
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:323–346
https://doi.org/10.1007/s10836-023-06066-7

A Flexible Concurrent Testing Scheme for Non‑Feedback and Feedback
Bridging Faults in Integrated Circuits

Pradeep Kumar Biswal1

Received: 1 November 2022 / Accepted: 12 April 2023 / Published online: 24 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
This paper presents a novel flexible concurrent testing scheme for non-feedback and feedback bridging faults in integrated
circuits. All the existing concurrent testing schemes for non-feedback and feedback bridging faults available in the literature
are designed with very straightforward manner and these schemes do not provide any idea regarding flexibility in design of
the tester circuit. However, providing flexibility in design of the tester circuit is one of the important criteria to be included
in concurrent testing of modern integrated circuits. To the best of my knowledge, the proposed scheme will be treated as
first concurrent testing scheme that provides flexibility in design of the tester circuit for both non-feedback and feedback
bridging faults. This work aims to provide flexibility in tester circuit design by dropping some of wires that are tapped from
Circuit Under Test (CUT) to the tester circuit. Dropping some of tap wires from CUT to the tester circuit reduces load on
CUT and this helps in reducing the area overhead of the tester circuit. Thus, flexibility in concurrent testing is achieved by
dropping some of tap wires during design of tester circuit. Further, dropping some of tap wires (flexibility) in tester circuit
design provides a trades-off analysis between area overhead, fault coverage and fault detection latency. The proposed scheme
is verified using different ISCAS89 benchmark circuits and results illustrate that flexibility in design of tester circuit is
achieved through dropping some of tap wires from CUT to the tester circuit. Further, it reduces area overhead greatly with
minimal compromise in fault coverage.

Keywords Concurrent testing · Bridging fault model · Reduced ordered binary decision diagram · Area overhead · Fault
coverage · Fault detection latency

Abbreviations
CUT Circuit Under Test
BIST Built In Self Test
ATE Automatic Test Equipment
ROBDD Reduced Ordered Binary Decision Diagram
FA Finite Automata
FI-transition Fault Identification transition
NSF Next State Function
OF Output Function
FF Flip-Flops
BF Bridging Fault
AO Area Overhead
FC Fault Coverage
RTL Register Transfer Level

1 Introduction

The density of the devices of present day integrated circuits,
that uses deep sub-micron technology, have been increasing
rapidly by reducing feature size of the transistors and intercom-
munication wires. This reduction of feature size of the tran-
sistors and intercommunication wires increases the operation
speed of the circuits to several GHz and raises the probability
of occurrence of intermittent faults at the time of operation of
the circuit. The standard off-line testing techniques like Auto-
matic Test Equipment (ATE) based testing and Built In Self
Test (BIST) cannot detect such intermittent faults. Therefore,
concurrent testing plays an essential part in testing of integrated
circuits [1, 10, 23]. The concurrent testing can be defined as a
mechanism which allows the circuit to verify the correctness of
its functionality during normal operation by constantly check-
ing whether the responses of the circuit match with the golden
responses (responses of the fault free circuit). There are four
different type of techniques that are used for concurrent testing
of integrated circuits [18, 23, 24, 30]. These are –

Responsible Editor: R. A. Parekhji

 * Pradeep Kumar Biswal
 biswalpradeep28@gmail.com

1 Department of CSE, IIIT Bhagalpur, Bhagalpur, India

http://orcid.org/0000-0001-5687-8179
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06066-7&domain=pdf

324 Journal of Electronic Testing (2023) 39:323–346

1 3

(a) Signature monitoring
(b) Self-checking design
(c) On-line Built In Self Test
(d) Partial replication

Concurrent testing techniques have been emphasized to
keep the schemes as non-intrusive as possible (i.e., least
changes to the original structure of Circuit Under Test
(CUT)), totally self-checking, low area and power over-
heads, low fault detection latency, high fault coverage, pro-
vides flexibility, scalability, etc. It has been found that most
of the concurrent testing schemes work on classical single
stuck at fault model [5, 6] and the single stuck at fault model
cannot capture a large fraction of physical defects. In order
to capture more number of physical defects, advanced fault
models, such as bridging fault model, delay fault model,
etc., are developed [17, 28]. In this work, logical AND-OR
bridging fault model have been considered where the shorts
between any two wires can be modeled using logical AND
or logical OR operations. The bridging faults are catego-
rized into two main classes. These are non-feedback bridg-
ing faults and feedback bridging faults. A short between two
wires results a non-feedback bridging fault when these wires
do not depend on one another, i.e., there does not exist any
path between the shorted wires. On the other hand, feed-
back bridging fault occurs when the shorted wires depend
on one another, i.e., there exists at least one path between the
shorted wires. The presence of a feedback bridging fault in a
combinational circuit transforms it into a sequential circuit
and the circuit may oscillate along the feedback loop. Thus,
it is comparatively difficult to test a feedback bridging fault
than an non-feedback bridging fault.

The concurrent testing scheme for bridging faults
reported in papers [8] can detect only non-feedback bridg-
ing faults. They have not mentioned any methodology to
detect feedback bridging faults. In [3], the authors have
proposed an concurrent testing scheme for bridging faults.
This scheme can detect the non-feedback bridging faults
and non-oscillating feedback bridging faults successfully.
It has been shown that the procedure used for detection of
non-oscillating feedback bridging faults is almost same as
the non-feedback bridging faults with some minor modi-
fication in the proposed algorithms. In concurrent testing,
an on-chip tester circuit is designed using the set of test
patterns for targeted faults in the CUT and the tester cir-
cuit runs parallel with the CUT and detects the occurrence
of faults in the CUT during normal operation. Providing
flexibility in design of tester circuit is one of the important
criteria to be included in concurrent testing of present-day
integrated circuits. This work aims at designing a flexible
concurrent testing scheme for feedback and non-feedback
bridging faults in integrated circuits. Since the tester circuit
runs in parallel with the CUT by means of tapping all wires

of the CUT, thus dropping some of tap wires reduces load
on the CUT which in turn minimizes the number of addi-
tional buffers required for driving gates with high fanouts.
So dropping some of tap wires reduces the area overhead
of the tester circuit. However, dropping some of tap wires
to the tester circuit causes minor changes in fault coverage
and fault detection latency. Thus, flexibility in tester cir-
cuit design can be provided by the concept of dropping of
some tap wires to the tester circuit. Further, the concept of
dropping of some tap wires to the tester circuit (flexibility)
enables the scheme to perform trade-off analysis between
area overhead, fault coverage and fault detection latency.
The proposed scheme follows the design principle of partial
replication technique to perform concurrent testing. The
foremost feature of the proposed scheme is exclusive use
of Reduced Ordered Binary Decision Diagrams (ROBDDs)
for generation of test sets, which improves the scalability to
handle relatively large size circuits.

The rest of the paper is organized as follows. Literature
review on concurrent testing of integrated circuits followed
by motivation of the work is discussed in Sect. 2. The Finite
Automate (FA) based modeling of circuit under normal and
faulty conditions, generation of test patterns (called Fault
Identification transitions (FI − transitions)) is explained in
Sect. 3. Partitioning the CUT into a number of sub circuits
based on the principle of cones of influences is discussed
in Sect. 4. Procedure of generation of FI − transitions for
non-feedback and feedback bridging faults using ROBDD
is illustrated in Sect. 5. Flexible tester circuit design using
set of FI − transitions is discussed in Sect. 6. Experimen-
tal results regarding area overhead, fault coverage and fault
detection latency under dropping of some of the tap wires
is illustrated in Sect. 7. Finally, conclusion and future scope
of the research is discussed in Sect. 8.

2 Literature Review and Motivation
of the Work

This section starts with discussion on different types of con-
current testing techniques for integrated circuits followed by
motivation of the present work is built up.

The signature monitoring technique for concurrent test-
ing fundamentally works on circuit modeling using finite
state based model and analyses the signature invariant prop-
erty during normal operation of the circuit [15, 25, 27]. The
signature is represented as the state sequences traversed in
the finite state model during execution of the circuit. The
basic idea of this technique is runtime signature of fault free
circuit is not similar to that of faulty circuit. It has been
seen that signature invariant property may not hold for
some circuits. In such cases the circuit structure is altered in
order to satisfy the signature invariant property. Hence, the

325Journal of Electronic Testing (2023) 39:323–346

1 3

signature monitoring technique has come under the intru-
sive methodology. Since the technique requires to alter and
re-synthesis of the circuit which is not always acceptable in
concurrent testing, so it has limited applicability. Further,
the state explosion problem in finite sate based model makes
the technique limited to circuits having typically about one
hundred states.

The self checking design technique for concurrent testing
makes use of error detection codes to perform concurrent
testing. The working principle of this technique is the output
of the circuit is encoded using one of the error detection
codes and the tester circuit checks the coded output. If the
coded output is a valid code word of the chosen error detect-
ing code, then the circuit is fault free, otherwise the circuit is
faulty [9, 11, 12]. In most of the cases, parity codes, berger
codes, m-out-of-n codes, etc., are used as error detecting
codes. The main disadvantages of self checking design based
concurrent testing schemes are intrusiveness and high hard-
ware overhead as output is always encoded with an error
detecting code.

The on-line BIST technique for concurrent testing utilizes
the on-chip resources of off-line testing (BIST) to perform
concurrent testing. In off-line BIST, circuit is designed with
additional on-chip circuitry that is used to test the CUT
every time before it is started-up for normal operation. In on-
line BIST, idle time of different components of the circuit is
determined during normal operation and concurrent testing
is performed during this time interval [2, 21, 29]. There are
a number of issues in on-line BIST schemes such as avail-
ability of idle time of different components of the circuit,
fitting test time within idle time available, test schedule, etc.
Further, the present day circuits target to achieve pipelining
and parallelism, which reduce the idle times of their compo-
nents (i.e, high utilization of their components). Therefore,
this technique cannot be considered as an efficient technique
for concurrent testing.

The partial replication technique for concurrent testing
designs a partial replicated circuit (i.e., minimized version
of the original circuit) and cross checks the output responses
of original circuit and partial replicated circuit during nor-
mal operation. If the output responses are not identical then
the circuit is faulty, otherwise the circuit is fault free [4,
5, 13, 14]. In this technique, the exhaustive set of test pat-
terns for all targeted faults of the CUT are generated using
one of the ATPG algorithms, then a subset of these test
patterns are taken to design the partial replication circuit,
which is executed in parallel with the CUT. The advantages
of partial replication based concurrent testing scheme are
non-intrusiveness, i.e., minimal changes in the original
structure of the circuit for concurrent testing, low area over-
head, high fault coverage, low fault detection latency, etc.
Rayudu et al. [26] have proposed an off-line testing scheme
to detect toggling faults, bridge faults and stuck at faults

in both combinational and sequential circuits. In this work,
they have used ROBDD based designs of the circuit to detect
such faults.

The concurrent testing schemes reported in papers [3,
5, 8] are based on partial replication technique where they
have targeted to achieve low area overhead, high fault cov-
erage, low fault detection latency, etc. The work reported
in [5] has used classical stuck at fault model. Although the
scheme has achieved more than 95% fault coverage, the use
of single stuck-at-fault model cannot capture a large fraction
of physical defects. For example, the shorts between two
wires cannot be modeled using single stuck at fault model.
For this reason, advanced fault models like bridging fault
model, delay fault model, etc., have been developed to cap-
ture a large number of physical defects in the present-day
integrated circuits. The bridging fault model is one of the
advanced fault models which can capture the faults that are
occurred due to short of any two wires of the circuit. For a
circuit having k number of wires, the total number of single
stuck-at-faults is 2k (O(k)) since each wire can have stuck-
at-0 and stuck-at-1 faults. In case of bridging fault model,
if the circuit having k number of wires, then the total num-
ber of bridging faults (taking short between any two wires
at a time) is O(kC2) = O(k2) . Thus, adopting bridging fault
model one can ensure that more number of faults or defects
can be detected than that of single stuck-at fault model [7,
16, 19]. The concurrent testing schemes reported in papers
[3, 8] use bridging fault model to detect faults during normal
operation of the circuit. The scheme reported in [8] can only
detect the occurrence of any non-feedback bridging faults
in the CUT, whereas they have not considered the feedback
bridging faults. Thus, this scheme has low fault coverage.
The scheme reported in [3] can detect the non-feedback and
non-oscillating feedback bridging faults successfully. This
scheme has improved fault coverage to some extend by con-
sidering non-oscillating feedback bridging faults. The above
schemes [3, 8] have designed the tester circuits by tapping
all the wires of the circuit. These schemes don’t have any
concern regarding flexibility in design of the tester circuits.
However, providing flexibility in design of tester circuit is
one of the important criteria to be included in concurrent
testing of integrated circuits designed using deep sub-micron
technology. In order to provide flexibility in design of tester
circuit, some of the tap wires to the tester circuit can be
dropped which reduces the number of fanout of the gates
of the circuit, thus area overhead is reduced. Further, drop-
ping of some tap wires to the tester circuit makes minor
changes on fault coverage and fault detection latency. Thus,
through flexibility (dropping some of tap wires) in tester
circuit design, trades-off analysis between area overhead,
fault coverage and fault detection latency can be explored.

From the above discussion, this work aims at design-
ing a flexible concurrent testing scheme for feedback and

326 Journal of Electronic Testing (2023) 39:323–346

1 3

non-feedback bridging faults in digital integrated circuits.
The proposed scheme follows the principle of partial repli-
cation technique for concurrent testing in order to attain the
advantages such as non-intrusiveness, low area overhead,
high fault coverage, low detection latency, etc. The scheme
applies flexibility in the tester circuit design by dropping
some of the tap wires to the tester circuit and studies the
trades-off between area overhead verses fault coverage and
fault detection latency. Further, the scheme uses ROBDDs
for generation of test patterns, which directly improves the
scalability of the scheme and handles large size circuits.

3 Finite Automata (FA) Based Circuit
Modeling Under Normal and Faulty
Conditions and Generation of Fault
Identification Transitions

This section includes 2 subsections; (a) Sequential circuit mod-
eling under normal and faulty conditions using finite automata,
and (b) generation of fault identification transitions. A digital
sequential circuit consists of Next State Function (NSF) block,
set of Flip-Flops (FFs), and Output Function (OF) block. In
this work, concurrent testing is performed in NSF block and
set of FFs of the sequential circuit and the OF block is not
included because it is a combinational circuit and the same
mechanism can be easily applied to it. The fundamental archi-
tecture of concurrent testing of sequential circuit is shown in
Fig. 1. Circuit Under Test (CUT) is made up of combination
of NSF block and set of FFs of the sequential circuit. The CUT

and the tester circuit are driven by same clock and the tester
circuit is devised by means of tapping of wires; NSF outputs
(S+) and primary inputs (I), as depicted in Fig. 1.

The CUT can be modeled using a finite automata (FA) M
as follows:

where, Q is set of states (finite), Σ is set of input sym-
bols (finite), q0 ∈ Q is the initial state, � ∶ Q × Σ → Q is
the transition function, and V = {v1, v2,, vm} is set of
Boolean variables. The set V is partitioned into two (2) sub-
sets; set of state variables (S = {v1, v2,vk}) and set of
input variables (I = {vk+1, vk+2,vm}). A state q ∈ Q is a
mapping q ∶ S → {0, 1} , i.e., state encoding is performed
using a binary k-tuples. An input symbol � ∈ Σ is a map-
ping � ∶ I → {0, 1} . A transition �(q, �) = q+ is represented
as � = ⟨q, �, q+⟩ , where q, q+ , and � are the initial state
(denoted as begin(�)), final state (denoted as end(�)), and
input symbol (denoted as input(�)) of the transition, respec-
tively. Modeling digital circuits using FA framework, the
set of final states doesn’t have any significant role, so set of
final states in FA model is not defined here.

3.1 CUT Modeling Under Normal and Bridging
Fault Conditions

This subsection illustrates the process of modeling of CUT
under normal and bridging fault conditions using Finite
Automata (FA) framework. In bridging faults, two or more

(1)M = ⟨Q,Σ, q0, �,V⟩

Next State Function
Flip Flops

Circuit Under Test

secondary inputs (S)

Primary inputs (I)

NSF block
outputs(S +)

tap lines (S +)

tap lines (I)
Tester Circuit

Output
function
block

I

S
Outputs

Clock

Fig. 1 Architecture of concurrent testing of a sequential circuit

327Journal of Electronic Testing (2023) 39:323–346

1 3

wires of the circuit are shorted together. For simplicity,
bridging faults involve shorting of any two wires of the cir-
cuit is considered in this work. There are two kinds of bridg-
ing faults; OR-bridging faults and AND-bridging faults. The
OR-bridging fault (AND-bridging fault) between two wires
implies they are shorted together to form logical OR (AND)
operation. The bridging faults are categorized into two dif-
ferent types; (a) Non-feedback bridging faults and (b) Feed-
back bridging faults. In case of non-feedback bridging fault,
there doesn’t exist any path between two shorted wires. On
the other hand, in case of feedback bridging fault there must
be exist at least one path between two shorted wires.

In order to demonstrate the procedure of modeling of
CUT under normal and bridging fault conditions, a simple
sequential circuit (CUT) as shown in Fig. 2 is taken. Con-
sider the OR-Bridging fault between the wires l1 and l2 (say
F1) and the faulty circuit is depicted in Fig. 3. Here, the
CUT has 3 inputs where v1 and v2 are secondary inputs and
v3 is primary input. Under normal condition, the Boolean
expressions for NSF block outputs are v+

1
= v

�

1
v2 + v

�

2
v3 and

v+
2
= v

�

1
v
�

2
+ v2v3 (shown in Fig. 2). Under faulty condition,

the Boolean expressions for NSF block outputs are changed
as v+

1
= v

�

1
v2 + v3 and v+

2
= v2v3 (shown in Fig. 3). FA is

considered as a well accepted model for modeling digital
circuits because of it’s simplicity [22]. Figure 4 shows the
FA model for representing the behavior of the CUT under
normal and faulty (F1) conditions. It consists of two sub-
models; normal sub-model (left hand side of the figure) and
faulty sub-model (right hand side of the figure). For each
fault there is a corresponding FA sub-model to represent the
faulty behavior of the CUT. For simplicity, two sub-models

have been shown; one for normal condition and another for
faulty (F1) condition. In normal sub-model (F1 sub-model),
the states are named as q0r (q1r), where r >= 1 . In similar
way, transitions are named in normal (as �0k , k >= 1) and F1
(as 𝛿1k, k >= 1) sub-models, which can be found in Fig. 4.
In order to distinguish between states under normal and
faulty sub-models, an unmeasurable set of status variables
C = {Nr,F1,F2, ...,Fh} have been added, where Nr repre-
sents normal status, Fi , 1 <= i <= h , represents ith fault sta-
tus, and h is the total number of targeted faults in the CUT.
It can be noted that the status variables are dummy (unmeas-
urable) variables and they are used for modeling purposes
only. If they are measurable, then fault detection process
becomes straightforward. The occurrence of fault (F1) dur-
ing normal operation of the circuit is modeled by moving
the control of execution from normal sub-model to F1 sub-
model by the dotted transition shown in Fig. 4. The dotted
transition is in the form of ⟨q0r,T , q1r⟩ , where C(q0r) = Nr ,
C(q1r) = F1 , and T indicates TRUE. That means, these transi-
tions are occurred at any time asynchronously without trig-
gering edge of the clock.

Now, some definitions that are related to FA modeling of
CUT under normal and faulty conditions are defined. Con-
sider the followings:- M is the FA-model of CUT, and Fi is
the bridging fault in the CUT.

Definition 1 Normal (Nr)-state and Faulty (Fi)-state: A
state in M is called a Nr-state if it is denoted as q0r , where
r >= 1 and C(q0r) = Nr.

A state in M is called a Fi -state if it is denoted as qir , where
r >= 1 and C(qir) = Fi.

Fig. 2 Example: A simple
sequential circuit (CUT)

328 Journal of Electronic Testing (2023) 39:323–346

1 3

The set of all Nr-states (Fi-states) is denoted as QNr (QFi
).

In this example (Fig. 4), the states q01, q02, q03 , and q04 are
normal states and the states q11, q12, q13 , and q14 are faulty
(F1) states.

Definition 2 Normal(Nr)-M-transition and Faulty (Fi)-
M-transition: A M-transition ⟨q, �, q+⟩ is called a Nr-M
-transition, if {q, q+} ∈ QNr.

A M-transition ⟨q, �, q+⟩ is called a Fi-M-transition, if
{q, q+} ∈ QFi

.

In this example (Fig. 4), the transitions �01, �02,�08 are
normal (Nr)-M-transitions and the transitions �11, �12,�18
are faulty (F1)-M-transitions.

Definition 3 Symmetrical States: Two states qi and qj are
said to be symmetrical, denoted as qi ≈ qj , if qi|S = qj|S ,
where qi|S represents the values of the state variable at state qi.

It is very clear that any two sates of a given FA sub-
model never be symmetrical. However, two states from dif-
ferent FA sub-models may be symmetrical. In this example
(Fig. 4), the states q01 (in normal FA sub-model) and q11
(in faulty (F1) FA sub-model) are symmetrical because of
q01|S = q11|S(= 00).

Definition 4 Symmetrical Transitions: Two transitions
�i(⟨q1, �1, q

+
1
⟩) and �j(⟨q2, �2, q+2 ⟩) are symmetrical, denoted as

�i ≈ �j , if q1|S = q2|S (i.e., q1 ≈ q2), q+1 |S = q+
2
|S (i.e., q+

1
≈ q+

2
)

and �1|I = �2|I.

In this example (Fig. 4), the transitions �03(⟨q02, 0, q03⟩)
and �13(⟨q12, 0, q13⟩) are symmetrical (�03 ≈ �13) because of
q02 ≈ q12 , q12 ≈ q13 , and �1|I = �2|I(= 0).

3.2 Generation of Fault Identification Transitions
(FI − transitions)

This subsection presents the process of generation of test
patterns to detect the occurrence of a bridging fault in the
CUT. Consider the CUT and OR-bridging fault between
the wires l1 and l2 (F1) shown in the Fig. 3. The FA model
of CUT under normal and F1 conditions is shown in the
Fig. 4. When one compares the transitions of normal FA
sub-model with the transitions of faulty FA sub-model, then
three transitions (marked in red color) are found in faulty
sub-model that are differed from normal behavior. These
transitions are– �11 ∶ ⟨q11, 0, q11⟩ , �12 ∶ ⟨q11, 1, q13⟩ , and
�18 ∶ ⟨q14, 1, q14⟩ . For these transitions there is no symmetri-
cal transitions in the normal FA sub-model. All other transi-
tions in faulty sub-model there is a symmetrical transition
in the normal sub-model. For example, in case of transition
�11 ∶ ⟨q11, 0, q11⟩ , the corresponding transition in normal
sub-model is �01 ∶ ⟨q01, 0, q02⟩ , where q01|S = q11|S(= 00) ,
�
�01

= �
�11
(= 0) but q02|S(= 01) ≠ q11|S(= 00) . That means,

for a given state and input combination, the next states
reached are different under normal and faulty conditions.
Such type of transitions detect the occurrence of fault F1
in the CUT and known as Fault Identification transition
(FI − transition). The main significance of symmetrical
transitions is to determine FI − transitions for a fault. In sim-
ple words, FI − transitions (in faulty FA sub-model) do not

Fig. 3 CUT with OR-Bridging
(l1 , l2)

329Journal of Electronic Testing (2023) 39:323–346

1 3

have corresponding symmetrical transitions in normal FA
sub-model. Based on above discussion, the FI − transition
can be defined as follows:

Definition 5 Fault Identification Transition (FI − transition):
A faulty (Fi)-M-transition �ir = ⟨qir, �ir, q

+
ir
⟩ is a FI − transition

for fault Fi , if there is a normal (Nr)-M-transition
�0k = ⟨q0k, �0k, q

+
0k
⟩ such that qir ≈ q0k, �ir = �ok and q+

ir
≉ q+

ok
.

The above procedure of generation fault identification
transitions for a fault from finite automata based modeling
framework is quite complex for large size circuits. In case of
large size circuits the number of sates in FA model increases
exponentially with the increase of the number of flip-flops
in the circuit. Further, the number of state variables needed
to encode the states in the FA model is also increased expo-
nentially. This phenomenon is called state explosion problem
in FA model, which restricts the technique to handle small
sized circuits. In this paper, several techniques have been
adopted in order handle comparatively large size circuits.
First, partition the CUT into a number of sub-circuits based
on the principle of cones of influence with respect to the
NSF block outputs. Second, generation FI − transitions for

bridging fault using ROBDD representation of the cone out-
puts, instead of using explicit FA model of the CUT.

4 Partitioning the CUT Into a Number
of Sub‑Circuits

This section explains the procedure of partition of CUT into
a number of sub-circuits based on the principle of cones of
influences. Consider the CUT shown Fig. 2, where v3 is the
primary input (I) and v1 and v2 are the secondary inputs (S),
which are feedback from the flip-flip outputs. The outputs
of the NSF block (S+) are v+

1
 and v+

2
 . v1v2 and v+

1
v+
2
 represent

the present state and next state of the CUT, respectively.
Now, the NSF block can be formally defined as S × I → S+ ,
where S = {v1, v2,vk} be the set of state variables,
I = {vk+1, vk+2,vm} be the set of input variables, and
S+ = {v+

1
, v+

2
,v+

k
} be the set of NSF block outputs. Let

S+
0
= {v+

01
, v+

02
,v+

0k
} and S+

i
= {v+

i1
, v+

i2
,v+

ik
} represent

the outputs of the NSF block under normal and faulty (Fi)
conditions, respectively. Figure 5 shows the cones of influ-
ences with respect to the NSF block outputs of the CUT.
It involves two cones; one is with respect to wire v+

1
 and

another is with respect to wire v+
2
 . In this way, the circuit is

Fig. 4 FA-model of CUT under normal and faulty (F1) conditions

330 Journal of Electronic Testing (2023) 39:323–346

1 3

partitioned into a number of small sized sub-circuits using
cones of influences, thus the scheme can handle compara-
tively large size circuits.

It can be observed in the Fig. 5 that the OR-Bridging
fault between the wires l1 and l2 is active only when these
two wires have different logic values, i.e.,when the values
of l1l2 is either 10 or 01. When both the values of l1 and
l2 are logic 0 (logic 1), the output of the OR-gate is 0 (1),
so the fault has no effect. The effect of OR-Bridging fault
between the wires l1 and l2 is shown in Table 1. When l1 = 1
and l2 = 0 , then l2 becomes logic 1 due to OR-Bridging
fault between l1 and l2 . In case of OR-Bridging fault, the
wire with logic value 1 (i.e., l1) is called dominating wire
and the wire with logic value 0 (i.e., l2) is called domi-
nated wire. In OR-Bridging fault, when the logic value at
dominating wire becomes 1, then it overrides the value at
the dominated wire by pulling it from logic 0 to logic 1.
Thus, the OR-bridging fault results in stuck-at-1 (s-a-1)
fault at the dominated wire when the value at dominat-
ing wire is logic 1. Figures 6 and 7 show the effect of
OR-Bridging fault between the wires l1 and l2 , where l1
dominates l2 and l2 dominates l1 , respectively. In order to

detect OR-Bridging fault between the wires l1 and l2 , the
below mechanisms are followed.

1. l1 dominates l2 : Find the test patterns that drives logic 1
to wire l1 and detects stuck-at-1 fault at wire l2 . Figure 6
illustrates the same.

2. l2 dominates l1 : Find the test patterns that drives logic 1
to wire l2 and detects stuck-at-1 fault at wire l1 . Figure 7
illustrates the same.

It may be noted that the mechanism to detect OR-Bridging
fault between two wires l1 and l2 can be directly used to detect
AND-Bridging between l1 and l2 by applying the principle

Fig. 5 OR-Bridging (l1 , l2)

Table 1 Effect of OR-Bridging between l1 and l2

Values of l1l2 OR-Bridging (l1, l2) Remarks

00 0 No difference
01 1 l1 becomes 1
10 1 l2 becomes 1
11 1 No difference

331Journal of Electronic Testing (2023) 39:323–346

1 3

of duality. For example, in case of AND-Bridging the logic
value at dominating wire is 0 and it makes the dominated
wire wire from logic 1 to logic 0, i.e., to check stuck-at-0
fault at the dominated wire . In the next section, the proce-
dures of generation of FI − transitions for non-feedback and
feedback bridging faults using ROBDD will be discussed.

5 Generation of FI − transitions
for Non‑feedback and Feedback Bridging
Faults Using Reduced Ordered Binary
Decision Diagram (ROBDD)

5.1 Generation of FI − transitions for Non‑feedback
Bridging Faults Using ROBDD

In this subsection, the procedure of generation of complete
set of FI − transitions for the non-feedback bridging faults
using ROBDD will be discussed. For demonstrating the
procedure, consider the example of CUT and OR-Bridging
fault between the wires l1 and l2 (say, Fi), shown in Fig. 3.
Since there is no path between the wires l1 and l2 , so the

bridging fault between the wires l1 and l2 is a non-feedback
bridging fault. As per discussion in the last section the OR-
Bridging fault between wires l1 and l2 can be detected using
two mechanisms; (1) l1 dominates l2 and (2) l2 dominates l1.

5.1.1 Generation of FI − transitions for Non‑feedback
Bridging Fault When l

1
 Dominates l

2

At first, the NSF block is partitioned into a number of cones
of influences with respect to the NSF block outputs, i.e.,
v+
i
 , where 1 ≤ i ≤ k . Consider non-feedback OR-Bridging

fault between the wires l1 and l2 (Fi) and the mechanism
where l1 dominates l2 . In this case, fault can be detected by
means of test patterns which drives logic 1 at wire l1 and
check stuck-at-1 fault at wire l2 (shown in Fig. 6). Since it
is required to manifest the stuck-at-1 fault at wire l2 through
the NSF block outputs, so the cones of influences with
respect to NSF outputs which include the wire l2 are found
out first. Then, ROBDD based Algorithm 1 is used to gen-
erate FI − transitions for non-feedback OR-bridging fault
in the CUT.

Fig. 6 OR-Bridging (l1 , l2): l1 dominates l2

332 Journal of Electronic Testing (2023) 39:323–346

1 3

Now, the Algorithm 1 is applied to generate FI−
Transistions for non-feedback bridging fault between wires
l1 and l2 (Fi) shown in the Fig. 6. Follow the mechanism of
l1 dominates l2 , i.e., test patterns are generated by driving
logic 1 to wire l1 and checking stuck-at-1 fault at wire l2 . The
wire l2 is only present in the cone w.r.t v+

2
 . Figure 8(a), (b)

show the ROBDD representations of cone w.r.t v+
2
 under

normal (robddnormal) and faulty (robddfaulty) conditions,
respectively. The Boolean expressions 4 v+

2
= v�

1
v�
2
+ v2v3

and v+
2
= v2v3 , respectively. The logical XOR operation is

performed between the normal and faulty ROBDDs and the

XORed ROBDD (robddxor)is shown in Fig. 8(c). The satisfy-
all-1 operation is applied on robddxor to generate input pat-
terns (⟨v1v2v3⟩) as IPl2,s−a−1

= {00×} = {000, 001} . The
ROBDD representation of cone w.r.t wire l1 (Boolean expres-
sion vl1 = v�

2
) is shown in Fig. 8(d) (robdddominating). Further,

the satisfy-all-1 operation is applied on robdddominating in
order to generate test patterns (⟨v1v2v3⟩) that drives logic 1
at wire l1 , i.e., IPl1,1

= {×0×} = {000, 001, 100, 101} . Now,
the intersection operation between IPl1,1

 and IPl2,s−a−1
 is per-

formed to generate set of test patterns as TPv+
2

= {000, 001} ,
i.e., drives logic 1 at wire l1 and detects stuck-at-1 at wire l2

333Journal of Electronic Testing (2023) 39:323–346

1 3

and fault is manifested through v+
2
 . For test pattern ⟨000⟩ , the

corresponding FI − transition is ⟨00, 0,×0⟩ where the faulty
response of v+

2
 is obtained by applying test pattern ⟨000⟩ in

ROBDDfaulty , i.e., logic 0 and the value of v+
1
 is × because

fault is manifested through v+
2
 . This is corresponding to the

transition �11 shown in Fig. 4. Similarly, for test pattern
⟨001⟩ , the corresponding FI − transition is ⟨00, 1,×0⟩ , which
corresponds to transition �12 shown in Fig. 4.

5.1.2 Generation of FI − transitions for Non‑feedback
Bridging Fault When l

2
 Dominates l

1

The procedure discussed in Subsection 5.1.1 is repeated with
reversing the roles of l1 and l2 . Here, l2 becomes dominating
wire and l1 becomes dominated wire. In this case, bridging
between the wires l1 and l2 is detected by driving logic 1 to wire
l2 and detect stuck-at-1 fault at wire l1 , which is shown in Fig. 7.
The ROBDDs required to generate test patterns is shown in
Fig. 9. In similar way, the set of test patterns are generated as
TPv+

1

= {111} and it’s corresponding FI − transition is
⟨11, 1, 1×⟩ , which corresponds to transition �18 shown in Fig. 4.

Finally, the complete set of FI − transitions generated for
fault Fi is {⟨00, 0,×0⟩, ⟨00, 1,×0⟩, ⟨11, 1, 1×⟩}.

5.2 Generation of FI − transitions for Feedback
Bridging Fault Using ROBDD

This subsection presents the procedure of generation of
complete set of FI − transitions for feedback bridging
faults using ROBDD. As discussed before, a bridging fault
between the wires l1 and l2 is said to be feedback bridging
fault when there exists at least one path between the wires l1
and l2 . The most important thing in feedback bridging fault
is oscillation. It has been seen that some of the feedback
bridging faults cause oscillation in the CUT and termed as
oscillating feedback bridging fault. Detection of such faults
is quite impossible using standard logical fault models. Con-
sider the feedback bridging fault between the wires l1 and l2
and the wire l1 is closer towards the primary inputs and wire
l2 is closer towards the primary outputs. Since the two mech-
anisms have been used for generation of FI − transitions for
non-feedback bridging faults; (a) l1 dominates l2 and (b) l2

Fig. 7 OR-Bridging (l1 , l2): l2 dominates l1

334 Journal of Electronic Testing (2023) 39:323–346

1 3

dominates l1 . The mechanism of l1 dominates l2 discussed
in Subsection 5.1.1 is directly applied in order to generate
FI − transitions for feedback bridging faults. However, in
case of l2 dominates l1 there is required to execute some
additional steps for generation of FI − transitions for feed-
back bridging faults. The execution of additional steps are
essential in order to isolate test patterns that cause oscilla-
tions. Now, the mechanism of l2 dominates l1 for generation
of FI − transitions for feedback bridging faults will be dis-
cussed using the example of CUT shown in Fig. 10.

Consider the CUT and feedback bridging fault between
the wires l1 and l2 as shown in Fig. 10. Since there exists a
path between l1 and l2 , so they must lie in the same cone
of influence, i.e., cone w.r.t v+

1
 . Apply Algorithm 1 with

the mechanism l2 dominates l1 to generate FI − transitions
for this feedback bridging fault. ROBDD representations of
cone w.r.t v+

1
 under normal and faulty (stuck-at-1) at wire l1

are shown in Fig. 11(a) (robddnormal) and (b) (robddfaulty),
respectively. The Boolean expressions of v+

1
 under nor-

mal and faulty conditions are v+
1
= v1v

�
2
v3 + v�

1
v2v3 and

(a) (b) (c) (d)

Fig. 8 ROBDDS for l1 dominate l2

(a) (b) (c) (d)

Fig. 9 ROBDDS for l2 dominate l1

335Journal of Electronic Testing (2023) 39:323–346

1 3

v+
1
= v1v3 + v2v3 , respectively. Perform logical XOR opera-

tion between robddnormal and robddfaulty to build XORed
ROBDD (robddxor), which is depicted in Fig. 11(c).
Apply satisfy-all-1 on robddxor to find input patterns
(⟨v1v2v3⟩) to detect stuck-at-1 fault at l1 . The obtained
set of input patterns is IPl1,s−a−1

= {111} . The ROBDD
representation of cone w.r.t l2 under normal condition
(Boolean expression is v1 + v2v3) is shown in Fig. 11(d)
(robdddominating). Satisfy-all-1 operation is applied to gen-
erate input patterns that drives logic 1 at wire l2 under
normal condition. The obtained set of input patterns is
IPl2,1

= {011, 1 × ×} = {011, 100, 101, 110, 111} . The inter-
section between IPl2,1

 and IPl1,s−a−1
 is performed to produce

test patterns to detect the feedback bridging fault between
l1 and l2 . The obtained set of test patterns is TP = {111} .
Now, the following additional steps are executed to find out
whether this test pattern causes oscillation or not.

• Build a ROBDD which represents the cone w.r.t wire l2
under stuck-at-1 fault at wire l1 . Say it robddl2,l1(s−a−1) .
In this example, the Boolean expression of l2 under
stuck-at-1 at l1 is v1 + v3 and robddl2,l1(s−a−1) is shown in
Fig. 11(e).

• Apply satisfy-all-0 operation on robddl2,l1(s−a−1) in order to
generate input patterns that makes logic 0 at wire l2 during
propagation of stuck-at-1 fault at l1 . Say it IPl2=0,l1(s−a−1)

 .
In this example, IPl2=0,l1(s−a−1)

= {0 × 0} = {000, 010}.
• For each test pattern tp ∈ TP do the followings:

– If tp ∈ IPl2=0,l1(s−a−1)
 , then eliminate tp from TP,

because it causes oscillation.

– If tp ∉ IPl2=0,l1(s−a−1)
 , then it remains as a test pat-

tern and does not cause oscillation. In this case tp is
mapped to corresponding FI − transttion.

 In this example, TP = {111} , IPl2=0,l1(s−a−1)
= {000,

010} and ⟨111⟩ ∉ IPl2=0,l1(s−a−1)
= {000, 010} . So, the test

pattern ⟨111⟩ remains as a test pattern and it is mapped to
FI − transition as ⟨11, 1, 1×⟩.

5.3 Illustration of Detection of Oscillating Feedback
Bridging Fault

This subsection illustrates the process of detection of an
oscillating feedback bridging fault. Consider the CUT and
feedback bridging fault between wires l1 and l2 as shown in
Fig. 12. Apply Algorithm 1 with the mechanism l2 domi-
nates l1 to generate FI − transitions for this feedback bridg-
ing fault. The Boolean expressions of v+

1
 under normal and

faulty (s − a − 1 at l1) conditions are v+
1
= v�

1
v�
2
+ v�

1
v�
3
+ v2v3

and v+
1
= v�

1
v�
3
+ v2v3 , respectively. ROBDD representa-

tion of cone w.r.t v+
1
 under normal and faulty conditions

are shown in Fig. 13(a) (robddnormal) and (b) (robddfaulty),
respectively. The XORed ROBDD (robddxor) is shown in
Fig. 13(c). satisfy-all-1 operation is performed on robddxor
to find input patterns (⟨v1v2v3⟩) to detect stuck-at-1 fault at
l1 . The obtained set of input patterns is IPl1,s−a−1

= {001} .
The ROBDD representation of cone w.r.t l2 (robdddominating)
under normal condition (Boolean expression is v�

1
v�
2
+ v�

1
v�
3
)

is shown in Fig. 13(d). Apply Satisfy-all-1 operation to
robdddominating in order to find input patterns that drives logic
1 at wire l2 under normal condition. The obtained set of input

Fig. 10 Feedback bridging (l1 , l2): l2 dominates l1

336 Journal of Electronic Testing (2023) 39:323–346

1 3

patterns is IPl2,1
= {00×, 010} = {000, 001, 010} . The set of

test patterns is obtained as TP = IPl1,s−a−1
∩ IPl2,1

= {001} .
Now, the following steps are executed to check whether this
test pattern causes oscillation or not.

• Build a ROBDD (robddl2,l1(s−a−1)) which represents
the cone w.r.t wire l2 under stuck-at-1 at wire l1 . The
boolean expression of l2 under stuck-at-1 at l1 is v′

1
v′
3

and robddl2,l1(s−a−1) is shown in Fig. 13(e).

(a) (b) (c)

(d) (e)

Fig. 11 ROBDDS for feedback bridging fault: l2 dominate l1

337Journal of Electronic Testing (2023) 39:323–346

1 3

• Apply satisfy-all-0 operation on robddl2,l1(s−a−1)
in order to generate input patterns (IPl2=0,l1(s−a−1)

)
that makes logic 0 at wire l2 during propagation of
stuck-at-1 fault at l1 and the IPl2=0,l1(s−a−1)

= {1 × ×,

0 × 1} = {100, 101, 110, 111, 001, 011}.
• For each test pattern tp ∈ TP do the followings:

– If tp ∈ IPl2=0,l1(s−a−1)
 , then eliminate tp from TP,

because it causes oscillation.
– If tp ∉ IPl2=0,l1(s−a−1)

 , then it remains as a test pat-
tern and does not cause oscillation. In this case tp
is mapped to corresponding FI − transttion.

 In this example, TP = {001} , IPl2=0,l1(s−a−1)
= {100,

110, 111, 001, 011} and ⟨001⟩ ∈ IP
l2=0,l1(s−a−1)

= {100,

101, 110, 111, 001, 011} . So, the test pattern ⟨001⟩ causes
oscillation. That means during propagation of stuck-at-1
fault at l1 , the logic value at l2 is changed from 1 to 0, thus
causes oscillation. Such type of feedback bridging faults
are known as oscillating feedback bridging faults. In this
way, oscillating feedback bridging faults are detected.

6 A Flexible Tester Circuit Design Using Set
of FI − transtions

In concurrent testing, a tester circuit is designed using
the set of FI − transitions and it is placed on-chip along
with the CUT. The tester circuit executes parallel with
circuit under test and detects the occurrence of any fault

in the CUT on the fly during the normal operation. During
design of tester circuit, all the wires of the CUT are tapped
to the tester circuit. Therefore, buffer requirements for tap-
ping all the wires to the tester circuit is very high, which
results high area overhead. This work aims at providing
flexibility in tester circuit design by dropping some of tap
wires to the tester circuit. Dropping some of the tap wires
reduces the buffer requirements for fanout the gates of the
CUT, which directly decreases the area overhead. How-
ever, dropping some of tap wires to the tester circuit makes
some of the FI − transitions as non − FI − transistions ,
i.e., they don’t remain as FI − transitions . Thus, it (drop-
ping of some tap wires) results minor changes on fault
coverage and fault detection latency. Thus, flexibility in
tester circuit design is provided in terms of trades-off
between dropping of tap wires versus area overhead, fault
coverage and fault detection latency. The existence of
FI − transitions under dropping of some tap wires will be
discussed in the next subsection.

6.1 Checking the Existence of FI − transitions Under
Dropping of Some Tap Wires

In order to illustrate the process of checking of exist-
ence of FI − transitions under dropping of some tap
wires, consider the fault Fi (shown in Fig. 2) and the set
of FI − transitions generated to detect F1 using the proce-
dure discussed in the Sect. 5. The set of FI − transitions
is {⟨00, 0,×0⟩, ⟨00, 1,×0⟩, ⟨11, 1, 1×⟩} . Consider the

Fig. 12 Oscillating feedback bridging (l1 , l2): l2 dominates l1

338 Journal of Electronic Testing (2023) 39:323–346

1 3

FI − transition , ⟨00, 0,×0⟩ and check the existence of it
under dropping of some tap wires. There are 3 tap wires
of the CUT shown in Fig. 2 and these are v1 , v2 , and v3 .
For simplicity, drop any one of the tap wires and check the
existence of FI − transition under that dropped tap wire.
Consider two cases; case (i) drop tap wire v1 and case (ii)
drop tap wire v3.

• Case i: Drop tap wire v1 . The FI − transition , ⟨00, 0,×0⟩
manifests F1 through v+

2
 . The faulty response for this

FI − transition at output v+
2
 is 0. This is obtained by

applying input pattern ⟨000⟩ in the faulty ROBDD
shown in Fig. 8(b). Since the wire v1 is dropped, the
input pattern ⟨000⟩ becomes ×00 = {000, 100} , i.e., v1
is treated as don’t care (×). For input pattern ⟨000⟩ , out-

(a) (b) (c)

(d) (e)

Fig. 13 ROBDDS for feedback bridging fault: l2 dominate l1

339Journal of Electronic Testing (2023) 39:323–346

1 3

put response (v+
2
) under normal condition is 1, whereas

for input pattern ⟨100⟩ , output response (v+
2
) under nor-

mal condition is 0. This is obtained by applying input
patterns ⟨000⟩ and ⟨100⟩ in the normal ROBDD shown
in Fig. 8(a). It is seen that for input pattern ⟨000⟩ , the
normal and faulty responses are same and that is 0. So
the FI − transition ∶ ⟨00, 0,×0⟩ does not remain as an
FI − transition under dropping of tap wire v1.

• Case ii: Drop tap wire v3 . In similar way, the input pat-
terns ⟨000⟩ becomes 00× = {000, 001} , since the wire v3
is dropped. For both the input patterns ⟨000⟩ and ⟨001⟩ ,
the output responses (v+

2
) under normal condition is 1. The

faulty response for the FI − transition ∶ ⟨00, 0,×0⟩ mani-
fests through v+

2
 is 0. Since the normal and faulty responses

are different for FI − transition ∶ ⟨00, 0,×0⟩ , so it remains
as an FI − transition under dropping of tap wire v3.

In this way, the existence of FI − transitions under drop-
ping of some tap points is checked. The checking of exist-
ence of FI − transitions under dropping of some tap wires
can be better accomplished using ROBDD. Consider the
FI − transitions ∶ �ir = ⟨qir, �ir, q

+
ir
⟩ for the fault Fi , which

is manifested through output v+
j
 . Let the faulty response for

FI − transition at output v+
2
 is responsefaulty . The following

steps are executed to check the existence of FI − transitions
under dropping of some tap points using ROBDD.

1. Let robddnormal be the ROBDD representation of output
v+
j
 under normal condition.

2. If vi is not a dropped wire and value of vi in FI − transition
is 0(1), then keep the edge with label 0(1) and eliminate
the edge with label 1(0) from the node corresponding to
vi in robddnormal.

3. Remove the nodes and edges in the robddnormal , which
are not reachable from root after eliminating edges.

4. Repeat Steps 2 and 3 for each wire vi which is not
being dropped.

5. In the resultant ROBDD if there is a path from root to
leaf whose value is responsefaulty , then the FI − transition
does not remain as an FI − transition , otherwise it
remains an FI − transition.

The existence of FI − transition under dropping of
some tape wires can be easily checked using ROBDD.
Consider case (i), where the wire v1 is dropped, the cor-
responding modified ROBDD to check the existence of
FI − transition ∶ ⟨00, 0,×0⟩ is shown in Fig. 14(a). The
modified ROBDD is constructed from normal ROBDD
(Fig. 8(a)), where all the outgoing edges of node corre-
sponding to v1 are kept since it is dropped in the design of
tester circuit. For nodes corresponding to v2 , keep the out-
going edges with label 0 and eliminate the outgoing edges

with label 1, since the wire v2 is not a dropped wire and the
value of v2 in FI − transition is 0. Remove the node corre-
sponding v3 since it is not reachable from root. The modified
ROBDD is shown in Fig. 14(a). Since the faulty response
value at v+

2
 is 0 (i.e., responsefaulty = 0) and there exists a path

in the modified ROBDD from root to responsefaulty(= 0) .
So, the FI − transition ∶ ⟨00, 0,×0⟩ does not remain as an
FI − transition under dropping of wire v1 . In similar way, it
can be checked that the FI − transition ∶ ⟨00, 0,×0⟩ remains
as an FI − transition under dropping of wire v3 . The modi-
fied ROBDD for checking the same is shown in Fig. 14(b).

6.2 Tester Circuit Design Using Existing Set
of FI − transitions Under Dropping
of Some Tap Wires

This subsection illustrates the procedure of design of tester
circuit using set of FI − transitions . First a complete set
of FI − transitions has been generated for the targeted
bridging faults of the CUT. Then, the existence of each
FI − transitions has been checked under dropping of some
tap wires. Finally, the tester circuit is designed using the
existing set of FI − transitions . Since the CUT is a synchro-
nous circuit, so the tester circuit must be designed as a syn-
chronous circuit. The tester circuit runs parallel with the
CUT and detects occurrence of a fault by means of executing
any FI − transitions during the normal operation of the CUT.

Figure 15 shows the state transition diagram of the
tester circuit designed using FI − transition ∶ ⟨00, 0,×0⟩
where the wire v3 is dropped. The tester circuit starts

(a) (b)

Fig. 14 Modified ROBDDs for checking existence of FI − transition
under dropping of tap wires

340 Journal of Electronic Testing (2023) 39:323–346

1 3

from initial state d0 , moves to state d1 with the transition
t1 ∶ ⟨00 × ∕0⟩ . The transition t1 is associated with enabling
condition values 00× and fault status value 0. The enabling
condition values (00) imply the values of next state vari-
ables (v+

1
v+
2
) and × implies v3 has don’t care value. That

means when the CUT moves to the state 00, the tester
moves to state d1 with fault status 0 indicates fault has
not been detected yet. At state d1 , the tester checks the
occurrence of FI − transition ∶ ⟨00, 0,×0⟩ in the CUT (next
clock edge). This checking is accomplished by transition
t3 ∶ ⟨×0 × ∕1⟩ . The enabling condition of t3 is ×0× , which
implies the values of next state variables v+

1
v+
2
= ×0 and

the value of v3 is don’t care. Further, the fault status 1
indicates fault has occurred in the CUT. Once the tester
has reached at state df by the transition t3 , it remains in that
state (df) forever with fault status 1. This is accomplished
by transition t5 ∶ ⟨all cases∕1⟩ . At state d1 , if the enabling
condition of transition t3 is not satisfied, then tester moves
back to state d0 by transition t2 ∶ ⟨else∕0⟩ . Similarly, at
state d0 , if the enabling condition of transition t1 is not
satisfied, then tester remains in state d0 by the transition
t0 ∶ ⟨else∕0⟩.

In this way, state transition diagram of tester circuit for
each FI − transitions is designed. In the diagram, it has com-
mon initial (d0) and final (df) states for each FI − transitions .
The number of intermediate states depends on the number
of FI − transitions taken in the design of the tester circuit.
Further, it has been seen that in some cases two or more
FI − transitions have common intermediate state. Thus, the
tester circuit can be defined as FA as follows:

where D is the finite set of states, ΣD is the input alphabet,
d0 is the initial state, �d ∶ D × ΣD → D is the transition func-
tion, OD ∶ D × ΣD → {0, 1} is the output function (indicate

(2)T = ⟨D,ΣD, d0, �d,OD, df ⟩,

fault status), and df is the final state. The state transition
diagram is constructed using the following steps.

1. Create two states; d0 is initial state and df is the final state.
2. Let Vnot dropped be the set of wires that are not dropped

in design of tester circuit. Repeat this step for each
FI − transition ∶ �ir = ⟨qir, �ir, q

+
ir
⟩

(a) Create an intermediary state dj , which is reached
from d0 using transition tj . The enabling condi-
tion of tj is values of v+

1
, v+

2
, ..., v+

k
(∈ Vnot dropped)

= begin(�ir) and values of inputs v
k+1, ..., vm(∈

Vnot dropped) = ×(don�t care) . Fault status of tj is 0.
(b) There is a transition tk from state dj to final state

df . The enabling condition of tk is values of
v+
1
, v+

2
, ..., v+

k
(∈ Vnot dropped) = end(�ir) and values

of inputs vk+1, ..., vm(∈ Vnot dropped) = input(�ir) .
Fault status of tk is 1.

3. For any two intermediary states dj (for
FI − Transiton ∶

�
ir
= ⟨q

ir
, �

ir
, q+

ir
⟩) and dk (for FI − Transiton ∶ �

is
=

⟨q
is
, �

is
, q+

is
⟩), if qir = qis then dj and dk are merged into a

single state.
4. Add a transition from each intermediary state dj to ini-

tial state d0 , whose enabling condition is any values of
v+
1
, v+

2
, ..., v+

k
, vk+1, ..., vm , other than the enabling condi-

tion of transition from state dj to final state df . Fault
status of this transition is 0.

5. Add a self transition at the state d0 , whose enabling con-
dition is any values of v+

1
, v+

2
, ..., v+

k
, vk+1, ..., vm , other

than the enabling condition of transition from state d0
to any intermediary state dj . Fault status of this self tran-
sition is 0.

6. Add a self transition at the state df , whose enabling con-
dition is any values of v+

1
, v+

2
, ..., v+

k
, vk+1, ..., vm and fault

status of this self transition is 1.

Fig. 15 State transition
diagram of tester circuit for
FI − transition ∶ ⟨00, 0,×0⟩
where v3 is dropped

t1:<00X/0>

t2:<else/0>t0:<else/0>

t3

t4:<all cases/1>

d0 d1 df

Fault Status

:<X0X/1>

enabling condition
v1

+v2
+X

341Journal of Electronic Testing (2023) 39:323–346

1 3

7 Experimental Results

In order to validate the proposed methodologies discussed
in Sect. 5 (generation of FI − transitions) and Sect. 6 (flex-
ible design of tester circuit), a set of ISCAS89 sequential
benchmark circuits [20] have been taken. Bridging faults are
applied between all possible pairs of wires of each bench-
mark circuits. A set of FI − transitions are generated for
each faults of the circuit and checked the existence of them
under dropping of some tap wires using proposed ROBDD
based technique. Then tester circuit is design using these
FI − transitions . The generic flow of the method that is
applied to the circuits is follows as:

1. Extract the part of the wirelist/ netlist that corresponds
to the NSF block of the circuit.

2. Eliminate FFs and partition the wirelist (into sub-circuits)
according to cones of influence corresponding to each
of the FFs. The output of each of the sub-circuits is the
corresponding input to the flip-flop.

3. Repeat the following steps for all the sub-circuits gener-
ated in Step 2.

(a) Insert bridging faults (l1, l2) in all possible locations.
(b) Repeat the following steps to generate

FI − transitions for each fault using the mecha-
nism of l1 dominates l2 .

i Generate ROBDD for the sub-circuit under normal
condition.

ii Generate ROBDD for the sub-circuit under faulty
(s-a-1 at l2) condition.

iii XOR the normal and faulty ROBDDs. The variable
values corresponding to the paths to leaf node “1",
are the input patterns to detect s-a-1 at l2.

iv Generate ROBDD for the sub-circuit w.r.t wire l1
under normal condition. The variable values cor-
responding to the paths to leaf node “1", are the
input patterns to drive logic 1 at l2.

v Intersect the input patterns obtained from Steps
(3.b.iii) and (3.b.iv) to generate the test patterns to
detect bridging fault between l1 and l2 . Map these
test patterns to FI − transitions for the fault.1

vi Finally, determine the FI − transitions which
remain so under given dropping of tap wires and
drop the remaining ones.

4. Generate the FA model of the tester circuit with the
FI − transitions and translate the FA to Verilog code.

The performance of the proposed scheme is analyzed in
terms of area overhead, fault coverage and detection latency.
Further, flexibility of the scheme is studied by dropping
some of tap wires. Now, performance parameters are defined
as follows:

Fault Coverage (FC): A fault (say Fi) is supposed to
be covered, if at least one of the FI − transition is taken in
design of the tester circuit. Thus, fault coverage is defined as:

Fault Covergae =
Number of faults covered

Total Number of faults in the CUT
× 100%

Area Overhead (AO): Area overhead can be defined as:
Area Overhead =

Area of the tester circuit

Area of the CUT

Fault Detection Latency: In this work, fault detection
latency is calculated based on the number of FI − transitions
are taken in the design of tester circuit. A fault may have
a set of FI − transitions to detect it. Instead of taking all
FI − transitions of the fault in design of tester circuit, a
subset of FI − transitions is taken in design of tester cir-
cuit in order to reduce area overhead without affecting
fault coverage. This is accomplished with the help of fault
detection latency. A fault (Fi) is detected with 0 detection
latency, when all of it’s FI − transitions are taken in design
of the tester circuit. Suppose for Fi , there are total n num-
ber of FI − transitions and out of them m(≤ n) number of
FI − transitions are taken in design of tester circuit. Then
fault detection latency of Fi is defined as:

Fault detection latency of Fi = ⌈
n

m
⌉ − 1

For example, if there are total 10 number of FI−
transitions to detect fault Fi and out of them 5 number of
FI − transitions are taken in design of the tester circuit.
Then, detection latency for Fi is 1. This implies, if some of
the FI − transitions for a fault are dropped during design
of the tester circuit then detection latency of that fault is
increased. However, it does not affect the fault coverage ratio
and it reduces the area overhead.

7.1 Analysis of Fault Coverage

In this subsection, the fault coverage of the proposed scheme
is discussed and it is compared with the existing scheme
with the help of different benchmark circuits. Table 2 shows
the detail description of different ISCAS89 benchmark cir-
cuits. Column 1 indicates the circuit’s name with number
of flip flops and number of gates. Column 2 shows the total
number of bridging faults of the circuit. Columns 3 and 4
display the percentage of non-feedback and feedback bridg-
ing faults of the circuit, respectively. Columns 5 and 6 show
the percentage of fault coverage of the proposed and existing
schemes, respectively. In this work, the different combina-
tions (1 or 2 or 3) of tap wires are dropped and the effect of
dropping of tap wires is studied with respect to fault cover-
age, area overhead and detection latency.1 Details of these steps can be found in Algorithm 1.

342 Journal of Electronic Testing (2023) 39:323–346

1 3

Figures 16 and 17 depict the fault coverage for the bench-
mark circuits s344 and s1432, respectively. In each case, it
has shown the fault coverage with 15 different combinations
(1 or 2 or 3) of dropping of tap wires. The following points
can be noted regarding fault coverage of proposed scheme.

• For each combinations (1 or 2 or 3) of dropping of tap
wires for all benchmark circuits fairly good fault cover-
age is achieved.

• Table 2 shows the comparison of fault coverage between
the proposed and existing schemes. It has been found the
average fault coverage of the proposed scheme for all
benchmark circuits with different combinations (1 or 2 or
3) of dropping of tap wires is approximately 97.5%. How-
ever, the average fault coverage of the existing scheme
([3]) for all benchmark circuits is 99%. There is a minor
difference of fault coverage between the proposed and
existing schemes. This is because of dropping of tap wires

makes few of FI − transitions as non − FI − transitions
and cannot detect the fault. Further, it is found that in
some rare cases all the FI − transitions for a fault become
non − FI − transitions under dropping of tap wires, in
such cases fault cannot be covered.

• The average fault coverage of proposed scheme for all
benchmark circuits is (≈)97.5%. This is achieved because
of for each fault at least one FI − transition is taken in
design of tester circuit. The remaining (≈)2.5% faults are
hard to cover (detect) because these are redundant faults
and oscillating feedback bridging faults. In both the cases
generation of FI − transitions is quite impossible.

7.2 Analysis of Area Overhead

In this subsection, the area overhead of the proposed
scheme is discussed and it is compared with the exist-
ing scheme with the help of different benchmark circuits.

Table 2 Description of ISCAS89
Benchmark Circuits, Fault
Coverage of Proposed Scheme
and comparison with [3]

Circuits Total number of Number of Number of Average Existing
(FFs, GATEs) bridging faults (BFs) non-

feedback
BFs (%)

 feedback BFs(%) FC (%) FC (%)[3]

s298-(14,119) 9180 90.94 9.06 97.5 99
s344-(15,160) 16836 85.96 14.04 97 99
s382-(21, 158) 16471 90.11 9.89 97.5 99
s838-(32,446) 130816 91.15 8.85 97.5 99
s1238-(18,508) 145530 89.25 10.75 98 99
s1423-(74,657) 279378 83.07 16.93 97.5 99
s5378-(179,2779) 4477528 79.86 20.14 97 99
s9234-(228,5597) 17073246 78.72 21.28 98 99
s13207-(669,7951) 37415575 78.12 21.88 97 99
s15850-(597,9772) 53898153 77.13 22.87 97.5 99
s35932-(1728,16065) 158909878 75.28 24.72 97 99
s38417-(1636,22179) 284232403 74.14 25.86 97.5 99
s38584-(1452,19253) 214586686 74.27 25.73 97.5 99

Fig. 16 Fault Coverage for benchmark circuit s344 with 15 different combinations (1 or 2 or 3) of dropping of tap wires and comparison with [3]

343Journal of Electronic Testing (2023) 39:323–346

1 3

Table 3 shows the area overhead ratio of the proposed
scheme for different combinations (1 or 2 or 3) of drop-
ping of tap wires and comparison with the area overhead
reported in [3]. Column 1 shows the name of the circuit
with number of flip flops and number of gates. Columns
2, 3, and 4 indicate the area overhead of the proposed
scheme for dropping of one, two, and three tap wires,
respectively. Column 5 represents the average area over-
head (dropping of 1, 2, and 3 tap wires) of the proposed
scheme and Column 6 shows area overhead of the existing
scheme reported in paper [3]. The following points can be
noted regarding area overhead of the proposed scheme.

• It is observed from Columns 2, 3, and 4 of Table 3 that
the area overhead of proposed scheme is decreased with
increase of number of dropping of tap wires. Reduction
of area overhead is one of the primary objectives in
concurrent testing of modern integrated circuits.

• It can be seen from Table 3 that for a given dropping
of tap wires, the area overhead ratio is decreased with
increase of the size of the circuit. The reason is the exist-
ence of common FI − transitions in large sized circuits
is more than that of small sized circuits. A common
FI − transition is one which can detect more than one
faults. In this work, first the common FI − transitions
are taken in the design of tester circuit. Then rest of
faults are covered (based on the given value of detec-
tion latency) by taking non-common FI − transitions in
design of the tester circuit. In this case, the value of
detection latency is 0, i.e., all FI − transitions for a fault
are taken in design of tester circuit.

• In all cases (dropping of 1 or 2 or 3 tap wires), the area
overhead of proposed scheme is decreased with increase
of the number of gates (size) of the circuit. This follows
the area overhead ratio approximation of any partial rep-
lication based concurrent testing scheme reported in [14].

Fig. 17 Fault Coverage for benchmark circuit s1423 with 15 different combinations (1 or 2 or 3) of dropping of tap wires and comparison with [3]

Table 3 Area Overhead of
proposed scheme for different
combinations (1 or 2 or 3)
of dropping of tap wires and
comparison with

Circuits (FFs, Gates) AO for different combinations (1 or 2 or 3) of dropping of tap wires and
comparison with [3]

AO for dropping AO for dropping AO for dropping Average existing

of 1 tap wire of 2 tap wires of 3 tap wires AO AO [3]

s298-(14,119) 2.45 1.98 1.78 2.07 4.03
s344-(15,160) 2.35 1.86 1.69 1.97 4.04
s382-(21, 158) 2.12 1.63 1.58 1.78 4.12
s838-(32,446) 1.54 1.40 1.31 1.42 2.64
s1238-(18,508) 1.44 1.32 1.23 1.33 2.54
s1423-(74,657) 1.41 1.28 1.11 1.27 2.51
s5378-(179,2779) 1.32 1.15 1.08 1.18 2.32
s9234-(228,5597) 1.29 1.01 0.96 1.09 2.29
s13207-(669,7951) 1.10 0.95 0.91 0.98 2.27
s15850-(597,9772) 1.08 0.93 0.88 0.96 2.22
s35932-(1728,16065) 0.95 0.91 0.85 0.90 2.13
s38417-(1636,22179) 0.93 0.88 0.82 0.87 2.11
s38584-(1452,19253) 0.91 0.85 0.80 0.85 2.12

344 Journal of Electronic Testing (2023) 39:323–346

1 3

The approximation states that the area overhead ratio is
approximately a + 1∕n , where a fraction test patterns
(here, FI − transitions) taken in design of tester circuit
and n is the number of state bits (directly proportional to
size of the circuit).

• It is seen that the average area overhead obtained from
dropping of 1, 2 and 3 tap wires is much less than that
of the area overhead of the existing scheme reported in
[3]. This is because of dropping of tap wires reduces the
number of buffer requirements to drive the tester circuit,
which directly reduces the area overhead. Thus, it is seen
from the table that dropping of tap wires have a signifi-
cant effect (reduction) in the area overhead.

7.3 Trade‑off Analysis Between Area Overhead,
Detection Latency and Dropping of Tap Wires

As discussed the proposed scheme provides flexibility in
design of tester circuit by dropping some of tap wires to the
tester circuit. The flexibility of the scheme is illustrated in
terms of trade-off analysis between area overhead, detec-
tion latency and dropping of tap wires. Table 4 shows the
area overhead of the proposed scheme for a given detec-
tion latency and dropping of tap wires. Column 1 shows
the details regarding benchmark circuits, Columns from 2
to 6 are meant for detection latency 2, where Columns 2, 3,
and 4 represent the area overhead of the proposed scheme
for dropping of one, two, and three tap wires, respectively.

Columns 5 represents the average area overhead of proposed
scheme obtained from dropping of one, two, and three tap
wires and Column 6 represents the area overhead of existing
scheme. Similarly, Columns from 7 to 8 are meant for detec-
tion latency 4, where Columns 7, 8, and 9 represent the area
overhead of the proposed scheme for dropping of one, two,
and three tap wires, respectively. Columns 10 represents the
average area overhead of proposed scheme obtained from
dropping of one, two, and three tap wires and Column 11
represents the area overhead of existing scheme. The follow-
ing points are observed from the trade-off analysis between
area overhead, detection latency and dropping of tap wires.

• For a given value of detection latency, the area overhead
of the proposed scheme is decreased with increase of
number of dropping of tap wires. It is seen in the table
that for both the cases (detection latency=2 and detection
latency =4), the area overhead is gradually decreased
when the number of dropping of tap wires to the tester
circuit is increased from one to three.

• For example, the average area overhead ratios for the
benchmark circuit s13207 are 0.94 and 0.91 when detec-
tion latency is 2 and 4, respectively. The reason for
decrease of area overhead ratio is that for each fault the
number of FI − transitions taken in design of tester cir-
cuit with detection latency = 2 is less than that of with
detection latency = 4.

• It can be seen in the Table 4 that dropping of tap wires
facilitates trade-off analysis between area overhead and

Table 4 Trade-off analysis between Area Overhead, detection latency and dropping of tap wires. Comparison of Area Overhead with existing
scheme [3]

Circuits (FFs,
Gates)

AO for different combinations (1 or 2 or 3) of dropping of tap wires and comparison with [3]

Detection latency = 2 Detection latency = 4

AO for dropping of Average existing AO for dropping of Average existing

1 tap wire 2 tap wires 3 tap wires AO AO [3] 1 tap wire 2 tap wires 3 tap wires AO AO [3]

s298-(14,119) 1.56 1.54 1.43 1.51 3.90 1.54 1.52 1.35 1.47 3.86
s344-(15,160) 1.43 1.40 1.37 1.40 3.80 1.41 1.38 1.33 1.37 3.74
s382-(21, 158) 1.24 1.21 1.20 1.22 3.75 1.23 1.21 1.17 1.20 3.90
s838-(32,446) 1.20 1.12 1.10 1.14 2.75 1.18 1.10 1.07 1.11 2.52
s1238-(18,508) 1.16 1.11 1.08 1.11 2.50 1.15 1.08 1.05 1.09 2.31
s1423-(74,657) 1.10 1.02 0.97 1.03 2.42 1.08 1.00 0.96 1.01 2.21
s5378-(179,2779) 1.08 0.97 0.95 1.00 1.80 1.06 0.96 0.94 0.98 1.61
s9234-(228,5597) 1.05 0.95 0.93 0.97 1.68 1.03 0.93 0.92 0.96 1.57
s13207-(669,7951) 0.97 0.93 0.91 0.94 1.60 0.96 0.90 0.87 0.91 1.53
s15850-(597,9772) 0.92 0.87 0.85 0.88 1.52 0.91 0.86 0.84 0.87 1.45
s35932-(1728,16065) 0.90 0.85 0.83 0.86 1.35 0.88 0.83 0.82 0.84 1.215
s38417-(1636,22179) 0.88 0.83 0.81 0.84 1.31 0.86 0.82 0.81 0.83 1.192
s38584-(1452,19253) 0.87 0.82 0.80 0.83 1.24 0.85 0.81 0.80 0.82 1.183

345Journal of Electronic Testing (2023) 39:323–346

1 3

detection latency. Hence, flexibility in design of the
tester circuit can be achieved through dropping of tap
wires. Further, it reduces area overhead greatly with
minimal compromise in fault coverage.

8 Conclusion

This paper presents a flexible concurrent testing scheme for
non-feedback and feedback bridging faults in the integrated
circuit. The proposed scheme provides flexibility in design
of the tester circuit by dropping of some tap wires, which
facilitates trade-off analysis between area overhead, fault
coverage and detection latency. The proposed scheme fol-
lows the working principle of partial replication technique
and achieves low area overhead with minor changes in fault
coverage. Experimentally, it is seen that dropping of tap wires
is worked as trade-off parameter between area overhead and
detection latency, thus, flexibility in design of tester circuit is
achieved through it. Also, it is seen that for a given value of
detection latency the area overhead is reduced with increase
of number of dropping of tap wires. The reason is that drop-
ping of some of tap wires makes less number of wires to be
tapped by the tester circuit from the CUT, which decreases
the number of driving buffers, thus area overhead is reduced.
The proposed scheme utilizes ROBDD based algorithms to
generate test patterns (FI − transitions) for non-feedback and
feedback bridging faults as well. Further, checking the exist-
ence of an FI − transitions under dropping of tap wires is
carried out with the help of ROBDD based algorithms. Use
of ROBDD based algorithms to generate and check of exist-
ence of FI − transitions under dropping of tap wires make the
proposed scheme more robust and improve scalability, thus
large sized circuit can be handled successfully.

Using the proposed methodology flexible concurrent
tester circuit can be designed for any digital circuit, how-
ever the design complexity of the scheme is increased with
increase of the size of the circuit and may become impracti-
cal for circuits typically having more than tens of thousands
of inputs and state bits. The reason is that the proposed
scheme uses ROBDD based operations and in such cases
generation of ROBDDs itself becomes too complex and may
suffer state explosion problem. This issue can be addressed
by improving the scalability of the proposed scheme. Some
of the possible techniques to improve the scalability of the
proposed scheme are as follows:- (1) Modeling of the cir-
cuits at higher abstraction level compared to gate level, e.g.,
Register Transfer Level (RTL), (2) Fault modeling at higher
level of abstractions and correlation with accepted fault
models like stuck-at, bridging, etc. (3) Trade-off analysis at
higher abstraction level. Further, in this work three different
types of dropping of tap wires have been taken. These are

dropping of a single tap wire, two tap wires, and three tap
wires, respectively. The decision of dropping of tap wires
has been done randomly and there is no use of any algo-
rithm in identification of dropping of tap wires. However,
the identification of dropping of tap wires can be performed
by solving an optimization problem where area overhead
of the tester circuit, fault coverage, fault detection latency,
etc., as optimization parameters. Clearly, further research is
essential to resolve these problems.

Data Availability The manuscript uses ISCAS89 benchmark circuits
and is cited in the reference list.

Declarations

Conflict of Interest/Conflict of Interest The author declare that there is
no conflict of interest.

References

 1. Acharya N, Urbanek M, De Jong WA, Saeed SM (2021) Test
points for online monitoring of quantum circuits. ACM J Emerg
Technol Comput Syst (JETC) 18(1):1–19

 2. Balasubrahamanyam Y, Chowdary GL, Subrahmanyam TJVS
(2012) A novel low power pattern generation technique for
concurrent BIST architecture. Int J Comput Technol Appl
3(2):561–565

 3. Biswal PK, Biswas S (2015) A binary decision diagram based on-
line testing of digital VLSI circuits for feedback bridging faults.
Microelectron J, Elsevier 46(7):598–616

 4. Biswal PK, Biswas S (2019) A binary decision diagram approach
to on-line testing of asynchronous circuits with dynamic and static
C-elements. J Electron Test, Springer 35(5):715–727

 5. Biswas S, Mukhopadhyay S, Patra A (2005) A formal approach
to on-line monitoring of digital VLSI circuits: theory, design and
implementation. J Electron Test, Springer 21(5):503–537

 6. Biswas S, Mukhopadhyay S, Patra A, Sarkar D (2008) Uni-
fied technique for on-line testing of digital circuits: delay and
stuck-at fault models. J Circuits, Syst Comput, World Scientific
17(06):1069–1089

 7. Biswas S, Mukhopadhyay S, Patra A, Sarkar D (2006) Concurrent
testing of digital circuits for advanced fault models. In: Proc. of
Design and Diagnostics of Electronic Circuits and systems, IEEE,
pp 202–207

 8. Biswas S, Srikanth P, Jha R, Mukhopadhyay S, Patra A, Sarkar D
(2005) On-line testing of digital circuits for n-detect and bridging
fault models. In: Proc. of Asian Test Symposium (ATS’05), pp
88–93

 9. Bolchini C, Montandon R, Salice F, Sciuto D (2000) Design of
VHDL based totally self-checking finite state machine and data
path descriptions. IEEE Trans VLSI Syst 8(1):98–103

 10. Bushnell M, Agrawal V (2006) Essentials of electronic testing for
digital, memory and mixed-signal VLSI Circuits, vol 17. Springer
Science and Business Media

 11. Chang WF, Wu CW (1999) Low-cost modular totally self-checking
checker design for m-out-of-n code. IEEE Trans Comput
48(8):815–826

 12. Dhawan S, Vries CD (1988) Design of self-checking sequential
machines. IEEE Trans Comput 37(10):1280–1284

346 Journal of Electronic Testing (2023) 39:323–346

1 3

 13. Drineas P, Makris Y (2003) SPaRre: Selective partial replication
for concurrent fault-detection in fsms. IEEE Trans Instrum Meas
52(6):1729–1737

 14. Drineas P, Makris Y (2002) Non-intrusive design of concurrently
self-testable FSMs. In: Proc. of Asian Test Symposium, pp 33–38

 15. El-Mahlawy MH (2015) Signature multi-mode hardware-based
self-test architecture for digital integrated circuits In: Proc. of
International Conference on Electronics, Circuits, and Systems
(ICECS), pp 437–441

 16. Emmert JM, Stroud CE, Bailey JR (2000) A new bridging fault
model for more accurate fault behavior. In: Proc. of Systems Read-
iness Technology Conference. Future Sustainment for Military
Aerospace (Cat. No. 00CH37057), IEEE, pp 481–485

 17. Favalli M, Dalpasso M (2016) Boolean and pseudo-boolean test
generation for feedback bridging faults. IEEE Trans Comput
65(3):706–715

 18. Favalli M, Metra C (2002) On-line testing approach for very deep-
submicron ICs. IEEE Des Test Comput 19(2):16–23

 19. Gaur H, Sasamal T, Singh A, Mohan A (2020) Fault models and
test approaches in reversible logic circuits. Design and testing of
reversible logic. Springer, pp 153–167

 20. ISCAS89 sequential benchmark circuits. https:// fileb ox. ece. vt.
edu/ ~mhsiao/ iscas 89. html

 21. Maier J, Steininger A (2014) Online test vector insertion: a con-
current built-in self-testing (CBIST) approach for asynchronous
logic. In: Proc. of 17th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems, pp 33–38

 22. Mano MM (2017) Digital logic and computer design. Pearson
Education, India

 23. Nicolaidis M, Anghel L (1999) Concurrent checking for VLSI.
Microelectron Eng, Elsevier 49(1):139–156

 24. Nicolaidis M, Zorian Y (1998) On-line testing for VLSI- A com-
pendium of approaches. J Electron Test, Springer 12(1–2):7–20

 25. Nicolescu B, Gorse N, Savaria Y, Aboulhamid E, Velazco R
(2005) On the use of model checking for the verification of a
dynamic signature monitoring approach. IEEE Trans Nucl Sci
52(5):1555–1561

 26. Rayudu K, Jahagirdar J, Rao P (2020) Modern design approach of
faults (toggling faults, bridge faults and SAT) of reduced ordered

binary decision diagram based on combo & sequential blocks. Int
J Reconfigurable & Embedded Syst ISSN 2089 (4864)4864

 27. Robinson SH, Shen JP (1992) Direct methods for synthesis of self-
monitoring state machines. In: Proc. of International Symposium
on Fault-Tolerant Computing, pp 306–315

 28. Tahoori MB (2004) Application-specific bridging fault testing of
FPGAs. J Electron Test, Springer 20(3):279–289

 29. Voyiatzis I, Paschalis A, Gizopoulos D, Halatsis C, Makri FS,
Hatzimihail M (2008) An input vector monitoring concurrent
BIST architecture based on a precomputed test set. IEEE Trans
Comput 57(8):1012–1022

 30. Zhao Y, Khursheed S, Al-Hashimi BM (2015) Online fault toler-
ance technique for TSV-based 3D-IC. IEEE Trans Very Large
Scale Integr VLSI Syst 23(8):1567–1571

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Pradeep Kumar Biswal has received the M.Tech. degree from the Depart-
ment of Computer Science & Engineering, IIT Guwahati, India, in the
year of 2011. He completed his Ph.D degree in the Department of CSE,
IIT Guwahati, India, in the year of 2017. Now, he is working as Assis-
tant Professor in the Department of CSE, IIIT Bhagalpur, Bihar, India,
since October, 2017. His research interests include VLSI Testing, Design
for Testability, Applications of Decision Diagrams, Discrete Event Sys-
tem Modeling, etc. He has published 12 research papers. The papers
are published in the reputed journals like Journal of Electronics Testing
(Springer), Microelectronics Journal (Elsevier), Engineering Science and
Technology, an International Journal (Elsevier), VLSI Design (Hindawi),
etc. His conference papers are published in the proceedings of IEEE VLSI
Design (VLSID), IEEE Region 10 Symposium (TENSYMP), IEEE Med-
iterranean Conference on Control and Automation, etc.

https://filebox.ece.vt.edu/%7emhsiao/iscas89.html
https://filebox.ece.vt.edu/%7emhsiao/iscas89.html

	A Flexible Concurrent Testing Scheme for Non-Feedback and Feedback Bridging Faults in Integrated Circuits
	Abstract
	1 Introduction
	2 Literature Review and Motivation of the Work
	3 Finite Automata (FA) Based Circuit Modeling Under Normal and Faulty Conditions and Generation of Fault Identification Transitions
	3.1 CUT Modeling Under Normal and Bridging Fault Conditions
	3.2 Generation of Fault Identification Transitions ( )

	4 Partitioning the CUT Into a Number of Sub-Circuits
	5 Generation of for Non-feedback and Feedback Bridging Faults Using Reduced Ordered Binary Decision Diagram (ROBDD)
	5.1 Generation of for Non-feedback Bridging Faults Using ROBDD
	5.1.1 Generation of for Non-feedback Bridging Fault When Dominates
	5.1.2 Generation of for Non-feedback Bridging Fault When Dominates

	5.2 Generation of for Feedback Bridging Fault Using ROBDD
	5.3 Illustration of Detection of Oscillating Feedback Bridging Fault

	6 A Flexible Tester Circuit Design Using Set of
	6.1 Checking the Existence of Under Dropping of Some Tap Wires
	6.2 Tester Circuit Design Using Existing Set of Under Dropping of Some Tap Wires

	7 Experimental Results
	7.1 Analysis of Fault Coverage
	7.2 Analysis of Area Overhead
	7.3 Trade-off Analysis Between Area Overhead, Detection Latency and Dropping of Tap Wires

	8 Conclusion
	References

