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Abstract
In concurrent online BIST, testing is conducted simultaneously during normal functional operation. A fault model enables 
a structural test to be undertaken for a long time while simultaneously identifying critical faults. As a result of continuous 
testing, intermittent and transient faults are more likely to be detected. The number of required cycles for completion of a 
concurrent test, known as concurrent test latency (CTL), is a critical parameter for a concurrent BIST design. Most of the 
existing methods have impractical CTL, while others suffer from a high hardware overhead or a presence of a substantial 
combinational circuit. These methods are also incompatible with situations where parameters need to be adjusted, like when 
the hardware is more critical than CTL and vice versa. This paper proposes an efficient concurrent BIST to overcome the 
mentioned challenges. The main components of the proposed design consist of LFSRs and a small decoding combinational 
module result in low hardware overhead. In addition, CTL and hardware overhead can be adjusted and tuned in an acceptable 
range using the proposed method. Compared to the most efficient method, the proposed method achieves a 10% reduction 
in hardware overhead for large-scale circuits by keeping the CTL minimum. The different experiments demonstrate the 
capability of tuning between CTL and hardware overhead for the proposed BIST design. In the case that CTL and hardware 
overhead are equally important, the proposed method significantly lowers CTL compared to previous methods, while hard-
ware overhead is only about 4% higher than previous method for both large scale (LS) and very large scale (VLS) circuits.
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1 Introduction

Offline BIST techniques can only be applied when a device 
under test is sufficiently idle [2, 14]. Depending on the 
real-time constraints, this may be difficult or impossible to 
achieve in some systems. Furthermore, these approaches do 
not address dormant faults and further fault accumulations, 
which reduce system reliability, as well as temporary faults 
that frequently occur in modern VLSI chips [3, 6, 10, 11, 
15].

Concurrent BIST design, on the other hand, refers 
to testing a circuit in its normal mode of operation. This 

continuous testing increases the possibility of detecting 
intermittent and transient faults [9, 17, 19]. However, the 
number of required cycles for completion of a concurrent 
test, known as concurrent test latency (CTL), is a significant 
obstacle for concurrent BIST widespread application [8, 9].

Duplication design is the most straightforward online 
BIST architecture wherein the input vector is applied to both 
the CUT and its copy. For every applied input vector, a com-
parator checks if the output vectors of two circuits are equal 
and the error signal is generated by the disjunction of all the 
output bits. The hardware overhead for this method is over 
100% due to the copy of CUT and the comparator [7, 9].

Almost all of the concurrent BIST designs have been 
proposed based on the pre-computed test set [7]. These pre-
computed test vectors are selected deterministically by a 
test pattern generation (TPG) algorithm. These selected test 
vectors are identified using an input pattern detector, and an 
output response analyzer (ORA) decides whether the test 
passes or fails. Several modified methods [14, 16, 17, 19, 
21] that recommend different strategies (e.g., input vector 
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monitoring) to reduce hardware overhead are explained in 
the literature review section.

The authors of [7] proposed a method with reasonable 
CTL and acceptable hardware overhead. By using this 
method, which is called DC-based in this paper, all of the 
required modules to perform testing (e.g., the pattern detec-
tor and ORA) are synthesized into one logic module. This 
approach is based on the idea that faults are detected by test 
vectors with small numbers of specified bits. Putting the 
un-specified bits as don't care, the likelihood of occurring a 
test vector increases, and the CTL is reduced compared with 
previous methods.

An efficient method in terms of CTL and hardware over-
head has been proposed recently [9]. The general schematic 
of this method is illustrated in Fig. 1. In the initial step, a 
detector is employed to identify an incoming input vector 
that belongs to a pre-computed test set. Then, a mapping 
module maps every detected input vector to its correspond-
ing error-free compressed output vector, which should be 
compared with the compressed output vector in the final step 
to detect the fault occurrence. As shown in Fig. 1, LFSRcomp 
is used to compress output vectors and error-free output vec-
tors during the test and in a pre-design step, respectively.

There are two different concurrent BIST designs proposed 
in this method. In the hardware overhead aware (HW-aware) 
approach, the detector selects the input vectors that gener-
ate a 0 remainder when divided by an LFSR. This LFSR’s 
architecture is designed so that the selected test vectors are 
most similar to a set of deterministic test patterns gener-
ated by a deterministic TPG algorithm. A mapping module 
consists of an LFSR to compress detected input vectors and 
a synthesized combinational circuit to map the compressed 
vectors into compressed output vectors. Even though this 

technique reduces hardware overhead, its CTL is impracti-
cal in most cases.

In the CTL-aware design, the detector consists of two 
LFSRs with different primary characteristic polynomials. 
All input vectors that are divisible by both of them are iden-
tified as test vectors. By employing this design, the desired 
fault coverage can be achieved and CTL can be significantly 
reduced. However, the mapping module is much larger than 
the HW-aware. Moreover, this approach also includes an 
approximation to place many test vectors into a test cube, 
which is unreasonable in some cases. Finally, CTL-aware 
and HW-aware designs cannot compromise between CTL 
and area overhead metrics. The CTL-aware design is just 
concerned with the maximum reduction of CTL, and the 
HW-aware design only tries to minimize the hardware 
overhead.

In this paper, a concurrent BIST architecture with low 
CTL and low hardware overhead is proposed. In this method, 
a different viewpoint is considered to design the mapping 
module. As a result, the abovementioned problems of CTL-
aware design are tackled and its low hardware overhead ver-
sion is proposed. Moreover, hardware overhead and CTL 
can be adjusted according to the demand using the proposed 
method.

The overall schematic of our proposed design has been 
illustrated in Fig. 2. The main modification compared to 
the CTL-aware design is the replacement of the Mapping 
Module with a bank of LFSRs. When a test vector enters the 
circuit, the compressed version of the CUT output (O’(x)) 
should match the quotient of related LFSR in the LFSR 
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bank. Consequently, there should be an LFSR for every test 
vector in the LFSR bank, which imposes a high hardware 
overhead on the design. To solve this problem, a configur-
able LFSR is used (an LFSR whose polynomial is defined 
arbitrarily by a polynomial ID), wherein we proposed a cost-
efficient method to extract the Polynomial IDs from incom-
ing test vectors (Fig. 3).

The main contributions of this paper are highlighted as 
follows:

1- A concurrent BIST design with low hardware overhead 
and low CTL is proposed.

2- Almost all modules required for concurrent BIST are 
implemented using LFSRs which improve the re-usa-
bility and reduce the design complexity.

3- The desired balance between hardware overhead and CTL 
could be made by regular and easy parameters tuning.

2  Literature Review

The first step in emerging a concurrent BIST design is the 
extraction of a suitable test set. In circuits with few input 
pins, all input vectors are included in the test set (exhaustive 
test). Test vectors can be randomly selected or deterministi-
cally generated using a test generation algorithm [20]. Typi-
cally, these methods use a pre-determined test set, which 
is selected so that a desired fault coverage can be achieved 
[12, 13, 18].

CBIST [14] is one of the early concurrent BIST designs. 
A test vector is selected from the test set as the active test 

vector, and the selecting part waits until it occurs in the cir-
cuit’s primary inputs. As soon as the output vector is com-
pared with the fault-free output vector, the fail/pass state is 
determined. Then, the next active test vector is selected from 
the pre-computed test set. The above process is repeated for 
all test vectors to complete the test. Due to the unpredict-
able wait time in matching the active test vector with the 
input vector of the circuit, CBIST has high concurrent test 
latency (CTL), defines a the time elapsed for the occurrence 
of all test vectors in the primary inputs). To decrease the 
high CTL of CBIST, the authors of [12, 13, 18], and [20] 
increase the number of active test vectors to increase the hit 
probability. All of the above-mentioned techniques generate 
a large test set based on pseudorandom test pattern genera-
tion algorithms, making them impractical for large CUTs in 
terms of CTL.

The MHSAT approach [5] utilizes L active test vectors 
which are generated by L LFSRs. Furthermore, a Multiple 
Input Shift Register (MISR)-based response verifier is acti-
vated as the related LFSR moves on to the next state. When 
all LFSRs sweep their states, the test would be completed. 
OISAT [1] uses L LFSRs for active test vector generation, 
while an accumulator-cased compaction (ABC) is utilized 
for response verification.

In w-CBIST [18], all possible input vectors are divided 
into windows containing t  vectors. In each step, an active 
window is chosen, and the input vectors are matched up with 
test vectors in the active window. The test is complete when 
all windows are processed.

The test vectors of several concurrent BIST designs are 
generated using deterministic TPG algorithms [1, 5, 7, 
17–19]. The CTL reduces in these methods due to the small 
number of test vectors. BICST [16] consists of a concur-
rent test circuit (CTC) and a programmable logic array as 
the pattern detector and mapping module, respectively. The 
CTC and the CUT have equal input and output pins. When 
a test vector appears on the CUT's input port, the compara-
tor (output verifier) compares the CUT and CTC outputs to 
determine whether the test passes or fails.

MICSET [19] improves the BICST design by adding an 
offline test mechanism and modifying the pattern detector. 
Consider a test set that contains Tn-bit test vectors. The test 
matrix is generated in the first step, and a greedy algorithm 
is used to select t ( log2T × t × T  ) columns such that all the 
Tt-tuples are distinct. The remaining ( n − t ) bits of the test 
vector are directed by these t columns. In the offline mode, 
a set of 2 × 1 multiplexers are used to connect the generated 
test vectors to the CUT inputs using a t-stage counter and 
( n − t)-bits from an OR plane.

BICST and MICSET both have a high hardware over-
head, as well as impractical CTL due to the low prob-
ability of pre-computed test vectors occurring during 
every clock cycle [19]. Among input vector monitoring 
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approaches, [17] is the most efficient one, due to the pres-
ence of SRAM cells used to monitor test vectors.

NEMO [16] and later a cost-efficient NEMO [21] were 
proposed to remedy the area overhead problem. Figure 4 
shows the schematic of NEMO, where T  pre-computed 
test vectors ( T << 2n ) are detected by a decoding module 
(D). The multi-level decoder is designed based on 2-input 
NAND gates and generates 1 when one of the test vec-
tors occurs in the input of the CUT. To reduce hardware 
overhead, the CALC module produces compacted versions 
of the related CUT outputs. On the output side, the CUT 
output vector is compressed to m − q bits using a space 
compactor (SC). The compacted versions of output vectors 
generated by CALC and SC are compared to complete the 
test. As long as one of the T  detector outputs equal 1, the 
OR module's output would be 1. This means a test vector 
appears in the incoming input vectors.

Implementation of NEMO's space compactor (SC) 
requires knowledge of the details of the CUT [4]. To get 
rid of this requirement, CE-NEMO deploys an alternative 
decoder in the output of CUT instead of SC. Furthermore, 
the following three modifications are made to the input 
side decoder to reduce hardware overhead:

1. Reducing the columns of the pre-computed test set is 
accomplished using a more efficient method.

2. Self-pairing of unpaired columns is eliminated when the 
number of distinct columns does not reach a power of 2, 
and these columns move directly to the next decoding 
stage.

3. A meta-heuristic optimization process based on simu-
lated annealing (SA) is used to generate the most effi-
cient order of distinct columns

The major problems of NEMO and CE-NEMO could be 
summarized as follows. The hardware complexity of decoder 
modules in both NEMO and CE-NEMO depends on the 
number of pre-computed test vectors which mainly is related 
to the increment of the number of NAND gates by increasing 
the size of the test set. Moreover, the bit-width of input vec-
tors affects both hardware overhead and the design complex-
ity of decoders. Moreover, using the SA-based optimization 
approach to find the most efficient order of inputs increases 
the difficulty of the decoder implementation in CE-NEMO.

3  Preliminaries

3.1  Division by LFSR

A type-2 LFSR is used as the core of the proposed con-
current BIST design. Figure 5 illustrates the structure of 
a Type-2 LFSR based on k DFFs arranged in a right-shift 
register format. Inputs of DFFs are connected to XOR gates 
to establish feedback loops, and XOR gates are inserted at 
predetermined locations depending on the LFSR character-
istic polynomial [2]. The characteristic polynomial is defined 
according to (2). According to the first term, an XOR gate 
will always be available in the rightmost DFF output. The 
second term shows a feedback loop always begins from 
the leftmost DFF's output and ends on the rightmost DFF's 
input. For any other  Ci coefficient, 1 will be set if the related 
XOR gate exists; otherwise, it would be 0.

Fig. 4  Schematic of NEMO

Fig. 5  Type-2 LFSR architecture
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Assume that an N-bit binary number passes serially 
through an LFSR with k stages (Flip Flops). Accordingly, 
the final content of the LFSR’s DFFs would be the remainder 
of dividing G(x) by L(x) if G(x) is the polynomial associated 
with the N-bit binary number and L(x) is the characteristic 
polynomial of the LFSR. The relationship between G(x) , the 
LFSR characteristic polynomial ( L(x) ), and the remainder 
( R(x) ) can be expressed as (2).

In dividing  2N polynomials by an LFSR ( L(x) ) of order k, the 
remainders are R(x) = {0, 1, X, 1 + X,  X2, …., 1 + X +  X2 + … +  Xk−1}. 
For instance, the remainders of {L(x), xL(x), (x + 1),…} and 
{L(x) + 1, xL(x) + 1, (x + 1)L(x) + 1,…} divided by L(x) 
become 0 and 1, respectively.

3.2  Concurrent Test Latency (CTL)

Concurrent test latency (CTL) refers to the time elapsed for 
the occurrence of all test vectors in the primary inputs. There 
are three assumptions to compute the CTL [14]:

1- In every clock cycle, an input vector is applied to the 
CUT.

2- In each clock cycle, all input vectors are equally likely 
to occur.

3- The probability of occurrence of any input vector is 
independent of the probability of occurrence of the other 
input vectors.

Let T  be the number of test vectors required to cover the 
acceptable number of faults. The probability of occurrence 
of i numbers of test vectors in a clock cycle is defined as the 
hit of i test vectors, h(i) = i∕2n(n is the number of CUT's 
inputs). The number of clock cycles required to occur i num-
bers of test vectors is 2n∕i . Therefore, the CTL is given by

For circuits with fewer than 40 inputs, CTL is acceptable 
as demonstrated by simulation in [7]. Otherwise, the CTL 
would be impractical.

The only way to reduce CTL is to increase the probability 
of occurring a test vector in each clock cycle. DC-based and 
CTL-aware methods decrease CTL significantly based on 
this idea. In DC-based design, the occurrence probability 
of test vectors increases based on the fact that faults are 

(1)L(x) = 1 + Ck−1X
k−1 +

k−2
∑

i=1

CiX
k−i

(2)G(x) = L(x)Q(x) + R(x)

(3)CTL =
∑T

1

1

h(i)
= 2

n

T
∑

1

1

i

detected by a small number of specified bits of the test vec-
tor, and the other bits would be don't care.

In the CTL-aware design [9], two LFSRs are used to 
detect test vectors, in which the input vectors with the same 
remainders in dividing by these LFSRs are considered as 
test vectors. Therefore, selected test vectors are divided into 
several groups containing a large number of test vectors with 
a small number of bits each. For instance, L(x) and L(x) + 1 
are detected by LFSRs and both of them cover similar faults. 
Therefore, there is only one test vector required in a group 
to cover several specific faults. Consequently, A CTL-aware 
design has a CTL  2 k times smaller than Eq. 3 if the number 
of test vectors is  2 k. Finally, as proved in [9], the CTL can 
be obtained by modifying Eq. 3 as follows

3.3  Detector

Concurrent BIST uses a module called pattern detector to 
detect pre-computed test vectors from incoming input vec-
tors. As mentioned earlier, the detector in the CTL-aware 
approach [9] is used for the proposed method. In this sec-
tion, an overview of the detector used in [9] is presented; 
however, the reader can refer to [9] for more details.

In the CTL-aware design [9], two LFSRs ( L1(x) and 
L2(x) ) with unequal primary polynomials are used. The input 
vectors that generate the same remainders in dividing by 
L1(x) and L2(x) are considered as a test vector. The CTL-
aware design can be implemented by more than two LFSRs. 
Note that utilization of more than two LFSRs imposes more 
restrictions on the test vectors. For example, the input vec-
tors which generate an equal remainder in the division by 
L1(x), L2(x), and L3(x) would belong to the test set. The 
probability of occurrence of such test vectors in the circuit’s 
input would be much lower than the two LFSRs case. Con-
sequently, the most expanded test set (with the lowest CTL) 
is achieved when we apply two LFSRs for selecting part.

All polynomials with the following formation (Eq. 5) 
are selected as test vectors in CTL-aware design. We illus-
trated all polynomials in Table 1 so that every row could be 
selected as test vectors.

Assume that only the test vectors (t(x)) in the second row 
( R(x) = 0 ) are considered as test vectors. The authors of [9] 
proposed an algorithm to efficiently find L1(x)L2(x) to cover 
the desired number of faults.

However, in the CTL-aware design, all input vectors 
of Table  1 are detected as test vectors to reduce CTL. 
This happens because, all test vectors in a same column 

(4)CTL = 2
(n+a+1)∕2 ×

∑m

1

1

i
, 2 < a < 12

(5)Gi(x) = mi(x)L1(x)L2(x) + R(x)
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approximately cover the same faults. For example, L1(x)L2(x) 
and L1(x)L2(x) +1 have only one different bit. However, in 
some cases there are lot of different bits and it may decrease 
the fault coverage.

3.4  Proposed Method

The schematic of the proposed concurrent BIST design 
is illustrated in Fig. 6. As discussed earlier, the detector 
includes two LFSRs and a comparator. Whenever an input 
vector applies to the CUT, the remainders generated by the 
LFSRs are compared, and if they are equal, the input vector 
is considered a test vector, which is then passed to the next 
module via two switches.

When a test vector is detected, the output vector ( O(x) ) is 
divided by LFSRcomp(x) to generate the compressed output 
vector ( O�

(x) ) as a remainder. On the input side, the selected 
test vector passes through the  LFSRconf to generate error-free 
O

�

(x) . When the selected input vector enters the  LFSRconf, 
the  LFSRconf is configured so that its quotient (output) equals 

O'(x) when divided by the test vector. Two steps are required 
to generate a polynomial (polynomial ID) to configure 
 LFSRconf. First, the remainder and quotient of another LFSR 
(L(x) = L1(x)L2(x)) in dividing by test vectors are used as an 
identification code for test vectors. Then, it passes through 
a decoding module to generate the ID polynomials. Finally, 
the generated remainder by  LFSRconf that is considered a 
fault-free compressed output vector is compared against the 
compressed output vector O�

(x) to determine whether the 
test passes or fails.

However, there are two challenges in this design. 1- for 
every test vector there must be an LFSR that generates the 
right O�

(x) for the detected test vector. It is essential to guar-
antee the existence of this LFSR.

2- polynomial IDs for configuring  LFSRconf to generate 
the desired polynomial for different test vectors must be gen-
erated without using RAM. Therefore, each test vector must 
be assigned a unique code (binary number). Then this code 
passes through a decoding module to generate the desired 
polynomial ID. It is a challenge to extract a unique identifi-
cation code from each test vector.

In the next Sections (4.1 and 4.2) these challenges and 
their solutions are discussed in details.

3.5  Challenge 1: Design a Mapping Module 
for a Test Vector

Notion Assume that an input vector is detected by the 
detector as the test vector ( T(x) ) and its corresponding com-
pressed test vector in the output side is O�

(x) . There exists 
an LFSR such as L��

(x) , which, if T(x) passes through it, 
produces an output (quotient) O�

(x).

Proof Assume that a test vector ( T(x) ) passes through an 
unknown LFSR ( L��

(x) ), L��

(x) must be specified in which 
its output (quotient) becomes O�

(x) . When T(x) enters 
L

��

(x), T(x) is defined using the following equation.

(6)T(x) = L
��

(x).O
�

(x) + R(x)

Table 1  Arrangement of test vectors polynomials in the division by  L1(x)  L2(x). t(x) is the number of test vectors selected by the algorithm pro-
posed in HW–aware [9]

m1(x) = 1 m2(x) = x mt(x) = t(x) R(x)

G(x) =  L1(x)L2(x) G(x) = x  L1(x)L2(x) … G(x) = t(x)  L1(x)L2(x) 0
G(x) =  L1(x)L2(x) + 1 G(x) = x  L1(x)L2(x) + 1 … G(x) = t(x)  L1(x)L2(x) + 1 1
G(x) =  L1(x)L2(x) + x G(x) = x  L1(x)L2(x) + x … G(x) = t(x)  L1(x)L2(x) + x x
G(x) =  L1(x)L2(x) + x + 1 G(x) = x  L1(x)L2(x) + x + 1 … G(x) = t(x)  L1(x)L2(x) + x + 1 x + 1
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∙
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The first condition to satisfy the equation is T(x) > O
�

(x) . 
T(x) and O�

(x) are known polynomials, while L��

(x) and 
R(x) polynomials are unknown. We rewrite the equation as 
follows

To satisfy the equation, T(x) + R(x) must be divisible by 
O

�

(x) . Because R(x) is an unknown polynomial that can take 
any number, T(x) + R(x) can be specified in which it can 
divide O�

(x).

3.6  Challenge 2: Polynomial ID Generation 
for  LFSRconf

It is evident from the previous subsection that an LFSR is 
required to generate a fault-free compressed output vector. 
As mentioned, the number of selected test vectors are large. 
In the worst case, the number of LFSRs required for map-
ping is therefore equal to the number of test vectors, which 
is obviously inefficient in terms of hardware overhead. To 
solve this problem, a configurable LFSR is used as illus-
trated in the Fig. 7. Each test vector must be assigned an 
identification code (polynomial ID) in order to configure 
 LFSRconf to the desired polynomial. However, the presence 
of a large RAM again imposes a high hardware overhead 
on the CUT.

Alternatively, incoming input vectors (test vectors) can 
also be used to specify their corresponding polynomials. 
The selected test vectors are arranged in Table 1. Different 
quotients are produced by test vectors in a same row when 
divided byL(x) . For example, the first-row test vectors gener-
ate this set of quotients: { 0, 1,X,X + 1, ..., f (x) }. If the test 
vectors in the same column are divided byL(x) , they produce 
different remainders. For example, the remainders of the sec-
ond column test vectors are { 0, 1,X,X + 1,… }. As a result 
of division byL(x) , unique remainders and quotients are pro-
duced for each selected test vector that are used as inputs to 
the decoding module to produce the desired polynomial ID. 
As soon as a test vector (e.g.,xL(x) + 1 ) is detected by the 
detector, its quotient ( x ) and the remainder ( 1 ) are applied 
to  LFSRconf as an identification code (binary number) that 

(7)T(x) + R(x) = L
��

(x).O
�

(x)

passes through the decoding module to produce its polyno-
mial ID.

When the remainder and quotient of test vectors are deter-
mined, a combinational logic circuit that maps the quotient-
remainder input to the O�

(x) is synthesized to generate the 
decoding module. The equivalent-gate size of this module 
is small compared with CUT due the fact that the number 
of input decoder input vectors are significantly lower than 
the number of cut input vectors. Although a circuit with a 
small number of input vectors is not necessarily smaller than 
another circuit with a larger number of input vectors, in this 
case we can select a small set of test vectors to synthesize a 
circuit of a small size.

3.7  Tradeoff Between CTL and Hardware Overhead

An important feature of the proposed design is the ability 
to trade off CTL and hardware overhead on demand. Hard-
ware overhead is imposed on the circuit primarily by LFSRs 
(detector, L(x) ,  LFSRconf, and Lcomp(x) ) and the detecting 
module. The number of test vectors is not related to the hard-
ware overhead of the LFSRs; however, it affects the size of 
the decoding module greatly, because the decoding module 
input vectors are determined by dividing selected test vec-
tors by L(x) , as discussed in the previous section. In fact, 
an input vector for the decoding module consists of a bit-
stream including its quotient and remainder in dividing by 
L(x) . Therefore, the number of decoding module input pins 
is determined by summing the quotient ( f (x) ) and remainder 
(xk−1 + xk + … + 1) bit widths when dividing the largest test 
vector of Table 1 (f(x)L(x) + xk−1 + ⋯ + 1) by L(x).

In Table 1, the occurrence of all test vectors from a row 
(or at least one test vector from a column) is required for a 
certain amount of fault coverage, so the quotient bit width are 
constant. However, the presence of so many similar test vec-
tors in a column is only required for the purpose of achieving 
acceptable CTL. In the case that all polynomials of Table 1 are 
considered as test vectors, the best CTL is achieved. Conse-
quently, in this case, hardware overhead will have experienced 
its worst values as the decoding module has its largest size 
(longest bitstream for the remainder). However, if only the first 
row of test vectors in Table 1 are allowed to pass, the most 
efficient number for hardware overhead is achieved (shortest 
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bitstream); whereas, the CTL in this case has reported its most 
inefficient values. As a result, the desired CTL and hardware 
overhead would be obtained by limiting the number of passed 
test vectors (columns).

In order to specify the number of decoding module input 
pins, the number of passed test vectors (columns of Table 1) 
must be limited. As discussed, in Fig. 6, only the number 
of the remainder’s bit width can be controlled, and the 

Table 2  The overall results for 
the proposed method

Circuit In Out Gates Test patterns of proposed 
method

HW @ FC (%) CTL

80% FC 90% FC 95% FC 80% 90% 95%

SS
  c432 36 7 106 42 50 57 250.32 269.45 276.98 8.3 E06
  c499 41 32 202 42 53 60 150.43 165.65 171.03 4.7 E07
  c880 60 36 383 54 62 67 131.54 140.90 145.67 3.43 E10
  c1355 41 32 546 65 73 84 123.45 137.56 143.46 6.7 E07
  c1908 33 25 880 88 98 109 65.76 73.78 80.45 4.1 E06
  c2670 157 64 1193 82 90 101 144.34 160.23 165.89 5.3 E36
  c3540 50 22 1669 120 134 150 51.20 55.34 64.79 1.5 E09
  s298 3 6 133 – – – – – – –
  s344 9 11 175 16 21 28 65.64 72.34 76.98 5.12 E02
  s349 9 11 175 12 21 30 68.70 76.87 81.09 5.16 E02
  s386 7 7 165 – – – – – – –
  s400 3 6 183 – – – – – – –
  s420 19 2 212 44 52 65 87.76 97.98 102.88 2.31 E04
  s444 3 6 202 – – – – – – –
  s510 19 7 217 43 51 57 93.23 101.10 103.47 2.36 E04
  s641 35 24 398 45 50 59 98.11 106.56 115.90 1.67 E07
  s715 35 23 512 45 53 61 82.56 90.80 93.90 2.37 E07
  s1196 14 14 547 104 115 123 54.23 61.08 66.76 5.79 E03
  s1238 14 14 547 106 115 122 60.23 64.78 67.77 5.83 E03
  s1423 17 5 731 54 62 69 28.11 35.70 39.19 5.11 E04
  s1488 8 19 659 – – – – – – –
  s1494 8 19 653 – – – – – – –
Average 97.22 106.87 112.26
LS
  c5315 178 123 2307 163 175 189 68.56 75.78 79.64 3.96 E28
  c6288 32 32 2417 12 26 42 24.22 26.56 28.16 1.4 E06
  c7552 207 207 3512 178 190 202 40.23 46.56 48.90 9.1 E32
  s5378 35 35 2958 226 252 270 18.9 21.76 24.81 1.18 E07
  s9234 36 36 5825 426 458 480 11.34 13.01 14.76 6.55 E04
  s13207 62 62 8620 315 350 380 10.34 12.34 12.99 1.3 E11
  s15850 77 77 10,306 152 394 414 13.34 14.12 15.23 3.5 E13
Average 26.70 30.01 32.07
VLS
  s35932 35 320 17,793 88 97 110 9.61 10.89 12.09 12.09
  s38417 28 106 23,815 973 1011 1032 13.24 15.34 16.92 16.92
  s38584 38 304 20,705 713 768 790 12.56 13.98 14.50 14.50
  b17 37 97 33,741 2286 2352 2398 11.23 13.01 14.55 14.55
  b18 37 23 117,941 6106 6408 6676 7.14 8.34 9.14 9.14
  b20 32 22 20,716 1245 1320 1397 12.34 13.98 14.71 14.71
  b21 32 22 21,061 1263 1380 1443 13.12 14.34 15.09 15.09
  b22 32 22 30,686 1786 1850 1954 9.43 10.13 11.14 11.14
Average 11.08 12.50 13.51
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Fig. 8  Trade-off between CTL 
and hardware overhead for 
several benchmark circuits. a) 
S13207, b) c5315, c) c7553, 
and d) s15850
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quotient’s bit width is fixed as all test vectors in a row must 
be applied to the CUT for achieving a certain fault cover-
age. Therefore, after dividing a test vector by L(x) , if the 
number of remainder’s bits is more than a desired number, 
the test vector would not consider as a test vector. Suppose 
that the desired number of the decoding module input pins 
is  Ndm_inp as well as the fixed bit width of quotient is  Nqb. If 

the longest possible remainder bitstream is  Nrem-max then the 
extra bits of remainder which should be checked would be 
 Ncheck =  Nrem-max—(Ndm-inp-Nqb). Consequently, if the  Ncheck 
rightmost bits of the generated remainder are zero then the 
input vector will be considered as a test vector. We utilize 
an  Ncheck-input OR gate to check if the related bits of the 
remainder is zero. For instance, assume that the remainder 

Table 3  CTL comparisons for 
different approaches

Circuit Proposed method & 
CTL-aware [7]

DC-based [7] CE-NEMO [21] HW-aware [9]

c432 8.3 E06 3.96 E10 3.02 E11 3.08 E11
c499 4.7 E07 4.5 E11 9.94 E12 8.79 E12
c880 3.43 E10 4.93 E11 5.25 E18 4.61 E18
c1355 6.7 E07 4.59 E11 1.11 E13 1.15 E13
c1908 4.1 E06 3.62 E10 4.58 E10 4.62 E10
c2670 5.3 E36 5.72 E11 7.52 E70 7.56 E70
c3540 1.5 E09 1.58 E11 6.26 E15 6.27 E15
c5315 3.96 E28 3.94 E11 2.01 E54 2.06 E54
c6288 1.4 E06 3.11 E10 1.69 E10 1.71 E10
c7552 9.1 E32 6.18 E11 1.25 E63 1.28 E63
s298 – 9.34 E04 5.23 E 05 –
s344 5.12 E02 3.86 E07 – 5.91 E 07
s349 5.16 E02 3.86 E07 5.86 E 07 5.93 E 07
s386 – 2.79 E04 3.96 E 04 –
s400 – 8.98 E07 – –
s420 2.31 E04 – 1.58 E11 1.61 E11
s444 – 7.73 E07 – –
s510 2.36 E04 – 1.56 E 08 1.58 E 08
s641 1.67 E07 – 8.18 E 16 8.19 E 16
s715 2.37 E07 – – 1.37 E 11
s1196 5.79 E03 5.98 E06 – 2.38 E 10
s1238 5.83 E03 7.72 E07 2.39 E 10 2.40 E 10
s1423 5.11 E04 5.26 E11 1.19 E 28 1.23 E 28
s1488 – 1.17 E05 8.78 E 04 –
s1494 – 1.10 E05 – –
s5378 1.18 E07 6.38 E11 – 1.41 E11
s9234 6.55 E04 6.43 E11 – 2.76 E11
s13207 8.3 E06 6.68 E11 – 1.84 E19
s15850 3.5 E13 6.86 E11 – 6.05 E23
s35932 8.38 E06 – – 1.43 E11
s38417 2.09 E06 – – 1.12 E10
s38584 8.19 E03 – – 2.80 E11
b17 9.49 E06 – – 5.52 E11
b18 1.34 E08 – – 5.58 E11
b20 1.18 E07 – – 4.32 E09
b21 1.23 E07 – – 4.35 E09
b22 1.27 E07 – – 4.39 E09
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of an input vector = (x5 + 1) L(x) + x6 in dividing by L(x) is 
1000000. If  Ncheck equals 3, then 3 rightmost bits (100) are 
checked to decide that is test vector or not. So, the related 
checker would be 3-input OR gate.

4  Simulation Results and Comparisons

Various simulation experiments are performed in this sec-
tion to evaluate the proposed method. Several sets of bench-
mark circuits (ISCAS85, ISCAS89, and ITC99) are used 
to determine the hardware overhead and CTL as the main 
parameters of a concurrent BIST design. Hardware overhead 
is calculated by applying the gate equivalents metric, where 
a circuit module (a gate or DFF) is the hardware equivalent 
of some two-input NAND gates [9]. For instance, an N-input 
OR gate is hardware equivalent of N numbers of two-input 
NAND gates.

In the Section 5.2, four state-of-the-art methods includ-
ing HW-aware [9], CTL-aware [9], NEMO [16], CE-NEMO 

Table 4   Hardware overhead comparison with CTL-aware

Circuit Proposed
HW @ FC (%)

CTL-aware [9]
HW @ FC (%)

80% 90% 80% 90%

SS
  c432 250.32 269.45 210.31 230.98
  c499 150.43 165.65 139.23 147.85
  c880 131.54 140.90 115.69 124.32
  c1355 123.45 137.56 91.13 103.63
  c1908 65.76 73.78 62.35 69.35
  c2670 144.34 160.23 123.45 132.47
  c3540 51.20 55.34 65.38 72.86
  s298 – – – –
  s344 65.64 72.34 83.86 93.89
  s349 68.70 76.87 84.25 95.89
  s386 – – – –
  s400 – – – –
  s420 87.76 97.98 90.66 97.02
  s444 – – – –
  s510 93.23 101.10 99.35 110.45
  s641 98.11 106.56 83.65 88.72
  s715
  s1196

82.56
54.23

90.80
61.08

72.59
69.23

80.25
76.32

  s1238 60.23 64.78 68.65 77.32
  s1423 28.11 35.70 45.23 51.73
  s1488 – – – –
  s1494 – – – –
Average 97.22 106.87 94.06 103.31
LS
  c5315 68.56 75.78 71.63 75.03
  c6288 24.22 26.56 28.36 33.32
  c7552 40.23 46.56 43.54 45.2
  s5378 18.9 21.76 30.36 32.9
  s9234 11.34 13.01 15.36 19.26
  s13207 10.34 12.34 21.36 24.2
  s15850 13.34 14.12 27.56 29.72
Average 26.70 30.01 33.88 37.09
VLS
  s35932 9.61 10.89 18.69 21.89
  s38417 13.24 15.34 21.3 25.6
  s38584 12.56 13.98 22.56 26.52
  b17 11.23 13.01 17.56 19.36
  b18 7.14 8.34 12.56 14.23
  b20 12.34 13.98 21.39 23.56
  b21 13.12 14.34 20.96 24.68
  b22 9.43 10.13 15.23 16.35
Average 11.08 12.50 18.87 21.52

Table 5   Hardware overhead comparison with NEMO and CE-
NEMO

Circuit Proposed method NEMO [16] CE-NEMO [21]

SS
  c432 276.98 513 555
  c499 171.03 656 713
  c880 145.67 931 1021
  c1355 143.46 957 1026
  c1908 80.45 947 1007
  c2670 165.89 4846 5253
  c3540 64.79 1700 1795
  s298 – 186 206
  s344 76.98 – –
  s349 81.09 175 199
  s386 – 208 219
  s400 – – –
  s420 102.88 488 521
  s444 – – –
  s510 103.47 441 477
  s641 115.90 788 874
  s715 93.90 – –
  s1196 66.76 – 1011
  s1238 67.77 953 1760
  s1423 39.19 1606 337
  s1488 – 313 –
  s1494 – – –
Average 112.36 1060.87 981.75
LS
  c5315 79.64 5239 4927
  c6288 28.16 365 325
  c7552 48.90 7888 7463
  s5378 24.81 – –
  s9234 14.76 – –
  s13207 12.99 – –
  s15850 15.23 – –
Average 32.07 4497.33 4238.33
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[21], and DC-based [15] are compared against the proposed 
method in terms of hardware overhead and CTL.

4.1  The Overall Results for Proposed Method

In order to evaluate the performance of the proposed BIST 
design, the benchmark circuits (ISCAS 85, ISCAS 89, and 
ITC 99) are categorized into three different types of cir-
cuits: small scale (SS), large scale (LS), and very large 
scale (VLS) based on the size of the circuit. The small 
size circuits (SS) contain less than 2000 gates, the large 
size circuits (LS) have less than 10,000 gates, and the very 
large size circuits include up to 117,000 gates.

In Table 2, hardware overhead and CTL of proposed 
design for different benchmark circuits are reported. The 
structural information for the benchmark circuits (the num-
bers of inputs, outputs, and internal modules) are reported 
in the second, third, and fourth columns of Table 2. The 
test vectors are derived using D-Alg algorithm accord-
ing to the procedure of [9]. For test pattern generation 
and fault simulation, we used ATALANTA and ModelSim 
software tools on personal computer (PC) with 2.4 GHz 
core i5 CPU and, 4 GB of RAM, respectively.

ATALANTA and ModelSim software tools on personal 
computer (PC) with 2.4 GHz core i5 CPU and, 4 GB of 
RAM, respectively. The test set sizes are reported in columns 
5 (for 80% fault coverage), 6 (for 90% fault coverage), and 
7 (for 95% fault coverage), respectively. Obviously, the size 
of the test set increases with increasing the fault coverage. 
Hardware overhead and CTL are reported in the last col-
umns. CTL is calculated for 95% fault coverage in all tables.

As mentioned in the previous sections, the detector pro-
posed by the authors of [9] is used in our proposed design. 
Therefore, the same test vectors as CTL-aware are detected 
and the CTL is equal for the CTL-aware design and the 

proposed method. As calculated in Section 3.2, the CTL for 
the CTL-aware design (= proposed method) is acceptable for 
circuits with 80-a input pins. For the majority of circuits, in 
a 200 MHz clock circuit, the CTL would be less than 1 s. 
However, the CTL is very high for circuits with more than 
80-a inputs e.g., c2670 and c5315.

Hardware overhead (HW) is reported for 80%, 90%, 
and 95% of fault coverage in Table 2. There are several 
important points with regard to hardware overhead. First, 
the hardware overhead increases by a slight increment of 
fault coverage due to the increment of the test set when the 
fault coverage increases. Second, for two circuits with an 
almost equal number of input pins, the impact of LFSRs on 
hardware overhead is lower for the larger circuit. Because 
the number of LFSRs required for testing both circuits is 
equal. For example, suppose that 5 LFSRs including N 
stages are required for CUT 1, and CUT 2 with gate equiva-
lent sizes 1000 and 10,000, respectively. Then the LFSR-
related hardware overhead for CUT 1 and CUT 2 would be 
8N/1000 and 8N/10000, respectively. Therefore, the hard-
ware overhead of LFSRs for CUT 1 is 10 times more than 
the LFSR-related hardware overhead for CUT 2. Third, the 
hardware overhead is significantly impacted by the num-
ber of primary inputs and test vectors. Because the number 
of LFSRs of the detector is directly related to the number 
of input pins. Moreover, the size of the detecting module 
significantly increases related to the number of test vec-
tors as mentioned in the Section 4 in details. For example, 
C6288 has 32 primary inputs and 12 test vectors, which are 
significantly smaller than 178 primary inputs and 163 test 
vectors of C5315 (the number of test vectors is related to 
the HW-aware approach).

In Fig. 8, the graphs illustrate the hardware overhead, 
for 90% fault coverage, according to the changes of CTL 
for four benchmark circuits. Obviously, there is an indirect 

Fig. 9  Comparison of the 
hardware overhead of proposed 
design with NEMO and CE-
NEMO
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relation between CTL and hardware overhead for all cir-
cuits. There are two critical points (A and B) on the graphs. 
The point A shows the best recorded CTL (worst hardware 

overhead) for circuits where every test vectors in Table 1 
are detected as test vectors. While, in the point B, the cir-
cuits have experienced the most efficient values for hardware 

Table 6   Hardware overhead 
comparison with DC-based and 
HW-aware

For case1: minimum CTL, maximum hardware overhead

Circuit Proposed (case1)
HW @ FC (%)

HW-aware [9]
HW @ FC (%)

DC-based [7]
HW @ FC (%)

80% 90% 80% 90% 80% 90%

SS
  c432 250.32 269.45 178.26 199.32 70.3 89.1
  c499 150.43 165.65 98.36 110.65 – –
  c880 131.54 140.90 86.56 95.56 55.5 76.6
  c1355 123.45 137.56 68.59 82.65 – –
  c1908 65.76 73.78 39.45 47.35 25.7 42.2
  c2670 144.34 160.23 95.68 110.65 55.7 –
  c3540 51.20 55.34 36.97 42.92 18.3 26.1
  s298 – – – – 39.4 55.7
  s344 65.64 72.34 52.32 58.2 41.6 48.1
  s349 68.70 76.87 55.39 63.47 33.5 45
  s386 – – – – 52.3 71.5
  s400 – – – – 41.2 53.5
  s420 87.76 97.98 69.75 79.99 – –
  s444 – – – – 37 47.6
  s510 93.23 101.10 73.96 81.69 – –
  s641 98.11 106.56 64.35 70.38 – –
  s715 82.56 90.80 52.69 59.56 – –
  s1196 54.23 61.08 43.93 48.69 45.2 60.7
  s1238 60.23 64.78 48.56 53.96 47.1 62.7
  s1423 28.11 35.70 16.45 22.68 47.3 58.5
  s1488 – – – – 28.8 38.6
  s1494 – – – – 30 38.5
Average 97.22 106.87 67.57 76.73 41.80 54.29
LS
  c5315 68.56 75.78 53.03 53.03 37.8 51.9
  c6288 24.22 26.56 21.69 21.69 4.8 6.7
  c7552 40.23 46.56 34.19 34.19 32.5 –
  s5378 18.9 21.76 15.52 15.52 40.4 55.8
  s9234 11.34 13.01 8.47 8.47 29.3 40.2
  s13207 10.34 12.34 5.56 5.56 30 39.5
  s15850 13.34 14.12 5.12 5.12 28.8 39.4
Average 26.70 30.01 17.57 20.49 29.08 38.91
VLS
  s35932 9.61 10.89 3.8 3.8 – –
  s38417 13.24 15.34 7 7 – –
  s38584 12.56 13.98 7.74 7.74 – –
  b17 11.23 13.01 5.9 5.9 – –
  b18 7.14 8.34 2.51 2.51 – –
  b20 12.34 13.98 7.23 7.23 – –
  b21 13.12 14.34 7.15 7.15 – –
  b22 9.43 10.13 5.55 5.55 – –
Average 11.08 12.50 5.35 5.86
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Table 7   Hardware overhead 
comparison with DC-based and 
HW-aware

For case2: maximum CTL, minimum hardware overhead

Circuit Proposed (case2)
HW @ FC (%)

HW-aware [9]
HW @ FC (%)

DC-based [7]
HW @ FC (%)

80% 90% 80% 90% 80% 90%

SS
  c432 201.45 219.34 178.26 199.32 70.3 89.1
  c499 109.34 123.12 98.36 110.65 – –
  c880 98.7 107.23 86.56 95.56 55.5 76.6
  c1355 81.24 95.23 68.59 82.65 – –
  c1908 48.11 55.44 39.45 47.35 25.7 42.2
  c2670 112.56 126.66 95.68 110.65 55.7 –
  c3540 43.98 47.57 36.97 42.92 18.3 26.1
  s298 – – – – 39.4 55.7
  s344 55.89 61.22 52.32 58.2 41.6 48.1
  s349 63.33 70.09 55.39 63.47 33.5 45
  s386 – – – – 52.3 71.5
  s400 – – – – 41.2 53.5
  s420 73.76 84.23 69.75 79.99 – –
  s444 – – – – 37 47.6
  s510 82.23 90.02 73.96 81.69 – –
  s641 77.8 83.25 64.35 70.38 – –
  s715 66.43 74.38 52.69 59.56 – –
  s1196 49.69 54.11 43.93 48.69 45.2 60.7
  s1238 53.23 57.33 48.56 53.96 47.1 62.7
  s1423 23.12 28.34 16.45 22.68 47.3 58.5
  s1488 – – – – 28.8 38.6
  s1494 – – – – 30 38.5
Average 77.36 86.09 67.57 76.73 41.80 54.29
LS
  c5315 49.32 56.89 53.03 53.03 37.8 51.9
  c6288 21.34 22.34 21.69 21.69 4.8 6.7
  c7552 31.87 35.78 34.19 34.19 32.5 –
  s5378 13.45 16.78 15.52 15.52 40.4 55.8
  s9234 8.13 9.89 8.47 8.47 29.3 40.2
  s13207 5.4 6.07 5.56 5.56 30 39.5
  s15850 5.09 5.84 5.12 5.12 28.8 39.4
Average 18.94 22.01 17.57 20.49 29.08 38.91
VLS
  s35932 3.67 4.34 3.8 3.8 – –
  s38417 7.55 7.65 7 7 – –
  s38584 7.88 8.33 7.74 7.74 – –
  b17 5.91 6.89 5.9 5.9 – –
  b18 2.45 3.12 2.51 2.51 – –
  b20 7.65 7.99 7.23 7.23 – –
  b21 7.54 7.8 7.15 7.15 – –
  b22 5.88 6.32 5.55 5.55 – –
Average 6.06 6.55 5.35 5.86
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Table 8   Hardware overhead 
comparison with DC-based and 
HW-aware

For case3: average CTL, average hardware overhead

Circuit Proposed (case3)
HW @ FC (%)

HW-aware [9]
HW @ FC (%)

DC-based [7]
HW @ FC (%)

80% 90% 80% 90% 80% 90%

SS
  c432 225.56 240.98 178.26 199.32 70.3 89.1
  c499 124.88 137.12 98.36 110.65 – –
  c880 110.98 120.87 86.56 95.56 55.5 76.6
  c1355 99.08 113.7 68.59 82.65 – –
  c1908 56.12 62.22 39.45 47.35 25.7 42.2
  c2670 126.43 139.01 95.68 110.65 55.7 –
  c3540 46.77 50.62 36.97 42.92 18.3 26.1
  s298 – – – – 39.4 55.7
  s344 59.8 64.11 52.32 58.2 41.6 48.1
  s349 65.23 72.79 55.39 63.47 33.5 45
  s386 – – – – 52.3 71.5
  s400 – – – – 41.2 53.5
  s420 78.99 90.66 69.75 79.99 – –
  s444 – – – – 37 47.6
  s510 87.22 95.3 73.96 81.69 – –
  s641 86.54 92.19 64.35 70.38 – –
  s715 75.77 81.76 52.69 59.56 – –
  s1196 51.9 57.32 43.93 48.69 45.2 60.7
  s1238 57.88 61.34 48.56 53.96 47.1 62.7
  s1423 25.14 31.09 16.45 22.68 47.3 58.5
  s1488 – – – – 28.8 38.6
  s1494 – – – – 30 38.5
Average 86.14 94.44 67.57 76.73 41.80 54.29
LS
  c5315 55.12 62.56 53.03 53.03 37.8 51.9
  c6288 22.67 23.9 21.69 21.69 4.8 6.7
  c7552 36.23 39.08 34.19 34.19 32.5 –
  s5378 15.2 18.1 15.52 15.52 40.4 55.8
  s9234 9.35 10.87 8.47 8.47 29.3 40.2
  s13207 7.5 8.39 5.56 5.56 30 39.5
  s15850 8.34 9.6 5.12 5.12 28.8 39.4
Average 22.05 23.35 17.57 20.49 29.08 38.91
VLS
  s35932 5.13 6.22 3.8 3.8 – –
  s38417 10.32 10.67 7 7 – –
  s38584 9.98 10.32 7.74 7.74 – –
  b17 8.12 9.34 5.9 5.9 – –
  b18 4.44 5.34 2.51 2.51 – –
  b20 9.23 9.78 7.23 7.23 – –
  b21 10.1 10.68 7.15 7.15 – –
  b22 7.32 7.45 5.55 5.55 – –
Average 8.08 8.6 5.35 5.86
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overhead. According to these graphs, the CTL and the hard-
ware overhead can be arbitrarily selected among the num-
bers of graphs.

4.2  Comparisons

The proposed design is compared against the state-of-the-
art methods by different experiments. In Table 3, CTL is 

reported for the proposed method, CTL-aware, DC-based, 
HW-aware, and CE-NEMO in the case that CTL is mini-
mum (maximum hardware overhead). Therefore, the pro-
posed method and the CTL-aware approach have the same 
CTL as a result of detecting the same test vectors. For the 
majority of circuits, the CTL is significantly reduced in com-
parison with DC-based design, while for benchmarks with 
many input pins e.g., c2670 and c5315, the proposed method 
reports unpractical times. Other methods focus on reducing 
hardware overhead and do not focus on CTL; therefore, the 
CTL is impractical in most case for these methods.

Hardware overhead is compared against CTL-aware, NEMO, 
and CE-NEMO when the proposed method experiences the best 
values for CTL. In Table 4, the results show that the hardware 
overhead is reduced about 5% and 10% for LS and VLS circuits 
in average for the proposed method in comparison with CTL-
aware method. In fact, CTL-aware design consists of a huge 
combinational circuit that imposes a large hardware overhead on 
the CUT. Whereas, in the proposed design, almost all modules 
are LFSRs except the decoding module which maps small num-
ber of input vectors to small number of output vectors.

In comparison with NEMO and CE-NEMO, the pro-
posed method significantly reduces the hardware overhead 
on average as illustrated in Table 5. To represent the supe-
riority of the proposed design comparing with NEMO and 
CE-NEMO, we illustrate the related hardware overheads in 
Fig. 9. Moreover, according to Fig. 9 we could deduce that 
there is a small improvement in CE-NEMO compared to 
NEMO and the irregular behavior in hardware overhead is 
apparent for NEMO and CE-NEMO.

The proposed method is compared with DC-based and 
HW-aware in three different cases:

1- When CTL is minimum and hardware overhead is maxi-
mum.

2- When CTL is maximum and hardware overhead is mini-
mum.

3- When both CTL and hardware overhead have their aver-
age values.

In all cases, as shown in Tables 6, 7, and 8, DC-based has 
reported most efficient values in term of hardware overhead 
hardware overhead for SS benchmarks due to the fact that 
HW-aware and proposed methods are not appropriate for 
circuits with a few numbers of logic gates. Following inter-
pretations could be derived using Tables 6, 7, and 8.

In the first case, HW-aware has the most efficient hardware 
overhead values for LS and VLS circuits as shown in Table 6. 
DC-based and proposed methods are almost equally efficient in 
term of hardware overhead in this case. However, the proposed 
method reduces CTL significantly in comparison with DC-based 
design as shown in Table 3; while, HW-aware CTL is impracti-
cal for the majority of benchmarks.

Table 9  CTL comparison with DC-based and HW-aware

For case3: average CTL, average hardware overhead

Circuit Proposed method
(Case 3)

DC-based [7] HW-aware [9]

c432 1.4 E09 3.96 E10 3.08 E11
c499 4.9 E09 4.5 E11 8.79 E12
c880 6.9 E15 4.93 E11 4.61 E18
c1355 7.2 E10 4.59 E11 1.15 E13
c1908 4.9 E08 3.62 E10 4.62 E10
c2670 6.71 E55 5.72 E11 7.56 E70
c3540 2.34 E13 1.58 E11 6.27 E15
c5315 4,66 E40 3.94 E11 2.06 E54
c6288 2.30 E08 3.11 E10 1.71 E10
c7552 2.79 E49 6.18 E11 1.28 E63
s298 – 9.34 E04 –
s344 5.34 E04 3.86 E07 5.91 E 07
s349 6.78 E04 3.86 E07 5.93 E 07
s386 – 2.79 E04 –
s400 6.31 E07 8.98 E07 –
s420 – – 1.61 E11
s444 6.16 E06 7.73 E07 –
s510 5.47 E12 – 1.58 E 08
s641 3.17 E09 – 8.19 E 16
s715 7.19 E06 – 1.37 E 11
s1196 6.89 E07 5.98 E06 2.38 E 10
s1238 5.11 E8 7.72 E07 2.40 E 10
s1423 – 5.26 E11 1.23 E 28
s1488 – 1.17 E05 –
s1494 1.18 E08 1.10 E05 –
s5378 6.95 E08 6.38 E11 1.41 E11
s9234 5.31 E14 6.43 E11 2.76 E11
s13207 2.67 E17 6.68 E11 1.84 E19
s15850 5.34 E08 6.86 E11 6.05 E23
s35932 1.67 E08 – 1.43 E11
s38417 6.69 E07 – 1.12 E10
s38584 6.39 E08 – 2.80 E11
b17 6.14 E09 – 5.52 E11
b18 – – 5.58 E11
b20 4.88 E08 – 4.32 E09
b21 5.23 E08 – 4.35 E09
b22 5.87 E08 – 4.39 E09
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In the second case, the proposed method CTL is equal 
with HW-aware CTL reported in Table 3, and both of them 
are impractical for the majority of circuits. In Table 7, results 
show that hardware overhead is almost equal for HW-aware 
and the proposed method especially for LS and VLS bench-
marks. In this case, the proposed method reduced CTL about 
10% for LS circuits in comparison with DC-based design.

In the third case, the number of selected test vectors for 
proposed method are limited in which CTL and hardware 
overhead are acceptable; however, neither one has expe-
rienced its most efficient value. In this case, the proposed 
method lowers CTL significantly as shown in Table 9. In 
terms of hardware overhead, the propose method is only 
about 4% more than HW-aware design for both LS and 
VLS circuits as demonstrated in Table 8. Hardware over-
head reduced by about 10% for the proposed method for LS 
circuits in comparison with DC-based design in this case.

5  Conclusion

in this paper a low-cost concurrent BIST in term of hardware over-
head and CTL has been proposed. A small combinational module 
and LFSRs form the major components of this design, resulting in 
very low hardware overhead. Furthermore, the proposed method 
allows for CTL and hardware overhead to be adjusted and tuned 
to an acceptable level. Compared to the most efficient method, the 
proposed method achieves a 10% reduction in hardware overhead 
for large-scale circuits by keeping the CTL minimum. As a result 
of several experiments, the proposed BIST design has proven to 
be capable of tuning both the CTL and hardware overhead. In the 
case that CTL and hardware overhead are equally important, the 
proposed method significantly has been lowered CTL compared 
to previous methods, while hardware overhead was only about 4% 
higher than previous method for both LS and VLS circuits.
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