
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:245–262
https://doi.org/10.1007/s10836-023-06055-w

A Tunable Concurrent BIST Design Based on Reconfigurable LFSR

Ahmad Menbari1 · Hadi Jahanirad1

Received: 14 October 2022 / Accepted: 21 February 2023 / Published online: 6 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In concurrent online BIST, testing is conducted simultaneously during normal functional operation. A fault model enables
a structural test to be undertaken for a long time while simultaneously identifying critical faults. As a result of continuous
testing, intermittent and transient faults are more likely to be detected. The number of required cycles for completion of a
concurrent test, known as concurrent test latency (CTL), is a critical parameter for a concurrent BIST design. Most of the
existing methods have impractical CTL, while others suffer from a high hardware overhead or a presence of a substantial
combinational circuit. These methods are also incompatible with situations where parameters need to be adjusted, like when
the hardware is more critical than CTL and vice versa. This paper proposes an efficient concurrent BIST to overcome the
mentioned challenges. The main components of the proposed design consist of LFSRs and a small decoding combinational
module result in low hardware overhead. In addition, CTL and hardware overhead can be adjusted and tuned in an acceptable
range using the proposed method. Compared to the most efficient method, the proposed method achieves a 10% reduction
in hardware overhead for large-scale circuits by keeping the CTL minimum. The different experiments demonstrate the
capability of tuning between CTL and hardware overhead for the proposed BIST design. In the case that CTL and hardware
overhead are equally important, the proposed method significantly lowers CTL compared to previous methods, while hard-
ware overhead is only about 4% higher than previous method for both large scale (LS) and very large scale (VLS) circuits.

Keywords Built-in self-test · Concurrent self-test · Concurrent test latency · Linear feedback shift register

1 Introduction

Offline BIST techniques can only be applied when a device
under test is sufficiently idle [2, 14]. Depending on the
real-time constraints, this may be difficult or impossible to
achieve in some systems. Furthermore, these approaches do
not address dormant faults and further fault accumulations,
which reduce system reliability, as well as temporary faults
that frequently occur in modern VLSI chips [3, 6, 10, 11,
15].

Concurrent BIST design, on the other hand, refers
to testing a circuit in its normal mode of operation. This

continuous testing increases the possibility of detecting
intermittent and transient faults [9, 17, 19]. However, the
number of required cycles for completion of a concurrent
test, known as concurrent test latency (CTL), is a significant
obstacle for concurrent BIST widespread application [8, 9].

Duplication design is the most straightforward online
BIST architecture wherein the input vector is applied to both
the CUT and its copy. For every applied input vector, a com-
parator checks if the output vectors of two circuits are equal
and the error signal is generated by the disjunction of all the
output bits. The hardware overhead for this method is over
100% due to the copy of CUT and the comparator [7, 9].

Almost all of the concurrent BIST designs have been
proposed based on the pre-computed test set [7]. These pre-
computed test vectors are selected deterministically by a
test pattern generation (TPG) algorithm. These selected test
vectors are identified using an input pattern detector, and an
output response analyzer (ORA) decides whether the test
passes or fails. Several modified methods [14, 16, 17, 19,
21] that recommend different strategies (e.g., input vector

Responsible Editor: K. K. Saluja

 * Hadi Jahanirad
 h.jahanirad@uok.ac.ir

 Ahmad Menbari
 a.menbari@uok.ac.ir

1 Department of Electronics and Communication Engineering,
University of Kurdistan, Sanandaj, Iran

http://orcid.org/0000-0001-8586-6281
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06055-w&domain=pdf

246 Journal of Electronic Testing (2023) 39:245–262

1 3

monitoring) to reduce hardware overhead are explained in
the literature review section.

The authors of [7] proposed a method with reasonable
CTL and acceptable hardware overhead. By using this
method, which is called DC-based in this paper, all of the
required modules to perform testing (e.g., the pattern detec-
tor and ORA) are synthesized into one logic module. This
approach is based on the idea that faults are detected by test
vectors with small numbers of specified bits. Putting the
un-specified bits as don't care, the likelihood of occurring a
test vector increases, and the CTL is reduced compared with
previous methods.

An efficient method in terms of CTL and hardware over-
head has been proposed recently [9]. The general schematic
of this method is illustrated in Fig. 1. In the initial step, a
detector is employed to identify an incoming input vector
that belongs to a pre-computed test set. Then, a mapping
module maps every detected input vector to its correspond-
ing error-free compressed output vector, which should be
compared with the compressed output vector in the final step
to detect the fault occurrence. As shown in Fig. 1, LFSRcomp
is used to compress output vectors and error-free output vec-
tors during the test and in a pre-design step, respectively.

There are two different concurrent BIST designs proposed
in this method. In the hardware overhead aware (HW-aware)
approach, the detector selects the input vectors that gener-
ate a 0 remainder when divided by an LFSR. This LFSR’s
architecture is designed so that the selected test vectors are
most similar to a set of deterministic test patterns gener-
ated by a deterministic TPG algorithm. A mapping module
consists of an LFSR to compress detected input vectors and
a synthesized combinational circuit to map the compressed
vectors into compressed output vectors. Even though this

technique reduces hardware overhead, its CTL is impracti-
cal in most cases.

In the CTL-aware design, the detector consists of two
LFSRs with different primary characteristic polynomials.
All input vectors that are divisible by both of them are iden-
tified as test vectors. By employing this design, the desired
fault coverage can be achieved and CTL can be significantly
reduced. However, the mapping module is much larger than
the HW-aware. Moreover, this approach also includes an
approximation to place many test vectors into a test cube,
which is unreasonable in some cases. Finally, CTL-aware
and HW-aware designs cannot compromise between CTL
and area overhead metrics. The CTL-aware design is just
concerned with the maximum reduction of CTL, and the
HW-aware design only tries to minimize the hardware
overhead.

In this paper, a concurrent BIST architecture with low
CTL and low hardware overhead is proposed. In this method,
a different viewpoint is considered to design the mapping
module. As a result, the abovementioned problems of CTL-
aware design are tackled and its low hardware overhead ver-
sion is proposed. Moreover, hardware overhead and CTL
can be adjusted according to the demand using the proposed
method.

The overall schematic of our proposed design has been
illustrated in Fig. 2. The main modification compared to
the CTL-aware design is the replacement of the Mapping
Module with a bank of LFSRs. When a test vector enters the
circuit, the compressed version of the CUT output (O’(x))
should match the quotient of related LFSR in the LFSR

CUT

Input vector

compLFSR
Compressed
output vector

Detector

Comparator

Pass/Fail

HIT

Mapping

module

Error-free
compressed

Output vector

Output vector

HIT

HIT

Fig. 1 General schematic of [9]

CUT

I(x)

compLFSR O’(x)

Detector

Comparator

Pass/Fail

HIT

L(x)

Error-free O’(x)

O(x)

For only one test vector

q
u
o
tien

t

HIT

HIT

Fig. 2 General schematic of the proposed method: Mapping module
for one test vector

247Journal of Electronic Testing (2023) 39:245–262

1 3

bank. Consequently, there should be an LFSR for every test
vector in the LFSR bank, which imposes a high hardware
overhead on the design. To solve this problem, a configur-
able LFSR is used (an LFSR whose polynomial is defined
arbitrarily by a polynomial ID), wherein we proposed a cost-
efficient method to extract the Polynomial IDs from incom-
ing test vectors (Fig. 3).

The main contributions of this paper are highlighted as
follows:

1- A concurrent BIST design with low hardware overhead
and low CTL is proposed.

2- Almost all modules required for concurrent BIST are
implemented using LFSRs which improve the re-usa-
bility and reduce the design complexity.

3- The desired balance between hardware overhead and CTL
could be made by regular and easy parameters tuning.

2 Literature Review

The first step in emerging a concurrent BIST design is the
extraction of a suitable test set. In circuits with few input
pins, all input vectors are included in the test set (exhaustive
test). Test vectors can be randomly selected or deterministi-
cally generated using a test generation algorithm [20]. Typi-
cally, these methods use a pre-determined test set, which
is selected so that a desired fault coverage can be achieved
[12, 13, 18].

CBIST [14] is one of the early concurrent BIST designs.
A test vector is selected from the test set as the active test

vector, and the selecting part waits until it occurs in the cir-
cuit’s primary inputs. As soon as the output vector is com-
pared with the fault-free output vector, the fail/pass state is
determined. Then, the next active test vector is selected from
the pre-computed test set. The above process is repeated for
all test vectors to complete the test. Due to the unpredict-
able wait time in matching the active test vector with the
input vector of the circuit, CBIST has high concurrent test
latency (CTL), defines a the time elapsed for the occurrence
of all test vectors in the primary inputs). To decrease the
high CTL of CBIST, the authors of [12, 13, 18], and [20]
increase the number of active test vectors to increase the hit
probability. All of the above-mentioned techniques generate
a large test set based on pseudorandom test pattern genera-
tion algorithms, making them impractical for large CUTs in
terms of CTL.

The MHSAT approach [5] utilizes L active test vectors
which are generated by L LFSRs. Furthermore, a Multiple
Input Shift Register (MISR)-based response verifier is acti-
vated as the related LFSR moves on to the next state. When
all LFSRs sweep their states, the test would be completed.
OISAT [1] uses L LFSRs for active test vector generation,
while an accumulator-cased compaction (ABC) is utilized
for response verification.

In w-CBIST [18], all possible input vectors are divided
into windows containing t vectors. In each step, an active
window is chosen, and the input vectors are matched up with
test vectors in the active window. The test is complete when
all windows are processed.

The test vectors of several concurrent BIST designs are
generated using deterministic TPG algorithms [1, 5, 7,
17–19]. The CTL reduces in these methods due to the small
number of test vectors. BICST [16] consists of a concur-
rent test circuit (CTC) and a programmable logic array as
the pattern detector and mapping module, respectively. The
CTC and the CUT have equal input and output pins. When
a test vector appears on the CUT's input port, the compara-
tor (output verifier) compares the CUT and CTC outputs to
determine whether the test passes or fails.

MICSET [19] improves the BICST design by adding an
offline test mechanism and modifying the pattern detector.
Consider a test set that contains Tn-bit test vectors. The test
matrix is generated in the first step, and a greedy algorithm
is used to select t (log2T × t × T) columns such that all the
Tt-tuples are distinct. The remaining (n − t) bits of the test
vector are directed by these t columns. In the offline mode,
a set of 2 × 1 multiplexers are used to connect the generated
test vectors to the CUT inputs using a t-stage counter and
(n − t)-bits from an OR plane.

BICST and MICSET both have a high hardware over-
head, as well as impractical CTL due to the low prob-
ability of pre-computed test vectors occurring during
every clock cycle [19]. Among input vector monitoring

CUT

I(x)

compLFSR O’(x)

Detector

Comparator

Pass/Fail

HIT

confLFSR

Error-free O’(x)

O(x)

For all test vectors

q
u

o
tien

t

Polynomial ID

HIT

HIT

Fig. 3 General schematic of the proposed method: Mapping module
for multiple test vectors

248 Journal of Electronic Testing (2023) 39:245–262

1 3

approaches, [17] is the most efficient one, due to the pres-
ence of SRAM cells used to monitor test vectors.

NEMO [16] and later a cost-efficient NEMO [21] were
proposed to remedy the area overhead problem. Figure 4
shows the schematic of NEMO, where T pre-computed
test vectors (T << 2n) are detected by a decoding module
(D). The multi-level decoder is designed based on 2-input
NAND gates and generates 1 when one of the test vec-
tors occurs in the input of the CUT. To reduce hardware
overhead, the CALC module produces compacted versions
of the related CUT outputs. On the output side, the CUT
output vector is compressed to m − q bits using a space
compactor (SC). The compacted versions of output vectors
generated by CALC and SC are compared to complete the
test. As long as one of the T detector outputs equal 1, the
OR module's output would be 1. This means a test vector
appears in the incoming input vectors.

Implementation of NEMO's space compactor (SC)
requires knowledge of the details of the CUT [4]. To get
rid of this requirement, CE-NEMO deploys an alternative
decoder in the output of CUT instead of SC. Furthermore,
the following three modifications are made to the input
side decoder to reduce hardware overhead:

1. Reducing the columns of the pre-computed test set is
accomplished using a more efficient method.

2. Self-pairing of unpaired columns is eliminated when the
number of distinct columns does not reach a power of 2,
and these columns move directly to the next decoding
stage.

3. A meta-heuristic optimization process based on simu-
lated annealing (SA) is used to generate the most effi-
cient order of distinct columns

The major problems of NEMO and CE-NEMO could be
summarized as follows. The hardware complexity of decoder
modules in both NEMO and CE-NEMO depends on the
number of pre-computed test vectors which mainly is related
to the increment of the number of NAND gates by increasing
the size of the test set. Moreover, the bit-width of input vec-
tors affects both hardware overhead and the design complex-
ity of decoders. Moreover, using the SA-based optimization
approach to find the most efficient order of inputs increases
the difficulty of the decoder implementation in CE-NEMO.

3 Preliminaries

3.1 Division by LFSR

A type-2 LFSR is used as the core of the proposed con-
current BIST design. Figure 5 illustrates the structure of
a Type-2 LFSR based on k DFFs arranged in a right-shift
register format. Inputs of DFFs are connected to XOR gates
to establish feedback loops, and XOR gates are inserted at
predetermined locations depending on the LFSR character-
istic polynomial [2]. The characteristic polynomial is defined
according to (2). According to the first term, an XOR gate
will always be available in the rightmost DFF output. The
second term shows a feedback loop always begins from
the leftmost DFF's output and ends on the rightmost DFF's
input. For any other Ci coefficient, 1 will be set if the related
XOR gate exists; otherwise, it would be 0.

Fig. 4 Schematic of NEMO

Fig. 5 Type-2 LFSR architecture

Q

QSET

CLR

D

Ck-1

Q

QSET

CLR

D

C1

Q

QSET

CLR

D

C0=1

...G(x)

R(x)

249Journal of Electronic Testing (2023) 39:245–262

1 3

Assume that an N-bit binary number passes serially
through an LFSR with k stages (Flip Flops). Accordingly,
the final content of the LFSR’s DFFs would be the remainder
of dividing G(x) by L(x) if G(x) is the polynomial associated
with the N-bit binary number and L(x) is the characteristic
polynomial of the LFSR. The relationship between G(x) , the
LFSR characteristic polynomial (L(x)), and the remainder
(R(x)) can be expressed as (2).

In dividing 2N polynomials by an LFSR (L(x)) of order k, the
remainders are R(x) = {0, 1, X, 1 + X, X2, …., 1 + X + X2 + … + Xk−1}.
For instance, the remainders of {L(x), xL(x), (x + 1),…} and
{L(x) + 1, xL(x) + 1, (x + 1)L(x) + 1,…} divided by L(x)
become 0 and 1, respectively.

3.2 Concurrent Test Latency (CTL)

Concurrent test latency (CTL) refers to the time elapsed for
the occurrence of all test vectors in the primary inputs. There
are three assumptions to compute the CTL [14]:

1- In every clock cycle, an input vector is applied to the
CUT.

2- In each clock cycle, all input vectors are equally likely
to occur.

3- The probability of occurrence of any input vector is
independent of the probability of occurrence of the other
input vectors.

Let T be the number of test vectors required to cover the
acceptable number of faults. The probability of occurrence
of i numbers of test vectors in a clock cycle is defined as the
hit of i test vectors, h(i) = i∕2n(n is the number of CUT's
inputs). The number of clock cycles required to occur i num-
bers of test vectors is 2n∕i . Therefore, the CTL is given by

For circuits with fewer than 40 inputs, CTL is acceptable
as demonstrated by simulation in [7]. Otherwise, the CTL
would be impractical.

The only way to reduce CTL is to increase the probability
of occurring a test vector in each clock cycle. DC-based and
CTL-aware methods decrease CTL significantly based on
this idea. In DC-based design, the occurrence probability
of test vectors increases based on the fact that faults are

(1)L(x) = 1 + Ck−1X
k−1 +

k−2
∑

i=1

CiX
k−i

(2)G(x) = L(x)Q(x) + R(x)

(3)CTL =
∑T

1

1

h(i)
= 2

n

T
∑

1

1

i

detected by a small number of specified bits of the test vec-
tor, and the other bits would be don't care.

In the CTL-aware design [9], two LFSRs are used to
detect test vectors, in which the input vectors with the same
remainders in dividing by these LFSRs are considered as
test vectors. Therefore, selected test vectors are divided into
several groups containing a large number of test vectors with
a small number of bits each. For instance, L(x) and L(x) + 1
are detected by LFSRs and both of them cover similar faults.
Therefore, there is only one test vector required in a group
to cover several specific faults. Consequently, A CTL-aware
design has a CTL 2 k times smaller than Eq. 3 if the number
of test vectors is 2 k. Finally, as proved in [9], the CTL can
be obtained by modifying Eq. 3 as follows

3.3 Detector

Concurrent BIST uses a module called pattern detector to
detect pre-computed test vectors from incoming input vec-
tors. As mentioned earlier, the detector in the CTL-aware
approach [9] is used for the proposed method. In this sec-
tion, an overview of the detector used in [9] is presented;
however, the reader can refer to [9] for more details.

In the CTL-aware design [9], two LFSRs (L1(x) and
L2(x)) with unequal primary polynomials are used. The input
vectors that generate the same remainders in dividing by
L1(x) and L2(x) are considered as a test vector. The CTL-
aware design can be implemented by more than two LFSRs.
Note that utilization of more than two LFSRs imposes more
restrictions on the test vectors. For example, the input vec-
tors which generate an equal remainder in the division by
L1(x), L2(x), and L3(x) would belong to the test set. The
probability of occurrence of such test vectors in the circuit’s
input would be much lower than the two LFSRs case. Con-
sequently, the most expanded test set (with the lowest CTL)
is achieved when we apply two LFSRs for selecting part.

All polynomials with the following formation (Eq. 5)
are selected as test vectors in CTL-aware design. We illus-
trated all polynomials in Table 1 so that every row could be
selected as test vectors.

Assume that only the test vectors (t(x)) in the second row
(R(x) = 0) are considered as test vectors. The authors of [9]
proposed an algorithm to efficiently find L1(x)L2(x) to cover
the desired number of faults.

However, in the CTL-aware design, all input vectors
of Table 1 are detected as test vectors to reduce CTL.
This happens because, all test vectors in a same column

(4)CTL = 2
(n+a+1)∕2 ×

∑m

1

1

i
, 2 < a < 12

(5)Gi(x) = mi(x)L1(x)L2(x) + R(x)

250 Journal of Electronic Testing (2023) 39:245–262

1 3

approximately cover the same faults. For example, L1(x)L2(x)
and L1(x)L2(x) +1 have only one different bit. However, in
some cases there are lot of different bits and it may decrease
the fault coverage.

3.4 Proposed Method

The schematic of the proposed concurrent BIST design
is illustrated in Fig. 6. As discussed earlier, the detector
includes two LFSRs and a comparator. Whenever an input
vector applies to the CUT, the remainders generated by the
LFSRs are compared, and if they are equal, the input vector
is considered a test vector, which is then passed to the next
module via two switches.

When a test vector is detected, the output vector (O(x)) is
divided by LFSRcomp(x) to generate the compressed output
vector (O�

(x)) as a remainder. On the input side, the selected
test vector passes through the LFSRconf to generate error-free
O

�

(x) . When the selected input vector enters the LFSRconf,
the LFSRconf is configured so that its quotient (output) equals

O'(x) when divided by the test vector. Two steps are required
to generate a polynomial (polynomial ID) to configure
 LFSRconf. First, the remainder and quotient of another LFSR
(L(x) = L1(x)L2(x)) in dividing by test vectors are used as an
identification code for test vectors. Then, it passes through
a decoding module to generate the ID polynomials. Finally,
the generated remainder by LFSRconf that is considered a
fault-free compressed output vector is compared against the
compressed output vector O�

(x) to determine whether the
test passes or fails.

However, there are two challenges in this design. 1- for
every test vector there must be an LFSR that generates the
right O�

(x) for the detected test vector. It is essential to guar-
antee the existence of this LFSR.

2- polynomial IDs for configuring LFSRconf to generate
the desired polynomial for different test vectors must be gen-
erated without using RAM. Therefore, each test vector must
be assigned a unique code (binary number). Then this code
passes through a decoding module to generate the desired
polynomial ID. It is a challenge to extract a unique identifi-
cation code from each test vector.

In the next Sections (4.1 and 4.2) these challenges and
their solutions are discussed in details.

3.5 Challenge 1: Design a Mapping Module
for a Test Vector

Notion Assume that an input vector is detected by the
detector as the test vector (T(x)) and its corresponding com-
pressed test vector in the output side is O�

(x) . There exists
an LFSR such as L��

(x) , which, if T(x) passes through it,
produces an output (quotient) O�

(x).

Proof Assume that a test vector (T(x)) passes through an
unknown LFSR (L��

(x)), L��

(x) must be specified in which
its output (quotient) becomes O�

(x) . When T(x) enters
L

��

(x), T(x) is defined using the following equation.

(6)T(x) = L
��

(x).O
�

(x) + R(x)

Table 1 Arrangement of test vectors polynomials in the division by L1(x) L2(x). t(x) is the number of test vectors selected by the algorithm pro-
posed in HW–aware [9]

m1(x) = 1 m2(x) = x mt(x) = t(x) R(x)

G(x) = L1(x)L2(x) G(x) = x L1(x)L2(x) … G(x) = t(x) L1(x)L2(x) 0
G(x) = L1(x)L2(x) + 1 G(x) = x L1(x)L2(x) + 1 … G(x) = t(x) L1(x)L2(x) + 1 1
G(x) = L1(x)L2(x) + x G(x) = x L1(x)L2(x) + x … G(x) = t(x) L1(x)L2(x) + x x
G(x) = L1(x)L2(x) + x + 1 G(x) = x L1(x)L2(x) + x + 1 … G(x) = t(x) L1(x)L2(x) + x + 1 x + 1
∙
∙
∙

∙
∙
∙

∙
∙
∙

∙
∙
∙

∙
∙
∙

G(x) = L1(x)L2(x) + xk–1 + … + 1 G(x) = x L1(x)L2(x) + xk–1 + … + 1 … G(x) = t(x) L1(x)L2(x) + xk–1 + … + 1 xk–1 + … + 1

CUT

I(x)

compLFSR
O’(x)

Detector

Comparator

Pass/Fail

HIT

confLFSR

Error-free O’(x)

O(x)

P
o
ly

n
o
m

ia
l ID

L(x) quotient remainder

Decoding

module

Mapping module

HIT

HIT

Fig. 6 Schematic of the proposed method

251Journal of Electronic Testing (2023) 39:245–262

1 3

The first condition to satisfy the equation is T(x) > O
�

(x) .
T(x) and O�

(x) are known polynomials, while L��

(x) and
R(x) polynomials are unknown. We rewrite the equation as
follows

To satisfy the equation, T(x) + R(x) must be divisible by
O

�

(x) . Because R(x) is an unknown polynomial that can take
any number, T(x) + R(x) can be specified in which it can
divide O�

(x).

3.6 Challenge 2: Polynomial ID Generation
for LFSRconf

It is evident from the previous subsection that an LFSR is
required to generate a fault-free compressed output vector.
As mentioned, the number of selected test vectors are large.
In the worst case, the number of LFSRs required for map-
ping is therefore equal to the number of test vectors, which
is obviously inefficient in terms of hardware overhead. To
solve this problem, a configurable LFSR is used as illus-
trated in the Fig. 7. Each test vector must be assigned an
identification code (polynomial ID) in order to configure
 LFSRconf to the desired polynomial. However, the presence
of a large RAM again imposes a high hardware overhead
on the CUT.

Alternatively, incoming input vectors (test vectors) can
also be used to specify their corresponding polynomials.
The selected test vectors are arranged in Table 1. Different
quotients are produced by test vectors in a same row when
divided byL(x) . For example, the first-row test vectors gener-
ate this set of quotients: { 0, 1,X,X + 1, ..., f (x) }. If the test
vectors in the same column are divided byL(x) , they produce
different remainders. For example, the remainders of the sec-
ond column test vectors are { 0, 1,X,X + 1,… }. As a result
of division byL(x) , unique remainders and quotients are pro-
duced for each selected test vector that are used as inputs to
the decoding module to produce the desired polynomial ID.
As soon as a test vector (e.g.,xL(x) + 1) is detected by the
detector, its quotient (x) and the remainder (1) are applied
to LFSRconf as an identification code (binary number) that

(7)T(x) + R(x) = L
��

(x).O
�

(x)

passes through the decoding module to produce its polyno-
mial ID.

When the remainder and quotient of test vectors are deter-
mined, a combinational logic circuit that maps the quotient-
remainder input to the O�

(x) is synthesized to generate the
decoding module. The equivalent-gate size of this module
is small compared with CUT due the fact that the number
of input decoder input vectors are significantly lower than
the number of cut input vectors. Although a circuit with a
small number of input vectors is not necessarily smaller than
another circuit with a larger number of input vectors, in this
case we can select a small set of test vectors to synthesize a
circuit of a small size.

3.7 Tradeoff Between CTL and Hardware Overhead

An important feature of the proposed design is the ability
to trade off CTL and hardware overhead on demand. Hard-
ware overhead is imposed on the circuit primarily by LFSRs
(detector, L(x) , LFSRconf, and Lcomp(x)) and the detecting
module. The number of test vectors is not related to the hard-
ware overhead of the LFSRs; however, it affects the size of
the decoding module greatly, because the decoding module
input vectors are determined by dividing selected test vec-
tors by L(x) , as discussed in the previous section. In fact,
an input vector for the decoding module consists of a bit-
stream including its quotient and remainder in dividing by
L(x) . Therefore, the number of decoding module input pins
is determined by summing the quotient (f (x)) and remainder
(xk−1 + xk + … + 1) bit widths when dividing the largest test
vector of Table 1 (f(x)L(x) + xk−1 + ⋯ + 1) by L(x).

In Table 1, the occurrence of all test vectors from a row
(or at least one test vector from a column) is required for a
certain amount of fault coverage, so the quotient bit width are
constant. However, the presence of so many similar test vec-
tors in a column is only required for the purpose of achieving
acceptable CTL. In the case that all polynomials of Table 1 are
considered as test vectors, the best CTL is achieved. Conse-
quently, in this case, hardware overhead will have experienced
its worst values as the decoding module has its largest size
(longest bitstream for the remainder). However, if only the first
row of test vectors in Table 1 are allowed to pass, the most
efficient number for hardware overhead is achieved (shortest

Q

QSET

CLR

S

R Q

QSET

CLR

S

R

Mux
2 to1Input Mux

2 to1
. . .

Q

QSET

CLR

S

R Q

QSET

CLR

S

R

Mux
2 to1 output

Fig. 7 Configurable LFSR used in this paper

252 Journal of Electronic Testing (2023) 39:245–262

1 3

bitstream); whereas, the CTL in this case has reported its most
inefficient values. As a result, the desired CTL and hardware
overhead would be obtained by limiting the number of passed
test vectors (columns).

In order to specify the number of decoding module input
pins, the number of passed test vectors (columns of Table 1)
must be limited. As discussed, in Fig. 6, only the number
of the remainder’s bit width can be controlled, and the

Table 2 The overall results for
the proposed method

Circuit In Out Gates Test patterns of proposed
method

HW @ FC (%) CTL

80% FC 90% FC 95% FC 80% 90% 95%

SS
 c432 36 7 106 42 50 57 250.32 269.45 276.98 8.3 E06
 c499 41 32 202 42 53 60 150.43 165.65 171.03 4.7 E07
 c880 60 36 383 54 62 67 131.54 140.90 145.67 3.43 E10
 c1355 41 32 546 65 73 84 123.45 137.56 143.46 6.7 E07
 c1908 33 25 880 88 98 109 65.76 73.78 80.45 4.1 E06
 c2670 157 64 1193 82 90 101 144.34 160.23 165.89 5.3 E36
 c3540 50 22 1669 120 134 150 51.20 55.34 64.79 1.5 E09
 s298 3 6 133 – – – – – – –
 s344 9 11 175 16 21 28 65.64 72.34 76.98 5.12 E02
 s349 9 11 175 12 21 30 68.70 76.87 81.09 5.16 E02
 s386 7 7 165 – – – – – – –
 s400 3 6 183 – – – – – – –
 s420 19 2 212 44 52 65 87.76 97.98 102.88 2.31 E04
 s444 3 6 202 – – – – – – –
 s510 19 7 217 43 51 57 93.23 101.10 103.47 2.36 E04
 s641 35 24 398 45 50 59 98.11 106.56 115.90 1.67 E07
 s715 35 23 512 45 53 61 82.56 90.80 93.90 2.37 E07
 s1196 14 14 547 104 115 123 54.23 61.08 66.76 5.79 E03
 s1238 14 14 547 106 115 122 60.23 64.78 67.77 5.83 E03
 s1423 17 5 731 54 62 69 28.11 35.70 39.19 5.11 E04
 s1488 8 19 659 – – – – – – –
 s1494 8 19 653 – – – – – – –
Average 97.22 106.87 112.26
LS
 c5315 178 123 2307 163 175 189 68.56 75.78 79.64 3.96 E28
 c6288 32 32 2417 12 26 42 24.22 26.56 28.16 1.4 E06
 c7552 207 207 3512 178 190 202 40.23 46.56 48.90 9.1 E32
 s5378 35 35 2958 226 252 270 18.9 21.76 24.81 1.18 E07
 s9234 36 36 5825 426 458 480 11.34 13.01 14.76 6.55 E04
 s13207 62 62 8620 315 350 380 10.34 12.34 12.99 1.3 E11
 s15850 77 77 10,306 152 394 414 13.34 14.12 15.23 3.5 E13
Average 26.70 30.01 32.07
VLS
 s35932 35 320 17,793 88 97 110 9.61 10.89 12.09 12.09
 s38417 28 106 23,815 973 1011 1032 13.24 15.34 16.92 16.92
 s38584 38 304 20,705 713 768 790 12.56 13.98 14.50 14.50
 b17 37 97 33,741 2286 2352 2398 11.23 13.01 14.55 14.55
 b18 37 23 117,941 6106 6408 6676 7.14 8.34 9.14 9.14
 b20 32 22 20,716 1245 1320 1397 12.34 13.98 14.71 14.71
 b21 32 22 21,061 1263 1380 1443 13.12 14.34 15.09 15.09
 b22 32 22 30,686 1786 1850 1954 9.43 10.13 11.14 11.14
Average 11.08 12.50 13.51

253Journal of Electronic Testing (2023) 39:245–262

1 3

Fig. 8 Trade-off between CTL
and hardware overhead for
several benchmark circuits. a)
S13207, b) c5315, c) c7553,
and d) s15850

2

4

6

8

10

12

14

16

1.00E+12 1.00E+14 1.00E+16 1.00E+18 1.00E+20 1.00E+22 1.00E+24

Ha
rd

rw
ar

e
ov

er
he

ad
 (%

)

CTL (log)

s15850

50

55

60

65

70

75

80

1.00E+28 1.00E+31 1.00E+34 1.00E+37 1.00E+40 1.00E+43 1.00E+46 1.00E+49 1.00E+52 1.00E+55

)
%(

daehrevo
era

wrdraH

CTL (log)

c5315

30
32
34
36
38
40
42
44
46
48

1.00E+28 1.00E+34 1.00E+40 1.00E+46 1.00E+52 1.00E+58 1.00E+64 1.00E+70

)
%(

daehrevo
era

wrdraH

CTL (log)

c7552

2

4

6

8

10

12

14

1.00E+10 1.00E+12 1.00E+14 1.00E+16 1.00E+18 1.00E+20

)
%(

daehrevo
era

wrdraH

CTL (log)

s13207

254 Journal of Electronic Testing (2023) 39:245–262

1 3

quotient’s bit width is fixed as all test vectors in a row must
be applied to the CUT for achieving a certain fault cover-
age. Therefore, after dividing a test vector by L(x) , if the
number of remainder’s bits is more than a desired number,
the test vector would not consider as a test vector. Suppose
that the desired number of the decoding module input pins
is Ndm_inp as well as the fixed bit width of quotient is Nqb. If

the longest possible remainder bitstream is Nrem-max then the
extra bits of remainder which should be checked would be
 Ncheck = Nrem-max—(Ndm-inp-Nqb). Consequently, if the Ncheck
rightmost bits of the generated remainder are zero then the
input vector will be considered as a test vector. We utilize
an Ncheck-input OR gate to check if the related bits of the
remainder is zero. For instance, assume that the remainder

Table 3 CTL comparisons for
different approaches

Circuit Proposed method &
CTL-aware [7]

DC-based [7] CE-NEMO [21] HW-aware [9]

c432 8.3 E06 3.96 E10 3.02 E11 3.08 E11
c499 4.7 E07 4.5 E11 9.94 E12 8.79 E12
c880 3.43 E10 4.93 E11 5.25 E18 4.61 E18
c1355 6.7 E07 4.59 E11 1.11 E13 1.15 E13
c1908 4.1 E06 3.62 E10 4.58 E10 4.62 E10
c2670 5.3 E36 5.72 E11 7.52 E70 7.56 E70
c3540 1.5 E09 1.58 E11 6.26 E15 6.27 E15
c5315 3.96 E28 3.94 E11 2.01 E54 2.06 E54
c6288 1.4 E06 3.11 E10 1.69 E10 1.71 E10
c7552 9.1 E32 6.18 E11 1.25 E63 1.28 E63
s298 – 9.34 E04 5.23 E 05 –
s344 5.12 E02 3.86 E07 – 5.91 E 07
s349 5.16 E02 3.86 E07 5.86 E 07 5.93 E 07
s386 – 2.79 E04 3.96 E 04 –
s400 – 8.98 E07 – –
s420 2.31 E04 – 1.58 E11 1.61 E11
s444 – 7.73 E07 – –
s510 2.36 E04 – 1.56 E 08 1.58 E 08
s641 1.67 E07 – 8.18 E 16 8.19 E 16
s715 2.37 E07 – – 1.37 E 11
s1196 5.79 E03 5.98 E06 – 2.38 E 10
s1238 5.83 E03 7.72 E07 2.39 E 10 2.40 E 10
s1423 5.11 E04 5.26 E11 1.19 E 28 1.23 E 28
s1488 – 1.17 E05 8.78 E 04 –
s1494 – 1.10 E05 – –
s5378 1.18 E07 6.38 E11 – 1.41 E11
s9234 6.55 E04 6.43 E11 – 2.76 E11
s13207 8.3 E06 6.68 E11 – 1.84 E19
s15850 3.5 E13 6.86 E11 – 6.05 E23
s35932 8.38 E06 – – 1.43 E11
s38417 2.09 E06 – – 1.12 E10
s38584 8.19 E03 – – 2.80 E11
b17 9.49 E06 – – 5.52 E11
b18 1.34 E08 – – 5.58 E11
b20 1.18 E07 – – 4.32 E09
b21 1.23 E07 – – 4.35 E09
b22 1.27 E07 – – 4.39 E09

255Journal of Electronic Testing (2023) 39:245–262

1 3

of an input vector = (x5 + 1) L(x) + x6 in dividing by L(x) is
1000000. If Ncheck equals 3, then 3 rightmost bits (100) are
checked to decide that is test vector or not. So, the related
checker would be 3-input OR gate.

4 Simulation Results and Comparisons

Various simulation experiments are performed in this sec-
tion to evaluate the proposed method. Several sets of bench-
mark circuits (ISCAS85, ISCAS89, and ITC99) are used
to determine the hardware overhead and CTL as the main
parameters of a concurrent BIST design. Hardware overhead
is calculated by applying the gate equivalents metric, where
a circuit module (a gate or DFF) is the hardware equivalent
of some two-input NAND gates [9]. For instance, an N-input
OR gate is hardware equivalent of N numbers of two-input
NAND gates.

In the Section 5.2, four state-of-the-art methods includ-
ing HW-aware [9], CTL-aware [9], NEMO [16], CE-NEMO

Table 4 Hardware overhead comparison with CTL-aware

Circuit Proposed
HW @ FC (%)

CTL-aware [9]
HW @ FC (%)

80% 90% 80% 90%

SS
 c432 250.32 269.45 210.31 230.98
 c499 150.43 165.65 139.23 147.85
 c880 131.54 140.90 115.69 124.32
 c1355 123.45 137.56 91.13 103.63
 c1908 65.76 73.78 62.35 69.35
 c2670 144.34 160.23 123.45 132.47
 c3540 51.20 55.34 65.38 72.86
 s298 – – – –
 s344 65.64 72.34 83.86 93.89
 s349 68.70 76.87 84.25 95.89
 s386 – – – –
 s400 – – – –
 s420 87.76 97.98 90.66 97.02
 s444 – – – –
 s510 93.23 101.10 99.35 110.45
 s641 98.11 106.56 83.65 88.72
 s715
 s1196

82.56
54.23

90.80
61.08

72.59
69.23

80.25
76.32

 s1238 60.23 64.78 68.65 77.32
 s1423 28.11 35.70 45.23 51.73
 s1488 – – – –
 s1494 – – – –
Average 97.22 106.87 94.06 103.31
LS
 c5315 68.56 75.78 71.63 75.03
 c6288 24.22 26.56 28.36 33.32
 c7552 40.23 46.56 43.54 45.2
 s5378 18.9 21.76 30.36 32.9
 s9234 11.34 13.01 15.36 19.26
 s13207 10.34 12.34 21.36 24.2
 s15850 13.34 14.12 27.56 29.72
Average 26.70 30.01 33.88 37.09
VLS
 s35932 9.61 10.89 18.69 21.89
 s38417 13.24 15.34 21.3 25.6
 s38584 12.56 13.98 22.56 26.52
 b17 11.23 13.01 17.56 19.36
 b18 7.14 8.34 12.56 14.23
 b20 12.34 13.98 21.39 23.56
 b21 13.12 14.34 20.96 24.68
 b22 9.43 10.13 15.23 16.35
Average 11.08 12.50 18.87 21.52

Table 5 Hardware overhead comparison with NEMO and CE-
NEMO

Circuit Proposed method NEMO [16] CE-NEMO [21]

SS
 c432 276.98 513 555
 c499 171.03 656 713
 c880 145.67 931 1021
 c1355 143.46 957 1026
 c1908 80.45 947 1007
 c2670 165.89 4846 5253
 c3540 64.79 1700 1795
 s298 – 186 206
 s344 76.98 – –
 s349 81.09 175 199
 s386 – 208 219
 s400 – – –
 s420 102.88 488 521
 s444 – – –
 s510 103.47 441 477
 s641 115.90 788 874
 s715 93.90 – –
 s1196 66.76 – 1011
 s1238 67.77 953 1760
 s1423 39.19 1606 337
 s1488 – 313 –
 s1494 – – –
Average 112.36 1060.87 981.75
LS
 c5315 79.64 5239 4927
 c6288 28.16 365 325
 c7552 48.90 7888 7463
 s5378 24.81 – –
 s9234 14.76 – –
 s13207 12.99 – –
 s15850 15.23 – –
Average 32.07 4497.33 4238.33

256 Journal of Electronic Testing (2023) 39:245–262

1 3

[21], and DC-based [15] are compared against the proposed
method in terms of hardware overhead and CTL.

4.1 The Overall Results for Proposed Method

In order to evaluate the performance of the proposed BIST
design, the benchmark circuits (ISCAS 85, ISCAS 89, and
ITC 99) are categorized into three different types of cir-
cuits: small scale (SS), large scale (LS), and very large
scale (VLS) based on the size of the circuit. The small
size circuits (SS) contain less than 2000 gates, the large
size circuits (LS) have less than 10,000 gates, and the very
large size circuits include up to 117,000 gates.

In Table 2, hardware overhead and CTL of proposed
design for different benchmark circuits are reported. The
structural information for the benchmark circuits (the num-
bers of inputs, outputs, and internal modules) are reported
in the second, third, and fourth columns of Table 2. The
test vectors are derived using D-Alg algorithm accord-
ing to the procedure of [9]. For test pattern generation
and fault simulation, we used ATALANTA and ModelSim
software tools on personal computer (PC) with 2.4 GHz
core i5 CPU and, 4 GB of RAM, respectively.

ATALANTA and ModelSim software tools on personal
computer (PC) with 2.4 GHz core i5 CPU and, 4 GB of
RAM, respectively. The test set sizes are reported in columns
5 (for 80% fault coverage), 6 (for 90% fault coverage), and
7 (for 95% fault coverage), respectively. Obviously, the size
of the test set increases with increasing the fault coverage.
Hardware overhead and CTL are reported in the last col-
umns. CTL is calculated for 95% fault coverage in all tables.

As mentioned in the previous sections, the detector pro-
posed by the authors of [9] is used in our proposed design.
Therefore, the same test vectors as CTL-aware are detected
and the CTL is equal for the CTL-aware design and the

proposed method. As calculated in Section 3.2, the CTL for
the CTL-aware design (= proposed method) is acceptable for
circuits with 80-a input pins. For the majority of circuits, in
a 200 MHz clock circuit, the CTL would be less than 1 s.
However, the CTL is very high for circuits with more than
80-a inputs e.g., c2670 and c5315.

Hardware overhead (HW) is reported for 80%, 90%,
and 95% of fault coverage in Table 2. There are several
important points with regard to hardware overhead. First,
the hardware overhead increases by a slight increment of
fault coverage due to the increment of the test set when the
fault coverage increases. Second, for two circuits with an
almost equal number of input pins, the impact of LFSRs on
hardware overhead is lower for the larger circuit. Because
the number of LFSRs required for testing both circuits is
equal. For example, suppose that 5 LFSRs including N
stages are required for CUT 1, and CUT 2 with gate equiva-
lent sizes 1000 and 10,000, respectively. Then the LFSR-
related hardware overhead for CUT 1 and CUT 2 would be
8N/1000 and 8N/10000, respectively. Therefore, the hard-
ware overhead of LFSRs for CUT 1 is 10 times more than
the LFSR-related hardware overhead for CUT 2. Third, the
hardware overhead is significantly impacted by the num-
ber of primary inputs and test vectors. Because the number
of LFSRs of the detector is directly related to the number
of input pins. Moreover, the size of the detecting module
significantly increases related to the number of test vec-
tors as mentioned in the Section 4 in details. For example,
C6288 has 32 primary inputs and 12 test vectors, which are
significantly smaller than 178 primary inputs and 163 test
vectors of C5315 (the number of test vectors is related to
the HW-aware approach).

In Fig. 8, the graphs illustrate the hardware overhead,
for 90% fault coverage, according to the changes of CTL
for four benchmark circuits. Obviously, there is an indirect

Fig. 9 Comparison of the
hardware overhead of proposed
design with NEMO and CE-
NEMO

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

c432 c499 c880 c1355 c1908 c2670 c3540 s420 s510 s641 s1238 s1423 c5315 c6288 c7552

HW
 O

ve
rh

ea
d%

Circuits

Proposed

NEMO

CE-NEMO

257Journal of Electronic Testing (2023) 39:245–262

1 3

relation between CTL and hardware overhead for all cir-
cuits. There are two critical points (A and B) on the graphs.
The point A shows the best recorded CTL (worst hardware

overhead) for circuits where every test vectors in Table 1
are detected as test vectors. While, in the point B, the cir-
cuits have experienced the most efficient values for hardware

Table 6 Hardware overhead
comparison with DC-based and
HW-aware

For case1: minimum CTL, maximum hardware overhead

Circuit Proposed (case1)
HW @ FC (%)

HW-aware [9]
HW @ FC (%)

DC-based [7]
HW @ FC (%)

80% 90% 80% 90% 80% 90%

SS
 c432 250.32 269.45 178.26 199.32 70.3 89.1
 c499 150.43 165.65 98.36 110.65 – –
 c880 131.54 140.90 86.56 95.56 55.5 76.6
 c1355 123.45 137.56 68.59 82.65 – –
 c1908 65.76 73.78 39.45 47.35 25.7 42.2
 c2670 144.34 160.23 95.68 110.65 55.7 –
 c3540 51.20 55.34 36.97 42.92 18.3 26.1
 s298 – – – – 39.4 55.7
 s344 65.64 72.34 52.32 58.2 41.6 48.1
 s349 68.70 76.87 55.39 63.47 33.5 45
 s386 – – – – 52.3 71.5
 s400 – – – – 41.2 53.5
 s420 87.76 97.98 69.75 79.99 – –
 s444 – – – – 37 47.6
 s510 93.23 101.10 73.96 81.69 – –
 s641 98.11 106.56 64.35 70.38 – –
 s715 82.56 90.80 52.69 59.56 – –
 s1196 54.23 61.08 43.93 48.69 45.2 60.7
 s1238 60.23 64.78 48.56 53.96 47.1 62.7
 s1423 28.11 35.70 16.45 22.68 47.3 58.5
 s1488 – – – – 28.8 38.6
 s1494 – – – – 30 38.5
Average 97.22 106.87 67.57 76.73 41.80 54.29
LS
 c5315 68.56 75.78 53.03 53.03 37.8 51.9
 c6288 24.22 26.56 21.69 21.69 4.8 6.7
 c7552 40.23 46.56 34.19 34.19 32.5 –
 s5378 18.9 21.76 15.52 15.52 40.4 55.8
 s9234 11.34 13.01 8.47 8.47 29.3 40.2
 s13207 10.34 12.34 5.56 5.56 30 39.5
 s15850 13.34 14.12 5.12 5.12 28.8 39.4
Average 26.70 30.01 17.57 20.49 29.08 38.91
VLS
 s35932 9.61 10.89 3.8 3.8 – –
 s38417 13.24 15.34 7 7 – –
 s38584 12.56 13.98 7.74 7.74 – –
 b17 11.23 13.01 5.9 5.9 – –
 b18 7.14 8.34 2.51 2.51 – –
 b20 12.34 13.98 7.23 7.23 – –
 b21 13.12 14.34 7.15 7.15 – –
 b22 9.43 10.13 5.55 5.55 – –
Average 11.08 12.50 5.35 5.86

258 Journal of Electronic Testing (2023) 39:245–262

1 3

Table 7 Hardware overhead
comparison with DC-based and
HW-aware

For case2: maximum CTL, minimum hardware overhead

Circuit Proposed (case2)
HW @ FC (%)

HW-aware [9]
HW @ FC (%)

DC-based [7]
HW @ FC (%)

80% 90% 80% 90% 80% 90%

SS
 c432 201.45 219.34 178.26 199.32 70.3 89.1
 c499 109.34 123.12 98.36 110.65 – –
 c880 98.7 107.23 86.56 95.56 55.5 76.6
 c1355 81.24 95.23 68.59 82.65 – –
 c1908 48.11 55.44 39.45 47.35 25.7 42.2
 c2670 112.56 126.66 95.68 110.65 55.7 –
 c3540 43.98 47.57 36.97 42.92 18.3 26.1
 s298 – – – – 39.4 55.7
 s344 55.89 61.22 52.32 58.2 41.6 48.1
 s349 63.33 70.09 55.39 63.47 33.5 45
 s386 – – – – 52.3 71.5
 s400 – – – – 41.2 53.5
 s420 73.76 84.23 69.75 79.99 – –
 s444 – – – – 37 47.6
 s510 82.23 90.02 73.96 81.69 – –
 s641 77.8 83.25 64.35 70.38 – –
 s715 66.43 74.38 52.69 59.56 – –
 s1196 49.69 54.11 43.93 48.69 45.2 60.7
 s1238 53.23 57.33 48.56 53.96 47.1 62.7
 s1423 23.12 28.34 16.45 22.68 47.3 58.5
 s1488 – – – – 28.8 38.6
 s1494 – – – – 30 38.5
Average 77.36 86.09 67.57 76.73 41.80 54.29
LS
 c5315 49.32 56.89 53.03 53.03 37.8 51.9
 c6288 21.34 22.34 21.69 21.69 4.8 6.7
 c7552 31.87 35.78 34.19 34.19 32.5 –
 s5378 13.45 16.78 15.52 15.52 40.4 55.8
 s9234 8.13 9.89 8.47 8.47 29.3 40.2
 s13207 5.4 6.07 5.56 5.56 30 39.5
 s15850 5.09 5.84 5.12 5.12 28.8 39.4
Average 18.94 22.01 17.57 20.49 29.08 38.91
VLS
 s35932 3.67 4.34 3.8 3.8 – –
 s38417 7.55 7.65 7 7 – –
 s38584 7.88 8.33 7.74 7.74 – –
 b17 5.91 6.89 5.9 5.9 – –
 b18 2.45 3.12 2.51 2.51 – –
 b20 7.65 7.99 7.23 7.23 – –
 b21 7.54 7.8 7.15 7.15 – –
 b22 5.88 6.32 5.55 5.55 – –
Average 6.06 6.55 5.35 5.86

259Journal of Electronic Testing (2023) 39:245–262

1 3

Table 8 Hardware overhead
comparison with DC-based and
HW-aware

For case3: average CTL, average hardware overhead

Circuit Proposed (case3)
HW @ FC (%)

HW-aware [9]
HW @ FC (%)

DC-based [7]
HW @ FC (%)

80% 90% 80% 90% 80% 90%

SS
 c432 225.56 240.98 178.26 199.32 70.3 89.1
 c499 124.88 137.12 98.36 110.65 – –
 c880 110.98 120.87 86.56 95.56 55.5 76.6
 c1355 99.08 113.7 68.59 82.65 – –
 c1908 56.12 62.22 39.45 47.35 25.7 42.2
 c2670 126.43 139.01 95.68 110.65 55.7 –
 c3540 46.77 50.62 36.97 42.92 18.3 26.1
 s298 – – – – 39.4 55.7
 s344 59.8 64.11 52.32 58.2 41.6 48.1
 s349 65.23 72.79 55.39 63.47 33.5 45
 s386 – – – – 52.3 71.5
 s400 – – – – 41.2 53.5
 s420 78.99 90.66 69.75 79.99 – –
 s444 – – – – 37 47.6
 s510 87.22 95.3 73.96 81.69 – –
 s641 86.54 92.19 64.35 70.38 – –
 s715 75.77 81.76 52.69 59.56 – –
 s1196 51.9 57.32 43.93 48.69 45.2 60.7
 s1238 57.88 61.34 48.56 53.96 47.1 62.7
 s1423 25.14 31.09 16.45 22.68 47.3 58.5
 s1488 – – – – 28.8 38.6
 s1494 – – – – 30 38.5
Average 86.14 94.44 67.57 76.73 41.80 54.29
LS
 c5315 55.12 62.56 53.03 53.03 37.8 51.9
 c6288 22.67 23.9 21.69 21.69 4.8 6.7
 c7552 36.23 39.08 34.19 34.19 32.5 –
 s5378 15.2 18.1 15.52 15.52 40.4 55.8
 s9234 9.35 10.87 8.47 8.47 29.3 40.2
 s13207 7.5 8.39 5.56 5.56 30 39.5
 s15850 8.34 9.6 5.12 5.12 28.8 39.4
Average 22.05 23.35 17.57 20.49 29.08 38.91
VLS
 s35932 5.13 6.22 3.8 3.8 – –
 s38417 10.32 10.67 7 7 – –
 s38584 9.98 10.32 7.74 7.74 – –
 b17 8.12 9.34 5.9 5.9 – –
 b18 4.44 5.34 2.51 2.51 – –
 b20 9.23 9.78 7.23 7.23 – –
 b21 10.1 10.68 7.15 7.15 – –
 b22 7.32 7.45 5.55 5.55 – –
Average 8.08 8.6 5.35 5.86

260 Journal of Electronic Testing (2023) 39:245–262

1 3

overhead. According to these graphs, the CTL and the hard-
ware overhead can be arbitrarily selected among the num-
bers of graphs.

4.2 Comparisons

The proposed design is compared against the state-of-the-
art methods by different experiments. In Table 3, CTL is

reported for the proposed method, CTL-aware, DC-based,
HW-aware, and CE-NEMO in the case that CTL is mini-
mum (maximum hardware overhead). Therefore, the pro-
posed method and the CTL-aware approach have the same
CTL as a result of detecting the same test vectors. For the
majority of circuits, the CTL is significantly reduced in com-
parison with DC-based design, while for benchmarks with
many input pins e.g., c2670 and c5315, the proposed method
reports unpractical times. Other methods focus on reducing
hardware overhead and do not focus on CTL; therefore, the
CTL is impractical in most case for these methods.

Hardware overhead is compared against CTL-aware, NEMO,
and CE-NEMO when the proposed method experiences the best
values for CTL. In Table 4, the results show that the hardware
overhead is reduced about 5% and 10% for LS and VLS circuits
in average for the proposed method in comparison with CTL-
aware method. In fact, CTL-aware design consists of a huge
combinational circuit that imposes a large hardware overhead on
the CUT. Whereas, in the proposed design, almost all modules
are LFSRs except the decoding module which maps small num-
ber of input vectors to small number of output vectors.

In comparison with NEMO and CE-NEMO, the pro-
posed method significantly reduces the hardware overhead
on average as illustrated in Table 5. To represent the supe-
riority of the proposed design comparing with NEMO and
CE-NEMO, we illustrate the related hardware overheads in
Fig. 9. Moreover, according to Fig. 9 we could deduce that
there is a small improvement in CE-NEMO compared to
NEMO and the irregular behavior in hardware overhead is
apparent for NEMO and CE-NEMO.

The proposed method is compared with DC-based and
HW-aware in three different cases:

1- When CTL is minimum and hardware overhead is maxi-
mum.

2- When CTL is maximum and hardware overhead is mini-
mum.

3- When both CTL and hardware overhead have their aver-
age values.

In all cases, as shown in Tables 6, 7, and 8, DC-based has
reported most efficient values in term of hardware overhead
hardware overhead for SS benchmarks due to the fact that
HW-aware and proposed methods are not appropriate for
circuits with a few numbers of logic gates. Following inter-
pretations could be derived using Tables 6, 7, and 8.

In the first case, HW-aware has the most efficient hardware
overhead values for LS and VLS circuits as shown in Table 6.
DC-based and proposed methods are almost equally efficient in
term of hardware overhead in this case. However, the proposed
method reduces CTL significantly in comparison with DC-based
design as shown in Table 3; while, HW-aware CTL is impracti-
cal for the majority of benchmarks.

Table 9 CTL comparison with DC-based and HW-aware

For case3: average CTL, average hardware overhead

Circuit Proposed method
(Case 3)

DC-based [7] HW-aware [9]

c432 1.4 E09 3.96 E10 3.08 E11
c499 4.9 E09 4.5 E11 8.79 E12
c880 6.9 E15 4.93 E11 4.61 E18
c1355 7.2 E10 4.59 E11 1.15 E13
c1908 4.9 E08 3.62 E10 4.62 E10
c2670 6.71 E55 5.72 E11 7.56 E70
c3540 2.34 E13 1.58 E11 6.27 E15
c5315 4,66 E40 3.94 E11 2.06 E54
c6288 2.30 E08 3.11 E10 1.71 E10
c7552 2.79 E49 6.18 E11 1.28 E63
s298 – 9.34 E04 –
s344 5.34 E04 3.86 E07 5.91 E 07
s349 6.78 E04 3.86 E07 5.93 E 07
s386 – 2.79 E04 –
s400 6.31 E07 8.98 E07 –
s420 – – 1.61 E11
s444 6.16 E06 7.73 E07 –
s510 5.47 E12 – 1.58 E 08
s641 3.17 E09 – 8.19 E 16
s715 7.19 E06 – 1.37 E 11
s1196 6.89 E07 5.98 E06 2.38 E 10
s1238 5.11 E8 7.72 E07 2.40 E 10
s1423 – 5.26 E11 1.23 E 28
s1488 – 1.17 E05 –
s1494 1.18 E08 1.10 E05 –
s5378 6.95 E08 6.38 E11 1.41 E11
s9234 5.31 E14 6.43 E11 2.76 E11
s13207 2.67 E17 6.68 E11 1.84 E19
s15850 5.34 E08 6.86 E11 6.05 E23
s35932 1.67 E08 – 1.43 E11
s38417 6.69 E07 – 1.12 E10
s38584 6.39 E08 – 2.80 E11
b17 6.14 E09 – 5.52 E11
b18 – – 5.58 E11
b20 4.88 E08 – 4.32 E09
b21 5.23 E08 – 4.35 E09
b22 5.87 E08 – 4.39 E09

261Journal of Electronic Testing (2023) 39:245–262

1 3

In the second case, the proposed method CTL is equal
with HW-aware CTL reported in Table 3, and both of them
are impractical for the majority of circuits. In Table 7, results
show that hardware overhead is almost equal for HW-aware
and the proposed method especially for LS and VLS bench-
marks. In this case, the proposed method reduced CTL about
10% for LS circuits in comparison with DC-based design.

In the third case, the number of selected test vectors for
proposed method are limited in which CTL and hardware
overhead are acceptable; however, neither one has expe-
rienced its most efficient value. In this case, the proposed
method lowers CTL significantly as shown in Table 9. In
terms of hardware overhead, the propose method is only
about 4% more than HW-aware design for both LS and
VLS circuits as demonstrated in Table 8. Hardware over-
head reduced by about 10% for the proposed method for LS
circuits in comparison with DC-based design in this case.

5 Conclusion

in this paper a low-cost concurrent BIST in term of hardware over-
head and CTL has been proposed. A small combinational module
and LFSRs form the major components of this design, resulting in
very low hardware overhead. Furthermore, the proposed method
allows for CTL and hardware overhead to be adjusted and tuned
to an acceptable level. Compared to the most efficient method, the
proposed method achieves a 10% reduction in hardware overhead
for large-scale circuits by keeping the CTL minimum. As a result
of several experiments, the proposed BIST design has proven to
be capable of tuning both the CTL and hardware overhead. In the
case that CTL and hardware overhead are equally important, the
proposed method significantly has been lowered CTL compared
to previous methods, while hardware overhead was only about 4%
higher than previous method for both LS and VLS circuits.

Data Availability The datasets generated and/or analyzed during the
present study are available from the corresponding author on reason-
able request.

Declarations

Conflict of Interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

References

 1. Abirami S, Paulin NS, S. Venkateshwaran SP (2015) A concur-
rentBIST architecture for online input vector monitoring. Inter-
national Conference on Science, Technology and Management
(ICSTM), New Delhi, India, pp 1411–1417

 2. Abramovici M, Breuer M, Friedman A (1990) Digital Systems
Testing and Testable Design. Computer Science Press

 3. Askarzadeh M, Haghparast M, Jabbehdari S (2021) Power con-
sumption reduction in built-in self-test circuits. J Ambient Intell
Humaniz Comput 14:1109–1122

 4. Biswas S, Das SR, Petriu EM (2006) Space compactor design
in VLSI circuits based on graph theoretic concepts. IEEE Trans
Instrum Meas 55(4):1106–1118

 5. Divyapreethi B, Karthik T (2015) Input vector monitoring concur-
rent BIST architecture using modified SRAM cells. ARPN J Eng
Appl Sci 10(9):4042–4046

 6. Jurj SL, Rotar R, Opritoiu F, Vladutiu M (2020) Online Built-In
Self-Test Architecture for Automated Testing of a Solar Tracking
Equipment. In: Proc. IEEE International Conference on Environ-
ment and Electrical Engineering and IEEE Industrial and Com-
mercial Power Systems Europe (EEEIC/I&CPS Europe), pp 1-7

 7. Kochte MA, Zoellin CG, Wunderlich H-J (2010) Efficient con-
current self-test with partially specified patterns. J Electron Test
26(5):581–594

 8. Menbari A, Jahanirad H (2020) A Concurrent BIST Architecture
for Combinational Logic Circuits. In: Proc. 10th International
Conference on Computer and Knowledge Engineering (ICCKE),
pp 262–267

 9. Menbari A, Jahanirad H (2022) A low-cost BIST design support-
ing offline and online tests. J Electron Test 38(1):107–123

 10. Murugan SV, Sathiyabhama B (2021) Bit-swapping linear feed-
back shift register (LFSR) for power reduction using pre-charged
XOR with multiplexer technique in built in self-test. J Ambient
Intell Humaniz Comput 12(6):6367–6373

 11. Pavlidis A, Louërat MM, Faehn E, Kumar A, Stratigopoulos H-G
(2021) SymBIST: Symmetry-based analog and mixed-signal built-
in self-test for functional safety. IEEE Transactions on Circuits
and Systems I: Regular Papers 68(6):2580–2593

 12. Saluja KK, Sharma R, Kime CR (1987) Concurrent comparative
testing using BIST resources. In: Proc. International Conference
on Computer Aided Design, pp 336–339

 13. Saluja KK, Sharma R, Kime CR (1987) Concurrent comparative
built-in testing of digital circuits. University of Wisconsin, Engi-
neering Experiment Station, Madison, Wisconsin, USA

 14. Saluja KK, Sharma R, Kime CR (1988) A concurrent testing tech-
nique for digital circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 7(12):1250–1260

 15. Shivakumar V, Senthilpari C, Yusoff Z (2021) A low-power and
area-efficient design of a weighted pseudorandom test-pattern
generator for a test-per-scan built-in self-test architecture. IEEE
Access 9:29366–29379

 16. Voyiatzis I (2012) Input Vector Monitoring On line Concurrent
BIST based on multilevel decoding logic. In: Proc. Design, Auto-
mation & Test in Europe Conference & Exhibition (DATE), pp
1251–1256

 17. Voyiatzis I, Efstathiou C (2013) Input vector monitoring con-
current BIST architecture using SRAM cells. IEEE Trans Very
Large-Scale Integr (VLSI) Syst 22(7):1625–1629

 18. Voyiatzis I, Halatsis C (2005) A low-cost concurrent BIST scheme
for increased dependability. IEEE Transactions on Dependable
and Secure Computing 2(2):150–156

 19. Voyiatzis I, Paschalis A, Gizopoulos D, Halatsis C, Makri FS,
Hatzimihail M (2008) An input vector monitoring concurrent
BIST architecture based on a precomputed test set. IEEE Trans-
actions on Computers 57(8):1012–1022

 20. Voyiatzis I, Paschalis A, Gizopoulos D, Kranitis N, Halatsis C
(2005) A concurrent built-in self test architecture based on a self-
testing RAM. IEEE Trans Reliab 54(1):69–78

 21. Wu TB, Liu HZ, Liu PX, Guo DS, Sun HM (2013) A cost-
efficient input vector monitoring concurrent online BIST

262 Journal of Electronic Testing (2023) 39:245–262

1 3

scheme based on multi-level decoding logic. J Electron Test
29(4):585–600

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Ahmad Menbari received his BS degree in electrical engineering from
the Department of Electrical Engineering, University of Kurdistan,
Sanandaj, Iran, in 2019. His main research interests are fault-tolerant
systems, digital circuit testing, and reliability analysis of logic circuits.

Hadi Jahanirad received his BS degree in electrical engineering from
the Department of Electrical Engineering, Khaje Nasir Toosi Univer-
sity, Tehran, Iran, in 2006, and his MS and a Ph.D. degree from Iran
University of Science and Technology, Tehran, Iran in 2008 and 2012,
respectively. Since 2013, he has been with the Department of Electrical
Engineering, University of Kurdistan, Sanandaj, Iran, where he is now
an associate professor. His main research interests are digital system
design, VLSI design, reliability analysis of logic circuits, digital circuit
testing, approximate computing, and evolutionary computing.

	A Tunable Concurrent BIST Design Based on Reconfigurable LFSR
	Abstract
	1 Introduction
	2 Literature Review
	3 Preliminaries
	3.1 Division by LFSR
	3.2 Concurrent Test Latency (CTL)
	3.3 Detector
	3.4 Proposed Method
	3.5 Challenge 1: Design a Mapping Module for a Test Vector
	3.6 Challenge 2: Polynomial ID Generation for LFSRconf
	3.7 Tradeoff Between CTL and Hardware Overhead

	4 Simulation Results and Comparisons
	4.1 The Overall Results for Proposed Method
	4.2 Comparisons

	5 Conclusion
	References

