
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-023-06045-y

DFS‑KeyLevel: A Two‑Layer Test Scenario Generation Approach
for UML Activity Diagram

Xiaozhi Du1 · Jinjin Zhang1 · Kai Chen1 · Yanrong Zhou1

Received: 29 September 2022 / Accepted: 21 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
For automatic generation of test scenarios from UML (Unified Modeling Language) activity diagrams (ADs) are very important
for improving test efficiency. However, state-of-the-art approaches mainly focus on simple approaches, without specifically
considering the case of concurrent activity, which may result in the path explosion problem during the generation of test sce-
narios. In this paper, we put forward DFS-KeyLevel, a two-layer test scenario generation approach for UML Activity Diagram.
First, the ADs of the software under test are modeled and preprocessed, and each concurrent module in each AD is simplified
to a composite node. Then, primary test scenarios are generated from the concurrent activity modules using our proposed
KeyLevel method. Next, the high-layer test scenarios are generated from the simplified AD with our improved Depth-First
Search (DFS) algorithm. Finally, the primary and high-layer test scenarios are combined to generate the final test scenarios
for the AD. The experimental results show that this DFS-KeyLevel is superior to the previous approaches. The DFS-KeyLevel
can generate more test scenarios under constraints. Compared with DFS-LevelPermutes, the number of test scenarios gener-
ated by our DFS-KeyLevel is 1.13 times higher. Compared with Depth-First Search and Breadth-First Search (DFS-BFS)
and Improved-DFS (IDFS), the DFS-KeyLevel produced 2.37 times test scenarios. The average coverage rates of staggered
activities and total activity logical path coverage (TALPC) of the DFS-KeyLevel are 83.67% and 84% respectively, which
is significantly higher than the above three approaches. In addition, when our method is applied to a real embedded system,
it significantly reduces test scenarios generated to avoid path explosion while ensuring enough test scenarios.

Keywords UML activity diagram · Test scenario generation · Concurrent module · Embedded system

1 Introduction

Developing high-quality software requires a great deal
of work in the testing phase, which is probably the most
costly and labor-intensive part of the software development
process. To improve the test efficiency, Model-Based Test
(MBT) has attracted a lot of researchers and engineers. As

the abstract of real systems, models formulate the relation-
ships between the behavior and the behavior or between the
behavior and the system, thus facilitating the understand-
ing of systems [1]. MBT is a such black-box testing tech-
nique that generates tests from abstract behavioral models.
It allows to automate or semi-automate the entire testing
process. So MBT has many benefits including reduced cost,
reduced time, and improved test quality.

The main objective of the test scenario generation
method is to generate as many test scenarios with high
coverage as feasible. Therefore, we can deeply understand
the system under test (SUT), expose more defects of the
system under test, improve the robustness of the software,
and make the software better meet the users’ needs. Test
scenarios are the basis of test cases. Test scenarios with
high coverage mean that test cases derived from them
have higher coverage and can test the SUT more compre-
hensively. Test scenario generation should comply with
the following specifications: the generated test scenarios
meet the requirements of the SUT; for each requirement,

Responsible Editor: V. D. Agrawal.

 * Xiaozhi Du
 xzdu@xjtu.edu.cn

 Jinjin Zhang
 765814257@qq.com

 Kai Chen
 1171319431@qq.com

 Yanrong Zhou
 Zhouyr@stu.xjtu.edu.cn

1 School of Software Engineering, Xi’an Jiaotong University,
Shaanxi, China

/ Published online: 3 February 2023

Journal of Electronic Testing (2023) 39:71–88

http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06045-y&domain=pdf

1 3

the generated test scenarios can identify user actions and
objectives; the generated test scenarios have feasibility,
reliability and high coverage.

The UML Activity Diagram (AD) is an important dia-
gram for modeling the dynamic aspects of a system [17].
Recently, testing based on UML AD has attracted the atten-
tion of researchers. Using UML language specification has
changed the development methods of requirements, design
and implementation. And testing can also be done at the
requirement level to find errors earlier [8, 12, 16, 25]. The
AD in UML is used to model the interaction between
users and software, which can visually show the execution
sequence between activities [14]. So, UML AD has advan-
tage in simplifying complex systems. For example, the
embedded system is integrated with hardware and software
together, which results a complex system. Using UML to
model the embedded system can standardize the analysis
and design and facilitate testing.

More importantly, UML AD can better represent the
dynamic behavior and state of the concurrent system. How-
ever, most researchers only study how to automatically gen-
erate test scenarios in simple systems, and do not explore
the in-depth research on complex modules such as nested
concurrent activity modules or nested loop activity modules.
If this part is not handled well, the path explosion will occur,
and the generated test scenarios will have errors, redundan-
cies and other problems. Therefore, how to avoid the path
explosion of concurrent and loop activities in complex sys-
tems and generate test scenarios that meet the coverage cri-
teria is the key issue of this paper.

To address the above issues, we put forward DFS-
KeyLevel, a two-layer test scenario generation approach
for UML AD. First, the AD of the software under test are
modeled, then each AD is preprocessed and converted
into a control flow graph (CFG), in which each concurrent
module is simplified to a composite node. Next, primary
test scenarios are generated from the concurrent activity
modules using our proposed KeyLevel algorithm. Then, the
high-layer test scenarios are generated from the simplified
AD with our improved DFS algorithm. Finally, the primary
and high-layer test scenarios are combined to generate the
final test scenarios for the AD.

The main contributions of this paper can be summarized
as follows:

1. We proposed an innovative two-layer test scenario gen-
eration approach for UML ADs, DFS-KeyLevel. For the
concurrent activity modules, we put forward KeyLevel
methods to generate primary test scenarios. For the sim-
plified AD, we present an improved DFS algorithm to
generate high-layer test scenarios.

2. Our DFS-KeyLevel approach can efficiently deal with
concurrent activities, which avoids path explosion and

meets high coverage. For simple concurrent activity
modules, which only contain sequential structures,
we put forward the KeyLevel-Simple method to effi-
ciently generate primary test scenarios. For complex
concurrent activity modules containing sequential,
branch and loop structures, which cannot be dealt
with by state-of-the-art approaches, we proposed the
KeyLevel-Complex method to generate correct and
complete primary test scenarios.

3. We applied the DFS-KeyLevel approach to an actual
embedded system, in which a concurrent activity
module theoretically has 1,630,423,080 test scenar-
ios. The KeyLevel-Complex method was used and
only 217,824 test scenarios are generated, which has
a 99.887% reduction rate while ensuring to generate
enough test scenarios.

The paper is organized as follows. Section 2 reviews the
related work and discusses the unresolved issues. Section 3
describes our DFS-KeyLevel approach in detail. In Sec-
tion 4, some experiments are taken and the results are ana-
lyzed. Lastly, Section 5 concludes this paper and discusses
some future work.

2 Related Work

Nowadays, many researchers use the AD to automatically
generate test scenarios, which can reduce the time and cost
of testing [7]. The business process and concurrent behav-
ior of software development can be demonstrated by AD
[4], which is convenient to model the concurrent activity
modules. But the concurrent activity is synchronous so that
huge test scenarios will be generated in the test process. To
avoid path explosion, researchers put forward graph theory
technology, machine learning and other technologies.

At present, more and more heuristic algorithms are
applied in the field of test scenario generation. Li and Lam
[13] proposed an anti-ant colony algorithm, which is used
to generate test threads from UML, and then generate test
scenarios through test threads. Jena et al. [9] proposed a test
scenario generation method using the Genetic Algorithm
(GA). This method takes activity coverage as the criterion to
generate test scenarios, but it failed to realize the automatic
generation of test scenarios. Anbunathan and Basu [2] pro-
posed using the GA and the paired test method to generate
test scenarios under concurrent ADs. This approach is mainly
used to reduce the test scenarios of concurrent ADs to avoid
path explosion, but it may lead to the omission of some nec-
essary scenarios. Arora et al. [3] proposed a direction-based
ant colony algorithm, which improved the pheromone calcu-
lation method in the ant colony algorithm by adding cosine
value to increase randomness and avoid falling into a local

72 Journal of Electronic Testing (2023) 39:71–88

1 3

optimal solution, thus generating all test scenarios. However,
due to the redundancy of the generated test scenarios during
the execution of the algorithm, the time complexity is high.

Besides heuristic algorithms, BFS and DFS algo-
rithms, which are often used by researchers, are constantly
improved. Kundu and Samanta [11] proposed improved BFS
and DFS approaches to generate test paths, and proposed the
active path coverage standard, which can detect more faults.
However, the test scenarios generated by this method are
limited. Thanakorncharuwit et al. [26] proposed an improved
DFS approach with test specifications to generate test sce-
narios. The algorithm improves DFS by backtracking tech-
nology, which makes the process of test scenario generation
easier and reduces the test workload, but the applied case
system is relatively simple. Shirole and Kumar [24] put for-
ward DFS-LevelPermute approach to avoid path explosion,
by dividing the horizontal hierarchy according to the node
order of the AD. However, this hierarchical division is more
based on the activity model structure, which is not rigor-
ous, and the generated test scenarios have a lot to do with
the model structure. Panthi et al. [18] proposed to combine
BFS algorithm and DFS algorithm to generate test scenarios.
This approach is easy to understand, but the number of test
scenarios generated for concurrent modules is limited. The
IDFS approach proposed by Fan et al. [5] generates limited
test scenarios, so the test coverage is relatively low.

Dynamic programming algorithm can also be used for test
scenario generation. Yimman et al. [29] proposed a dynamic
programming algorithm to generate test scenarios. By speci-
fying the sequence between threads, a limited number of test
scenarios are generated. Kamonsantiroj et al. [10] proposed
a method which is an improvement of the method proposed
by Yimman et al. [29], and the proposed method of dynamic
programming to generate test scenarios can be suitable for
a concurrent system including more than 3 thread, which
effectively avoids the path explosion. But the test scenarios
generated by this method are inadequate, which may lead to
the omission of some necessary scenarios.

ADs can also be combined with other UML diagrams to
generate test scenarios. Shirole and Kumar [22] put forward
a search algorithm (CQS), which generates test scenarios
by converting sequence diagrams into ADs, and uses CQS
to deal with the randomness of concurrent tasks. This algo-
rithm can avoid data competition, synchronization and dead-
lock, but the number of test scenarios generated is small.
Mahali et al. [15] proposed to use IOAD model to generate
test scenarios, which can eliminate deadlock in concurrency
to avoid path explosion. However, the generated test sce-
narios contain redundant nodes, and the proposed method
is only applicable to IOAD model, so it is not universal and
cannot be applied to UML model. Salman and Yasir [20]
put forward a new coverage standard to evaluate the test sce-
narios generated from UML state diagrams. This coverage

standard can improve the effectiveness of the generated test
scenarios, especially for loop processing, but it does not deal
with concurrent activities. Hamza and Hammad [6] put for-
ward a test scenario generation method based on UML use
case diagram. This method takes the use case diagram as
input and converts it into AD in the process of processing,
and then generates test scenarios from the AD. However,
the application system is relatively simple, and there is no
in-depth research on complex systems. Shi et al. [21] put
forward a test scenario generation method based on UML
AD syntax, which can check the correctness of AD structure
and automatically generate test scenarios according to user
constraints, but the generated scenarios are limited.

To sum up, state-of-the-art approaches solve some
issues on generating test scenarios automatically, but these
approaches still have the following shortcomings:

1. Some of them are only applicable to models of specific
structures or models;

2. Some of them don’t conduct sufficient experiments and
even have been experimented on simple systems only;

3. Some of them generate very limited test scenarios, which
may not meet the testing needs or even miss important
test scenarios.

Our proposed approach makes up for above shortcom-
ings well. It is applicable to all UML ADs and has been
experimented on both simple and complex systems with
good results. More importantly, our approach can gen-
erate as many test scenarios as possible while avoiding
path explosion.

3 Proposed DFS‑KeyLevel Approach

To generate test scenarios for UML ADs, we propose a
two-layer test scenario generation approach, called DFS-
KeyLevel, which consists of two main steps and is depicted
in Fig. 1. At the first step, the software under test (SUT)
is first modeled and its behaviors are described with UML
ADs, and then each AD is converted into a CFG according
to the mapping rules. At the second step, test scenarios
are generated with our proposed DFS-KeyLevel, which
includes four sub-steps and will be illustrated in detail in
the following section.

3.1 Step 1: UML AD Modeling and Preprocessing

The purpose of UML AD modeling is to simulate the
execution process of a software system under test and
describe its dynamic behaviors [27]. And the UML AD
model is generated by abstracting the software require-
ments document. To model the system quickly and

73Journal of Electronic Testing (2023) 39:71–88

1 3

visually, we choose the yED software [28] as the UML
AD modeling tool, which can export visual ADs to XML
files. And then these XML files are parsed to automati-
cally generate the CFGs.

Figure 2 is the AD of a fake transaction, ATM transfer-
ring process, which is taken as an example to explain the
test scenarios generation process of our DFS-KeyLevel
approach. First, a user plugs in a bank card and enters the
password continuedly until the enters are correct. Then the
ATM starts the transfer operation after the user inputs the
target account b and amount, which is a concurrent activity
module. The concurrent module includes four activities,
which are organized as two threads. One thread contains
transferring to account b and balancing the account b.
The other thread contains account b transferring to cur-
rent account and balancing the current account. In each
thread, the two activities are executed in sequence order.
However, the execution order of the activities from two
threads are indeterminate, because the two threads may be
carried out randomly. Finally, the user clicks the button to
print the receipt after the transfer operation.

After the software behaviors are modeled with ADs, a
set of rules [11] is used to convert ADs into CFGs, which

are directed graphs. Based on these rules, the activities and
actions in an AD are mapped to the nodes of a directed
graph, and the flows in the AD are mapped to the edges of
the directed graph. Figure 3 is the CFG of the AD shown in
Fig. 2. Each node in the CFG is represented with a number
to conveniently further analysis. For branch nodes, their true
value and false value are represented by 1 and 0 respectively.
The generated CFG is also expressed and saved in XML
format, which includes nodes, control flows, constraints and
so on. The XML file is taken as the input of the next step:
test scenario generation.

3.2 Step 2: Test Scenario Generation

After AD modeling and preprocessing, test scenarios are
generated using our proposed DFS-KeyLevel approach,
which is depicted in Fig. 4. DFS-KeyLevel approach con-
sists of four sub-steps. The first sub-step is to simplify AD.
The concurrent activity module of an CFG will be abstracted
as a composite node. The second sub-step is primary test
scenario generation. We proposed KeyLevel-Simple method
to deal with the concurrent activity modules with simple
structures and KeyLevel-Complex method to deal with the
concurrent activity modules with complex structures. The
third sub-step is high-layer test scenario generation. We use
the improved DFS algorithm to generate scenarios from the
simplify AD. The final sub-step is combination of two-layer
test scenarios.

3.2.1 Sub‑Step 2.1 AD Simplification

The first sub-step is to simplify AD. In order to deal with
concurrent activity modules better, it is necessary to simplify
the AD first. The concurrent activity module of an CFG
starts with a fork node and ends with a join node. The con-
current activity module can exist as a separate system within
the overall AD. Other activities in the AD do not affect the
concurrent activities going on inside the concurrent activ-
ity module. The same is true in the CFG transformed by
the AD. And this is the theoretical basis of our two-layer
test scenario generation approach. Moreover, generating test
scenarios from concurrent activity modules is complex. If
the CFG is considered as only one layer to generate test
scenarios, additional concurrent test scenario generation
is required when the test scenario covers the concurrent
activity module, which is inefficient when this operation is
performed in the whole CFG. Therefore, according to the
independence of the concurrent activity module, such a con-
current structure is abstracted as a composite node to be fur-
ther processed. For the ATM transferring process example,
Fig. 5 is the simplified CFG, in which the node X refers to
the concurrent activity module (including nodes 12, 13, 14
and 15) in Fig. 3.

Fig. 1 Overview of test scenario generation

74 Journal of Electronic Testing (2023) 39:71–88

1 3

Fig. 2 AD of ATM transferring
process

75Journal of Electronic Testing (2023) 39:71–88

1 3

3.2.2 Sub‑Step 2.2 Primary Test Scenario Generation

The second sub-step is to generate test scenarios from con-
current activity modules, in which each thread may contain
sequential, branch and loop structures. In the branch struc-
tures, not all nodes can participate in the final concurrent pro-
cessing; And in the loop structures, some nodes will repeat-
edly participate in the final concurrent processing. Therefore,
it is more difficult to deal with the concurrent activity modules
which contain branch and loop structures than those which
only contain sequential structures. Thus, we refer to the former
as the complex concurrent activity module and the latter as
the simple concurrent activity module. The examples of both
types are shown in Fig. 6. To solve the problem of path gen-
eration explosion of concurrent activity modules, this paper
proposes two KeyLevel methods to generate constrained test
scenarios under the coverage condition. The KeyLevel-Simple
method is proposed to generate test scenarios efficiently from
simple concurrent activity module. The KeyLevel-Complex

method is presented to get accurate results while generating
test scenarios from complex concurrent activity module. Next,
we will describe the two methods in detail.

KeyLevel‑Simple Method It mainly includes the following
two steps: In the first step, we propose the KeyNode algo-
rithm to calculate the key degree value of nodes, which is to
divide the directed graph, so that it has certain constraints
to avoid path explosion. In the second step, according to
this constraint, we propose the KeyPermute algorithm to

Fig. 3 CFG of ATM transferring process

Fig. 4 Procedure of test scenario generation

76 Journal of Electronic Testing (2023) 39:71–88

1 3

generate test scenarios. Finally, the two steps are integrated
into the KeyLevel-Simple method.

We calculate the value of each node in the concurrent
activity module, and all nodes are layered according to this
value. If the value of the current node is larger, it means
that the activity will be accessed first when the program is
executed. This method can effectively and objectively grade
concurrent modules, so it can avoid generating invalid test
scenarios in the process of execution.

The idea of node key degree value calculation is
described as follows: all nodes in the concurrent AD are
calculated according to their out-degree and in-degree, and
results are used as the standard of hierarchical division. Each
node has its own direct neighbors and indirect neighbors.
The direct neighbors are the adjacent nodes, and the indirect
neighbors is the direct neighbors of the adjacent nodes. For
Fig. 5, the direct neighbors of node 5 are node 6 and node
18, while the indirect neighbors are connected nodes after

Fig. 5 Simplified ATM AD

Fig. 6 Different types of concur-
rent activity modules

a) Simple concurrent activity module b) complex concurrent activity module

77Journal of Electronic Testing (2023) 39:71–88

1 3

node 6 and node 8. For the current node, the direct neighbors
are most affected by it, and the indirect neighbors will be
affected by the adjacent relationship with the current node.
Therefore, the result calculated according to the out-degree
and in-degree indicates the key degree of the node, and its
calculation formula is shown in (1):

f (n) is the key degree value of the current node n ; m ——
the out-degree of the current node; f

(

ni
)

 is the cumulative
value of the key degree values of the immediate neighbors;
� is impact factor, that is, the importance of the impact node.
P is the in-degree of node n; Since the last node is the end
node and has no degree, its value is a fixed value P.

This paper designs an algorithm KeyNode to calculate
the value of each node in the concurrent AD as shown in
Algorithm 1. In this algorithm, the input of the algorithm
is the adjacency matrix, which is the representation of a
directed graph, and the output of the algorithm is a set with
constraints calculated according to the above formula. First
of all, it is necessary to calculate the value of each node’s
in-degree and out-degree by topological sorting. Then, it
uses recursive method to calculate the value of each node
in the directed graph by using the formula (1). The variable
sum is used to record the cumulative value of the current
node’s key degree value. Since the value of the last node is
fixed, it is first added to the temporary set weightLevel. The

(1)f (n) =

�
∑m

i=1
�f
�

ni
�

+ P

P

remaining nodes are added to the temporary set weightLevel
after calculation. When all nodes are calculated, the nodes
need to be sorted according to the order of key degree value,
the sorted nodes are added to the result set, and finally the
set Result is returned. Using this algorithm for compound
node X in Fig. 5, the final partition result is shown in Fig. 7
Concurrent activity modules after division below. It can be
clearly seen that the nodes of the divided concurrent activity
modules follow a constraint relationship, which indicates
that the activity nodes with high key degree will be accessed
first.

Next, we propose a backtracking combination algorithm
(KeyPermute), which is shown in Algorithm 2. In the Key-
Permute algorithm, the output of the KeyNode algorithm is
used as the input of the KeyPermute algorithm, and the out-
put of this algorithm is the test scenario set. The main idea
of this algorithm is to traverse the result set, and every time
a layer is traversed, the permute function will generate a full
permutation of the set of nodes at current layer, in which
the backtracking algorithm that is one of the more general
solutions for the full permutation generation algorithms is
used to calculate the full permutation. The fully permutation
results of the current layer will be hierarchically added in
the result set. And then the result set is expanded according
to the number of nodes in the next layer of the current layer.
Finally, we combine each layer of the result set to generate
primary test scenarios. The whole algorithm process is the
model test scenario generation process.

Fig. 7 Concurrent activity modules after division

78 Journal of Electronic Testing (2023) 39:71–88

1 3

As can be seen from Fig. 7, the concurrent activity mod-
ule divided according to the KeyNode algorithm comes with
a kind of constraint, which can just avoid generating invalid
test scenarios, and it is not necessary to generate test scenar-
ios according to the constraint conditions again as described
in reference [26]. The constraint relation generated in this
section is more objective, because it is calculated according
to the fixed access degree of each node, so the constraint
relation is fixed.

The test scenarios generated by this algorithm follows the
above constraints. But it can be found that a certain number
of test scenarios can be generated by using the method pro-
posed in this paper. However, this method only considers
the interaction of threads in concurrent activity modules,
and does not consider the sequential execution of threads.
Therefore, in order to be more comprehensive, this paper
uses DFS algorithm to assist in generating test scenarios.
The test scenarios generated by the concurrent AD in Fig. 5
are shown in Table 1. It can be seen that the concurrent
activity module generates 6 test scenarios.

KeyLevel‑Complex Method KeyLevel-complex method also
consists of two steps: dividing the node hierarchy and gener-
ating a test scenario with conditional constraints. The second
step is exactly the same as KeyLevel-simple method, so we
will not repeat it here, but mainly elaborate the first step
of KeyLevel-complex method: dividing the node hierarchy.

In the branch structure, nodes under different branch
paths cannot participate in concurrency at the same time,
so some nodes must be eliminated. In the loop structure,
according to the number of loop triggers, nodes on the loop
path will participate in concurrency many times, leading
to the recurrence of the same node, so some nodes need
to recur and be divided into different levels. Therefore, it
is more difficult to deal with concurrent activity modules
which include branch and loop structures. So, this paper
proposes the KeyLevel-Complex method which divides the
node hierarchy from the perspective of path combination. In
an activity path, the earlier the activity appears, the higher
priority it has [19].

In this paper, the KeyPath algorithm is designed to divide
the node hierarchy, as shown in Algorithm 3. In this algo-
rithm, the input of the algorithm is the adjacency matrix,
which is a representation of a directed graph, and the out-
put is multiple sets with constraints. Firstly, according to
the adjacency matrix, all simple paths of each thread are
generated individually. The simple paths are to ensure that
no invalid and unreasonable test scenarios are generated
when generating test scenarios and to set the constraints for
generating test scenarios in the complex concurrent activity
module to avoid the path explosion problem. Secondly, the
simple paths of each thread are combined in different sets.
Each set contains one path of each thread, and all sets are
different. Finally, we top align the paths in each set, which
means the initial nodes in each path will be in the same posi-
tion, and any node in the same position will be divided into
the same hierarchy. Eventually multiple sets of nodes with
constraints are generated.

Table 1 Number of test
scenarios for ATM concurrent
active modules

Number Test scenarios

1 11-12-14-13-15-16
2 11-12-14-15-13-16
3 11-14-12-13-15-16
4 11-14-12-15-13-16
5 11-12-13-14-15-16
6 11-14-15-12-13-16

79Journal of Electronic Testing (2023) 39:71–88

1 3

We take Fig. 6b as an example. This concurrent activ-
ity module has three threads. We name the left thread as
thread 1, the middle thread as thread 2 and the right thread
as thread 3. To describe conveniently, the number of loops
is set to 0 or 1. The full simple path generated from thread
1 are: {{2, 5, 8}, {2, 5, 9}}; the full simple path generated
from thread 2 are: {{3, 6, 10}, {3, 6, 3, 6, 10}}; the full
simple path generated from thread 3 are: {{4, 7, 11}, {4,
7, 11, 4, 7, 11}}. Combining the paths of all threads gives
8 sets, and we choose the set: {{2, 5, 8}, {3, 6, 3, 6, 10},
{4, 7, 11, 4, 7, 11}} to illustrate. The result of top align-
ing the three paths is shown in Fig. 8, in which the dotted
line shows the hierarchy. The final node hierarchy result is:
{{2, 3, 4}, {5, 6, 7}, {8, 3, 11}, {6, 4}, {10, 7}, {11}}. The
result contains 6 layers, and then we perform full arrange-
ment of the nodes within each layer. Next, keeping the hier-
archical order unchanged, we combine the results of each
layer of nodes arrangement, which generates 864 paths. In
this concurrent activity module, the theoretical number of

paths generated without constraints is 395,136, which are
too many to test. But the number of paths generated by
using KeyLevel-Complex method is only 3024. The num-
ber of generated paths is reduced by about 99.24%, which
makes test possibly.

Time Complexity Analysis Test scenario generation of con-
current activity module is essentially a permutation prob-
lem, so it is also an NP-complete problem. In this paper,
the following optimizations are made based on the char-
acteristics of test scenario generation: First, the nodes on
each thread of the concurrent activity module are in relative
order, and test scenarios containing paths that do not con-
form to the relative order are illegitimate test scenarios. In
this paper, these illegitimate test scenarios are eliminated,
which simplifies the complexity of the problem and also
ensures the legitimacy of the generated test scenarios; sec-
ondly, each node is assigned a key value, and nodes with the
same key value are assigned to the same layer. This further
reduces the complexity of the problem by not traversing
low key values when the layer with high key values has not
been traversed. In this paper, the above two steps reduce the
time complexity of test scenario generation for concurrent
activity module to an acceptable range. Next, we will ana-
lyze the time complexity of Algorithm 2 and Algorithm 3
in detail, respectively.

Algorithm 2 involves permutations, so the time complex-
ity is significant. But our algorithm still has some advan-
tages. Assume that the concurrent activity module contains
n nodes and m threads. In the worst case, each thread is of
the same length, which means that n nodes can be divided
into l = n/m layers. Based on the backtracking algorithm used
in this paper, the time complexity is O(n ∗ n!) if the full
permutation of n nodes is performed directly. algo-
rithm 2 permutes each layer first, and then combines the
results of each layer. In the worst case there is only one layer,
m = n. At this point the time complexity is O(n ∗ n!) as in a
direct full permutation of n nodes. In the general case, m <
n, then based on the previous worst-case assumptions, each

Fig. 8 Top alignment path

80 Journal of Electronic Testing (2023) 39:71–88

1 3

layer has to perform a full permutation of m nodes. The time
complexity is O(m ∗ m!) , generating m! results. The results
of each layer are then combined, and the time complexity is,
so the time complexity of algorithm 2 is O

(

m ∗ m! + m!
n

m

)

.The time complexity of algorithm 2 is better than the gen-
eral permutation algorithm, and the permutation algorithm
in this paper is implemented recursively, which can further
reduce the time complexity.

Algorithm 3 is used to deal with concurrent activity mod-
ules containing loops and branching structures, and the com-
plexity will be higher compared to Algorithm 2. Assuming
that the concurrent activity module contains n nodes, the
general full permutation algorithm cannot solve the permuta-
tion problem that contains both loop and branch structures.
Because of these two structures, the number of nodes involved
in a complete concurrent activity is not necessarily n. There-
fore, in this paper, we first determine the total number of
nodes involved in concurrent activities, which is the first step
in algorithm 3: generating the full simple path for each thread.
This step uses the DFS algorithm with a time complexity
similar to that of the DFS algorithm. Assuming that the num-
ber of nodes in this simple path is n and the number of edges
is e, the time complexity is O(n + e) under the condition that
the neighboring node information is stored in the neighboring
table used in this paper. However, the time complexity may
fluctuate because of the presence of loops and branching
structures. The second step is to combine the simple paths
generated by each thread to form a completed concurrent
activity. We suppose there are m threads and the number of
simple paths generated by each thread is ni(i = 1, 2, 3 … , m) ,
then the time complexity of the combination is O

�
∏m

i=1
ni
�

 . In
a complete concurrent activity, the time complexity of the test
scenario generation is the same as in algorithm 2. Assuming
n nodes, m threads, l layers, and the same number of nodes
per layer in the worst case, the time complexity is
O

(

m ∗ m! + m!
n

m

)

 . So, the time complexity of Algorithm 3

is O
�

∏m

i=1
ni ∗

�

m ∗ m! + m!
n

m

��

.

3.2.3 Sub‑Step 2.3: High‑Layer Test Scenario Generation

The third sub-step is high-layer test scenario generation.
This paper improves the DFS algorithm to adapt to the test
scenarios generation. In the improved DFS algorithm, the
processing of branch nodes and circular nodes is different
from traditional DFS. In the process of traversing simplified
AD with improved DFS algorithm, if the current node is a
branch node, one of the adjacent nodes of the current branch
node is randomly selected to traverse. For the loop activity
modules, the algorithm can loop N times, but for the sake of
testability, we set N to 1. So, if the current node is a circular
node, choose to traverse once or not.

3.2.4 Sub‑Step 2.4: Combination of Two‑Layer Test
Scenarios

The complete test scenarios of the activity diagram are gen-
erated by the combination of the above two scenarios. In the
process of traversing the simplified AD with the improved
DFS algorithm, the nodes with X marks in the test scenarios
generated in the simplified AD need to be decompressed.
When the two layers test scenarios are finally merged,
the composite nodes in the high-layer test scenarios are
expanded into the previously generated primary test sce-
narios, at which time the high-layer test scenario and the
primary test scenario are combined into the final test sce-
nario. Assuming that there are currently M test scenarios
containing X marks, and N test scenarios generated by con-
current activity modules, the total number of test scenarios
is M*N. For ATM AD, 18 test scenarios are generated by
our approach, and the details of test scenarios are shown
in Table 2.

4 Experimental Results and Discussion

Several experiments were taken to evaluate the DFS-
KeyLevel approach, which was implemented with
C + + in Visual Studio 2022 under Windows10 system,
Intel 2.3 GHz octa-core Core i7 and 32GB memory. First,
we conduct the comparison experiments between our
DFS-KeyLevel and state-of-the-art approaches. Then our

Table 2 Test scenarios of ATM AD

No. Test scenario

1 0-1-2-3-4-5-18-19-20
2 0-1-2-3-4-5-6-7-18-19-20
3 0-1-2-3-4-5-6-7-8-9-10-18-19-20
4 0-1-2-3-4-5-6-7-8-9-11-12-14-13-15-16-17-18-19-20
5 0-1-2-3-4-5-6-7-8-9-11-12-14-15-13-16-17-18-19-20
6 0-1-2-3-4-5-6-7-8-9-11-14-12-13-15-16-17-18-19-20
7 0-1-2-3-4-5-6-7-8-9-11-14-12-15-13-16-17-18-19-20
8 0-1-2-3-4-5-6-7-8-9-11-12-13-14-15-16-17-18-19-20
9 0-1-2-3-4-5-6-7-8-9-11-14-15-12-13-16-17-18-19-20
10 0-1-2-3-4-2-3-4-5-18-19-20
11 0-1-2-3-4-2-3-4-5-6-7-18-19-20
12 0-1-2-3-4-2-3-4-5-6-7-8-9-10-18-19-20
13 0-1-2-3-4-2-3-4-5-6-7-8-9-11-12-14-13-15-16-17-18-19-20
14 0-1-2-3-4-2-3-4-5-6-7-8-9-11-12-14-15-13-16-17-18-19-20
15 0-1-2-3-4-2-3-4-5-6-7-8-9-11-14-12-13-15-16-17-18-19-20
16 0-1-2-3-4-2-3-4-5-6-7-8-9-11-14-12-15-13-16-17-18-19-20
17 0-1-2-3-4-2-3-4-5-6-7-8-9-11-12-13-14-15-16-17-18-19-20
18 0-1-2-3-4-2-3-4-5-6-7-8-9-11-14-15-12-13-16-17-18-19-20

81Journal of Electronic Testing (2023) 39:71–88

1 3

approach was applied into a real embedded system, which
contains very complex concurrent modules. In the experi-
ments, the value � of in the formula (1) is 0.8.

In the comparison experiments, five different types of
software cases were adopted, including ATM transferring
process shown in Fig. 1, GraphicsUtility [24] for Calcu-
late coordinates, OrderProcess [24] for Order process, Air-
PortCheck [24] for airplane security check and MakeCall1
for phone call process. The detailed information about these
five cases is shown in Table 3, where the “Number” refers
to the quantity of nodes in each case; “Ca” refers to whether
there are concurrent activity modules; “Nca” is the number
of concurrent activity modules; “La” refers to whether there
are loop activity modules; and “Nla” is the quantity of loop
activity modules.

4.1 Comparative Experiment of Test Scenario
Generation Number

To illustrate the effect of our DFS-KeyLevel (DKL)
approach, DFS-LevelPermutes (DLP) [24], DFS-BFS (DB)
[18] and IDFS (ID) [5] approaches are taken as baselines.

The generation results of the number of test scenarios
of concurrent modules are shown in Fig. 9 below. As can
be seen from the Fig. 9, the KeyLevel-Simple (KLS) and
LevelPermutes (LP) methods generate more test scenarios as
the complexity of the concurrent activity module increases.
And no matter which model the method in this paper is
applied to, the number of effective test scenarios generated
is obviously more than that of the other three methods. The
more the number of test scenarios, the effectiveness of the
KeyLevel-Simple method proposed in this paper can be
demonstrated.

The generated results of the number of test scenarios
for the AD are shown in Fig. 10 below. For the AD, the
number of test scenarios of concurrent activity modules
contained in it greatly affects the number of test scenarios
generated by the AD. The more test scenarios generated

by concurrent activity modules, the more the total num-
ber of test scenarios. Of course, if there are loop activity
modules in the AD, the number generated will increase
with the number of loop activity modules. As shown in
Fig. 10, for all ADs, the number of test scenarios gener-
ated by DFS-KeyLevel in this paper is better than the other
three approaches, while DFS-LevelPermutes approach does
not deal with loop activity modules, so it does not perform
well in ATM model and MakeCall model. It can be seen
from the information of MakeCall model in Table 3 that
this model has both loop activity modules and concurrent
activity modules, so the number of test scenarios generated
by this approach is the largest.

It can be clearly seen from Figs. 9 and 10 that the approach
in this paper is better than the test scenarios generated by
DFS-LevelPermutes, DFS-BFS and IDFS approach, and
the more complex the model, the more obvious the advan-
tages of the approach in this paper, such as GraphicsUtility
model and Muchurian model. From the angle of increasing
the number of concurrent activity test scenarios, the number
of scenarios generated by the KeyLevel-Simple method in
this paper is 0.85 times higher than that of LevelPermutes
method and 3.03 times higher than that of DFS-BFS and
IDFS approaches. From the perspective of increasing the
number of test scenes of AD, the number of scenes generated
by DFS-KeyLevel approach in this paper is increased by 1.13
times compared with DFS-LevelPermutes approach, and by
2.37 times compared with DFS-BFS and IDFS approaches.

4.2 Comparative Experiment of Test Coverage

Coverage criterion is one of the criteria to measure the qual-
ity of test scenarios. The higher the coverage of test scenarios
in each test scenario, the higher the coverage of test sce-
narios. Therefore, the test coverage is equal to the test sce-
nario coverage at this time. To verify the effectiveness of the
approach, activity coverage [23], simple path coverage [24]
and concurrency coverage [3] are selected in the experiment
for the concurrent activity module of AD. Simple path cover-
age refers to the coverage of sequential paths and sequential
non-interleaving concurrent paths. Active coverage refers to
the coverage of representative paths generated by the BFS
algorithm. Concurrency coverage refers to the coverage
of interleaved concurrent paths. These three test coverage
criteria analyze the experimental results; For the AD, node
coverage [29], edge coverage and TALPC are selected in the
experiment to verify the feasibility of the proposed approach.

TAPC (Total Activity Path Coverage Criterion) [23] is
used to evaluate the whole AD. It is a collection of basic
paths and interlaced paths of concurrent activities. How-
ever, the basic path requires that each activity can only be
executed once, which cannot evaluate the concurrent activity

Table 3 Detailed AD information of five software cases

Model Name Number Ca Nca La Nla

GraphicsUtility 16 Y 2 N 0
OrderProcess 18 Y 1 Y 1
AirPortCheck 27 Y 3 N 0
MakeCall 37 Y 1 Y 1
ATM 21 Y 1 Y 1

1 Data Source: https:// gitee. com/ vanis hkk/ two- layer- test- scena rio-
gener ation/ tree/ master.

82 Journal of Electronic Testing (2023) 39:71–88

https://gitee.com/vanishkk/two-layer-test-scenario-generation/tree/master
https://gitee.com/vanishkk/two-layer-test-scenario-generation/tree/master

1 3

modules of nested loops. Therefore, this paper modifies
this, and puts forward Total Activity Logical Path Coverage
(TALPC) to evaluate the AD, which is a collection of logical
paths and concurrent paths of concurrent activities and can
guarantee the effective coverage of loop activities. However,
the loop needs to be limited.

As can be seen from Table 4, these four methods are
applied to all models, and the activity coverage and simple
path coverage reach 100%, which shows that the method in
this paper meets the most basic coverage criteria of concur-
rent activity modules. On these five models, the average con-
current coverage of this algorithm is 83.76%, that of LevelP-
ermutes method is 48.68%, and that of DFS-BFS and IDFS
approaches is 25.08%. Because the GraphicsUtility model
is a nested concurrent AD, the generated test scenario is
only the test scenario under concurrent activities, and there
are many nodes of concurrent activities and modules, so

it is impossible to achieve 100% by using this method. If
you want to achieve 100% coverage of concurrent staggered
execution, you need to diversify the calculation algorithm
of the KeyLevel-Simple method and divide it several times.

Table 5 shows the experimental results of coverage of test
scenarios generated by AD. Node coverage and edge coverage
are the most basic conditions to evaluate the quality of test
scenarios. It can be seen from the table that the node coverage
and edge coverage of DFS-KeyLevel approach, DFS-BFS and
IDFS approach in this paper all reach 100%; While for TALPC,
the DFS-KeyLevel approach in this paper has higher coverage
than DFS-LevelPermutes, DFS-BFS a and IDFS approaches.
On these five models, the average TALPC of this approach is
84%, that of DFS-LevelPermutes approach is 39.98%, and that
of DFS-BFS and IDFS approaches is 35.56%. As the Graph-
icsUtility model is a concurrent AD, the coverage of TALPC
is the same as that of concurrent coverage.

Fig. 9 Comparison results of
the number of test scenarios for
the concurrent activity modules

12

6 6

22

30

4 4 4

16 16

4
2 2

6
44

2 2

6
4

0

5

10

15

20

25

30

35

OrderProcess ATM MakeCall AirPortCheck GraphicsU�lity

Comparison results of the number of test scenarios for the concurrent
ac�vity module

KLS LP DB ID

Fig. 10 Comparison results of
the number of test scenarios for
the AD

14

18

33

23

30

6 7

13

17 16

6

10

17

7
4

6

10

17

7
4

0

5

10

15

20

25

30

35

OrderProcess ATM MakeCall AirPortCheck GraphicU

Comparison results of the number of test scenarios for the AD

DKL DLP DB ID

83Journal of Electronic Testing (2023) 39:71–88

1 3

4.3 Application

Application scenarios containing complex concurrent activ-
ity modules are often encountered. But all the approaches
shown in the previous section cannot deal with complex con-
current activity modules well. In this section, we will test
the practicality of the KeyLevel-Complex method through
a real application scenario.

Smart torque wrench system can help customers to
achieve smart tightening. It can measure the torque value
and angle value of tightening, and then realize the quan-
titative control of torque. The tightening program is auto-
matically sent down and prevents repeated and leakage
of tightening to realize intelligent tightening. It also sets
the corresponding tightening program, specifies the target
torque value and error range, stores the tightening data, and
uploads the tightening structured data automatically to avoid
data loss. And the measurement error of the wrench can be
controlled within ± 5%, which has practical use value. The
smart torque wrench communicates with the upper computer
through a embedded hardware module that can transfer data
between them via wireless Bluetooth.

The modeling of the smart wrench hardware module
activity is shown in Fig. 11, which contains two parts: the
handheld terminal and the smart wrench. The handheld ter-
minal includes operator login and posting tasks. And the
smart wrench includes the execution of tasks, data storage
and real-time monitoring and uploading sweep information.
All of tasks here are fully concurrent.

A complete activity flow is as follows. To connect the hard-
ware module with the mobile phone, we need to turn on the
Bluetooth module of the wrench and the app of the mobile
phone first. Then we click the adding device button in the app
to search and connect the device through wireless Bluetooth.
After connection, the mobile app can distribute data which
can be obtained through the scanner or selected from the local
list. Then the hardware module transmits the data received
from the upper terminal to the wrench to complete the cor-
responding operation and store the operation records. After
completing the task, the wrench will real-time upload opera-
tion records to hardware module. The mobile phone finally
receives operation records from the hardware module. There
are two main tasks of the hardware module. One is to receive
and analyze the messages from the upper terminal and then
carry out corresponding operations according to the message
type. The success and failure of the operation will generate
corresponding records. The second is to read the wrench oper-
ation records and upload them to the upper terminal in real
time. In addition, it can also poll whether there is data gener-
ated at the code scanner, and analyze the content obtained by
scanner and process it according to its type.

The conversion rules are then applied to convert the AD
into a directed graph, as shown in Fig. 12. Two concurrent
activity modules are processed using KeyLevel-Complex,
and the results are shown in Table 6. Both activity coverage
and basic path coverage reach 100%. The concurrency cover-
age is not high. The simpler concurrent activity module 1X
having 40% concurrency coverage, while the more complex

Table 4 Test coverage criteria
for concurrent active modules

Model name Test coverage criteria for concurrent active modules

Activity coverage(%) Simple path coverage(%) Concurrent coverage(%)

KLS LP DB ID KLS LP DB ID KLS LP DB ID
GraphicsUtility 100 100 100 100 100 100 100 100 50 26.7 6.7 6.7
OrderProcess 100 85.7 100 100 100 50 100 100 100 33.3 33.3 33.3
ATM 100 100 100 100 100 100 100 100 100 66.7 33.3 33.3
MakeCall 100 100 100 100 100 100 100 100 100 66.7 33.3 33.3
AirPortCheck 100 100 100 100 100 100 100 100 68.8 50 18.8 18.8

Table 5 Test coverage criteria
for AD

Model name Test coverage criteria for AD

Node coverage(%) Edge coverage(%) TALPC(%)

DKL DLP DB ID DKL DLP DB ID DKL DLP DB ID

GraphicsUtility 100 100 100 100 100 100 100 100 50 26.7 6.7 6.7
OrderProcess 100 94.4 100 100 100 90.5 100 100 100 42.9 42.9 42.9
ATM 100 100 100 100 100 95.7 100 100 100 38.9 55.6 55.6
MakeCall 100 100 100 100 100 97.4 100 100 100 39.4 51.6 51.6
AirPortCheck 100 100 100 100 100 100 100 100 70 52 21 21

84 Journal of Electronic Testing (2023) 39:71–88

1 3

15X has only about 0.013%. Because the maximum number
of test scenarios generated increases rapidly when there are
complex structures in the concurrent activity module. The
maximum number of test scenarios generated from 15X is
1,630,423,080, while only 217,824 test scenarios are gener-
ated by KeyLevel-Complex. This greatly reduces the number

of test scenarios generated but ensures enough test scenarios
generated to be tested. A comparison between the two con-
current activity modules can also reveal that as the complex-
ity of concurrent activity modules increases, our KeyLevel-
Complex method can effectively constrain the growth of the
number of test scenarios generation to avoid path explosion.

Fig. 11 Smart torque wrench system AD

85Journal of Electronic Testing (2023) 39:71–88

1 3

5 Conclusion

To generate the test scenarios efficiently, this paper proposes
a two-layer test scenarios generation approach for AD.
First, the system is modeled, preprocessed and converted
into control flow graph (CFG). Next, to generate test sce-
narios from concurrent activities, this paper proposes Key-
Level method in the primary test scenarios generation, and
according to different application scenarios, it is detailed as
follows: KeyLevel-Simple and KeyLevel-Complex method.
Then improve DFS algorithm to deal with simplified AD
in high-layer test scenarios generation. The experiment
results on five different types of software cases showed that
our DFS-KeyLevel is superior to the previous approaches.
The number of test scenarios generated by DFS-KeyLevel
approach in this paper is 1.13 times higher than that of
DFS-LevelPermutes algorithm and 2.37 times higher than
that of DFS-BFS algorithm and IDFS algorithm. From the

coverage point of view, the average coverage rate of stag-
gered activities is 83.76%, and the average coverage rate of
TALPC of this algorithm 84%, which is significantly higher
than DFS-LevelPermutes algorithm, DFS-BFS algorithm
and IDFS algorithm. The experimental results of the embed-
ded intelligent wrench tightening system showed that our
KeyLevel-Complex method can deal with complex actual
situations, and can effectively constrain the generation test
scenarios in complex concurrent activity module, but can
ensure generate enough test scenarios to be tested.

Although our approach can effectively generate the test sce-
narios based on UML AD, we did not verify the effectiveness
of our approach on other models, such as state diagrams, which
will be addressed in future. Manually abstracting activity dia-
grams from source code is a complex and time-consuming
task when the source code size is large, and how to efficiently
generate activity diagrams from source code will be a research
focus for our future work. In addition, introducing relevant

Fig. 12 Simplified directed graph

Table 6 Test result for
concurrent active modules

Composite
node

Test result for concurrent active modules

Activity
coverage(%)

Simple path
coverage(%)

Number of generated
paths

Theoretical Number
of paths

Concurrent
coverage(%)

1X 100 100 8 20 40
15X 100 100 217,824 1,630,423,080 0.013

86 Journal of Electronic Testing (2023) 39:71–88

1 3

content in the OS may help to improve generation efficiency
and handle more complex concurrent activity module. This is
the part we will work on in the future.

Funding The work described in this paper is partially supported by
the Chinese National Natural Science Foundation (grant number
11975182).

Data Availability Some or all data, models, code generated or used dur-
ing the study are available from the corresponding author by request.

Declarations

Conflict of Interest/Competing Interest The authors have no conflicts
of interest to declare relevant to this article’s content.

References

 1. Ahmad T, Iqbal J, Ashraf A (2019) Model-based testing using
UML activity diagrams: a systematic mapping study. Comput Sci
Rev 33:98–112

 2. Anbunathan R, Basu A (2019) Combining genetic algorithm and
pairwise testing for optimised test generation from UML ADs.
Softw IET 13(5):423–433

 3. Arora V, Singh M, Bhatia R (2020) Orientation-based ant colony
algorithm for synthesizing the test scenarios in UML activity dia-
gram. Inf Softw Technol 123:106292

 4. Clarisó R, González CA, Cabot J (2019) Smart bound selection for
the Verification of UML/OCL class diagrams. IEEE Trans Softw
Eng 45(4):412–426

 5. Fan LL, Wang Y, Liu T (2021) Automatic test path generation and
prioritization using UML activity diagram. In: Proc. of 8th Inter-
national Conference on Dependable Systems and Their Applica-
tions (DSA). pp 484–490

 6. Hamza ZA, Hammad M (2019) Generating test sequences from
UML use-case diagrams. In: Proc. of International Conference
on Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT), pp 1–6

 7. Jahan H, Feng Z, Mahmud S (2020) Risk-based test case prioriti-
zation by correlating system methods and their associated risks.
Arab J Sci Eng 45:6125–6138

 8. Jain P, Soni D (2020) A survey on generation of test cases using
UML diagrams. In: Proc. of International Conference on Emerging
Trends in Information Technology and Engineering (IC-ETITE).
IEEE, pp 1–6

 9. Jena AK, Swain SK, Mohapatra DP (2014) A novel approach
for test case generation from UML activity diagram. In: Proc. of
International Conference on Issues & Challenges in Intelligent
Computing Techniques. IEEE, pp 621–629

 10. Kamonsantiroj S, Pipanmaekaporn L, Lorpunmanee S (2019) A
memorization approach for test case generation in concurrent UML
activity diagram. In: Proc. of the 2nd International Conference on
Geoinformatics and Data Analysis, pp 20–25

 11. Kundu D, Samanta D (2009) A novel approach to generate test
cases from UML activity diagrams. J Object Technol 8(3):65–83

 12. Lafi M, Alrawashed T, Hammad AM (2021) Automated test cases
generation from requirements specification. In: Proc. of International
Conference on Information Technology (ICIT). IEEE, pp 852–857

 13. Li H, Lam CP (2005) Using anti-ant-like agents to generate test
threads from the UML diagrams. In: Proc. of International Con-
ference on Testing of Communicating Systems. Springer-Verlag,
Berlin, pp 69–80

 14. Lima L, Tavares A (2019) Verifying deadlock and nondetermin-
ism in activity diagrams. In: Proc. of ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C). IEEE, pp 764–768

 15. Mahali P, Arabinda S, Acharya AA (2016) Test case generation
for concurrent systems using UML activity diagram. In: Proc. of
IEEE Region 10 Conference (TENCON), pp 428–435

 16. Mahanto P, Barisal SK, Mohapatra DP (2018) Achieving MC/DC
using UML communication diagram. In: Proc. of International
Conference on Information Technology (ICIT). IEEE, pp 73–78

 17. OMG. Foundational Unified Modeling Language v1.5. http://
www. omg. org/ spec/ FUML/1. 5/. Retrieved June 2021

 18. Panthi V, Tripathi A, Mohapatra DP (2022) Software validation
based on prioritization using concurrent activity diagram. Int J
Syst Assur Eng Manage 13:1801–1816

 19. Qian Z, Zhu J, Zhu Y (2022) Multi-path coverage strategy
combining key point probability and path similarity. J Softw
33:434–454

 20. Salman, Yasir D (2017) Coverage criteria for test case generation
using UML state chart diagram. AIP Conf Proc 1891(1):1–6

 21. Shi Z, Zeng XQ, Zhang TT, Han L (2021) UML diagram-driven
test scenarios generation based on the temporal graph grammar.
KSII Trans Internet Inf Syst 15(7):2476–2495

 22. Shirole M, Kumar R (2012) Testing for concurrency in UML dia-
grams. ACM SIGSOFT Softw Eng Notes 37(5):1–8

 23. Shirole M, Kumar R (2021) Concurrency coverage criteria for
activity diagrams. IET Softw 15(4):43–54

 24. Shirole M, Kumar R (2021) Constrained permutation-based test
scenario generation from concurrent activity diagrams. Innov Syst
Softw Eng 17:345–353

 25. Sypsas A, Kalles D (2020) Using UML AD for adapting experi-
ments under a virtual laboratory environment. In: Proc of 24th
Pan-Hellenic Conference on Informatics. Association for Comput-
ing Machinery, New York, pp 27–30

 26. Thanakorncharuwit W, Kamonsantiroj S, Pipanmaekaporn L
(2016) Generating test cases from UML activity diagram based
on business flow constraints. In: Proc. of the Fifth International
Conference on Network, Communication and Computing. pp
155–160

 27. Tiwari RG, Srivastava AP, Bhardwaj G (2021) Exploiting UML
diagrams for test case generation: a review. In: Proc. of the 2nd
International Conference on Intelligent Engineering and Manage-
ment (ICIEM), pp 457–460

 28. Yed. https:// www. yworks. com/ produ cts/ yed. Accessed on
2022/9/2

 29. Yimman S, Kamonsantiroj S, Pipanmaekaporn L (2017) Concur-
rent test case generation from UML activity diagram based on
dynamic programming. In: Proc. of the 6th international confer-
ence on software and computer applications. pp 33–38

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

87Journal of Electronic Testing (2023) 39:71–88

http://www.omg.org/spec/FUML/1.5/
http://www.omg.org/spec/FUML/1.5/
https://www.yworks.com/products/yed

1 3

Xiaozhi Du received the M.S. degree in Control Theory and Control
Engineering in 2004 and the Ph.D. in Computer Science and Tech-
nology in 2010, both from Xi’an Jiaotong University, China. He is
Assistant Professor in the Software Engineering Department of the
same university. His research interests mainly include fault tolerance,
software reliability, and SoC testing.

Jinjin Zhang received the M.S. degree in Software Engineering in 2022
from Xi’an Jiaotong University, China. Her research interests include
fault recovery and software testing.

Kai Chen did postgraduate study of Software Engineering at Xi’an
Jiaotong University in 2021. His research interests include software
testing and embedded testing.

Yanrong Zhou did postgraduate study of Software Engineering at
Xi’an Jiaotong University in 2021. Her research interests include soft-
ware testing and embedded testing.

88 Journal of Electronic Testing (2023) 39:71–88

	DFS-KeyLevel: A Two-Layer Test Scenario Generation Approach for UML Activity Diagram
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed DFS-KeyLevel Approach
	3.1 Step 1: UML AD Modeling and Preprocessing
	3.2 Step 2: Test Scenario Generation
	3.2.1 Sub-Step 2.1 AD Simplification
	3.2.2 Sub-Step 2.2 Primary Test Scenario Generation
	3.2.3 Sub-Step 2.3: High-Layer Test Scenario Generation
	3.2.4 Sub-Step 2.4: Combination of Two-Layer Test Scenarios

	4 Experimental Results and Discussion
	4.1 Comparative Experiment of Test Scenario Generation Number
	4.2 Comparative Experiment of Test Coverage
	4.3 Application

	5 Conclusion
	References

