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Abstract
Hardware Trojan (HT) is a severe security threat during the development of an integrated circuit that can deviate the IC 
from its normal function and/or leak sensitive information during in-field operations. Trojans are often inserted during the 
fabrication phase, and to have Trojan-free ICs; it is highly desirable to detect them during post-silicon testing. Different 
test pattern generation-based HT detection techniques are reported in the literature to detect the Trojan during post-silicon 
testing. The existing methods provide low coverage and require a large number of test patterns. This paper proposes a new 
test pattern generation-based HT detection technique that provides high coverage while requiring less number of patterns. 
The proposed technique generates the optimal number of test patterns that activate the rare events by framing the problem as 
multi-objective optimization and solving it through a non-dominated sorting genetic algorithm (NSGA-II). The Trojans are 
mostly inserted using rare-triggered nodes (highly vulnerable, low controllable, and low observable). Thus, our technique 
applies the generated patterns during post-silicon testing to activate Trojans. Further, we also present the use of checker 
(detection) logic along with a proposed approach to effectively detect the Trojan during testing. The experimental evalua-
tion on ISCAS benchmarks shows that the proposed technique provides 12 times higher trigger coverage with 1/3 fewer test 
patterns than the best-known existing genetic algorithm-based technique.

Keywords  Hardware Trojan · Rare-triggered nets · Test pattern generation · Multi-objective optimization · Genetic 
Algorithm · Hardware testing

1  Introduction

The globalization in semiconductor industries makes the 
development of integrated circuits (ICs) vulnerable to a 
malicious inclusion called hardware Trojan (HT) inser-
tion [3, 23]. Due to their stealthy nature, HTs are mostly 
inserted at the rare nodes; thus, they are not detected dur-
ing conventional verification and validation [3]. The HT 
can be inserted during different phases of IC design [3]. 
The attacker can use the inserted Trojan to infer confiden-
tial information and/or to maliciously modify the original 
design functionality during in-field operations or harm the 
company’s reputation [15]. However, several design tech-
niques such as logic obfuscation, camouflaging, etc., are 
reported [3, 21, 22, 31] that prevent the Trojan insertion 
during the IC life cycle at the cost of some design over-
head. HT detection is a prominent approach for identify-
ing malicious inclusion without introducing any overhead. 
Several HT detection techniques are reported in the litera-
ture to detect the Trojan during pre-silicon [19, 31, 36] 
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and post-silicon validation using logic testing/automatic 
test pattern generation (ATPG) [4, 18] and/or side-channel 
analysis (SCA) [14, 33]. Although pre-silicon detection 
techniques can save high fabrication costs if a Trojan 
is detected during the design phase, the attacker mostly 
inserts the Trojan in the fabrication house due to outsourc-
ing of the fabrication facility. Therefore, the detection of 
HT during post-silicon testing is most important.

The SCA-based post-silicon techniques measure physical 
parameters such as power, delay, etc., and compare them 
with the golden model to identify the malicious inclusion 
[7, 33]. The Trojan insertion affects these parameters. Any 
significant deviation in these parameters will be considered a 
Trojan. Due to environment noise and process variation, the 
detection of stealthy and small combinational Trojans (hav-
ing few gates) is challenging using SCA-based approaches 
[4, 14]. On the other hand, the ATPG based methods are 
most suitable to detect small and combinational Trojans dur-
ing post-silicon. However, they are ineffective in detecting 
sequential and analog Trojans [31]. Therefore, this paper 
considers the problem of detecting the small and combi-
national Trojans using ATPG based methods during post-
silicon testing.

An adversary can insert the Trojan anywhere in the 
design. Detecting all combinational Trojans in a design is 
an exponential problem [37]. However, the non-judicious/
random insertion of Trojan either may make it invalid (no 
impact on the design) or may make it easy to detect it with 
normal functional testing [4, 5, 9, 22]. Therefore, an adver-
sary inserts the Trojan judiciously at the rare nodes to make 
it stealthy or evade functional testing as reported in [4, 9, 
22]. Hence, the ATPG based techniques generate test pat-
terns, also referred to as test vectors/cases, to activate the 
rare nodes for detecting the small/stealthy combinational 
Trojans during functional testing [4, 24]. The test pattern 
denotes the input value/pattern or sequence of bits (i.e., 
0101010) applied at the primary input of the digital circuit 
to validate its output. It means the test patterns are the set 
of input patterns applied during testing to verify the digital 
circuit functionality. Hence, the IC designer aims to generate 
such test patterns whose application can activate rare events 
and detect the existence of combinational Trojans in digital 
circuits/IC during testing.

Several ATPG based techniques such as multiple excita-
tions of rare occurrences (MERO) [4], genetic algorithm 
(GA) based [24] and advised GA (AGA) based, [18] tech-
niques are proposed in the literature, that generate the pat-
terns for combinational HT detection. The GA-based tech-
niques have gained more attention due to their high coverage 
over the other methods in all these techniques. But the exist-
ing GA based techniques generate a significantly large num-
ber of test patterns to achieve the desired trigger coverage. 
This is because they do not simultaneously focus on the 
minimization of patterns along with achieving high coverage 
during testing. Further, they are also inefficient in activat-
ing hard-to-detect or low-triggering probability Trojans. It 
is highly desirable to achieve high trigger/Trojan coverage 
along with detecting hard-to-activate HTs with minimum 
patterns to reduce the testing time/cost. Furthermore, the HT 
detection requires activating and propagating its effect to an 
output [4, 6]. But considering the Trojan-effect propagation 
while generating the test patterns, one needs to set the logic 
values of the signals responsible for propagation, resulting 
in reduced Trigger coverage. Since the existing techniques 
consider effect propagation at the output for HT detection, 
they may fail to generate the patterns that provide high trig-
ger coverage.

For example, consider a circuit, as shown in Fig. 1(a), 
where a functional Trojan is inserted using trigger T1 and 
payload T2. In this case, the pattern a=1, b=1 activates and 
propagates the effect of inserted Trojan to the output. Sup-
pose we assume there are multiple combinational Trojans in 
a design and there exists another pattern that activates more 
Trojans (but not propagates effect) than the a=1 and b=1. 
In that case, this pattern provides high trigger coverage over 
the a=1 and b=1. However, Trojan can only be detected 
when its effect can be observed at the output. It is not always 
possible/required propagating effect of some Trojans (called 
non-functional/parametric) at the output. The sample exam-
ple of a non-functional Trojan is shown in Fig. 1(b).

The aim of inserting such Trojans may be to increase 
the design overhead or leak sensitive information. These 
Trojans are not inserted to change the functionality; they 
are just inserted to observe the signal value or other side 
channel parameters to leak sensitive information. Lin et al. 
[15] has presented a Trojan called Malicious Off-Chip 

Fig. 1   a Functional Trojan, 
effect propagate to the output 
and Trojan activation change 
the output b Non-Functional 
Trojan, the effect does not 
propagate to the output and Tro-
jan activation does not change 
the output. These Trojans are 
inserted using trigger (T1) and 
payload (T2) at signal S
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Leakage Enabled by Side-Channels (MOLES) to leak the 
cryptographic key. Such type of Trojans does not require 
propagation effect at the primary output. Therefore, gen-
erating the patterns without considering the Trojan effect’s 
propagation increases trigger coverage significantly.

Although it is important to detect the Trojan in the IC 
before its deployment, the ATPG based techniques can-
not ensure the detection of all types of HTs due to the 
large space and diverse forms of Trojans [6]. Thus, the 
researchers have also used design-for-trust (DFT), where 
an additional detection (Checker) circuitry is judiciously 
inserted in design to observe/detect the Trojan during in-
field operations [6]. HT payload modifies the original 
logic value at a node on its activation. It also disrupts the 
correlation between the logic values of that node and its 
neighbourhood nodes [6]. Therefore, this checker monitors 
the relationship between neighbourhood signals logic val-
ues, and any deviation in expected correlation is reported 
as an error signal. However, Chakraborty et al. [6] only use 
this checker logic for detecting the Trojan during online 
monitoring; they do not attempt to detect the Trojan during 
post-silicon testing. Since online (in-filed during applica-
tion execution time) detection can only bypass the HT or 
disable the chip, it does not provide any opportunities to 
fix or reject the design.

Problem Statement and Major Contributions  Since this 
paper considers the threat model as the attacker is in the 
fabrication house, where he can insert the Trojan in multiple 
ICs, it is required to test every chip after fabrication to ensure 
it is Trojan-free. If the number of test patterns is more, it will 
significantly increase the testing time. Therefore, the ATPG 
based HT detection technique aims to achieve high cover-
age by generating minimum patterns. The test generation 
problem for HT detection looks like an optimization problem 
because we have to generate minimum patterns and achieve 
high trigger coverage. Therefore, we can formulate this 
problem as a multi-objective optimization problem, where 
two complementary objectives (minimum test patterns and 
maximum coverage) must be simultaneously satisfied. How-
ever, the existing ATPG based techniques mainly focus on 
achieving high coverage. They do not simultaneously focus 
on both objectives. In other words, they have not considered 
ATPG as a multi-objective optimization problem. There-
fore, they require large patterns to achieve desired cover-
age. Further, due to consideration of the propagation HT 
effect at the output, they failed to generate patterns to trig-
ger extremely hard-to-activate Trojans. Therefore, this paper 
formulates the problem test generation for HT detection as 
a multi-objective optimization problem. To the best of our 
knowledge, we are the first to solve HT detection problems 
using multi-objective optimization.

The following are the major contributions of this paper: 

1.	 Present the analysis of the existing ATPG and DFT 
based HT detection approaches.

2.	 Propose a first multi-objective optimization-based tech-
nique for test pattern generation that provides high trig-
ger coverage with minimum patterns.

3.	 The test generation problem is framed as a multi-objective 
optimization problem and uses the non-dominated sorting 
genetic algorithm (NSGA-II) to generate test patterns to 
activate the combinational Trojan.

4.	 Propose a procedure that combines the proposed ATPG 
and checker insertion approach to provide complete pro-
tection against the hardware Trojan threat during the IC 
life cycle.

5.	 Experimental evaluation of the proposed HT detec-
tion technique on the ISCAS-85 benchmarks provides, 
on average, 12 times higher trigger coverage with 1/3 
reduced patterns over the best-known existing technique.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an analysis of existing HT detection tech-
niques. Section 3 presents the proposed multi-objective 
optimization based test pattern generation technique for HT 
detection. The experimental results and analysis are given 
in Section 4. Finally, Section 5 concludes and presents the 
future work of this paper.

2 � Analysis of Existing HT Detection Techniques

Various techniques are reported in the literature to detect 
hardware Trojans during pre-silicon and post-silicon. Hicks 
et al. [13] first addressed the problem of identifying HTs 
inserted at design time by formulating it as an unused cir-
cuit identification problem. However, it can not be safely 
assumed that “used circuits" are free of HT and “unused 
circuit" contain HT [29]. To reduce the false positive, 
Waksman et al. [30] present a technique called functional 
analysis for nearly unused circuit identification (FANCI) 
that applies Boolean function analysis to flag suspicious 
signals which have a weak impact on output. The attacker 
can insert the Trojan so that the HT-related signals exhibit 
the same effect on output as functional signals [34]. Fur-
ther, Zhang et al. [35, 36] present a technique called Veri-
Trust, that detects an HT by identifying the inputs in the 
combinational logic cone that seems redundant for the 
normal functionality of the output wire under non-trigger 
condition. However, this technique also fails to detect the 
Trojans with implicit malicious behaviour [11].

Besides the above, recently, several machine learning-
based HT detection techniques are also reported in the 
literature. These techniques use different Trojan features 
to classify the circuits into different groups and identify 
the group with Trojan-infected circuits. Oya et al. [19] 
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present a score-based technique that identifies the nets 
included in HTs based on several extracted features. The 
major challenge in this approach is setting the correct 
threshold for classification. Further, Oya et al. [12] also 
extract the five structural Trojan features and learn the 
support vector machine (SVM) to identify the Trojan nets 
in the gate-level netlist. Instead of five features, Salmani 
[26] statically analyze the combinational controllability 
(CC) and combinational observability (CO) values of 
each signal and classify it as a Trojan-infected or Trojan-
free using K-Means clustering. However, this technique 
cannot classify the nets where the inter-cluster distance 
between the signals is less than 100. Further, choosing a 
proper threshold for classification is also a big challenge. 
To overcome these limitations and improve the detection 
rate, Xie et al. [32] use the SVM with additional features 
and K-Means clustering.

However, all these techniques only detect the Trojan 
inserted during the design phase, whereas the attacker can 
also insert the Trojan during the fabrication phase. There-
fore, various test pattern generation based techniques have 
been reported in the literature to detect the Trojan during 
post-silicon testing. First, Chakraborty et al. [4] present a 
technique called MERO that generates the test vectors to 
activate the low triggering probability conditions multi-
ple times during post-silicon to facilitate Trojans detec-
tion. Since MERO uses a simple heuristic, i.e., perturbs 
one bit for test generation, it is not adequate to activate 
all possible rare nodes and fails to excite hard-to-activate 
sites [24]. To improve the Trojan and trigger coverage, 
Saha et  al. [24] present a genetic algorithm (GA) and 
Boolean satisfiability (SAT) based test pattern generation 
technique. Though this approach improves the coverage, 
the SAT requires a long time to generate the patterns that 
activate hard-to-trigger sites. Therefore, an advised GA 
(AGA) based approach is reported that also includes CC 
and CO parameters in the fitness function while generating 
the test vectors [18].

Besides the above, Liu et al. [16] have applied the genetic 
algorithm in the training phase of a probabilistic neural net-
work for detecting the hardware Trojan using the side chan-
nel parameters. Further, Pan and Mishra [20] have proposed 
reinforcement learning based automatic test generation for 
HT detection. This technique provides high trigger coverage 
while reducing test generation time. A detailed survey of 
different HT detection methods can also be found in [8]. All 
the above existing approaches generate the patterns without 
minimizing them or considering only objective, i.e., trigger 
coverage. Thus, they require large patterns to provide a given 
trigger coverage. However, Shi et al. [28] proposed a cor-
relation analysis and genetic algorithm based ATPG method 
that reduces the test patterns by reordering them to achieve 
a given coverage. But this technique also uses a genetic 

algorithm only for a single objective, i.e., test reordering to 
improve Trojan activation or trigger coverage.

Since the existing HT detection techniques cannot detect 
all the HTs due to their diverse forms, several DFT tech-
niques are also reported, which increases the triggering 
probability of Trojans improving their detection during post-
silicon testing [9, 22, 25]. However, these techniques are 
ineffective and could not facilitate detection during online 
monitoring [6, 27]. Therefore, to facilitate detection during 
in-field operation, a checker logic is inserted into the design 
that observes the Trojan behaviour [2, 6]. Any undesirable 
behaviour is reported with a high error signal. Unfortunately, 
these techniques are ineffective in detecting the Trojan (dis-
cussed above) and do not provide any opportunities to fix 
and reject the design before its deployment.

To overcome the limitations of existing methods, a new 
technique for HT detection has been proposed that utilizes 
the Non-Dominated Sorting Genetic Algorithm (NSGA-II) 
to generate patterns. These patterns provide high trigger cov-
erage with a low number of patterns. Additionally, the pro-
posed technique can be easily combined with a DFT-based 
online monitoring technique to observe Trojan behaviour 
during testing effectively.

3 � Proposed Multi‑Objective Optimization 
Based HT Detection Technique

This section first presents the identification of rare nodes, 
the proposed multi-objective optimization framework for 
test pattern generation and the NSGA-II algorithm. Fur-
ther, it presents the insertion of existing checker logic [6] 
for observing Trojan behaviour followed by the procedure 
for HT detection.

3.1 � Rare‑Triggered Nodes Identification

Since Trojans are mostly inserted at the rare-triggered nodes 
[22, 24, 25], we first identify the rare-triggered nodes in 
a given circuit using the vulnerability factor (VF) metric 
[22], i.e., VF = P0 − P1 along with controllability (CC) and 
observability (CO) [10]. Here, CC and CO denote the dif-
ficulty for setting and observing a circuit net to logic ‘0’ or 
‘1’ respectively [10]. Here, P0 and P1 are the probability 
of getting logic (i.e., transition probability) ’0’ and ’1’ at a 
node, respectively. The value of VF lies between -1 to 1. The 
higher |VF| (absolute) value indicates higher vulnerability/
rareness to Trojan insertion. Figure 2 shows the insertion of 
Trojan using G5 and G6. Activating this Trojan with trig-
ger Tg1 will change the internal signal of the circuit if it is 
functional. However, alteration in the output of IC depends 
on the propagation of the effect of Trojan. If the effect of 
the Trojan is not propagated at the output on activation, then 
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such Trojan will be dormant forever. Therefore, the attacker 
generally inserts the Trojan such that its effect will propagate 
at the output on its activation. Since activation of rare nodes 
activates the Trojan, there is a high (or 100%) probability of 
altering the output of IC on activation of rare nodes/Trojan.

In the given example, we use the nodes G5 and G6, whose 
VF values are 0.875, as rare nodes to insert the Trojan. But 
it is required to have a specific value that can decide which 
nodes are rare. Similar to the existing methods [18, 22, 24], 
we also use the vulnerability threshold ( VTh ) value to classify 
a node whether it is rare-triggered or not. If the value of VF 
of a node is more than VTh , then that node is considered rare-
triggered (i.e., vulnerable to Trojan insertion); otherwise, it 
is not. It is reported in [18, 24] that the Trojans inserted at 
the nodes having transition probability or VF less than 0.9 
cannot evade functional testing. Therefore, the attacker uses 
very low triggering probability nodes to insert the Trojan. 
Thus, we consider two VTh values, i.e., 0.90 and 0.95 to iden-
tify the rare nodes in simulation.

3.2 � Proposed Multi‑Objective Optimization Based 
Test Generation Method

We propose a multi-objective optimization based test gener-
ation technique that generates the test vectors to activate the 
rare nodes to facilitate Trojan detection during post-silicon 
testing. The proposed method formulates the problem of test 
pattern generation to optimize the following two objectives:

•	 Objective-1: Maximizing the trigger coverage so that 
the Trojan detection/activation could be improved during 
post-silicon testing.

•	 Objective-2: Minimizing the number of test patterns in 
a subset or solution so that testing time can be reduced.

This problem perfectly matches the multi-objective opti-
mization problem. Meta-heuristic algorithms are compu-
tational intelligence methods especially employed for solv-
ing advanced optimization problems [1]. They efficiently 
explore the search space in order to find near-optimal 
solutions. The Non-Dominated Sorting Genetic Algorithm 
(NSGA-II) [17] is the most popular Meta-heuristic Pareto-
based multi-objective optimization algorithm effective in 
solving such problems. Thus, we used NSGA-II to solve our 
problem, as detailed in the next subsection. The NSGA-II 
is very effective over the previously used GA and AGA 
based methods in handling the noise, finding diverse solu-
tions with multiple objectives by generating Pareto fronts. 
The main advantage of NSGA-II over the previously pro-
posed GA based test generation methods is that it generates 
the optimal patterns by handling multiple objectives (i.e., 
maximum trigger coverage with minimum test patterns). 
Whereas the GA and AGA based methods generate the pat-
terns only considering a single objective, i.e., trigger cover-
age. In addition, the broader applicability suggests that the 
NSGA-II is an acceptable choice for generating the optimal 
test patterns.

3.2.1 � NSGA‑II Based Algorithm for Optimal Test Generation

The proposed method randomly considers the M number of 
test patterns of each D length equal to the number of primary 
inputs (PIs) in the circuit. Though the value of M can vary, 
we used the M = 50 to evaluate the proposed method. A total 
M × 2D number of test patterns will be used as a search space 
for a circuit with a D number of PIs. For the practical size of D, 
a huge pool combination of different sets of M test vectors with 
high trigger coverage is possible from the total patterns. Here, 
we employ NSGA-II as shown in Algorithm 1, to identified 
the optimal subset of test patterns (size N) ranging between 
0 < N <= M from this huge set. NSGA-II was developed to 
address the limitations of previous evolutionary algorithms, 
which lacked elitism and utilized a sharing parameter to 
maintain a diverse Pareto set. The algorithm employs a quick 
non-dominated sorting algorithm, as well as sharing, elitism, 
and crowded comparison. Elitism improves the algorithm’s 
convergence rate by preserving the best solutions from the 
previous iteration. Furthermore, its adoption of a rapid non-
dominated sorting algorithm results in a substantial decrease 
in computational complexity. NSGA-II is a population-based 
search approach where the selected subsets constitute the 
population, and each solution of the population is termed as 
an individual/chromosome.

Fig. 2   The example circuit for showing how the Trojan can be 
inserted using the nets G5 and G6. Here, Tg1 denotes the Trigger of 
the Trojan. This Trojan will activate with the pattern “11001100". On 
activation it will flip the original signal of the circuit
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Individual/Chromosome Representation  Figure 3 presents 
the structure of an individual used in the proposed method. 
Each individual in the population represents the set of test 
patterns. The individual is a combination of hundreds and 
thousands of genes (i.e., test patterns), and the size of a 
gene can be varied. In this figure, the single chromosome 

consists of length M = 10 (columns) genes, denoting the 
maximum number of test cases possible in a test set. In the 
coding of individual representation, the numbers of genes 
are fixed to the number of test patterns in a subset. Each 
gene will be of D + 1 dimensions encoded as the vector of 
a binary string. The first dimension of the gene is a binary 
value (i.e., ‘1’/‘0’) indicating the valid/favourable or invalid/
unfavourable test pattern in the individual. In the example, 
the five patterns as described with blue colour are assumed 
to be favourable/valid. The rest D dimension of the gene 
represents the bit values treated as an input test pattern. By 
default, we use 50 genes, and each gene will have a test pat-
tern to build the test generator model.

Now, the NSGA-II as shown in Algorithm 1 starts with 
the random initialization of chromosomes. Further, the ini-
tial population is updated by performing selection, crosso-
ver, and mutation operations. Next, the fitness of each chro-
mosome is calculated as defined below.

Fitness Function  The selection of diverse test patterns in 
a subset for the next generation is vital to achieving high 
trigger coverage. Since we have formulated the problem of 
test pattern generation based on the above-mentioned two 
objectives, i.e., maximum coverage with minimum patterns, 
we also define the two fitness functions. We consider the 
first fitness as an average number of test patterns used in a 
subset. Considering Msp is the number of patterns selected/
favourable from the total patterns M in an individual. Thus, 
the first fitness is evaluated as follows:

where obj1(individual) is the average number of the test pat-
terns selected by the optimal model, we consider this as one 
of the fitness criteria. The goal is to minimize the value of 
obj1 by reducing the test patterns in the individuals. Now the 
second objective of our framework is to have a maximum 
trigger coverage or activation of maximum rare combina-
tions by the corresponding test pattern. Before defining the 
trigger coverage, we quantify the rare nodes as follows:

(1)minimize obj1(individual) = Msp∕M

Fig. 3   The representation of 
an individual/chromosome or a 
test-set in our multi-objective 
optimization technique. The 
binary value (i.e., ‘1’/‘0’) in 
first row indicates the valid/
favorable or invalid/unfavorable 
test pattern



377Journal of Electronic Testing (2023) 39:371–385	

1 3

where Ri represents the ith rare node. VF denotes the vulner-
ability factor of a rare node [22]. The CC0 and CC1 are the 
controllability values for logic ‘0’ and ‘1’, and CO is the 
observability value of the rare nodes, also known as SCOAP 
parameters for measuring the testability of the circuit [10]. 
Further, the c1 , � and � are constants used for making nor-
malized values and matching two parts of the relationship 
[18]. Finally, based on the above-computed value of rare 
nodes, we define the fitness function for evaluating the test 
vectors of an individual, as shown below.

where R is the number of rare nodes and RVi is the rareness 
value of a rare node i. The obj2(individual) denotes the fit-
ness value of an individual in the population. An individual 
is more valuable if it exhibits/activates more rare nodes/
combinations. The value of obj2 should be maximized for 
achieving high trigger coverage.

Based on the computed fitness, the best-fit individuals 
are identified for the reproduction process. The tournament 
selection is used to select the fittest individual, where the 
parent is selected using fitness value. The selected parent 
then carries out a crossover to become a new solution. A 

(2)RVi =

{
�

|VF|+ c1
+ �(CC0 + CO), Ri → 0

�

VF+ c1
+ �(CC1 + CO), Ri → 1

(3)maximize obj2(individual) =
∑

t∈Msp

∑

i∈R

RVi

Gaussian mutation is done after crossover to avoid the local 
minima problem. Due to the elitism-based selection tech-
nique, the updating techniques will vary compared to the 
initial generation. The elitism technique is implemented by 
comparing the current population with previously found 
best non-dominated solutions. Finally, operations like front 
calculation by non-domination sorting, computation of the 
rank, and removing the underfit solution from the pool are 
carried out in an iterative way to generate an optimal set 
of test patterns. The complete framework/workflow of the 
proposed multi-objective optimization method is presented 
in Fig. 4.

The NSGA-II basically generates the Pareto-based solu-
tions (as shown in Results Section) to identify the optimal set 
of patterns that provide high trigger coverage with minimum 
patterns. The Pareto fronts denote the trade-off between 
values of objectives, which plays a vital role in identifying 
the optimal solution. The best Pareto front is identified by 
conducting empirical experiments (10 runs) for each data-
set with the proposed model. Though running for ten times 
increases the cost of test generation, it is vital to reduce the 
testing time (due to many copies of IC) rather than reducing 
the test generation time. This is because test generation is a 
one-time process, whereas testing of IC required to test all 
copies of IC. The NSGA-II algorithm constructs the new set 
of non-dominated solutions/Pareto by reproduction, crosso-
ver, and mutation operations until an optimal Pareto front 
is obtained [17]. The newly generated population is merged 

Fig. 4   Process framework/flow diagram of the proposed multi-objec-
tive optimization based test patterns generation approach. Here, the 
circuit files, and population as individual as provided as inputs to the 

search method. Based on the inputs, the optimal patterns are gener-
ated after multiple iterations
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with the parent population, and then it is sorted by evalua-
tion criteria called the fitness function of each individual in 
the population. The survival of a solution in the population 
depends on its fitness value. The best individuals (having the 
highest fitness) are considered for the next generation. The 
final generation corresponds to the set of evolved individuals 
with the generated Pareto front. The solutions in the Pareto 
front are evaluated for the coverage and test patterns criteria. 
A solution that provides high coverage with minimum pat-
terns is considered an optimal solution.

Since we generate the test patterns without consider-
ing the propagation of the Trojan effect, we also proposed 
to insert the checker logic in the low-observable nodes to 
detect/monitor malicious behaviour, as discussed in the next 
section.

3.3 � Checker Circuit Insertion

The above proposed multi-objective NSGA-II based 
approach generates the test patterns to activate the Trojans 
to detect them during testing. However, the attacker may 
also make the Trojan stealthy by connecting their payload 
at the low observable nodes. In this case, the activation of 
Trojans may not be sufficient to detect the Trojans effec-
tively. Therefore, a designer can also consider inserting the 
checker logic [6] as shown in Fig. 5 at the low observable 
nodes to detect the Trojan effectively during testing as well 
as in-field operation.

This checker logic monitors the Trojan behaviour based 
on the correlation between the neighbourhood signals 
( X1,X2 and Y1, Y2 ) of the target node (S). Any undesirable 
behaviour reported with an error signal, i.e., error = 1 . Since 
the payload of the Trojan is generally connected with low 
observable nodes, the insertion of checker logic at these 
nodes is very effective in detecting the Trojan behaviour on 
its activation [6]. The proposed multi-objective optimiza-
tion based HT detection technique generates the test patterns 
that effectively activate the Trojans. It is observed that the 
checker insertion is very effective for detecting malicious 

behaviour, whereas test generation is very effective for 
Trojan activation. Therefore, the proposed HT detection 
combines these best features of test generation and DFT 
to detect the Trojan during post-silicon testing effectively. 
We propose using the inserted checker i.e., design-for-trust 
(DFT) to identify Trojan behaviour on its activation. Since 
this work mainly focuses on generating test patterns using 
multi-objective optimization for Trojan activation, further 
analysis/discussion of checker logic insertion or DFT is out 
of the scope of this paper.

The complete procedure of the proposed HT detection 
technique is provided in the next subsection.

3.4 � Complete Steps for Hardware Trojan Detection

The complete procedure of the proposed hardware Trojan 
detection technique from test pattern generation to hardware 
Trojan detection is presented in Procedure 1. The proposed 
technique first inserts the checker logic in design at the low 
observable nodes. Further, it generates the optimal test pat-
terns for the rare-triggered nodes using the proposed multi-
objective optimization-based approach. Finally, we apply the 
generated test patterns during post-silicon testing to check 
whether a given design contains a Trojan or not.

Since the proposed HT detection technique combines 
the best features of test generation and DFT based online 
monitoring, it addresses all the limitations (mentioned in 
Section 2) of existing techniques and effectively detects the 
Trojan during post-silicon testing. In contrast to existing 
GA-based test generation approaches, the proposed approach 
considers multiple objectives, i.e., the number of test pat-
terns and trigger coverage during test generation. Thus, 

if(S==1)
1Y X1^~ 2Y ^~X2) |( );(error=

else if(S==0)
1Y 2Y{ }error=( != 2’b11);

Checker Logic:
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b

Fig. 5   The insertion of checker logic for monitoring the Trojan 
behaviour at the low observable or target node S [6]
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it provides high trigger coverage with minimum patterns. 
Since we insert the checker logic at low observable nodes 
to observe the Trojan behaviour, it eliminates the need to 
propagate the HT effect at the output. Hence, in the proposed 
approach, generating the test patterns only for Trojan activa-
tion (without considering effect propagation) achieves high 
trigger coverage and activates stealthy Trojans. Additionally, 
the proposed approach can generate patterns for activating or 
detecting the Trojan whose effect does not propagate at the 
output. Finally, the proposed HT detection technique detects 
the Trojan during post-silicon testing, which also provides 
an opportunity to fix or reject the design before its deploy-
ment in case of any malicious inclusion. The combination of 
test pattern generation and DFT based online monitoring in 
HT detection provides additional protection against Trojan 
hardware.

In this paper, we mainly focus on activating the combina-
tional Trojans only. However, it is reported in [4] that excit-
ing rare events multiple times can also activate the sequential 
Trojan. Further, the proposed method functions in the same 
way as existing GA [24] and AGA [18] based methods func-
tion. Therefore, in a similar way, the proposed approach can 
be extended to detect the sequential Trojan. The simulation 
results and comparative analysis of the proposed technique 
are presented in the next section.

4 � Experimental Results and Analysis

This section presents the experimental setup, simulation 
results and a comparative analysis of the proposed HT detec-
tion technique.

4.1 � Experimental Setup

The proposed test vectors generation algorithm is imple-
mented in MATLAB, and its effectiveness is evaluated 
for trigger coverage on various ISCAS-85 benchmark 
circuits. The proposed method mainly focus on activat-
ing combinational Trojans. Since ISCAS-85 benchmarks 
are most relevant to our research problem and used by 
existing MERO [4], GA [24] and AGA [18] methods, we 
have used these benchmarks for evaluation and compari-
son purposes. The rare nodes in benchmarks are identified 
using VFTh metric [22] for different VTh values, i.e, 0.85, 
0.9, 0.95. We identified the optimal sets of test patterns 
while considering a maximum of 50 test patterns in each 
set. We also implemented the two variants of GA-based 
techniques [18, 24] by considering 200 population sizes 
and running for 1000 iterations to evaluate the effective-
ness of the proposed method.

4.2 � Simulation Results and Discussion

Our algorithm first identifies the number of rare nodes in 
benchmarks for different VTh , as shown in Table 1. It can be 
observed from this table that the c432 is the only benchmark 
that does not exhibit any rare node for VTh = 0.95.

The proposed multi-objective optimization-based tech-
nique is employed on ISCAS-85 benchmarks, and the sim-
ulation results are computed with three different VTh , i.e., 
0.85, 0.90, 0.95 for all these benchmarks. To display the 
ability to search by multiplicative genetic algorithm, we 
obtained the optimal Pareto front obtained during the evalu-
ation of the benchmark circuits. The simulation results of 
the three circuits are presented in Fig. 6. The organization 
of the Pareto fronts is made to demonstrate the performance 
on different thresholds 0.85, 0.90 and 0.95 of c499, c2670, 
and c7552, respectively. The three circuits are selected to 
observe the Pareto performance on the diverse sizes (num-
ber of gates and the number of inputs) circuits. The analysis 
of the Pareto fronts mainly focuses on two aspects: (1) the 
convergence of the obtained solutions; (2) the diversity of 
the non-dominated solutions. Although these observations 
are not exhaustive, they provide a good basis to assess the 
performance of a multi-objective algorithm in optimal test 
pattern generation for Trojan detection. The Pareto plots 
show that NSGA-II obtains a good approximation to the true 
global PFs on any size circuit. In addition, NSGA-II also 
obtains a set of non-dominated solutions with good diversity 
and convergence. It can also be observed from these Pareto 
graphs that out of 50 solutions, only 35 optimal solutions 
are identified in all the benchmarks. These results demon-
strate that the proposed model maintains a good diversity 
of solutions for test pattern generation for hardware Trojan 
detection.

From the computed Pareto solutions of different VTh , we 
extracted the solutions with maximum coverage, minimum 
test cases, and the solution with average coverage and test 
patterns, as shown in Tables 2, 3 and 4. We have computed 
trigger coverage by considering the maximum possible trig-
ger size in each benchmark. It can be observed from these 
tables that the proposed technique provides on an average 
4.0625E+27, 4.35E+26 and 8.90E+20 trigger coverage 
while requiring only 45.3, 44.2 and 42.8 test patterns for 
VTh = 0.85 , VTh = 0.90 and VTh = 0.95 respectively in case 
of maximum coverage. The proposed technique provides an 
average of 8.9E+11 and 2.3E+11 coverage while requir-
ing 6, 5.2, and 5.1 test patterns only in case of minimum 
test patterns for VTh = 0.85 and VTh = 0.90 and VTh = 0.95 
respectively. In the average case, it can be observed the pro-
posed technique provides 4.3E+16, 1.8E+16 and 4.3E+15 
coverage with 23.3, 22.1 and 23.4 patterns for VTh = 0.85 , 
VTh = 0.90 and VTh = 0.95 , respectively.
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Though the above results of trigger coverage are pre-
sented for fixed or a maximum of 50 patterns, it is observed 
from the simulation that a slight increase in test patterns 
significantly increases the trigger coverage. The relation 
between the trigger coverage and the test cases for the c1908 
benchmark is presented in Fig. 7. It can be observed from 
the figure that every increase in test patterns approximately 
doubles the trigger coverage each time. Since this figure 
presents the coverage for varying test patterns, it also shows 
maximum coverage for the given number of patterns. Hence, 
the proposed technique can also help the designer to achieve 
high trigger coverage according to the limit of test cases or 
the minimum number of test cases.

Besides the above, we also identify the optimal solution 
set for each benchmark, which exhibits maximum coverage 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6   Pareto charts of c499, c2670 and c7552 benchmarks generation of after exploring optimal solutions with V
Th

 = 0.85, V
Th

 = 0.9 and V
Th

 = 
0.95

Table 1   The number of rare-trigger nodes in different benchmark cir-
cuits for different V

Th

Circuit Number of Nets above the V
Th

V
Th

 = 0.85 V
Th

 = 0.90 V
Th

 = 0.95

c432 36 9 0
c499 48 40 40
c880 71 49 35
c1355 112 112 104
c1908 109 104 103
c2670 94 49 19
c3540 371 288 151
c5315 92 69 36
c7552 241 214 129



381Journal of Electronic Testing (2023) 39:371–385	

1 3

per test pattern and compare it with the existing MERO 
[4], GA [24], and AGA [18] based test pattern generation 
techniques as shown in Table 5. It can be observed from 

this table that the proposed technique provides higher trig-
ger coverage with a low number of patterns over MERO 
and both the existing GA based techniques. However, the 

Table 2   Simulation results after exploring 35 optimal Pareto solutions for V
Th

= 0.85

Circuit Solutions and Total Cases Coverage Criteria Test case Criteria Average Coverage and Test 
cases

Solutions Test patterns Max Coverage Test Cases Coverage Min test 
Cases

Avg. Coverage Test Cases

c432 35 927 478 46 146 2 243.74 26.49
c499 35 804 3.78E+09 45 2.35E+06 6 8.74E+07 22.97
c880 35 887 4.33E+10 44 2.97E+08 8 4.23E+09 25.34
c1355 35 703 972 48 346 3 643.17 20.09
c1908 35 794 7.85E+10 46 3.47E+08 7 7.86E+09 22.69
c2670 35 897 9.85E+07 44 3.25E+05 8 1.76E+06 25.63
c3540 35 689 3.25E+28 46 7.18E+12 6 3.46E+17 19.69
c5315 35 843 1.46E+09 47 3.48E+06 4 1.32E+08 24.09
C7552 35 923 6.67E+21 43 1.33E+09 6 3.22E+14 26.37

Table 3   Simulation results after exploring 35 optimal Pareto solutions for V
Th

= 0.90

Circuit Solutions and Total Cases Coverage Criteria Test case Criteria Average Coverage and Test 
cases

Solutions Test patterns Max Coverage Test Cases Coverage Min test 
Cases

Avg. Coverage Test Cases

c432 35 807 383 41 95 7 113.63 23.06
c499 35 743 137 43 47 4 87.38 21.23
c880 35 872 2.15E+09 45 1.37E+06 6 2.61E+07 24.91
c1355 35 679 876 47 257 3 387.45 19.4
c1908 35 759 5.34E+08 44 1.70E+07 6 3.41E+07 21.69
c2670 35 855 9.24E+06 45 4.52E+04 4 8.86E+04 24.43
c3540 35 654 3.92E+27 46 2.1E+12 5 1.65E+17 18.69
c5315 35 807 4.19E+07 42 2.81E+05 5 1.05E+06 23.06
c7552 35 789 5.45E+19 48 1.45E+07 7 2.17E+12 22.54

Table 4   Simulation results after exploring 35 optimal Pareto solutions for V
Th

= 0.95

Circuit Solutions and Total Cases Coverage Criteria Test case Criteria Average Coverage and Test 
cases

Solutions Test patterns Max Coverage Test Cases Coverage Min test 
Cases

Avg. Coverage Test cases

c499 35 721 129 41 78 3 83.45 20.6
c880 35 783 1.18E+07 41 2.63E+05 6 5.53E+06 22.37
c1355 35 855 567 42 233 4 407.24 24.43
c1908 35 806 4.85E+07 47 1.30E+05 5 2.73E+06 23.03
c2670 35 835 6.75E+04 42 1.18E+03 7 2.09E+03 23.86
c3540 35 870 7.12E+21 42 1.87E+12 6 3.42E+16 24.86
c5315 35 853 7.32E+07 41 4.89E+04 6 2.32E+06 24.37
c7552 35 827 4.67E+17 42 1.89E+06 4 1.93E+10 23.63
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coverage of the proposed technique for some benchmarks 
is less than the existing techniques in the case of Vth = 
0.9. This is because the number of patterns in the proposed 
method is less. However, on average, the proposed method 
provides high trigger coverage, as shown in the last row of 
this table. Additionally, the proposed technique provides 
high trigger coverage in most benchmarks over the existing 
methods for Vth = 0.95. On average, the proposed tech-
nique achieves 4.4E+26 and 8.9E+20 coverage only with 
17.6 and 17.9 test patterns for VTh = 0.90 and VTh = 0.95 , 
respectively. Whereas best known existing techniques, i.e., 
AGA on an average provides only 3.4E+23 and 1.7E+20 
coverage while requiring 80.6 and 58.9 test cases for 
VTh = 0.9 and VTh = 0.95 respectively.

Though the proposed technique only reduces around 60 
and 40 patterns over the existing methods, it provides signifi-
cantly high coverage over the existing methods. Since each 
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pattern provides different coverage, we cannot compare the 
number of patterns required for achieving equal trigger cov-
erage. But we have computed and compared the trigger cov-
erage per pattern as shown in Table 6. The comparison of the 
proposed multi-objective optimization-based technique and 
exiting MERO and GA-based techniques for average trigger 
coverage per test pattern on different VTh is shown in Fig. 8. 
It is clear from this figure that AGA based technique pro-
vides high trigger coverage over the GA and MERO based 
approaches. But the proposed technique provides signifi-
cantly high trigger coverage over AGA based approach for 
VTh = 0.9 as well as VTh = 0.95 . The AGA-based approach 
provides only 1.7E+21 coverage for VTh = 0.9 , whereas the 
proposed multi-objective optimization-based technique pro-
vides 9.4E+24 coverage. The proposed technique provides 
approximately 12 times more trigger coverage with 1/3 
reduced test patterns on VTh = 0.9 over the AGA-based tech-
nique. From the above analysis, it can be observed that the 
proposed multi-objective optimization-based technique out-
performs the existing techniques and would be very effective 
in detecting the stealthy Trojan during post-silicon testing.

5 � Conclusion

The existing GA based test pattern generation techniques 
suffer from low trigger coverage and require large patterns. 
As a solution, we framed the test pattern generation problem 
into multi-objective optimization and solved it through the 
NSGA-II algorithm. The proposed technique generates opti-
mal test patterns for activating rare events to facilitate Trojan 
detection during post-silicon testing. Our NSGA-II based 
approach generates the test patterns based on Bi-Objective 
criterion i.e., minimal test patterns and maximum cover-
age. Therefore, the proposed multi-objective-based method 
overcomes the limitations of existing GA-based methods 
and provides high coverage with a low number of patterns. 
Further, we also insert the checker logic at the low observ-
able nodes in the design to observe the Trojan behaviour on 

its activation during post-silicon testing and during online 
monitoring. The simulation results on various ISCAS bench-
marks show that the proposed multi-objective optimization-
based technique provides, on average, 12× high trigger 
coverage while requiring 1/3 reduced test patterns over the 
best-known existing method.

In this paper, we have implemented the proposed 
approach only for the combinational benchmarks, i.e., 
c-series benchmarks, which can contain only combinational 
Trojans. Since sequential benchmarks (e.g., ISCAS-89 and 
ITC’99) may also contain sequential Trojans, implementing 
the current version directly on these benchmarks is challeng-
ing and may require significant time to generate the patterns. 
However, the proposed NS-GA method functions like the 
existing GA and Advised GA; thus, we consider scaling the 
implementation of the proposed method to generate the pat-
terns for sequential benchmarks even for detecting sequential 
Trojans in our future work. Further, the multiple empirical 
runs to generate the optimal solution increases the cost of 
test generation. Therefore, our future work will also focus 
on reducing the test generation time.
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