circ Syst 22(6):797–806

	21.	 Kennedy J, Eberhart R (1995) Particle swarm optimization. In
Proceedings of IEEE International Conference on Neural Net-
works, vol. 4, pp 1942–1948

	22.	 Kennedy J, Eberhart RC (1997) A discrete binary version of the
particle swarm algorithm. In 1997 IEEE International Conference
on Systems, Man, and Cybernetics. Computational Cybernetics
and Simulation, vol. 5, pp 4104–4108

	23.	 Li J, Hu Y, Li X (2007) Impact-factor-guided x-filling for peak
power reduction during test. In TENCON 2007 - 2007 IEEE
Region 10 Conference, pp 1–4

401Journal of Electronic Testing (2023) 39:387–402	

1 3

	24.	 Li L, Chakrabarty K, Touba N (2003) Test data compression using
dictionaries with selective entries and fixed-length indices. ACM
Trans Des Autom Electr Syst 8:470–490

	25.	 Lin X, Rajski J, Pomeranz I, Reddy SM (2001) On static test com-
paction and test pattern ordering for scan designs. In Proceedings
of International Test Conference 2001 (Cat. No. 01CH37260), pp
1088–1097

	26.	 Liu W, Lombardi F, Shulte MA (2020) Retrospective and prospec-
tive view of approximate computing. Point of View. Proceedings
of the IEEE

	27.	 Lu S, Chuang H, Lai G, Lai B, Huang Y (2009) Efficient test pat-
tern compression techniques based on complementary Huffman
coding. In 2009 IEEE Circuits and Systems International Confer-
ence on Testing and Diagnosis, pp 1–4

	28.	 Mehla US, Dasgupta KS, Devashrayee NM (2010) Hamming
distance based reordering and column wise bit stuffing with dif-
ference vector: a better scheme for test data compression with
run length based codes. In 2010 23rd International Conference
on VLSI Design, pp 33–38

	29.	 Mitra S, Kim KS (2002) X-compact: an efficient response compac-
tion technique for test cost reduction. In Proceedings of Interna-
tional Test Conference, pp 311–320

	30.	 Mitra S, Kim KS (2004) X-compact: an efficient response compac-
tion technique. IEEE Trans Comput Aided Des Integr Circ Syst
23(3):421–432

	31.	 Moons B, De Brabandere B, Van Gool L, Verhelst M (2016)
Energy-efficient convnets through approximate computing. In
2016 IEEE Winter Conference on Applications of Computer
Vision (WACV), pp 1–8

	32.	 Rao V, Nowrouxian B (1996) A novel high-speed parallel mul-
tiply-accumulate arithmetic architecture employing modified
radix-4 signed-binary recoding. In Proceeding of the 39th Mid-
west Symposium on Circuits and Systems, IEEE, vol. 1, pp 57–60

	33.	 Rosinger PM, Al-Hashimi BM, Nicolici N (2002) Power profile
manipulation: a new approach for reducing test application time
under power constraints. IEEE Trans Comput Aided Des Integr
Circ Syst 21(10):1217–1225

	34.	 Samii S, Larsson E, Chakrabarty K, Peng Z (2006) Cycle-accurate
test power modeling and its application to SOC test scheduling. In
Test Conference, ITC’06. IEEE International. IEEE, pp 1–10

	35.	 Sampaio F, Shafique M, Zatt B, Bampi S, Henkel J (2015)
Approximation-aware multi-level cells STT-RAM cache architec-
ture. In 2015 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), pp 79–88

	36.	 Sivanantham S, Manuel JP, Sarathkumar K, Mallick PS, Perinbam
JRP (2012) Reduction of test power and test data volume by power
aware compression scheme. In 2012 International Conference on
Advances in Computing and Communications, pp 158–161

	37.	 Shin D, Gupta S (2010) Approximate logic synthesis for error tol-
erant applications. In 2010 Design, Automation & Test In Europe
Conference & Exhibition (DATE 2010), pp 957–960

	38.	 Torres-Huitzil C, Girau B (2017) Fault and error tolerance in neu-
ral networks: a review. IEEE Access 5:17322–17341

	39.	 Traiola M, Virazel A, Girard P, Barbareschi M, Bosio A (2018)
Testing approximate digital circuits: Challenges and opportuni-
ties. In 2018 IEEE 19th Latin-American Test Symposium (LATS),
pp 1–6

	40.	 Wu T-B, Liu H-Z, Liu P-X (2013) Efficient test compression
technique for SOC based on block merging and eight coding. J
Electron Test 29(6):849–859. [Online]. Available at: https://​doi.​
org/​10.​1007/​s10836-​013-​5415-7

	41.	 Yu Y, Yang Z, Peng X (2012) Test data compression based on vari-
able prefix dual-run-length code. In 2012 IEEE International Instru-
mentation and Measurement Technology Conference Proceedings,
pp 2537–2542

	42.	 [Online]. Available: http://​ddd.​fit.​cvut.​cz/​prj/​Bench​marks/.
Accessed Feb 2019

	43.	 [Online]. Available: http://​ddd.​fit.​cvut.​cz/​prj/​Atala​nta-M/.
Accessed Feb 2019

	44.	 [Online]. Available: http://​ddd.​fit.​cvut.​cz/​index.​php?​page=​downl​
oad. Accessed Feb 2019

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Kunwer Mrityunjay Singh  is a researcher and lecturer hailing from India.
He earned his Bachelor of Science degree in Physics, Chemistry, and
Mathematics from Ewing Christian College in Allahabad, Uttar Pradesh
in 2007. Subsequently, he pursued a Bachelor of Technology in Electron-
ics and Communication Engineering from the University of Allahabad in
2010. After completing his undergraduate studies, he embarked on a dual
degree program of M.Tech. and Ph.D. in the Department of Computer
Science at the Indian Institute of Technology in Guwahati, India. He cur-
rently works as a lecturer of Electronics Engineering in the Department
of Technical Education, Government of Uttar Pradesh, having secured
the second rank statewide in a highly competitive competition organized
by the Uttar Pradesh Public Service Commission (UPPSC) to obtain the
position. He has over six years of teaching experience and is a qualified
Graduate Aptitude Test in Engineering (GATE) candidate, having suc-
cessfully cleared the test in 2011, 2012, and 2013. His research interests
include VLSI testing and design for testability, fault tolerance, network
on chip, and embedded systems, and he has published research papers in
SOC testing and NOC testing.

Jatindra Kumar Deka  is an academic and researcher who received his
B.E. degree in Electronics from the Motilal Nehru National Institute
of Technology Allahabad, India in 1988. He went on to pursue his
M.Tech in Computer Science and Information Technology from the
Department of Computer Science and Engineering, Indian Institute
of Technology Kharagpur, India, in 1993. Later, in 2001, he obtained
his Ph.D. from the Department of Computer Science and Engineer-
ing, Indian Institute of Technology Kharagpur. Currently, Jatindra is
a Professor in the Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati, India, where he is engaged
in academic and industry-sponsored research related to VLSI Testing
and Design for Testability. His research interests include Formal Mod-
eling and Verification, CAD for VLSI and Embedded Systems (Design,
Testing, and Verification), and Data Mining. He has published more
than 40 research papers to his credit and is a member of the Institute
of Electrical and Electronics Engineers (IEEE).

Santosh Biswas  is a researcher and academician from India. He
received his B.E. degree in 2001 from the National Institute of Tech-
nology Durgapur, India. Subsequently, he pursued his MS from the
Department of Electrical Engineering at the Indian Institute of Tech-
nology Kharagpur, India, and graduated with the highest institute
CGPA in 2004. In 2008, he completed his PhD from the Department of
Computer Science and Engineering at the Indian Institute of Technol-
ogy Kharagpur. Afterward, he joined the Department of Computer Sci-
ence and Engineering at the Indian Institute of Technology Guwahati
in 2009 and is currently serving as an Associate Professor. Dr. Biswas
has been an integral part of several research projects sponsored by
Industry and Government agencies. His research interests include VLSI

https://doi.org/10.1007/s10836-013-5415-7
https://doi.org/10.1007/s10836-013-5415-7
http://ddd.fit.cvut.cz/prj/Benchmarks/
http://ddd.fit.cvut.cz/prj/Atalanta-M/
http://ddd.fit.cvut.cz/index.php?page=download
http://ddd.fit.cvut.cz/index.php?page=download

402	 Journal of Electronic Testing (2023) 39:387–402

1 3

Testing and Design for Testability, Fault Tolerance, Network Security,
Discrete-event systems, and Embedded Systems. He has published
more than 130 research papers and is a member of IEEE. Along with
academic research, he is also actively engaged in industry-sponsored

research in VLSI Testing and Design for Testability. Dr. Biswas is
highly regarded for his contributions to the field and his expertise in
VLSI testing and fault-tolerant computing.

	Incomplete Testing of SOC
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Proposed Method
	3.1 Step 1:
	3.2 Step 2:
	3.3 Step 3:

	4 Impact on Fault Coverage (FC)
	5 Impact on TDV
	5.1 Case 1: When Backtrack Path Does Not Terminate on Any Input Node
	5.2 Case 2: When Backtrack Path Terminates on Any Input Node

	6 Impact on TAT​
	6.1 Computation of TAT​
	6.1.1 Particle Structure
	6.1.2 Initial Population and Position
	6.1.3 Fitness Function

	6.2 Reduction in TAT​
	6.2.1 When Backtrack Path Does Not Terminate on Any Input Node
	6.2.2 When Backtrack Path Terminates on Any Input Node

	7 Impact on TP
	7.1 Computation of TP
	7.1.1 Parallel Application
	7.1.2 Serial Application

	7.2 TAM Architecture for Incomplete Testing
	7.3 Reduction in TP in Incomplete Testing

	8 Experimental Results
	8.1 Results for FC and TDV
	8.2 Results for TAT​
	8.3 Results for TP
	8.3.1 TP for Complete Testing
	8.3.2 TP for Incomplete Testing
	8.3.3 Comparison of TP for Complete and Incomplete Testing

	9 Conclusion
	10 Future Work
	References

