
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:371–385
https://doi.org/10.1007/s10836-023-06071-w

Multi‑Objective Optimization Based Test Pattern Generation
for Hardware Trojan Detection

Vijaypal Singh Rathor1  · Deepak Singh2 · Simranjit Singh3 · Mohit Sajwan3

Received: 9 January 2023 / Accepted: 17 May 2023 / Published online: 16 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Hardware Trojan (HT) is a severe security threat during the development of an integrated circuit that can deviate the IC
from its normal function and/or leak sensitive information during in-field operations. Trojans are often inserted during the
fabrication phase, and to have Trojan-free ICs; it is highly desirable to detect them during post-silicon testing. Different
test pattern generation-based HT detection techniques are reported in the literature to detect the Trojan during post-silicon
testing. The existing methods provide low coverage and require a large number of test patterns. This paper proposes a new
test pattern generation-based HT detection technique that provides high coverage while requiring less number of patterns.
The proposed technique generates the optimal number of test patterns that activate the rare events by framing the problem as
multi-objective optimization and solving it through a non-dominated sorting genetic algorithm (NSGA-II). The Trojans are
mostly inserted using rare-triggered nodes (highly vulnerable, low controllable, and low observable). Thus, our technique
applies the generated patterns during post-silicon testing to activate Trojans. Further, we also present the use of checker
(detection) logic along with a proposed approach to effectively detect the Trojan during testing. The experimental evalua-
tion on ISCAS benchmarks shows that the proposed technique provides 12 times higher trigger coverage with 1/3 fewer test
patterns than the best-known existing genetic algorithm-based technique.

Keywords  Hardware Trojan · Rare-triggered nets · Test pattern generation · Multi-objective optimization · Genetic
Algorithm · Hardware testing

1  Introduction

The globalization in semiconductor industries makes the
development of integrated circuits (ICs) vulnerable to a
malicious inclusion called hardware Trojan (HT) inser-
tion [3, 23]. Due to their stealthy nature, HTs are mostly
inserted at the rare nodes; thus, they are not detected dur-
ing conventional verification and validation [3]. The HT
can be inserted during different phases of IC design [3].
The attacker can use the inserted Trojan to infer confiden-
tial information and/or to maliciously modify the original
design functionality during in-field operations or harm the
company’s reputation [15]. However, several design tech-
niques such as logic obfuscation, camouflaging, etc., are
reported [3, 21, 22, 31] that prevent the Trojan insertion
during the IC life cycle at the cost of some design over-
head. HT detection is a prominent approach for identify-
ing malicious inclusion without introducing any overhead.
Several HT detection techniques are reported in the litera-
ture to detect the Trojan during pre-silicon [19, 31, 36]

Responsible Editor: U. Guin

 *	 Vijaypal Singh Rathor
	 vrathor@iiitdmj.ac.in

	 Deepak Singh
	 dsingh.cs@nitrr.ac.in

	 Simranjit Singh
	 simranjit.singh@bennett.edu.in

	 Mohit Sajwan
	 mohit.sajwan@bennett.edu.in

1	 PDPM Indian Institute of Information Technology, Design
and Manufacturing, Jabalpur, India

2	 Department of CSE, National Institute of Technology,
Raipur, India

3	 Department of Computer Science Engineering, Bennett
University, Greater Noida, India

http://orcid.org/0000-0002-0326-3282
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06071-w&domain=pdf

372	 Journal of Electronic Testing (2023) 39:371–385

1 3

and post-silicon validation using logic testing/automatic
test pattern generation (ATPG) [4, 18] and/or side-channel
analysis (SCA) [14, 33]. Although pre-silicon detection
techniques can save high fabrication costs if a Trojan
is detected during the design phase, the attacker mostly
inserts the Trojan in the fabrication house due to outsourc-
ing of the fabrication facility. Therefore, the detection of
HT during post-silicon testing is most important.

The SCA-based post-silicon techniques measure physical
parameters such as power, delay, etc., and compare them
with the golden model to identify the malicious inclusion
[7, 33]. The Trojan insertion affects these parameters. Any
significant deviation in these parameters will be considered a
Trojan. Due to environment noise and process variation, the
detection of stealthy and small combinational Trojans (hav-
ing few gates) is challenging using SCA-based approaches
[4, 14]. On the other hand, the ATPG based methods are
most suitable to detect small and combinational Trojans dur-
ing post-silicon. However, they are ineffective in detecting
sequential and analog Trojans [31]. Therefore, this paper
considers the problem of detecting the small and combi-
national Trojans using ATPG based methods during post-
silicon testing.

An adversary can insert the Trojan anywhere in the
design. Detecting all combinational Trojans in a design is
an exponential problem [37]. However, the non-judicious/
random insertion of Trojan either may make it invalid (no
impact on the design) or may make it easy to detect it with
normal functional testing [4, 5, 9, 22]. Therefore, an adver-
sary inserts the Trojan judiciously at the rare nodes to make
it stealthy or evade functional testing as reported in [4, 9,
22]. Hence, the ATPG based techniques generate test pat-
terns, also referred to as test vectors/cases, to activate the
rare nodes for detecting the small/stealthy combinational
Trojans during functional testing [4, 24]. The test pattern
denotes the input value/pattern or sequence of bits (i.e.,
0101010) applied at the primary input of the digital circuit
to validate its output. It means the test patterns are the set
of input patterns applied during testing to verify the digital
circuit functionality. Hence, the IC designer aims to generate
such test patterns whose application can activate rare events
and detect the existence of combinational Trojans in digital
circuits/IC during testing.

Several ATPG based techniques such as multiple excita-
tions of rare occurrences (MERO) [4], genetic algorithm
(GA) based [24] and advised GA (AGA) based, [18] tech-
niques are proposed in the literature, that generate the pat-
terns for combinational HT detection. The GA-based tech-
niques have gained more attention due to their high coverage
over the other methods in all these techniques. But the exist-
ing GA based techniques generate a significantly large num-
ber of test patterns to achieve the desired trigger coverage.
This is because they do not simultaneously focus on the
minimization of patterns along with achieving high coverage
during testing. Further, they are also inefficient in activat-
ing hard-to-detect or low-triggering probability Trojans. It
is highly desirable to achieve high trigger/Trojan coverage
along with detecting hard-to-activate HTs with minimum
patterns to reduce the testing time/cost. Furthermore, the HT
detection requires activating and propagating its effect to an
output [4, 6]. But considering the Trojan-effect propagation
while generating the test patterns, one needs to set the logic
values of the signals responsible for propagation, resulting
in reduced Trigger coverage. Since the existing techniques
consider effect propagation at the output for HT detection,
they may fail to generate the patterns that provide high trig-
ger coverage.

For example, consider a circuit, as shown in Fig. 1(a),
where a functional Trojan is inserted using trigger T1 and
payload T2. In this case, the pattern a=1, b=1 activates and
propagates the effect of inserted Trojan to the output. Sup-
pose we assume there are multiple combinational Trojans in
a design and there exists another pattern that activates more
Trojans (but not propagates effect) than the a=1 and b=1.
In that case, this pattern provides high trigger coverage over
the a=1 and b=1. However, Trojan can only be detected
when its effect can be observed at the output. It is not always
possible/required propagating effect of some Trojans (called
non-functional/parametric) at the output. The sample exam-
ple of a non-functional Trojan is shown in Fig. 1(b).

The aim of inserting such Trojans may be to increase
the design overhead or leak sensitive information. These
Trojans are not inserted to change the functionality; they
are just inserted to observe the signal value or other side
channel parameters to leak sensitive information. Lin et al.
[15] has presented a Trojan called Malicious Off-Chip

Fig. 1   a Functional Trojan,
effect propagate to the output
and Trojan activation change
the output b Non-Functional
Trojan, the effect does not
propagate to the output and Tro-
jan activation does not change
the output. These Trojans are
inserted using trigger (T1) and
payload (T2) at signal S

373Journal of Electronic Testing (2023) 39:371–385	

1 3

Leakage Enabled by Side-Channels (MOLES) to leak the
cryptographic key. Such type of Trojans does not require
propagation effect at the primary output. Therefore, gen-
erating the patterns without considering the Trojan effect’s
propagation increases trigger coverage significantly.

Although it is important to detect the Trojan in the IC
before its deployment, the ATPG based techniques can-
not ensure the detection of all types of HTs due to the
large space and diverse forms of Trojans [6]. Thus, the
researchers have also used design-for-trust (DFT), where
an additional detection (Checker) circuitry is judiciously
inserted in design to observe/detect the Trojan during in-
field operations [6]. HT payload modifies the original
logic value at a node on its activation. It also disrupts the
correlation between the logic values of that node and its
neighbourhood nodes [6]. Therefore, this checker monitors
the relationship between neighbourhood signals logic val-
ues, and any deviation in expected correlation is reported
as an error signal. However, Chakraborty et al. [6] only use
this checker logic for detecting the Trojan during online
monitoring; they do not attempt to detect the Trojan during
post-silicon testing. Since online (in-filed during applica-
tion execution time) detection can only bypass the HT or
disable the chip, it does not provide any opportunities to
fix or reject the design.

Problem Statement and Major Contributions  Since this
paper considers the threat model as the attacker is in the
fabrication house, where he can insert the Trojan in multiple
ICs, it is required to test every chip after fabrication to ensure
it is Trojan-free. If the number of test patterns is more, it will
significantly increase the testing time. Therefore, the ATPG
based HT detection technique aims to achieve high cover-
age by generating minimum patterns. The test generation
problem for HT detection looks like an optimization problem
because we have to generate minimum patterns and achieve
high trigger coverage. Therefore, we can formulate this
problem as a multi-objective optimization problem, where
two complementary objectives (minimum test patterns and
maximum coverage) must be simultaneously satisfied. How-
ever, the existing ATPG based techniques mainly focus on
achieving high coverage. They do not simultaneously focus
on both objectives. In other words, they have not considered
ATPG as a multi-objective optimization problem. There-
fore, they require large patterns to achieve desired cover-
age. Further, due to consideration of the propagation HT
effect at the output, they failed to generate patterns to trig-
ger extremely hard-to-activate Trojans. Therefore, this paper
formulates the problem test generation for HT detection as
a multi-objective optimization problem. To the best of our
knowledge, we are the first to solve HT detection problems
using multi-objective optimization.

The following are the major contributions of this paper:

1.	 Present the analysis of the existing ATPG and DFT
based HT detection approaches.

2.	 Propose a first multi-objective optimization-based tech-
nique for test pattern generation that provides high trig-
ger coverage with minimum patterns.

3.	 The test generation problem is framed as a multi-objective
optimization problem and uses the non-dominated sorting
genetic algorithm (NSGA-II) to generate test patterns to
activate the combinational Trojan.

4.	 Propose a procedure that combines the proposed ATPG
and checker insertion approach to provide complete pro-
tection against the hardware Trojan threat during the IC
life cycle.

5.	 Experimental evaluation of the proposed HT detec-
tion technique on the ISCAS-85 benchmarks provides,
on average, 12 times higher trigger coverage with 1/3
reduced patterns over the best-known existing technique.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an analysis of existing HT detection tech-
niques. Section 3 presents the proposed multi-objective
optimization based test pattern generation technique for HT
detection. The experimental results and analysis are given
in Section 4. Finally, Section 5 concludes and presents the
future work of this paper.

2 � Analysis of Existing HT Detection Techniques

Various techniques are reported in the literature to detect
hardware Trojans during pre-silicon and post-silicon. Hicks
et al. [13] first addressed the problem of identifying HTs
inserted at design time by formulating it as an unused cir-
cuit identification problem. However, it can not be safely
assumed that “used circuits" are free of HT and “unused
circuit" contain HT [29]. To reduce the false positive,
Waksman et al. [30] present a technique called functional
analysis for nearly unused circuit identification (FANCI)
that applies Boolean function analysis to flag suspicious
signals which have a weak impact on output. The attacker
can insert the Trojan so that the HT-related signals exhibit
the same effect on output as functional signals [34]. Fur-
ther, Zhang et al. [35, 36] present a technique called Veri-
Trust, that detects an HT by identifying the inputs in the
combinational logic cone that seems redundant for the
normal functionality of the output wire under non-trigger
condition. However, this technique also fails to detect the
Trojans with implicit malicious behaviour [11].

Besides the above, recently, several machine learning-
based HT detection techniques are also reported in the
literature. These techniques use different Trojan features
to classify the circuits into different groups and identify
the group with Trojan-infected circuits. Oya et al. [19]

374	 Journal of Electronic Testing (2023) 39:371–385

1 3

present a score-based technique that identifies the nets
included in HTs based on several extracted features. The
major challenge in this approach is setting the correct
threshold for classification. Further, Oya et al. [12] also
extract the five structural Trojan features and learn the
support vector machine (SVM) to identify the Trojan nets
in the gate-level netlist. Instead of five features, Salmani
[26] statically analyze the combinational controllability
(CC) and combinational observability (CO) values of
each signal and classify it as a Trojan-infected or Trojan-
free using K-Means clustering. However, this technique
cannot classify the nets where the inter-cluster distance
between the signals is less than 100. Further, choosing a
proper threshold for classification is also a big challenge.
To overcome these limitations and improve the detection
rate, Xie et al. [32] use the SVM with additional features
and K-Means clustering.

However, all these techniques only detect the Trojan
inserted during the design phase, whereas the attacker can
also insert the Trojan during the fabrication phase. There-
fore, various test pattern generation based techniques have
been reported in the literature to detect the Trojan during
post-silicon testing. First, Chakraborty et al. [4] present a
technique called MERO that generates the test vectors to
activate the low triggering probability conditions multi-
ple times during post-silicon to facilitate Trojans detec-
tion. Since MERO uses a simple heuristic, i.e., perturbs
one bit for test generation, it is not adequate to activate
all possible rare nodes and fails to excite hard-to-activate
sites [24]. To improve the Trojan and trigger coverage,
Saha et al. [24] present a genetic algorithm (GA) and
Boolean satisfiability (SAT) based test pattern generation
technique. Though this approach improves the coverage,
the SAT requires a long time to generate the patterns that
activate hard-to-trigger sites. Therefore, an advised GA
(AGA) based approach is reported that also includes CC
and CO parameters in the fitness function while generating
the test vectors [18].

Besides the above, Liu et al. [16] have applied the genetic
algorithm in the training phase of a probabilistic neural net-
work for detecting the hardware Trojan using the side chan-
nel parameters. Further, Pan and Mishra [20] have proposed
reinforcement learning based automatic test generation for
HT detection. This technique provides high trigger coverage
while reducing test generation time. A detailed survey of
different HT detection methods can also be found in [8]. All
the above existing approaches generate the patterns without
minimizing them or considering only objective, i.e., trigger
coverage. Thus, they require large patterns to provide a given
trigger coverage. However, Shi et al. [28] proposed a cor-
relation analysis and genetic algorithm based ATPG method
that reduces the test patterns by reordering them to achieve
a given coverage. But this technique also uses a genetic

algorithm only for a single objective, i.e., test reordering to
improve Trojan activation or trigger coverage.

Since the existing HT detection techniques cannot detect
all the HTs due to their diverse forms, several DFT tech-
niques are also reported, which increases the triggering
probability of Trojans improving their detection during post-
silicon testing [9, 22, 25]. However, these techniques are
ineffective and could not facilitate detection during online
monitoring [6, 27]. Therefore, to facilitate detection during
in-field operation, a checker logic is inserted into the design
that observes the Trojan behaviour [2, 6]. Any undesirable
behaviour is reported with a high error signal. Unfortunately,
these techniques are ineffective in detecting the Trojan (dis-
cussed above) and do not provide any opportunities to fix
and reject the design before its deployment.

To overcome the limitations of existing methods, a new
technique for HT detection has been proposed that utilizes
the Non-Dominated Sorting Genetic Algorithm (NSGA-II)
to generate patterns. These patterns provide high trigger cov-
erage with a low number of patterns. Additionally, the pro-
posed technique can be easily combined with a DFT-based
online monitoring technique to observe Trojan behaviour
during testing effectively.

3 � Proposed Multi‑Objective Optimization
Based HT Detection Technique

This section first presents the identification of rare nodes,
the proposed multi-objective optimization framework for
test pattern generation and the NSGA-II algorithm. Fur-
ther, it presents the insertion of existing checker logic [6]
for observing Trojan behaviour followed by the procedure
for HT detection.

3.1 � Rare‑Triggered Nodes Identification

Since Trojans are mostly inserted at the rare-triggered nodes
[22, 24, 25], we first identify the rare-triggered nodes in
a given circuit using the vulnerability factor (VF) metric
[22], i.e., VF = P0 − P1 along with controllability (CC) and
observability (CO) [10]. Here, CC and CO denote the dif-
ficulty for setting and observing a circuit net to logic ‘0’ or
‘1’ respectively [10]. Here, P0 and P1 are the probability
of getting logic (i.e., transition probability) ’0’ and ’1’ at a
node, respectively. The value of VF lies between -1 to 1. The
higher |VF| (absolute) value indicates higher vulnerability/
rareness to Trojan insertion. Figure 2 shows the insertion of
Trojan using G5 and G6. Activating this Trojan with trig-
ger Tg1 will change the internal signal of the circuit if it is
functional. However, alteration in the output of IC depends
on the propagation of the effect of Trojan. If the effect of
the Trojan is not propagated at the output on activation, then

375Journal of Electronic Testing (2023) 39:371–385	

1 3

such Trojan will be dormant forever. Therefore, the attacker
generally inserts the Trojan such that its effect will propagate
at the output on its activation. Since activation of rare nodes
activates the Trojan, there is a high (or 100%) probability of
altering the output of IC on activation of rare nodes/Trojan.

In the given example, we use the nodes G5 and G6, whose
VF values are 0.875, as rare nodes to insert the Trojan. But
it is required to have a specific value that can decide which
nodes are rare. Similar to the existing methods [18, 22, 24],
we also use the vulnerability threshold ( VTh ) value to classify
a node whether it is rare-triggered or not. If the value of VF
of a node is more than VTh , then that node is considered rare-
triggered (i.e., vulnerable to Trojan insertion); otherwise, it
is not. It is reported in [18, 24] that the Trojans inserted at
the nodes having transition probability or VF less than 0.9
cannot evade functional testing. Therefore, the attacker uses
very low triggering probability nodes to insert the Trojan.
Thus, we consider two VTh values, i.e., 0.90 and 0.95 to iden-
tify the rare nodes in simulation.

3.2 � Proposed Multi‑Objective Optimization Based
Test Generation Method

We propose a multi-objective optimization based test gener-
ation technique that generates the test vectors to activate the
rare nodes to facilitate Trojan detection during post-silicon
testing. The proposed method formulates the problem of test
pattern generation to optimize the following two objectives:

•	 Objective-1: Maximizing the trigger coverage so that
the Trojan detection/activation could be improved during
post-silicon testing.

•	 Objective-2: Minimizing the number of test patterns in
a subset or solution so that testing time can be reduced.

This problem perfectly matches the multi-objective opti-
mization problem. Meta-heuristic algorithms are compu-
tational intelligence methods especially employed for solv-
ing advanced optimization problems [1]. They efficiently
explore the search space in order to find near-optimal
solutions. The Non-Dominated Sorting Genetic Algorithm
(NSGA-II) [17] is the most popular Meta-heuristic Pareto-
based multi-objective optimization algorithm effective in
solving such problems. Thus, we used NSGA-II to solve our
problem, as detailed in the next subsection. The NSGA-II
is very effective over the previously used GA and AGA
based methods in handling the noise, finding diverse solu-
tions with multiple objectives by generating Pareto fronts.
The main advantage of NSGA-II over the previously pro-
posed GA based test generation methods is that it generates
the optimal patterns by handling multiple objectives (i.e.,
maximum trigger coverage with minimum test patterns).
Whereas the GA and AGA based methods generate the pat-
terns only considering a single objective, i.e., trigger cover-
age. In addition, the broader applicability suggests that the
NSGA-II is an acceptable choice for generating the optimal
test patterns.

3.2.1 � NSGA‑II Based Algorithm for Optimal Test Generation

The proposed method randomly considers the M number of
test patterns of each D length equal to the number of primary
inputs (PIs) in the circuit. Though the value of M can vary,
we used the M = 50 to evaluate the proposed method. A total
M × 2D number of test patterns will be used as a search space
for a circuit with a D number of PIs. For the practical size of D,
a huge pool combination of different sets of M test vectors with
high trigger coverage is possible from the total patterns. Here,
we employ NSGA-II as shown in Algorithm 1, to identified
the optimal subset of test patterns (size N) ranging between
0 < N <= M from this huge set. NSGA-II was developed to
address the limitations of previous evolutionary algorithms,
which lacked elitism and utilized a sharing parameter to
maintain a diverse Pareto set. The algorithm employs a quick
non-dominated sorting algorithm, as well as sharing, elitism,
and crowded comparison. Elitism improves the algorithm’s
convergence rate by preserving the best solutions from the
previous iteration. Furthermore, its adoption of a rapid non-
dominated sorting algorithm results in a substantial decrease
in computational complexity. NSGA-II is a population-based
search approach where the selected subsets constitute the
population, and each solution of the population is termed as
an individual/chromosome.

Fig. 2   The example circuit for showing how the Trojan can be
inserted using the nets G5 and G6. Here, Tg1 denotes the Trigger of
the Trojan. This Trojan will activate with the pattern “11001100". On
activation it will flip the original signal of the circuit

376	 Journal of Electronic Testing (2023) 39:371–385

1 3

Individual/Chromosome Representation  Figure 3 presents
the structure of an individual used in the proposed method.
Each individual in the population represents the set of test
patterns. The individual is a combination of hundreds and
thousands of genes (i.e., test patterns), and the size of a
gene can be varied. In this figure, the single chromosome

consists of length M = 10 (columns) genes, denoting the
maximum number of test cases possible in a test set. In the
coding of individual representation, the numbers of genes
are fixed to the number of test patterns in a subset. Each
gene will be of D + 1 dimensions encoded as the vector of
a binary string. The first dimension of the gene is a binary
value (i.e., ‘1’/‘0’) indicating the valid/favourable or invalid/
unfavourable test pattern in the individual. In the example,
the five patterns as described with blue colour are assumed
to be favourable/valid. The rest D dimension of the gene
represents the bit values treated as an input test pattern. By
default, we use 50 genes, and each gene will have a test pat-
tern to build the test generator model.

Now, the NSGA-II as shown in Algorithm 1 starts with
the random initialization of chromosomes. Further, the ini-
tial population is updated by performing selection, crosso-
ver, and mutation operations. Next, the fitness of each chro-
mosome is calculated as defined below.

Fitness Function  The selection of diverse test patterns in
a subset for the next generation is vital to achieving high
trigger coverage. Since we have formulated the problem of
test pattern generation based on the above-mentioned two
objectives, i.e., maximum coverage with minimum patterns,
we also define the two fitness functions. We consider the
first fitness as an average number of test patterns used in a
subset. Considering Msp is the number of patterns selected/
favourable from the total patterns M in an individual. Thus,
the first fitness is evaluated as follows:

where obj1(individual) is the average number of the test pat-
terns selected by the optimal model, we consider this as one
of the fitness criteria. The goal is to minimize the value of
obj1 by reducing the test patterns in the individuals. Now the
second objective of our framework is to have a maximum
trigger coverage or activation of maximum rare combina-
tions by the corresponding test pattern. Before defining the
trigger coverage, we quantify the rare nodes as follows:

(1)minimize obj1(individual) = Msp∕M

Fig. 3   The representation of
an individual/chromosome or a
test-set in our multi-objective
optimization technique. The
binary value (i.e., ‘1’/‘0’) in
first row indicates the valid/
favorable or invalid/unfavorable
test pattern

377Journal of Electronic Testing (2023) 39:371–385	

1 3

where Ri represents the ith rare node. VF denotes the vulner-
ability factor of a rare node [22]. The CC0 and CC1 are the
controllability values for logic ‘0’ and ‘1’, and CO is the
observability value of the rare nodes, also known as SCOAP
parameters for measuring the testability of the circuit [10].
Further, the c1 , � and � are constants used for making nor-
malized values and matching two parts of the relationship
[18]. Finally, based on the above-computed value of rare
nodes, we define the fitness function for evaluating the test
vectors of an individual, as shown below.

where R is the number of rare nodes and RVi is the rareness
value of a rare node i. The obj2(individual) denotes the fit-
ness value of an individual in the population. An individual
is more valuable if it exhibits/activates more rare nodes/
combinations. The value of obj2 should be maximized for
achieving high trigger coverage.

Based on the computed fitness, the best-fit individuals
are identified for the reproduction process. The tournament
selection is used to select the fittest individual, where the
parent is selected using fitness value. The selected parent
then carries out a crossover to become a new solution. A

(2)RVi =

{
�

|VF|+ c1
+ �(CC0 + CO), Ri → 0

�

VF+ c1
+ �(CC1 + CO), Ri → 1

(3)maximize obj2(individual) =
∑

t∈Msp

∑

i∈R

RVi

Gaussian mutation is done after crossover to avoid the local
minima problem. Due to the elitism-based selection tech-
nique, the updating techniques will vary compared to the
initial generation. The elitism technique is implemented by
comparing the current population with previously found
best non-dominated solutions. Finally, operations like front
calculation by non-domination sorting, computation of the
rank, and removing the underfit solution from the pool are
carried out in an iterative way to generate an optimal set
of test patterns. The complete framework/workflow of the
proposed multi-objective optimization method is presented
in Fig. 4.

The NSGA-II basically generates the Pareto-based solu-
tions (as shown in Results Section) to identify the optimal set
of patterns that provide high trigger coverage with minimum
patterns. The Pareto fronts denote the trade-off between
values of objectives, which plays a vital role in identifying
the optimal solution. The best Pareto front is identified by
conducting empirical experiments (10 runs) for each data-
set with the proposed model. Though running for ten times
increases the cost of test generation, it is vital to reduce the
testing time (due to many copies of IC) rather than reducing
the test generation time. This is because test generation is a
one-time process, whereas testing of IC required to test all
copies of IC. The NSGA-II algorithm constructs the new set
of non-dominated solutions/Pareto by reproduction, crosso-
ver, and mutation operations until an optimal Pareto front
is obtained [17]. The newly generated population is merged

Fig. 4   Process framework/flow diagram of the proposed multi-objec-
tive optimization based test patterns generation approach. Here, the
circuit files, and population as individual as provided as inputs to the

search method. Based on the inputs, the optimal patterns are gener-
ated after multiple iterations

378	 Journal of Electronic Testing (2023) 39:371–385

1 3

with the parent population, and then it is sorted by evalua-
tion criteria called the fitness function of each individual in
the population. The survival of a solution in the population
depends on its fitness value. The best individuals (having the
highest fitness) are considered for the next generation. The
final generation corresponds to the set of evolved individuals
with the generated Pareto front. The solutions in the Pareto
front are evaluated for the coverage and test patterns criteria.
A solution that provides high coverage with minimum pat-
terns is considered an optimal solution.

Since we generate the test patterns without consider-
ing the propagation of the Trojan effect, we also proposed
to insert the checker logic in the low-observable nodes to
detect/monitor malicious behaviour, as discussed in the next
section.

3.3 � Checker Circuit Insertion

The above proposed multi-objective NSGA-II based
approach generates the test patterns to activate the Trojans
to detect them during testing. However, the attacker may
also make the Trojan stealthy by connecting their payload
at the low observable nodes. In this case, the activation of
Trojans may not be sufficient to detect the Trojans effec-
tively. Therefore, a designer can also consider inserting the
checker logic [6] as shown in Fig. 5 at the low observable
nodes to detect the Trojan effectively during testing as well
as in-field operation.

This checker logic monitors the Trojan behaviour based
on the correlation between the neighbourhood signals
( X1,X2 and Y1, Y2 ) of the target node (S). Any undesirable
behaviour reported with an error signal, i.e., error = 1 . Since
the payload of the Trojan is generally connected with low
observable nodes, the insertion of checker logic at these
nodes is very effective in detecting the Trojan behaviour on
its activation [6]. The proposed multi-objective optimiza-
tion based HT detection technique generates the test patterns
that effectively activate the Trojans. It is observed that the
checker insertion is very effective for detecting malicious

behaviour, whereas test generation is very effective for
Trojan activation. Therefore, the proposed HT detection
combines these best features of test generation and DFT
to detect the Trojan during post-silicon testing effectively.
We propose using the inserted checker i.e., design-for-trust
(DFT) to identify Trojan behaviour on its activation. Since
this work mainly focuses on generating test patterns using
multi-objective optimization for Trojan activation, further
analysis/discussion of checker logic insertion or DFT is out
of the scope of this paper.

The complete procedure of the proposed HT detection
technique is provided in the next subsection.

3.4 � Complete Steps for Hardware Trojan Detection

The complete procedure of the proposed hardware Trojan
detection technique from test pattern generation to hardware
Trojan detection is presented in Procedure 1. The proposed
technique first inserts the checker logic in design at the low
observable nodes. Further, it generates the optimal test pat-
terns for the rare-triggered nodes using the proposed multi-
objective optimization-based approach. Finally, we apply the
generated test patterns during post-silicon testing to check
whether a given design contains a Trojan or not.

Since the proposed HT detection technique combines
the best features of test generation and DFT based online
monitoring, it addresses all the limitations (mentioned in
Section 2) of existing techniques and effectively detects the
Trojan during post-silicon testing. In contrast to existing
GA-based test generation approaches, the proposed approach
considers multiple objectives, i.e., the number of test pat-
terns and trigger coverage during test generation. Thus,

if(S==1)
1Y X1^~ 2Y ^~X2) |();(error=

else if(S==0)
1Y 2Y{ }error=(!= 2’b11);

Checker Logic:

R
E
K
C
E
H
C

Y1
X1

X2

G1
Y2

G2

G3

S

error
a

b

Fig. 5   The insertion of checker logic for monitoring the Trojan
behaviour at the low observable or target node S [6]

379Journal of Electronic Testing (2023) 39:371–385	

1 3

it provides high trigger coverage with minimum patterns.
Since we insert the checker logic at low observable nodes
to observe the Trojan behaviour, it eliminates the need to
propagate the HT effect at the output. Hence, in the proposed
approach, generating the test patterns only for Trojan activa-
tion (without considering effect propagation) achieves high
trigger coverage and activates stealthy Trojans. Additionally,
the proposed approach can generate patterns for activating or
detecting the Trojan whose effect does not propagate at the
output. Finally, the proposed HT detection technique detects
the Trojan during post-silicon testing, which also provides
an opportunity to fix or reject the design before its deploy-
ment in case of any malicious inclusion. The combination of
test pattern generation and DFT based online monitoring in
HT detection provides additional protection against Trojan
hardware.

In this paper, we mainly focus on activating the combina-
tional Trojans only. However, it is reported in [4] that excit-
ing rare events multiple times can also activate the sequential
Trojan. Further, the proposed method functions in the same
way as existing GA [24] and AGA [18] based methods func-
tion. Therefore, in a similar way, the proposed approach can
be extended to detect the sequential Trojan. The simulation
results and comparative analysis of the proposed technique
are presented in the next section.

4 � Experimental Results and Analysis

This section presents the experimental setup, simulation
results and a comparative analysis of the proposed HT detec-
tion technique.

4.1 � Experimental Setup

The proposed test vectors generation algorithm is imple-
mented in MATLAB, and its effectiveness is evaluated
for trigger coverage on various ISCAS-85 benchmark
circuits. The proposed method mainly focus on activat-
ing combinational Trojans. Since ISCAS-85 benchmarks
are most relevant to our research problem and used by
existing MERO [4], GA [24] and AGA [18] methods, we
have used these benchmarks for evaluation and compari-
son purposes. The rare nodes in benchmarks are identified
using VFTh metric [22] for different VTh values, i.e, 0.85,
0.9, 0.95. We identified the optimal sets of test patterns
while considering a maximum of 50 test patterns in each
set. We also implemented the two variants of GA-based
techniques [18, 24] by considering 200 population sizes
and running for 1000 iterations to evaluate the effective-
ness of the proposed method.

4.2 � Simulation Results and Discussion

Our algorithm first identifies the number of rare nodes in
benchmarks for different VTh , as shown in Table 1. It can be
observed from this table that the c432 is the only benchmark
that does not exhibit any rare node for VTh = 0.95.

The proposed multi-objective optimization-based tech-
nique is employed on ISCAS-85 benchmarks, and the sim-
ulation results are computed with three different VTh , i.e.,
0.85, 0.90, 0.95 for all these benchmarks. To display the
ability to search by multiplicative genetic algorithm, we
obtained the optimal Pareto front obtained during the evalu-
ation of the benchmark circuits. The simulation results of
the three circuits are presented in Fig. 6. The organization
of the Pareto fronts is made to demonstrate the performance
on different thresholds 0.85, 0.90 and 0.95 of c499, c2670,
and c7552, respectively. The three circuits are selected to
observe the Pareto performance on the diverse sizes (num-
ber of gates and the number of inputs) circuits. The analysis
of the Pareto fronts mainly focuses on two aspects: (1) the
convergence of the obtained solutions; (2) the diversity of
the non-dominated solutions. Although these observations
are not exhaustive, they provide a good basis to assess the
performance of a multi-objective algorithm in optimal test
pattern generation for Trojan detection. The Pareto plots
show that NSGA-II obtains a good approximation to the true
global PFs on any size circuit. In addition, NSGA-II also
obtains a set of non-dominated solutions with good diversity
and convergence. It can also be observed from these Pareto
graphs that out of 50 solutions, only 35 optimal solutions
are identified in all the benchmarks. These results demon-
strate that the proposed model maintains a good diversity
of solutions for test pattern generation for hardware Trojan
detection.

From the computed Pareto solutions of different VTh , we
extracted the solutions with maximum coverage, minimum
test cases, and the solution with average coverage and test
patterns, as shown in Tables 2, 3 and 4. We have computed
trigger coverage by considering the maximum possible trig-
ger size in each benchmark. It can be observed from these
tables that the proposed technique provides on an average
4.0625E+27, 4.35E+26 and 8.90E+20 trigger coverage
while requiring only 45.3, 44.2 and 42.8 test patterns for
VTh = 0.85 , VTh = 0.90 and VTh = 0.95 respectively in case
of maximum coverage. The proposed technique provides an
average of 8.9E+11 and 2.3E+11 coverage while requir-
ing 6, 5.2, and 5.1 test patterns only in case of minimum
test patterns for VTh = 0.85 and VTh = 0.90 and VTh = 0.95
respectively. In the average case, it can be observed the pro-
posed technique provides 4.3E+16, 1.8E+16 and 4.3E+15
coverage with 23.3, 22.1 and 23.4 patterns for VTh = 0.85 ,
VTh = 0.90 and VTh = 0.95 , respectively.

380	 Journal of Electronic Testing (2023) 39:371–385

1 3

Though the above results of trigger coverage are pre-
sented for fixed or a maximum of 50 patterns, it is observed
from the simulation that a slight increase in test patterns
significantly increases the trigger coverage. The relation
between the trigger coverage and the test cases for the c1908
benchmark is presented in Fig. 7. It can be observed from
the figure that every increase in test patterns approximately
doubles the trigger coverage each time. Since this figure
presents the coverage for varying test patterns, it also shows
maximum coverage for the given number of patterns. Hence,
the proposed technique can also help the designer to achieve
high trigger coverage according to the limit of test cases or
the minimum number of test cases.

Besides the above, we also identify the optimal solution
set for each benchmark, which exhibits maximum coverage

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6   Pareto charts of c499, c2670 and c7552 benchmarks generation of after exploring optimal solutions with V
Th

 = 0.85, V
Th

 = 0.9 and V
Th

 =
0.95

Table 1   The number of rare-trigger nodes in different benchmark cir-
cuits for different V

Th

Circuit Number of Nets above the V
Th

V
Th

 = 0.85 V
Th

 = 0.90 V
Th

 = 0.95

c432 36 9 0
c499 48 40 40
c880 71 49 35
c1355 112 112 104
c1908 109 104 103
c2670 94 49 19
c3540 371 288 151
c5315 92 69 36
c7552 241 214 129

381Journal of Electronic Testing (2023) 39:371–385	

1 3

per test pattern and compare it with the existing MERO
[4], GA [24], and AGA [18] based test pattern generation
techniques as shown in Table 5. It can be observed from

this table that the proposed technique provides higher trig-
ger coverage with a low number of patterns over MERO
and both the existing GA based techniques. However, the

Table 2   Simulation results after exploring 35 optimal Pareto solutions for V
Th

= 0.85

Circuit Solutions and Total Cases Coverage Criteria Test case Criteria Average Coverage and Test
cases

Solutions Test patterns Max Coverage Test Cases Coverage Min test
Cases

Avg. Coverage Test Cases

c432 35 927 478 46 146 2 243.74 26.49
c499 35 804 3.78E+09 45 2.35E+06 6 8.74E+07 22.97
c880 35 887 4.33E+10 44 2.97E+08 8 4.23E+09 25.34
c1355 35 703 972 48 346 3 643.17 20.09
c1908 35 794 7.85E+10 46 3.47E+08 7 7.86E+09 22.69
c2670 35 897 9.85E+07 44 3.25E+05 8 1.76E+06 25.63
c3540 35 689 3.25E+28 46 7.18E+12 6 3.46E+17 19.69
c5315 35 843 1.46E+09 47 3.48E+06 4 1.32E+08 24.09
C7552 35 923 6.67E+21 43 1.33E+09 6 3.22E+14 26.37

Table 3   Simulation results after exploring 35 optimal Pareto solutions for V
Th

= 0.90

Circuit Solutions and Total Cases Coverage Criteria Test case Criteria Average Coverage and Test
cases

Solutions Test patterns Max Coverage Test Cases Coverage Min test
Cases

Avg. Coverage Test Cases

c432 35 807 383 41 95 7 113.63 23.06
c499 35 743 137 43 47 4 87.38 21.23
c880 35 872 2.15E+09 45 1.37E+06 6 2.61E+07 24.91
c1355 35 679 876 47 257 3 387.45 19.4
c1908 35 759 5.34E+08 44 1.70E+07 6 3.41E+07 21.69
c2670 35 855 9.24E+06 45 4.52E+04 4 8.86E+04 24.43
c3540 35 654 3.92E+27 46 2.1E+12 5 1.65E+17 18.69
c5315 35 807 4.19E+07 42 2.81E+05 5 1.05E+06 23.06
c7552 35 789 5.45E+19 48 1.45E+07 7 2.17E+12 22.54

Table 4   Simulation results after exploring 35 optimal Pareto solutions for V
Th

= 0.95

Circuit Solutions and Total Cases Coverage Criteria Test case Criteria Average Coverage and Test
cases

Solutions Test patterns Max Coverage Test Cases Coverage Min test
Cases

Avg. Coverage Test cases

c499 35 721 129 41 78 3 83.45 20.6
c880 35 783 1.18E+07 41 2.63E+05 6 5.53E+06 22.37
c1355 35 855 567 42 233 4 407.24 24.43
c1908 35 806 4.85E+07 47 1.30E+05 5 2.73E+06 23.03
c2670 35 835 6.75E+04 42 1.18E+03 7 2.09E+03 23.86
c3540 35 870 7.12E+21 42 1.87E+12 6 3.42E+16 24.86
c5315 35 853 7.32E+07 41 4.89E+04 6 2.32E+06 24.37
c7552 35 827 4.67E+17 42 1.89E+06 4 1.93E+10 23.63

382	 Journal of Electronic Testing (2023) 39:371–385

1 3

coverage of the proposed technique for some benchmarks
is less than the existing techniques in the case of Vth =
0.9. This is because the number of patterns in the proposed
method is less. However, on average, the proposed method
provides high trigger coverage, as shown in the last row of
this table. Additionally, the proposed technique provides
high trigger coverage in most benchmarks over the existing
methods for Vth = 0.95. On average, the proposed tech-
nique achieves 4.4E+26 and 8.9E+20 coverage only with
17.6 and 17.9 test patterns for VTh = 0.90 and VTh = 0.95 ,
respectively. Whereas best known existing techniques, i.e.,
AGA on an average provides only 3.4E+23 and 1.7E+20
coverage while requiring 80.6 and 58.9 test cases for
VTh = 0.9 and VTh = 0.95 respectively.

Though the proposed technique only reduces around 60
and 40 patterns over the existing methods, it provides signifi-
cantly high coverage over the existing methods. Since each

0 5 10 15 20 25 30

Test Cases

0

1

2

3

4

5
C

ov
er

ag
e

106

Fig. 7   Coverage progress with respect to test patterns for c1908
ISCAS-85 benchmark circuit

Fig. 8   Comparison of average coverage of proposed and existing HT
detection techniques for different V

Th
 values Ta

bl
e 

5  
C

om
pa

ris
on

 o
f p

ro
po

se
d

m
ul

ti-
ob

je
ct

iv
e

N
SG

A
 a

nd
 e

xi
sti

ng
 G

A
 b

as
ed

 T
ec

hn
iq

ue
s

C
irc

ui
t

V
T
h
 =

 0
.9

0
V
T
h
 =

 0
.9

5

Te
st

ca
se

s
C

ov
er

ag
e

Te
st

ca
se

s
C

ov
er

ag
e

M
ER

O
G

A
A

G
A

​
Pr

op
M

ER
O

G
A

A
G

A
​

Pr
op

M
ER

O
G

A
A

G
A

​
Pr

op
M

ER
O

G
A

A
G

A
​

Pr
op

c4
32

31
7

19
2

16
7

16
28

8
37

–
–

–
–

–
–

–
–

c4
99

32
32

32
7

72
72

72
87

32
32

32
3

72
72

72
78

c8
80

80
17

6
11

1.
3E

+
09

2.
1E

+
07

1.
2E

+
07

2.
3E

+
07

31
12

3
9

3.
3E

+
05

45
52

5
1.

7E
+

05
1.

5E
+

06
c1

35
5

78
25

80
8

69
5

26
6

70
4

28
7

64
22

64
14

32
8

13
4

32
8

31
5

c1
90

8
53

36
33

9
3.

3E
+

07
1.

1E
+

07
2.

1E
+

08
7.

7E
+

07
55

35
33

11
4.

6E
+

07
5.

7E
+

06
1.

1E
+

08
3.

2E
+

07
c2

67
0

87
11

51
29

5.
3E

+
06

1.
5E

+
06

84
02

19
6

7.
2E

+
06

8
3

9
28

30
19

64
5

12
97

1.
0E

+
04

c3
54

0
56

5
65

19
7

46
1.

4E
+

20
4.

9E
+

20
3.

1E
+

24
3.

9E
+

27
28

7
44

10
3

42
2.

3E
+

16
2.

3E
+

15
1.

3E
+

21
7.

1E
+

21
c5

31
5

13
5

48
10

8
19

1.
5E

+
07

20
77

34
2.

9E
+

06
9.

9E
+

05
44

17
29

13
15

41
7

11
62

12
25

42
8.

9E
+

05
c7

55
2

85
0

43
19

9
27

1.
1E

+
11

4.
6E

+
18

9.
9E

+
19

3.
8E

+
19

36
3

21
19

8
23

1.
5E

+
07

2.
8E

+
11

4.
4E

+
14

2.
7E

+
15

A
ve

ra
ge

21
2.

3
31

.6
80

.6
17

.6
1.

5E
+

19
5.

6E
+

19
3.

4E
+

23
4.

3E
+

26
11

0.
5

23
.3

58
.9

17
.9

2.
9E

+
15

2.
9E

+
14

1.
7E

+
20

8.
9E

+
20

383Journal of Electronic Testing (2023) 39:371–385	

1 3

pattern provides different coverage, we cannot compare the
number of patterns required for achieving equal trigger cov-
erage. But we have computed and compared the trigger cov-
erage per pattern as shown in Table 6. The comparison of the
proposed multi-objective optimization-based technique and
exiting MERO and GA-based techniques for average trigger
coverage per test pattern on different VTh is shown in Fig. 8.
It is clear from this figure that AGA based technique pro-
vides high trigger coverage over the GA and MERO based
approaches. But the proposed technique provides signifi-
cantly high trigger coverage over AGA based approach for
VTh = 0.9 as well as VTh = 0.95 . The AGA-based approach
provides only 1.7E+21 coverage for VTh = 0.9 , whereas the
proposed multi-objective optimization-based technique pro-
vides 9.4E+24 coverage. The proposed technique provides
approximately 12 times more trigger coverage with 1/3
reduced test patterns on VTh = 0.9 over the AGA-based tech-
nique. From the above analysis, it can be observed that the
proposed multi-objective optimization-based technique out-
performs the existing techniques and would be very effective
in detecting the stealthy Trojan during post-silicon testing.

5 � Conclusion

The existing GA based test pattern generation techniques
suffer from low trigger coverage and require large patterns.
As a solution, we framed the test pattern generation problem
into multi-objective optimization and solved it through the
NSGA-II algorithm. The proposed technique generates opti-
mal test patterns for activating rare events to facilitate Trojan
detection during post-silicon testing. Our NSGA-II based
approach generates the test patterns based on Bi-Objective
criterion i.e., minimal test patterns and maximum cover-
age. Therefore, the proposed multi-objective-based method
overcomes the limitations of existing GA-based methods
and provides high coverage with a low number of patterns.
Further, we also insert the checker logic at the low observ-
able nodes in the design to observe the Trojan behaviour on

its activation during post-silicon testing and during online
monitoring. The simulation results on various ISCAS bench-
marks show that the proposed multi-objective optimization-
based technique provides, on average, 12× high trigger
coverage while requiring 1/3 reduced test patterns over the
best-known existing method.

In this paper, we have implemented the proposed
approach only for the combinational benchmarks, i.e.,
c-series benchmarks, which can contain only combinational
Trojans. Since sequential benchmarks (e.g., ISCAS-89 and
ITC’99) may also contain sequential Trojans, implementing
the current version directly on these benchmarks is challeng-
ing and may require significant time to generate the patterns.
However, the proposed NS-GA method functions like the
existing GA and Advised GA; thus, we consider scaling the
implementation of the proposed method to generate the pat-
terns for sequential benchmarks even for detecting sequential
Trojans in our future work. Further, the multiple empirical
runs to generate the optimal solution increases the cost of
test generation. Therefore, our future work will also focus
on reducing the test generation time.

Acknowledgements  This research is supported by Data Security Coun-
cil of India (DSCI) under the project titled “HT-Pred: A Complete
Defensive Machine Learning Tool for Hardware Trojan Detection".

Data Availability  This manuscript has no associated data.

Declarations 

Conflict of Interest  None.

References

	 1.	 Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Chap-
ter 10 - metaheuristic algorithms: A comprehensive review. In:
Sangaiah AK, Sheng M, Zhang Z (eds) Computational Intelli-
gence for Multimedia Big Data on the Cloud with Engineering
Applications. Intelligent Data-Centric Systems. Academic Press,
pp 185–231. [Online]. https://​www.​scien​cedir​ect.​com/​scien​ce/​
artic​le/​pii/​B9780​12813​31490​00104

Table 6   Comparison of
Coverage Per Test Case

Circuit V
Th

 = 0.90 V
Th

 = 0.95

MERO GA AGA​ Prop MERO GA AGA​ Prop

c432 5.4 2.29 15.16 18.5 – – – –
c499 2.3 2.25 2.25 12.43 2.3 2.25 2.25 26
c880 1.60E+07 1.25E+06 2.00E+06 2.13E+06 1.06E+4 3.79E+03 5.73E+04 1.63E+05
c1355 8.9 10.64 8.8 35.88 5.1 6.09 5.13 22.5
c1908 6.24E+05 2.95E+05 6.37E+06 8.54E+06 8.29E+05 1.63E+05 3.21E+06 2.95E+06
c2670 6.12E+4 1.33E+05 1.65E+05 2.50E+05 377.4 215 144.11 358.57
c3540 2.44E+17 7.65E+18 1.56E+22 8.52E+25 8.07E+13 5.20E+13 1.30E+19 1.70E+20
c5315 1.14E+05 4.33E+03 2.67E+04 5.21E+04 350.4 68.35 4225.59 68230.77
c7552 1.27E+08 1.08E+17 4.98E+17 1.40E+18 3.99E+04 1.31E+10 2.22E+12 1.19E+14

https://www.sciencedirect.com/science/article/pii/B9780128133149000104
https://www.sciencedirect.com/science/article/pii/B9780128133149000104

384	 Journal of Electronic Testing (2023) 39:371–385

1 3

	 2.	 Bhunia S, Abramovici M, Agrawal D, Bradley P, Hsiao MS,
Plusquellic J, Tehranipoor M (2013) Protection against hardware
trojan attacks: Towards a comprehensive solution. IEEE Design
& Test 30(3):6–17

	 3.	 Bhunia S, Hsiao MS, Banga M, Narasimhan S (2014) Hardware
trojan attacks: threat analysis and countermeasures. Proceeding
of the IEEE 102(8):1229–1247

	 4.	 Chakraborty RS, Wolff F, Paul S, Papachristou C, Bhunia S
(2009) Mero: a statistical approach for hardware trojan detec-
tion. In: Proceedings on Cryptographic Hardware and Embedded
Systems-CHES 2009. Springer, pp 396–410

	 5.	 Chakraborty RS, Bhunia S (2011) Security against hardware tro-
jan attacks using key-based design obfuscation. J Electron Test
27(6):767–785

	 6.	 Chakraborty RS, Pagliarini S, Mathew J, Rajendran SR, Devi
MN (2017) A flexible online checking technique to enhance hard-
ware trojan horse detectability by reliability analysis. IEEE Trans
Emerg Top Comput 5(2):260–270

	 7.	 Cui X, Koopahi E, Wu K, Karri R (2018) Hardware trojan detec-
tion using the order of path delay. ACM Journal on Emerging
Technologies in Computing Systems (JETC) 14(3):33

	 8.	 Dong C, Xu Y, Liu X, Zhang F, He G, Chen Y (2020) Hardware
trojans in chips: a survey for detection and prevention. Sensors
20(18):5165

	 9.	 Dupuis S, Ba P-S, Di Natale G, Flottes M-L, Rouzeyre B (2014)
A novel hardware logic encryption technique for thwarting illegal
overproduction and hardware trojans. In: Proceedings on IEEE 20th
International On-Line Testing Symposium (IOLTS). IEEE, pp 49–54

	10.	 Goldstein LH, Thigpen EL (1980) Scoap: Sandia controllability/
observability analysis program. In: Proceedings on 17th Design
Automation Conference. pp 190–196

	11.	 Haider SK, Jin C, Ahmad M, Shila DM, Khan O, van Dijk M
(2014) Hatch: a formal framework of hardware Trojan design
and detection. University of Connecticut Cryptology ePrint
Archive Technical Report vol 943. p 2014

	12.	 Hasegawa K, Oya M, Yanagisawa M, Togawa N (2016) Hard-
ware trojans classification for gate-level netlists based on
machine learning. In: Proceedings on 2016 IEEE 22nd Inter-
national Symposium on On-Line Testing and Robust System
Design (IOLTS). IEEE, pp 203–206

	13.	 Hicks M, Finnicum M, King ST, Martin MM, Smith JM (2010)
Overcoming an untrusted computing base: Detecting and remov-
ing malicious hardware automatically. In: Proceedings on IEEE
Symposium onSecurity and Privacy (SP). IEEE, pp 159–172

	14.	 Jin Y, Makris Y (2008) Hardware trojan detection using path
delay fingerprint. In: Proceedings on IEEE International Work-
shop on Hardware-Oriented Security and Trust(HOST). IEEE,
pp 51–57

	15.	 Lin L, Burleson W, Paar C (2009) Moles: malicious off-chip
leakage enabled by side-channels. In: Proceedings on Interna-
tional conference on computer-aided design. ACM, pp 117–122

	16.	 Liu Y, He J, Ma H, Zhao Y (2020) Golden chip free trojan
detection leveraging probabilistic neural network with genetic
algorithm applied in the training phase. SCIENCE CHINA Inf
Sci 63(2):1–3

	17.	 Meyarivan T, Deb K, Pratap A, Agarwal S (2002) A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans
Evol Comput 6(2):182–197

	18.	 Nourian M, Fazeli M, Hely D (2018) Hardware trojan detec-
tion using an advised genetic algorithm based logic testing. J
Electron Test 34(4):461–470

	19.	 Oya M, Shi Y, Yanagisawa M, Togawa N (2015) A score-based
classification method for identifying hardware-trojans at gate-
level netlists. In: Proceedings on Design, Automation & Test in
Europe Conference & Exhibition. EDA Consortium, pp 465–470

	20.	 Pan Z, Mishra P (2021) Automated test generation for hardware tro-
jan detection using reinforcement learning. In: Proceedings on 26th
Asia and South Pacific Design Automation Conference. pp 408–413

	21.	 Rathor VS, Garg B, Sharma G (2017) New light weight thresh-
old voltage defined camouflaged gates for trustworthy designs.
J Electron Test 33(5):657–668

	22.	 Rathor VS, Garg B, Sharma GK (2020) A novel low complex-
ity logic encryption technique for design-for-trust. IEEE Trans
Emerg Top Comput 8(3):688–699

	23.	 Rostami M, Koushanfar F, Karri R (2014) A primer on hardware secu-
rity: models, methods, and metrics. Proc IEEE 102(8):1283–1295

	24.	 Saha S, Chakraborty RS, Nuthakki SS, Anshul, Mukhopadhyay
D (2015) Improved test pattern generation for hardware trojan
detection using genetic algorithm and Boolean satisfiability. In:
Proceedings on International Workshop on Cryptographic Hard-
ware and Embedded Systems. Springer, pp 577–596

	25.	 Salmani H, Tehranipoor M, Plusquellic J (2012) A novel technique for
improving hardware trojan detection and reducing trojan activation
time. IEEE Trans Very Large Scale Integr VLSI Syst 20(1):112–125

	26.	 Salmani H (2017) COTD: reference-free hardware trojan detection
and recovery based on controllability and observability in gate-
level netlist. IEEE Trans Inf Forensics Secur 12(2):338–350

	27.	 Shekarian SMH, Zamani MS, Alami S (2013) Neutralizing a
design-for-hardware-trust technique. In: Proceedings on 17th CSI
International Symposium on Computer Architecture & Digital
Systems (CADS 2013). IEEE, pp 73–78

	28.	 Shi Z, Ma H, Zhang Q, Liu Y, Zhao Y, He J (2021) Test genera-
tion for hardware trojan detection using correlation analysis and
genetic algorithm. ACM Transactions on Embedded Computing
Systems (TECS) 20(4):1–20

	29.	 Sturton C, Hicks M, Wagner D, King ST (2011) Defeating UCI:
building stealthy and malicious hardware. In: Proceedings on
IEEE Symposium on Security and Privacy (SP). IEEE, pp 64–77

	30.	 Waksman A, Suozzo M, Sethumadhavan S (2013) Fanci: identifi-
cation of stealthy malicious logic using Boolean functional analy-
sis. In: Proceedings on ACM SIGSAC Conference on Computer
& Communications Security. ACM, pp 697–708

	31.	 Xiao K, Forte D, Jin Y, Karri R, Bhunia S, Tehranipoor M (2016)
Hardware trojans: lessons learned after one decade of research.
ACM Transactions on Design Automation of Electronic Systems
(TODAES) 22(1):6

	32.	 Xie X, Sun Y, Chen H, Ding Y (2017) Hardware trojans classifica-
tion based on controllability and observability in gate-level netlist.
IEICE Electronics Express 14(18):20170682–20170682

	33.	 Zhang J, Yu H, Xu Q (2012) HtOutlier: hardware trojan detection
with side-channel signature outlier identification. In: Proceed-
ings on IEEE International Symposium on Hardware-Oriented
Security and Trust. IEEE, pp 55–58

	34.	 Zhang J, Yuan F, Xu Q (2014) Detrust: defeating hardware trust
verification with stealthy implicitly-triggered hardware trojans.
In: Proceedings on ACM SIGSAC Conference on Computer and
Communications Security. ACM, pp 153–166

	35.	 Zhang J, Yuan F, Wei L, Sun Z, Xu Q (2013) Veritrust: verifica-
tion for hardware trust. In: Proceedings on 50th ACM/EDAC/
IEEE Design Automation Conference (DAC). IEEE, pp 1–8

	36.	 Zhang J, Yuan F, Wei L, Liu Y, Xu Q (2015) Veritrust: Verifica-
tion for hardware trust. IEEE Trans Comput Aided Des Integr
Circuits Syst 34(7):1148–1161

	37.	 Zhou Z, Guin U, Agrawal VD (2018) Modeling and test genera-
tion for combinational hardware trojans. In: Proceedings on IEEE
36th VLSI Test Symposium (VTS). IEEE, pp 1–6

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

385Journal of Electronic Testing (2023) 39:371–385	

1 3

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Vijaypal Singh Rathor  received his Ph.D. from ABV-Indian Institute
of Information Technology and Management Gwalior and M. Tech.
in department of Computer Science & Engineering from Maulana
Azad National Institute of Technology, Bhopal, India in 2020 and
2014 respectively. At present, He is working as Assistant Professor in
department of Computer Science & Engineering at PDPM Indian Insti-
tute of Information Technology, Design and Manufacturing (IIITDM),
Jabalpur, India. Before, Joining IIITDM, he was working as an Assis-
tant Professor at Thapar Institute of Engineering and Technology
(Thapar University), Patiala, India. He has over three years of teach-
ing experience to his credit. He has published over 10 research articles
in International Journals/Conferences of repute. His research interests
include trustworthy circuit design techniques to thwart hardware-based
attacks, hardware Trojan detection, applying machine learning for digi-
tal designs, cloud computing.

Deepak Singh  received the Ph.D. degree at Department of Computer
Science and Engineering from National Institute of Technology Raipur.
He is an Assistant Professor in Department of Computer Science &
Engineering at National Institute of Technology (NIT), Raipur, India.
Before, joining NIT, he was working as Assistant Professor with

the School of Engineering and Applied Science, Bennett University
Greater Noida. He has over six years’ experience in various academic
institutes. He has published over 10 referred articles and served as a
reviewer of several journals. His research interests include Evolution-
ary Computation, Machine Learning, and Data Mining.

Simranjit Singh  was born in Patiala, Punjab India. He graduated and
received his M.Tech degree in 2015 in the field of Computer Science
and Engineering from Punjabi University, Patiala. He has completed
his Ph.D. from Thapar Institute of Engineering and Technology, Pati-
ala, Punjab, India. He is working as Assistant Professor in the Com-
puter Science Engineering department at Bennett University, Greater
Noida. He has more than two years of teaching experience to his credit.
He has published research articles in international journals/conferences
of repute. His research interest is focused on Image Processing, particu-
larly on the classification and mining of hyperspectral images.

Mohit Sajwan  received his B.Tech. degree in Computer Science Engi-
neering from Amrapali Institute of Technology, Uttrakhand Techni-
cal University, Dehradun and M.E. (software engineering) from Birla
Institute of Technology, Mesra, Ranchi. He has completed his Ph.D.
Degree in wireless sensor networks from National Institute of Technol-
ogy, Delhi. Currently, he is working as an assistant professor at Ben-
nett University, Greater Noida, India. He has also published research
articles in international journals/conferences of repute. His research
interest lies in the domain of energy-efficient routing protocol in wire-
less sensor networks.

	Multi-Objective Optimization Based Test Pattern Generation for Hardware Trojan Detection
	Abstract
	1 Introduction
	2 Analysis of Existing HT Detection Techniques
	3 Proposed Multi-Objective Optimization Based HT Detection Technique
	3.1 Rare-Triggered Nodes Identification
	3.2 Proposed Multi-Objective Optimization Based Test Generation Method
	3.2.1 NSGA-II Based Algorithm for Optimal Test Generation

	3.3 Checker Circuit Insertion
	3.4 Complete Steps for Hardware Trojan Detection

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 Simulation Results and Discussion

	5 Conclusion
	Acknowledgements
	References

