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Abstract
For automatic generation of test scenarios from UML (Unified Modeling Language) activity diagrams (ADs) are very important 
for improving test efficiency. However, state-of-the-art approaches mainly focus on simple approaches, without specifically 
considering the case of concurrent activity, which may result in the path explosion problem during the generation of test sce-
narios. In this paper, we put forward DFS-KeyLevel, a two-layer test scenario generation approach for UML Activity Diagram. 
First, the ADs of the software under test are modeled and preprocessed, and each concurrent module in each AD is simplified 
to a composite node. Then, primary test scenarios are generated from the concurrent activity modules using our proposed 
KeyLevel method. Next, the high-layer test scenarios are generated from the simplified AD with our improved Depth-First 
Search (DFS) algorithm. Finally, the primary and high-layer test scenarios are combined to generate the final test scenarios 
for the AD. The experimental results show that this DFS-KeyLevel is superior to the previous approaches. The DFS-KeyLevel 
can generate more test scenarios under constraints. Compared with DFS-LevelPermutes, the number of test scenarios gener-
ated by our DFS-KeyLevel is 1.13 times higher. Compared with Depth-First Search and Breadth-First Search (DFS-BFS) 
and Improved-DFS (IDFS), the DFS-KeyLevel produced 2.37 times test scenarios. The average coverage rates of staggered 
activities and total activity logical path coverage (TALPC) of the DFS-KeyLevel are 83.67% and 84% respectively, which 
is significantly higher than the above three approaches. In addition, when our method is applied to a real embedded system, 
it significantly reduces test scenarios generated to avoid path explosion while ensuring enough test scenarios.
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1 Introduction

Developing high-quality software requires a great deal 
of work in the testing phase, which is probably the most 
costly and labor-intensive part of the software development 
process. To improve the test efficiency, Model-Based Test 
(MBT) has attracted a lot of researchers and engineers. As 

the abstract of real systems, models formulate the relation-
ships between the behavior and the behavior or between the 
behavior and the system, thus facilitating the understand-
ing of systems [1]. MBT is a such black-box testing tech-
nique that generates tests from abstract behavioral models. 
It allows to automate or semi-automate the entire testing 
process. So MBT has many benefits including reduced cost, 
reduced time, and improved test quality.

The main objective of the test scenario generation 
method is to generate as many test scenarios with high 
coverage as feasible. Therefore, we can deeply understand 
the system under test (SUT), expose more defects of the 
system under test, improve the robustness of the software, 
and make the software better meet the users’ needs. Test 
scenarios are the basis of test cases. Test scenarios with 
high coverage mean that test cases derived from them 
have higher coverage and can test the SUT more compre-
hensively. Test scenario generation should comply with 
the following specifications: the generated test scenarios 
meet the requirements of the SUT; for each requirement, 
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the generated test scenarios can identify user actions and 
objectives; the generated test scenarios have feasibility, 
reliability and high coverage.

The UML Activity Diagram (AD) is an important dia-
gram for modeling the dynamic aspects of a system [17]. 
Recently, testing based on UML AD has attracted the atten-
tion of researchers. Using UML language specification has 
changed the development methods of requirements, design 
and implementation. And testing can also be done at the 
requirement level to find errors earlier [8, 12, 16, 25]. The 
AD in UML is used to model the interaction between 
users and software, which can visually show the execution 
sequence between activities [14]. So, UML AD has advan-
tage in simplifying complex systems. For example, the 
embedded system is integrated with hardware and software 
together, which results a complex system. Using UML to 
model the embedded system can standardize the analysis 
and design and facilitate testing.

More importantly, UML AD can better represent the 
dynamic behavior and state of the concurrent system. How-
ever, most researchers only study how to automatically gen-
erate test scenarios in simple systems, and do not explore 
the in-depth research on complex modules such as nested 
concurrent activity modules or nested loop activity modules. 
If this part is not handled well, the path explosion will occur, 
and the generated test scenarios will have errors, redundan-
cies and other problems. Therefore, how to avoid the path 
explosion of concurrent and loop activities in complex sys-
tems and generate test scenarios that meet the coverage cri-
teria is the key issue of this paper.

To address the above issues, we put forward DFS-
KeyLevel, a two-layer test scenario generation approach 
for UML AD. First, the AD of the software under test are 
modeled, then each AD is preprocessed and converted 
into a control flow graph (CFG), in which each concurrent 
module is simplified to a composite node. Next, primary 
test scenarios are generated from the concurrent activity 
modules using our proposed KeyLevel algorithm. Then, the 
high-layer test scenarios are generated from the simplified 
AD with our improved DFS algorithm. Finally, the primary 
and high-layer test scenarios are combined to generate the 
final test scenarios for the AD.

The main contributions of this paper can be summarized 
as follows:

1. We proposed an innovative two-layer test scenario gen-
eration approach for UML ADs, DFS-KeyLevel. For the 
concurrent activity modules, we put forward KeyLevel 
methods to generate primary test scenarios. For the sim-
plified AD, we present an improved DFS algorithm to 
generate high-layer test scenarios.

2. Our DFS-KeyLevel approach can efficiently deal with 
concurrent activities, which avoids path explosion and 

meets high coverage. For simple concurrent activity 
modules, which only contain sequential structures, 
we put forward the KeyLevel-Simple method to effi-
ciently generate primary test scenarios. For complex 
concurrent activity modules containing sequential, 
branch and loop structures, which cannot be dealt 
with by state-of-the-art approaches, we proposed the 
KeyLevel-Complex method to generate correct and 
complete primary test scenarios.

3. We applied the DFS-KeyLevel approach to an actual 
embedded system, in which a concurrent activity 
module theoretically has 1,630,423,080 test scenar-
ios. The KeyLevel-Complex method was used and 
only 217,824 test scenarios are generated, which has 
a 99.887% reduction rate while ensuring to generate 
enough test scenarios.

The paper is organized as follows. Section 2 reviews the 
related work and discusses the unresolved issues. Section 3 
describes our DFS-KeyLevel approach in detail. In Sec-
tion 4, some experiments are taken and the results are ana-
lyzed. Lastly, Section 5 concludes this paper and discusses 
some future work.

2  Related Work

Nowadays, many researchers use the AD to automatically 
generate test scenarios, which can reduce the time and cost 
of testing [7]. The business process and concurrent behav-
ior of software development can be demonstrated by AD 
[4], which is convenient to model the concurrent activity 
modules. But the concurrent activity is synchronous so that 
huge test scenarios will be generated in the test process. To 
avoid path explosion, researchers put forward graph theory 
technology, machine learning and other technologies.

At present, more and more heuristic algorithms are 
applied in the field of test scenario generation. Li and Lam 
[13] proposed an anti-ant colony algorithm, which is used 
to generate test threads from UML, and then generate test 
scenarios through test threads. Jena et al. [9] proposed a test 
scenario generation method using the Genetic Algorithm 
(GA). This method takes activity coverage as the criterion to 
generate test scenarios, but it failed to realize the automatic 
generation of test scenarios. Anbunathan and Basu [2] pro-
posed using the GA and the paired test method to generate 
test scenarios under concurrent ADs. This approach is mainly 
used to reduce the test scenarios of concurrent ADs to avoid 
path explosion, but it may lead to the omission of some nec-
essary scenarios. Arora et al. [3] proposed a direction-based 
ant colony algorithm, which improved the pheromone calcu-
lation method in the ant colony algorithm by adding cosine 
value to increase randomness and avoid falling into a local 
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optimal solution, thus generating all test scenarios. However, 
due to the redundancy of the generated test scenarios during 
the execution of the algorithm, the time complexity is high.

Besides heuristic algorithms, BFS and DFS algo-
rithms, which are often used by researchers, are constantly 
improved. Kundu and Samanta [11] proposed improved BFS 
and DFS approaches to generate test paths, and proposed the 
active path coverage standard, which can detect more faults. 
However, the test scenarios generated by this method are 
limited. Thanakorncharuwit et al. [26] proposed an improved 
DFS approach with test specifications to generate test sce-
narios. The algorithm improves DFS by backtracking tech-
nology, which makes the process of test scenario generation 
easier and reduces the test workload, but the applied case 
system is relatively simple. Shirole and Kumar [24] put for-
ward DFS-LevelPermute approach to avoid path explosion, 
by dividing the horizontal hierarchy according to the node 
order of the AD. However, this hierarchical division is more 
based on the activity model structure, which is not rigor-
ous, and the generated test scenarios have a lot to do with 
the model structure. Panthi et al. [18] proposed to combine 
BFS algorithm and DFS algorithm to generate test scenarios. 
This approach is easy to understand, but the number of test 
scenarios generated for concurrent modules is limited. The 
IDFS approach proposed by Fan et al. [5] generates limited 
test scenarios, so the test coverage is relatively low.

Dynamic programming algorithm can also be used for test 
scenario generation. Yimman et al. [29] proposed a dynamic 
programming algorithm to generate test scenarios. By speci-
fying the sequence between threads, a limited number of test 
scenarios are generated. Kamonsantiroj et al. [10] proposed 
a method which is an improvement of the method proposed 
by Yimman et al. [29], and the proposed method of dynamic 
programming to generate test scenarios can be suitable for 
a concurrent system including more than 3 thread, which 
effectively avoids the path explosion. But the test scenarios 
generated by this method are inadequate, which may lead to 
the omission of some necessary scenarios.

ADs can also be combined with other UML diagrams to 
generate test scenarios. Shirole and Kumar [22] put forward 
a search algorithm (CQS), which generates test scenarios 
by converting sequence diagrams into ADs, and uses CQS 
to deal with the randomness of concurrent tasks. This algo-
rithm can avoid data competition, synchronization and dead-
lock, but the number of test scenarios generated is small. 
Mahali et al. [15] proposed to use IOAD model to generate 
test scenarios, which can eliminate deadlock in concurrency 
to avoid path explosion. However, the generated test sce-
narios contain redundant nodes, and the proposed method 
is only applicable to IOAD model, so it is not universal and 
cannot be applied to UML model. Salman and Yasir [20] 
put forward a new coverage standard to evaluate the test sce-
narios generated from UML state diagrams. This coverage 

standard can improve the effectiveness of the generated test 
scenarios, especially for loop processing, but it does not deal 
with concurrent activities. Hamza and Hammad [6] put for-
ward a test scenario generation method based on UML use 
case diagram. This method takes the use case diagram as 
input and converts it into AD in the process of processing, 
and then generates test scenarios from the AD. However, 
the application system is relatively simple, and there is no 
in-depth research on complex systems. Shi et al. [21] put 
forward a test scenario generation method based on UML 
AD syntax, which can check the correctness of AD structure 
and automatically generate test scenarios according to user 
constraints, but the generated scenarios are limited.

To sum up, state-of-the-art approaches solve some 
issues on generating test scenarios automatically, but these 
approaches still have the following shortcomings:

1. Some of them are only applicable to models of specific 
structures or models;

2. Some of them don’t conduct sufficient experiments and 
even have been experimented on simple systems only;

3. Some of them generate very limited test scenarios, which 
may not meet the testing needs or even miss important 
test scenarios.

Our proposed approach makes up for above shortcom-
ings well. It is applicable to all UML ADs and has been 
experimented on both simple and complex systems with 
good results. More importantly, our approach can gen-
erate as many test scenarios as possible while avoiding 
path explosion.

3  Proposed DFS‑KeyLevel Approach

To generate test scenarios for UML ADs, we propose a 
two-layer test scenario generation approach, called DFS-
KeyLevel, which consists of two main steps and is depicted 
in Fig. 1. At the first step, the software under test (SUT) 
is first modeled and its behaviors are described with UML 
ADs, and then each AD is converted into a CFG according 
to the mapping rules. At the second step, test scenarios 
are generated with our proposed DFS-KeyLevel, which 
includes four sub-steps and will be illustrated in detail in 
the following section.

3.1  Step 1: UML AD Modeling and Preprocessing

The purpose of UML AD modeling is to simulate the 
execution process of a software system under test and 
describe its dynamic behaviors [27]. And the UML AD 
model is generated by abstracting the software require-
ments document. To model the system quickly and 
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visually, we choose the yED software [28] as the UML 
AD modeling tool, which can export visual ADs to XML 
files. And then these XML files are parsed to automati-
cally generate the CFGs.

Figure 2 is the AD of a fake transaction, ATM transfer-
ring process, which is taken as an example to explain the 
test scenarios generation process of our DFS-KeyLevel 
approach. First, a user plugs in a bank card and enters the 
password continuedly until the enters are correct. Then the 
ATM starts the transfer operation after the user inputs the 
target account b and amount, which is a concurrent activity 
module. The concurrent module includes four activities, 
which are organized as two threads. One thread contains 
transferring to account b and balancing the account b. 
The other thread contains account b transferring to cur-
rent account and balancing the current account. In each 
thread, the two activities are executed in sequence order. 
However, the execution order of the activities from two 
threads are indeterminate, because the two threads may be 
carried out randomly. Finally, the user clicks the button to 
print the receipt after the transfer operation.

After the software behaviors are modeled with ADs, a 
set of rules [11] is used to convert ADs into CFGs, which 

are directed graphs. Based on these rules, the activities and 
actions in an AD are mapped to the nodes of a directed 
graph, and the flows in the AD are mapped to the edges of 
the directed graph. Figure 3 is the CFG of the AD shown in 
Fig. 2. Each node in the CFG is represented with a number 
to conveniently further analysis. For branch nodes, their true 
value and false value are represented by 1 and 0 respectively. 
The generated CFG is also expressed and saved in XML 
format, which includes nodes, control flows, constraints and 
so on. The XML file is taken as the input of the next step: 
test scenario generation.

3.2  Step 2: Test Scenario Generation

After AD modeling and preprocessing, test scenarios are 
generated using our proposed DFS-KeyLevel approach, 
which is depicted in Fig. 4. DFS-KeyLevel approach con-
sists of four sub-steps. The first sub-step is to simplify AD. 
The concurrent activity module of an CFG will be abstracted 
as a composite node. The second sub-step is primary test 
scenario generation. We proposed KeyLevel-Simple method 
to deal with the concurrent activity modules with simple 
structures and KeyLevel-Complex method to deal with the 
concurrent activity modules with complex structures. The 
third sub-step is high-layer test scenario generation. We use 
the improved DFS algorithm to generate scenarios from the 
simplify AD. The final sub-step is combination of two-layer 
test scenarios.

3.2.1  Sub‑Step 2.1 AD Simplification

The first sub-step is to simplify AD. In order to deal with 
concurrent activity modules better, it is necessary to simplify 
the AD first. The concurrent activity module of an CFG 
starts with a fork node and ends with a join node. The con-
current activity module can exist as a separate system within 
the overall AD. Other activities in the AD do not affect the 
concurrent activities going on inside the concurrent activ-
ity module. The same is true in the CFG transformed by 
the AD. And this is the theoretical basis of our two-layer 
test scenario generation approach. Moreover, generating test 
scenarios from concurrent activity modules is complex. If 
the CFG is considered as only one layer to generate test 
scenarios, additional concurrent test scenario generation 
is required when the test scenario covers the concurrent 
activity module, which is inefficient when this operation is 
performed in the whole CFG. Therefore, according to the 
independence of the concurrent activity module, such a con-
current structure is abstracted as a composite node to be fur-
ther processed. For the ATM transferring process example, 
Fig. 5 is the simplified CFG, in which the node X refers to 
the concurrent activity module (including nodes 12, 13, 14 
and 15) in Fig. 3.

Fig. 1  Overview of test scenario generation
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Fig. 2  AD of ATM transferring 
process

75Journal of Electronic Testing (2023) 39:71–88



1 3

3.2.2  Sub‑Step 2.2 Primary Test Scenario Generation

The second sub-step is to generate test scenarios from con-
current activity modules, in which each thread may contain 
sequential, branch and loop structures. In the branch struc-
tures, not all nodes can participate in the final concurrent pro-
cessing; And in the loop structures, some nodes will repeat-
edly participate in the final concurrent processing. Therefore, 
it is more difficult to deal with the concurrent activity modules 
which contain branch and loop structures than those which 
only contain sequential structures. Thus, we refer to the former 
as the complex concurrent activity module and the latter as 
the simple concurrent activity module. The examples of both 
types are shown in Fig. 6. To solve the problem of path gen-
eration explosion of concurrent activity modules, this paper 
proposes two KeyLevel methods to generate constrained test 
scenarios under the coverage condition. The KeyLevel-Simple 
method is proposed to generate test scenarios efficiently from 
simple concurrent activity module. The KeyLevel-Complex 

method is presented to get accurate results while generating 
test scenarios from complex concurrent activity module. Next, 
we will describe the two methods in detail.

KeyLevel‑Simple Method It mainly includes the following 
two steps: In the first step, we propose the KeyNode algo-
rithm to calculate the key degree value of nodes, which is to 
divide the directed graph, so that it has certain constraints 
to avoid path explosion. In the second step, according to 
this constraint, we propose the KeyPermute algorithm to 

Fig. 3  CFG of ATM transferring process

Fig. 4  Procedure of test scenario generation
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generate test scenarios. Finally, the two steps are integrated 
into the KeyLevel-Simple method.

We calculate the value of each node in the concurrent 
activity module, and all nodes are layered according to this 
value. If the value of the current node is larger, it means 
that the activity will be accessed first when the program is 
executed. This method can effectively and objectively grade 
concurrent modules, so it can avoid generating invalid test 
scenarios in the process of execution.

The idea of node key degree value calculation is 
described as follows: all nodes in the concurrent AD are 
calculated according to their out-degree and in-degree, and 
results are used as the standard of hierarchical division. Each 
node has its own direct neighbors and indirect neighbors. 
The direct neighbors are the adjacent nodes, and the indirect 
neighbors is the direct neighbors of the adjacent nodes. For 
Fig. 5, the direct neighbors of node 5 are node 6 and node 
18, while the indirect neighbors are connected nodes after 

Fig. 5  Simplified ATM AD

Fig. 6  Different types of concur-
rent activity modules

a) Simple concurrent activity module b) complex concurrent activity module
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node 6 and node 8. For the current node, the direct neighbors 
are most affected by it, and the indirect neighbors will be 
affected by the adjacent relationship with the current node. 
Therefore, the result calculated according to the out-degree 
and in-degree indicates the key degree of the node, and its 
calculation formula is shown in (1):

f (n) is the key degree value of the current node n ; m —— 
the out-degree of the current node; f

(

ni
)

 is the cumulative 
value of the key degree values of the immediate neighbors; 
� is impact factor, that is, the importance of the impact node. 
P is the in-degree of node n; Since the last node is the end 
node and has no degree, its value is a fixed value P.

This paper designs an algorithm KeyNode to calculate 
the value of each node in the concurrent AD as shown in 
Algorithm 1. In this algorithm, the input of the algorithm 
is the adjacency matrix, which is the representation of a 
directed graph, and the output of the algorithm is a set with 
constraints calculated according to the above formula. First 
of all, it is necessary to calculate the value of each node’s 
in-degree and out-degree by topological sorting. Then, it 
uses recursive method to calculate the value of each node 
in the directed graph by using the formula (1). The variable 
sum is used to record the cumulative value of the current 
node’s key degree value. Since the value of the last node is 
fixed, it is first added to the temporary set weightLevel. The 

(1)f (n) =

�
∑m

i=1
�f
�

ni
�

+ P

P

remaining nodes are added to the temporary set weightLevel 
after calculation. When all nodes are calculated, the nodes 
need to be sorted according to the order of key degree value, 
the sorted nodes are added to the result set, and finally the 
set Result is returned. Using this algorithm for compound 
node X in Fig. 5, the final partition result is shown in Fig. 7 
Concurrent activity modules after division below. It can be 
clearly seen that the nodes of the divided concurrent activity 
modules follow a constraint relationship, which indicates 
that the activity nodes with high key degree will be accessed 
first.

Next, we propose a backtracking combination algorithm 
(KeyPermute), which is shown in Algorithm 2. In the Key-
Permute algorithm, the output of the KeyNode algorithm is 
used as the input of the KeyPermute algorithm, and the out-
put of this algorithm is the test scenario set. The main idea 
of this algorithm is to traverse the result set, and every time 
a layer is traversed, the permute function will generate a full 
permutation of the set of nodes at current layer, in which 
the backtracking algorithm that is one of the more general 
solutions for the full permutation generation algorithms is 
used to calculate the full permutation. The fully permutation 
results of the current layer will be hierarchically added in 
the result set. And then the result set is expanded according 
to the number of nodes in the next layer of the current layer. 
Finally, we combine each layer of the result set to generate 
primary test scenarios. The whole algorithm process is the 
model test scenario generation process.

Fig. 7  Concurrent activity modules after division
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As can be seen from Fig. 7, the concurrent activity mod-
ule divided according to the KeyNode algorithm comes with 
a kind of constraint, which can just avoid generating invalid 
test scenarios, and it is not necessary to generate test scenar-
ios according to the constraint conditions again as described 
in reference [26]. The constraint relation generated in this 
section is more objective, because it is calculated according 
to the fixed access degree of each node, so the constraint 
relation is fixed.

The test scenarios generated by this algorithm follows the 
above constraints. But it can be found that a certain number 
of test scenarios can be generated by using the method pro-
posed in this paper. However, this method only considers 
the interaction of threads in concurrent activity modules, 
and does not consider the sequential execution of threads. 
Therefore, in order to be more comprehensive, this paper 
uses DFS algorithm to assist in generating test scenarios. 
The test scenarios generated by the concurrent AD in Fig. 5 
are shown in Table 1. It can be seen that the concurrent 
activity module generates 6 test scenarios.

KeyLevel‑Complex Method KeyLevel-complex method also 
consists of two steps: dividing the node hierarchy and gener-
ating a test scenario with conditional constraints. The second 
step is exactly the same as KeyLevel-simple method, so we 
will not repeat it here, but mainly elaborate the first step 
of KeyLevel-complex method: dividing the node hierarchy.

In the branch structure, nodes under different branch 
paths cannot participate in concurrency at the same time, 
so some nodes must be eliminated. In the loop structure, 
according to the number of loop triggers, nodes on the loop 
path will participate in concurrency many times, leading 
to the recurrence of the same node, so some nodes need 
to recur and be divided into different levels. Therefore, it 
is more difficult to deal with concurrent activity modules 
which include branch and loop structures. So, this paper 
proposes the KeyLevel-Complex method which divides the 
node hierarchy from the perspective of path combination. In 
an activity path, the earlier the activity appears, the higher 
priority it has [19].

In this paper, the KeyPath algorithm is designed to divide 
the node hierarchy, as shown in Algorithm 3. In this algo-
rithm, the input of the algorithm is the adjacency matrix, 
which is a representation of a directed graph, and the out-
put is multiple sets with constraints. Firstly, according to 
the adjacency matrix, all simple paths of each thread are 
generated individually. The simple paths are to ensure that 
no invalid and unreasonable test scenarios are generated 
when generating test scenarios and to set the constraints for 
generating test scenarios in the complex concurrent activity 
module to avoid the path explosion problem. Secondly, the 
simple paths of each thread are combined in different sets. 
Each set contains one path of each thread, and all sets are 
different. Finally, we top align the paths in each set, which 
means the initial nodes in each path will be in the same posi-
tion, and any node in the same position will be divided into 
the same hierarchy. Eventually multiple sets of nodes with 
constraints are generated.

Table 1  Number of test 
scenarios for ATM concurrent 
active modules

Number Test scenarios

1 11-12-14-13-15-16
2 11-12-14-15-13-16
3 11-14-12-13-15-16
4 11-14-12-15-13-16
5 11-12-13-14-15-16
6 11-14-15-12-13-16
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We take Fig. 6b as an example. This concurrent activ-
ity module has three threads. We name the left thread as 
thread 1, the middle thread as thread 2 and the right thread 
as thread 3. To describe conveniently, the number of loops 
is set to 0 or 1. The full simple path generated from thread 
1 are: {{2, 5, 8}, {2, 5, 9}}; the full simple path generated 
from thread 2 are: {{3, 6, 10}, {3, 6, 3, 6, 10}}; the full 
simple path generated from thread 3 are: {{4, 7, 11}, {4, 
7, 11, 4, 7, 11}}. Combining the paths of all threads gives 
8 sets, and we choose the set: {{2, 5, 8}, {3, 6, 3, 6, 10}, 
{4, 7, 11, 4, 7, 11}} to illustrate. The result of top align-
ing the three paths is shown in Fig. 8, in which the dotted 
line shows the hierarchy. The final node hierarchy result is: 
{{2, 3, 4}, {5, 6, 7}, {8, 3, 11}, {6, 4}, {10, 7}, {11}}. The 
result contains 6 layers, and then we perform full arrange-
ment of the nodes within each layer. Next, keeping the hier-
archical order unchanged, we combine the results of each 
layer of nodes arrangement, which generates 864 paths. In 
this concurrent activity module, the theoretical number of 

paths generated without constraints is 395,136, which are 
too many to test. But the number of paths generated by 
using KeyLevel-Complex method is only 3024. The num-
ber of generated paths is reduced by about 99.24%, which 
makes test possibly.

Time Complexity Analysis Test scenario generation of con-
current activity module is essentially a permutation prob-
lem, so it is also an NP-complete problem. In this paper, 
the following optimizations are made based on the char-
acteristics of test scenario generation: First, the nodes on 
each thread of the concurrent activity module are in relative 
order, and test scenarios containing paths that do not con-
form to the relative order are illegitimate test scenarios. In 
this paper, these illegitimate test scenarios are eliminated, 
which simplifies the complexity of the problem and also 
ensures the legitimacy of the generated test scenarios; sec-
ondly, each node is assigned a key value, and nodes with the 
same key value are assigned to the same layer. This further 
reduces the complexity of the problem by not traversing 
low key values when the layer with high key values has not 
been traversed. In this paper, the above two steps reduce the 
time complexity of test scenario generation for concurrent 
activity module to an acceptable range. Next, we will ana-
lyze the time complexity of Algorithm 2 and Algorithm 3 
in detail, respectively.

Algorithm 2 involves permutations, so the time complex-
ity is significant. But our algorithm still has some advan-
tages. Assume that the concurrent activity module contains 
n nodes and m threads. In the worst case, each thread is of 
the same length, which means that n nodes can be divided 
into l = n/m layers. Based on the backtracking algorithm used 
in this paper, the time complexity is O(n ∗ n!) if the full 
permutation of n nodes is performed directly. algo-
rithm 2 permutes each layer first, and then combines the 
results of each layer. In the worst case there is only one layer, 
m = n. At this point the time complexity is O(n ∗ n!) as in a 
direct full permutation of n nodes. In the general case, m < 
n, then based on the previous worst-case assumptions, each 

Fig. 8  Top alignment path
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layer has to perform a full permutation of m nodes. The time 
complexity is O(m ∗ m!) , generating m! results. The results 
of each layer are then combined, and the time complexity is, 
so the time complexity of algorithm 2 is O

(

m ∗ m! + m!
n

m

)

.The time complexity of algorithm 2 is better than the gen-
eral permutation algorithm, and the permutation algorithm 
in this paper is implemented recursively, which can further 
reduce the time complexity.

Algorithm 3 is used to deal with concurrent activity mod-
ules containing loops and branching structures, and the com-
plexity will be higher compared to Algorithm 2. Assuming 
that the concurrent activity module contains n nodes, the 
general full permutation algorithm cannot solve the permuta-
tion problem that contains both loop and branch structures. 
Because of these two structures, the number of nodes involved 
in a complete concurrent activity is not necessarily n. There-
fore, in this paper, we first determine the total number of 
nodes involved in concurrent activities, which is the first step 
in algorithm 3: generating the full simple path for each thread. 
This step uses the DFS algorithm with a time complexity 
similar to that of the DFS algorithm. Assuming that the num-
ber of nodes in this simple path is n and the number of edges 
is e, the time complexity is O(n + e) under the condition that 
the neighboring node information is stored in the neighboring 
table used in this paper. However, the time complexity may 
fluctuate because of the presence of loops and branching 
structures. The second step is to combine the simple paths 
generated by each thread to form a completed concurrent 
activity. We suppose there are m threads and the number of 
simple paths generated by each thread is ni(i = 1, 2, 3 … , m) , 
then the time complexity of the combination is O

�
∏m

i=1
ni
�

 . In 
a complete concurrent activity, the time complexity of the test 
scenario generation is the same as in algorithm 2. Assuming 
n nodes, m threads, l layers, and the same number of nodes 
per layer in the worst case, the time complexity is 
O

(

m ∗ m! + m!
n

m

)

 . So, the time complexity of Algorithm 3 

is O
�

∏m

i=1
ni ∗

�

m ∗ m! + m!
n

m

��

.

3.2.3  Sub‑Step 2.3: High‑Layer Test Scenario Generation

The third sub-step is high-layer test scenario generation. 
This paper improves the DFS algorithm to adapt to the test 
scenarios generation. In the improved DFS algorithm, the 
processing of branch nodes and circular nodes is different 
from traditional DFS. In the process of traversing simplified 
AD with improved DFS algorithm, if the current node is a 
branch node, one of the adjacent nodes of the current branch 
node is randomly selected to traverse. For the loop activity 
modules, the algorithm can loop N times, but for the sake of 
testability, we set N to 1. So, if the current node is a circular 
node, choose to traverse once or not.

3.2.4  Sub‑Step 2.4: Combination of Two‑Layer Test 
Scenarios

The complete test scenarios of the activity diagram are gen-
erated by the combination of the above two scenarios. In the 
process of traversing the simplified AD with the improved 
DFS algorithm, the nodes with X marks in the test scenarios 
generated in the simplified AD need to be decompressed. 
When the two layers test scenarios are finally merged, 
the composite nodes in the high-layer test scenarios are 
expanded into the previously generated primary test sce-
narios, at which time the high-layer test scenario and the 
primary test scenario are combined into the final test sce-
nario. Assuming that there are currently M test scenarios 
containing X marks, and N test scenarios generated by con-
current activity modules, the total number of test scenarios 
is M*N. For ATM AD, 18 test scenarios are generated by 
our approach, and the details of test scenarios are shown 
in Table 2.

4  Experimental Results and Discussion

Several experiments were taken to evaluate the DFS-
KeyLevel approach, which was implemented with 
C + + in Visual Studio 2022 under Windows10 system, 
Intel 2.3 GHz octa-core Core i7 and 32GB memory. First, 
we conduct the comparison experiments between our 
DFS-KeyLevel and state-of-the-art approaches. Then our 

Table 2  Test scenarios of ATM AD

No. Test scenario

1 0-1-2-3-4-5-18-19-20
2 0-1-2-3-4-5-6-7-18-19-20
3 0-1-2-3-4-5-6-7-8-9-10-18-19-20
4 0-1-2-3-4-5-6-7-8-9-11-12-14-13-15-16-17-18-19-20
5 0-1-2-3-4-5-6-7-8-9-11-12-14-15-13-16-17-18-19-20
6 0-1-2-3-4-5-6-7-8-9-11-14-12-13-15-16-17-18-19-20
7 0-1-2-3-4-5-6-7-8-9-11-14-12-15-13-16-17-18-19-20
8 0-1-2-3-4-5-6-7-8-9-11-12-13-14-15-16-17-18-19-20
9 0-1-2-3-4-5-6-7-8-9-11-14-15-12-13-16-17-18-19-20
10 0-1-2-3-4-2-3-4-5-18-19-20
11 0-1-2-3-4-2-3-4-5-6-7-18-19-20
12 0-1-2-3-4-2-3-4-5-6-7-8-9-10-18-19-20
13 0-1-2-3-4-2-3-4-5-6-7-8-9-11-12-14-13-15-16-17-18-19-20
14 0-1-2-3-4-2-3-4-5-6-7-8-9-11-12-14-15-13-16-17-18-19-20
15 0-1-2-3-4-2-3-4-5-6-7-8-9-11-14-12-13-15-16-17-18-19-20
16 0-1-2-3-4-2-3-4-5-6-7-8-9-11-14-12-15-13-16-17-18-19-20
17 0-1-2-3-4-2-3-4-5-6-7-8-9-11-12-13-14-15-16-17-18-19-20
18 0-1-2-3-4-2-3-4-5-6-7-8-9-11-14-15-12-13-16-17-18-19-20
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approach was applied into a real embedded system, which 
contains very complex concurrent modules. In the experi-
ments, the value � of in the formula (1) is 0.8.

In the comparison experiments, five different types of 
software cases were adopted, including ATM transferring 
process shown in Fig. 1, GraphicsUtility [24] for Calcu-
late coordinates, OrderProcess [24] for Order process, Air-
PortCheck [24] for airplane security check and MakeCall1 
for phone call process. The detailed information about these 
five cases is shown in Table 3, where the “Number” refers 
to the quantity of nodes in each case; “Ca” refers to whether 
there are concurrent activity modules; “Nca” is the number 
of concurrent activity modules; “La” refers to whether there 
are loop activity modules; and “Nla” is the quantity of loop 
activity modules.

4.1  Comparative Experiment of Test Scenario 
Generation Number

To illustrate the effect of our DFS-KeyLevel (DKL) 
approach, DFS-LevelPermutes (DLP) [24], DFS-BFS (DB) 
[18] and IDFS (ID) [5] approaches are taken as baselines.

The generation results of the number of test scenarios 
of concurrent modules are shown in Fig. 9 below. As can 
be seen from the Fig. 9, the KeyLevel-Simple (KLS) and 
LevelPermutes (LP) methods generate more test scenarios as 
the complexity of the concurrent activity module increases. 
And no matter which model the method in this paper is 
applied to, the number of effective test scenarios generated 
is obviously more than that of the other three methods. The 
more the number of test scenarios, the effectiveness of the 
KeyLevel-Simple method proposed in this paper can be 
demonstrated.

The generated results of the number of test scenarios 
for the AD are shown in Fig. 10 below. For the AD, the 
number of test scenarios of concurrent activity modules 
contained in it greatly affects the number of test scenarios 
generated by the AD. The more test scenarios generated 

by concurrent activity modules, the more the total num-
ber of test scenarios. Of course, if there are loop activity 
modules in the AD, the number generated will increase 
with the number of loop activity modules. As shown in 
Fig. 10, for all ADs, the number of test scenarios gener-
ated by DFS-KeyLevel in this paper is better than the other 
three approaches, while DFS-LevelPermutes approach does 
not deal with loop activity modules, so it does not perform 
well in ATM model and MakeCall model. It can be seen 
from the information of MakeCall model in Table 3 that 
this model has both loop activity modules and concurrent 
activity modules, so the number of test scenarios generated 
by this approach is the largest.

It can be clearly seen from Figs. 9 and 10 that the approach 
in this paper is better than the test scenarios generated by 
DFS-LevelPermutes, DFS-BFS and IDFS approach, and 
the more complex the model, the more obvious the advan-
tages of the approach in this paper, such as GraphicsUtility 
model and Muchurian model. From the angle of increasing 
the number of concurrent activity test scenarios, the number 
of scenarios generated by the KeyLevel-Simple method in 
this paper is 0.85 times higher than that of LevelPermutes 
method and 3.03 times higher than that of DFS-BFS and 
IDFS approaches. From the perspective of increasing the 
number of test scenes of AD, the number of scenes generated 
by DFS-KeyLevel approach in this paper is increased by 1.13 
times compared with DFS-LevelPermutes approach, and by 
2.37 times compared with DFS-BFS and IDFS approaches.

4.2  Comparative Experiment of Test Coverage

Coverage criterion is one of the criteria to measure the qual-
ity of test scenarios. The higher the coverage of test scenarios 
in each test scenario, the higher the coverage of test sce-
narios. Therefore, the test coverage is equal to the test sce-
nario coverage at this time. To verify the effectiveness of the 
approach, activity coverage [23], simple path coverage [24] 
and concurrency coverage [3] are selected in the experiment 
for the concurrent activity module of AD. Simple path cover-
age refers to the coverage of sequential paths and sequential 
non-interleaving concurrent paths. Active coverage refers to 
the coverage of representative paths generated by the BFS 
algorithm. Concurrency coverage refers to the coverage 
of interleaved concurrent paths. These three test coverage 
criteria analyze the experimental results; For the AD, node 
coverage [29], edge coverage and TALPC are selected in the 
experiment to verify the feasibility of the proposed approach.

TAPC (Total Activity Path Coverage Criterion) [23] is 
used to evaluate the whole AD. It is a collection of basic 
paths and interlaced paths of concurrent activities. How-
ever, the basic path requires that each activity can only be 
executed once, which cannot evaluate the concurrent activity 

Table 3  Detailed AD information of five software cases

Model Name Number Ca Nca La Nla

GraphicsUtility 16 Y 2 N 0
OrderProcess 18 Y 1 Y 1
AirPortCheck 27 Y 3 N 0
MakeCall 37 Y 1 Y 1
ATM 21 Y 1 Y 1

1  Data Source: https:// gitee. com/ vanis hkk/ two- layer- test- scena rio- 
gener ation/ tree/ master.
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modules of nested loops. Therefore, this paper modifies 
this, and puts forward Total Activity Logical Path Coverage 
(TALPC) to evaluate the AD, which is a collection of logical 
paths and concurrent paths of concurrent activities and can 
guarantee the effective coverage of loop activities. However, 
the loop needs to be limited.

As can be seen from Table 4, these four methods are 
applied to all models, and the activity coverage and simple 
path coverage reach 100%, which shows that the method in 
this paper meets the most basic coverage criteria of concur-
rent activity modules. On these five models, the average con-
current coverage of this algorithm is 83.76%, that of LevelP-
ermutes method is 48.68%, and that of DFS-BFS and IDFS 
approaches is 25.08%. Because the GraphicsUtility model 
is a nested concurrent AD, the generated test scenario is 
only the test scenario under concurrent activities, and there 
are many nodes of concurrent activities and modules, so 

it is impossible to achieve 100% by using this method. If 
you want to achieve 100% coverage of concurrent staggered 
execution, you need to diversify the calculation algorithm 
of the KeyLevel-Simple method and divide it several times.

Table 5 shows the experimental results of coverage of test 
scenarios generated by AD. Node coverage and edge coverage 
are the most basic conditions to evaluate the quality of test 
scenarios. It can be seen from the table that the node coverage 
and edge coverage of DFS-KeyLevel approach, DFS-BFS and 
IDFS approach in this paper all reach 100%; While for TALPC, 
the DFS-KeyLevel approach in this paper has higher coverage 
than DFS-LevelPermutes, DFS-BFS a and IDFS approaches. 
On these five models, the average TALPC of this approach is 
84%, that of DFS-LevelPermutes approach is 39.98%, and that 
of DFS-BFS and IDFS approaches is 35.56%. As the Graph-
icsUtility model is a concurrent AD, the coverage of TALPC 
is the same as that of concurrent coverage.

Fig. 9  Comparison results of 
the number of test scenarios for 
the concurrent activity modules
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Fig. 10  Comparison results of 
the number of test scenarios for 
the AD
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4.3  Application

Application scenarios containing complex concurrent activ-
ity modules are often encountered. But all the approaches 
shown in the previous section cannot deal with complex con-
current activity modules well. In this section, we will test 
the practicality of the KeyLevel-Complex method through 
a real application scenario.

Smart torque wrench system can help customers to 
achieve smart tightening. It can measure the torque value 
and angle value of tightening, and then realize the quan-
titative control of torque. The tightening program is auto-
matically sent down and prevents repeated and leakage 
of tightening to realize intelligent tightening. It also sets 
the corresponding tightening program, specifies the target 
torque value and error range, stores the tightening data, and 
uploads the tightening structured data automatically to avoid 
data loss. And the measurement error of the wrench can be 
controlled within ± 5%, which has practical use value. The 
smart torque wrench communicates with the upper computer 
through a embedded hardware module that can transfer data 
between them via wireless Bluetooth.

The modeling of the smart wrench hardware module 
activity is shown in Fig. 11, which contains two parts: the 
handheld terminal and the smart wrench. The handheld ter-
minal includes operator login and posting tasks. And the 
smart wrench includes the execution of tasks, data storage 
and real-time monitoring and uploading sweep information. 
All of tasks here are fully concurrent.

A complete activity flow is as follows. To connect the hard-
ware module with the mobile phone, we need to turn on the 
Bluetooth module of the wrench and the app of the mobile 
phone first. Then we click the adding device button in the app 
to search and connect the device through wireless Bluetooth. 
After connection, the mobile app can distribute data which 
can be obtained through the scanner or selected from the local 
list. Then the hardware module transmits the data received 
from the upper terminal to the wrench to complete the cor-
responding operation and store the operation records. After 
completing the task, the wrench will real-time upload opera-
tion records to hardware module. The mobile phone finally 
receives operation records from the hardware module. There 
are two main tasks of the hardware module. One is to receive 
and analyze the messages from the upper terminal and then 
carry out corresponding operations according to the message 
type. The success and failure of the operation will generate 
corresponding records. The second is to read the wrench oper-
ation records and upload them to the upper terminal in real 
time. In addition, it can also poll whether there is data gener-
ated at the code scanner, and analyze the content obtained by 
scanner and process it according to its type.

The conversion rules are then applied to convert the AD 
into a directed graph, as shown in Fig. 12. Two concurrent 
activity modules are processed using KeyLevel-Complex, 
and the results are shown in Table 6. Both activity coverage 
and basic path coverage reach 100%. The concurrency cover-
age is not high. The simpler concurrent activity module 1X 
having 40% concurrency coverage, while the more complex 

Table 4  Test coverage criteria 
for concurrent active modules

Model name Test coverage criteria for concurrent active modules

Activity coverage(%) Simple path coverage(%) Concurrent coverage(%)

KLS LP DB ID KLS LP DB ID KLS LP DB ID
GraphicsUtility 100 100 100 100 100 100 100 100 50 26.7 6.7 6.7
OrderProcess 100 85.7 100 100 100 50 100 100 100 33.3 33.3 33.3
ATM 100 100 100 100 100 100 100 100 100 66.7 33.3 33.3
MakeCall 100 100 100 100 100 100 100 100 100 66.7 33.3 33.3
AirPortCheck 100 100 100 100 100 100 100 100 68.8 50 18.8 18.8

Table 5  Test coverage criteria 
for AD

Model name Test coverage criteria for AD

Node coverage(%) Edge coverage(%) TALPC(%)

DKL DLP DB ID DKL DLP DB ID DKL DLP DB ID

GraphicsUtility 100 100 100 100 100 100 100 100 50 26.7 6.7 6.7
OrderProcess 100 94.4 100 100 100 90.5 100 100 100 42.9 42.9 42.9
ATM 100 100 100 100 100 95.7 100 100 100 38.9 55.6 55.6
MakeCall 100 100 100 100 100 97.4 100 100 100 39.4 51.6 51.6
AirPortCheck 100 100 100 100 100 100 100 100 70 52 21 21
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15X has only about 0.013%. Because the maximum number 
of test scenarios generated increases rapidly when there are 
complex structures in the concurrent activity module. The 
maximum number of test scenarios generated from 15X is 
1,630,423,080, while only 217,824 test scenarios are gener-
ated by KeyLevel-Complex. This greatly reduces the number 

of test scenarios generated but ensures enough test scenarios 
generated to be tested. A comparison between the two con-
current activity modules can also reveal that as the complex-
ity of concurrent activity modules increases, our KeyLevel-
Complex method can effectively constrain the growth of the 
number of test scenarios generation to avoid path explosion.

Fig. 11  Smart torque wrench system AD
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5  Conclusion

To generate the test scenarios efficiently, this paper proposes 
a two-layer test scenarios generation approach for AD. 
First, the system is modeled, preprocessed and converted 
into control flow graph (CFG). Next, to generate test sce-
narios from concurrent activities, this paper proposes Key-
Level method in the primary test scenarios generation, and 
according to different application scenarios, it is detailed as 
follows: KeyLevel-Simple and KeyLevel-Complex method. 
Then improve DFS algorithm to deal with simplified AD 
in high-layer test scenarios generation. The experiment 
results on five different types of software cases showed that 
our DFS-KeyLevel is superior to the previous approaches. 
The number of test scenarios generated by DFS-KeyLevel 
approach in this paper is 1.13 times higher than that of 
DFS-LevelPermutes algorithm and 2.37 times higher than 
that of DFS-BFS algorithm and IDFS algorithm. From the 

coverage point of view, the average coverage rate of stag-
gered activities is 83.76%, and the average coverage rate of 
TALPC of this algorithm 84%, which is significantly higher 
than DFS-LevelPermutes algorithm, DFS-BFS algorithm 
and IDFS algorithm. The experimental results of the embed-
ded intelligent wrench tightening system showed that our 
KeyLevel-Complex method can deal with complex actual 
situations, and can effectively constrain the generation test 
scenarios in complex concurrent activity module, but can 
ensure generate enough test scenarios to be tested.

Although our approach can effectively generate the test sce-
narios based on UML AD, we did not verify the effectiveness 
of our approach on other models, such as state diagrams, which 
will be addressed in future. Manually abstracting activity dia-
grams from source code is a complex and time-consuming 
task when the source code size is large, and how to efficiently 
generate activity diagrams from source code will be a research 
focus for our future work. In addition, introducing relevant 

Fig. 12  Simplified directed graph

Table 6  Test result for 
concurrent active modules

Composite 
node

Test result for concurrent active modules

Activity 
coverage(%)

Simple path 
coverage(%)

Number of generated 
paths

Theoretical Number 
of paths

Concurrent 
coverage(%)

1X 100 100 8 20 40
15X 100 100 217,824 1,630,423,080 0.013
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content in the OS may help to improve generation efficiency 
and handle more complex concurrent activity module. This is 
the part we will work on in the future.
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