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Abstract
Higher complexity in recent chip designs, module integration, and increasing test quality requirements have expanded meas-
urement needs and further increased chip test costs. Multi-site testing (parallel measurement) solves this issue by taking test 
measurements from multiple chips simultaneously, massively increasing throughput, and significantly reducing the test time 
per chip. Massive multi-site testing system, a setup with significant measurement site count, further improves throughput and 
maximizes gains. However, it unavoidably amplifies site-to-site variations in the measured specifications. This problem is 
particularly magnified in analog and mixed-signal chips. Some measurement sites now exhibit pronounced induced errors, 
and their measurements no longer reflect the actual performance of the device under test (DUT). This problem presents a 
solid need to identify sites that suffer from extreme site-to-site variations (issue sites). We propose an automated method to 
investigate site-to-site variations in volume multi-site data and identify issue sites that may not be obvious via human inspec-
tion or basic statistical methods. Assuming that all measurement sites have the same accuracy and precision, we consider an 
issue site to be one whose weighted-bin difference score is greater than an analytically derived upper bound. We apply the 
proposed method to simulation data and volume test data obtained from an industrial analog and mixed-signal system on 
chips (SoCs) that were tested using multi-site testing hardware and show that the technique can effectively identify issue sites 
in the testing system. We compare the proposed algorithm to existing methods and demonstrate its superior performance.

Keywords  Multi-site/Parallel Measurement Testing · Hardware Systematic Errors · Site-to-Site Variations · Weighted-Bin 
Difference · Automatic Test Equipment (ATE) · Analog and mixed-signal

1  Introduction

Increasing design complexities and levels of integration 
in modern SoCs have resulted in growing data acquisition 
and measurement time for device characterization due to 
increased measurement accuracy requirements, raising pro-
duction costs. Coupled with the high demand for chips today, 
a huge need and market for reduced measurement time and 
low-cost testing exist [1].

Different methods and algorithms have been proposed to 
reduce test time and cost for SoCs. Some methods focus on 
more efficient algorithms, significantly reducing test time 

[2–4]. Built-in-self-test (BIST) techniques embed in each 
DUT a mechanism to obtain test measurements from itself, 
thereby reducing test time and cost [5, 6]. Authors in [2, 3] 
present algorithms that relax the stringent requirements of 
some automatic test equipment (ATE) parts, thereby reduc-
ing their cost and, subsequently, measurement/test cost. 
However, multi-site/parallel measurement is arguably one 
of the best methods for combating increasing test time and 
chip cost [7–10].

Multi-site testing reduces test time by simultaneously 
obtaining test measurements from several DUTs. It uses 
the ATE channel-sharing method, taking advantage of the 
ATE infrastructure concerning data storage and test inter-
face facilities [11]. It was primarily introduced in the digital 
domain, especially in memory testing; however, it has now 
gained ground and acceptance in analog and mixed-signal 
testing [12]. The method has been proven to provide high-
yield capacity and additional cost advantages [13, 14].
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One challenge of the method, usually pronounced in the 
massive multi-site testing approach in the analog and mixed-
signal domain and central to this paper, is multi-site varia-
tions in chip measurement data. Site-to-site variations in a 
multi-site testing system may arise from various sources. 
Some of these variations, such as process variations and 
design marginalities, correspond to actual problems with 
the device being tested and should lead to scrapped devices 
or changes made to the design of the DUT [14]. However, in 
other cases (which call for caution), the measurement equip-
ment could introduce unwanted systematic errors, affecting 
test results.

Site-to-site variations may arise due to difficulty main-
taining equal resource management and sharing system 
resources, e.g., voltage and current sources, arbitrary wave-
form generators, and digitizers, amongst test sites. Another 
reason could be the undesired interactions among analog, 
digital, and power sub-blocks within the tester hardware. It 
is well-known that these occurrences can significantly affect 
analog signals. These variations may necessitate loosening 
device specifications to guarantee device performance, lead-
ing to a reduction in the unit costs of DUTs and, hence, a 
loss in revenue.

Figure 1 is the boxplot visualization for the measured 
analog-to-digital converter (ADC) offset data for multiple 
chips from an industrial multi-site testing system. We expect 
the mean and standard deviation of the offset measurements 
to vary from measurement site to site due to wafer and 
lot variations. However, an inspection of Site A shows an 
unwanted shift exhibited by that site, clearly demonstrating 
one case of how site variations manifest.

Despite the difficulties, the demand is to have more sites 
in production to satisfy the high volume demand for SoCs 

without the accompanying increase in cost [14, 15]. Hence, 
developing algorithms to identify sites that introduce sig-
nificant systematic errors and lead to erroneous test results 
(issue sites) is vital.

Visual inspection of measurement data is usually the first 
step taken by the test engineer. For example, it is visually 
evident in Fig. 1 that Site A is an issue site. However, this 
method is crude and relies on humans, who are prone to 
error. Comparing the mean, standard deviation, and quar-
tiles of measurement data at each site could be automatic. 
However, it relies on summary statistics that do not always 
accurately represent data. This method is primarily affected 
by other sources of variation, like wafer to wafer and others. 
Different methodologies for detecting issue sites and why 
they are not suitable are further discussed in Section 2.

In [16], issue sites were flagged by comparing the distri-
bution of the measurement sites to a reference. However, the 
technique tends to generate a lot of false positives. It does 
not present a well-defined boundary for flagging issue sites 
and is more suited for Gaussian and symmetric distributions. 
Hence the need for a new flagging approach.

This paper presents a weighted-bin difference (WBD) 
algorithm to identify issue sites in a multi-site testing sys-
tem. The algorithm first estimates the expected distribution 
of the measured parameter by selecting a subset of high-
confidence good sites called Site0. It then uses it as a refer-
ence frame for issue site identification. Scores are computed 
for each site and compared to an analytically derived upper 
bound, which serves as a means to identify issue sites. The 
proposed method has the following advantages.

1.	 The method is, at no cost, automated and robust. An 
additional and complementary tool for the test engineer.

2.	 The method does not rely on single test statistics for issue 
site identification. Instead, it compares the distributions 
of each measurement site to a reference distribution.

3.	 The method performs an excellent job in estimating ref-
erence distribution compared to other methods.

4.	 The method proposed a well-defined boundary condition 
for identifying issue sites compared to other methods.

5.	 The method works for all types of distributions.

The rest of this paper is organized as follows. The second 
section provides a background for this paper and a summary 
of prior work. The third section emphasizes the need for 
a carefully estimated reference distribution. The proposed 
method is presented in the fourth section, and the guard 
boundaries are derived. The fifth section provides experi-
mental results to demonstrate the proposed method's effec-
tiveness and robustness using simulation data and actual 
multi-site ATE data from the semiconductor industry. The 
results are compared to those obtained by applying the 
Quantile-Quantile issue site detection algorithm proposed 
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Fig. 1   ADC Offset measurements across multiple test sites showing 
Site A as an issue site
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in [16]. Future directions concerning this work are discussed 
in the sixth section before finally concluding the paper in the 
seventh section.

2 � Background and Prior Work

A flagging system was proposed in [17]. This technique 
removes human visualization and provides automation by 
flagging sites based on specific criteria. Four significant 
criteria are used for flagging sites: comparison of loca-
tion using the mean or median; comparison of dispersion 
using the standard deviation of each site and IQR; com-
parison of skewness; and comparison of outliers. Test sites 
that were flagged across multiple criteria are given more 
weight than sites that were only flagged once. While this 
method worked better than visual inspection, many flags 
were raised, and these flags had to be analyzed by the test 
engineer. The method relied on single-test statistics like 
the mean or median, which may not accurately present and 
reflect the distribution of some measurement data [17]. 
Also, the method was primarily affected by other sources 
of variation, like intrinsic variations inherent in test data 
due to wafer variations.

Well-established inferential statistical tests like Analy-
sis of Variance (ANOVA) were considered. However, this 
test requires some assumptions that were not true in our 
case. It assumes that measurement data was from a normal 
distribution and had equal variance, which was not true in 
our case. Several other inferential statistical tests that do not 
make either or both assumptions, like the Kruskal-Wallis 
test, the Levene test, etc., were also investigated. However, 
these tests gave different and conflicting results, were sig-
nificantly affected by test site data size, and only provided 
information about whether an assumption was being met to 
some probability level or not.

Another approach that could be used is Principal Com-
ponent Analysis [18]. This method considers issue sites to 
be those sites whose data points cannot be faithfully recon-
structed using the principal vectors. While this may be a 
valid approach, PCA is a linear technique and may fail to 
provide meaningful solutions for cases where the error intro-
duced by the site is nonlinear in nature.

If the sites suffering from extreme site-to-site variations 
are considered outliers, then outlier detection techniques can 
be used to identify issue sites. However, this still begs the 
question of what parameters would be used for the detection. 
The mean and standard deviation do not give an accurate 
description of the data, hence the idea of comparing the 
distribution of each site to a reference distribution. Multi-site 
variations will affect the distribution of the measured param-
eters at each site, with issue sites expected to suffer more. If 
we have an expected and true distribution, comparing each 

site's distribution to that true distribution is a valid way to 
identify issue sites.

Comparing histograms of the measurements at each site is 
a way to compare the distribution of each site. One method 
employed in the comparison of histograms is the total vari-
ation distance [19, 20]. If we let S0,Qx be the discrete distri-
butions for Site0 and site x over probability space χ respec-
tively, then the total variation distance is

Measurement sites with large dTV are identified as issues 
sites. The method, however, fails to provide a boundary con-
dition for identifying issue sites.

Another distance metric is the Chi-Square distance which 
is defined as:

and the Kullback-Leibler divergence,DKL, which is a meas-
ure of how much information is lost when the distribution Qx 
is approximated as S0 . One major issue with the Chi-Square 
distance and Kullback-Leibler divergence metric is the case 
where S0(A) = 0. This case is possible because bin intervals 
used in the construction of the normalized histograms typi-
cally cover a wide range, which implies that some bins will 
be zero-valued. Theoretically speaking, this would lead to 
a value of infinity, even if this only occurs at one point. 
Such zero-valued bins may indicate issue sites, but given 
the nature of multi-site testing, such zero-valued bins may 
be tolerable and expected. If the bin intervals are defined in 
such a way as to cater to outliers, then there will be bins for 
which S0 will have a zero bin count while Qx would not. This 
would lead to infinite Kullback-Leibler divergence scores 
and Chi-square distances, even though the variations in the 
distribution may be tolerable for the particular parameter 
being tested.

Any algorithm for identifying issue sites must account 
for cases where the histograms have zero-valued bins, as 
depicted in Eq. (2). It must also provide a boundary condi-
tion and, most importantly, be robust to what is considered 
"small/tolerable" variations due to process variations in the 
wafer. It must also account for small shifts in measurement 
data from site to site.

In this paper, we introduce a way to compare the nor-
malized histogram by averaging the widths and lengths 
of the normalized histograms. The Weighted Bin Differ-
ence (WBD) assigns scores to each site on a parameter-
by-parameter basis. We derive a boundary condition that, 
when violated, indicates that the site under consideration 
is an issue site. Before introducing the proposed method in 

(1a)dTV
(
S0,Qx

)
=

1

2

∑
A∈χ

||S0(A) − Qx(A)
||

(1b)Dχ2 =
∑

A∈χ

(
S0(A) − Qx(A)

)2

S0(A)
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Section 4, we briefly review the technique used to generate 
the reference distribution.

3 � Reference Distribution Estimation (Site0)

Every measured parameter has a true and expected distribu-
tion devoid of multi-site variation. This reference distribu-
tion is essential as we compare each site's distribution to it.

Several pre-silicon circuit simulations can be used to esti-
mate die distributions. However, they do not contain man-
ufacturing uncertainties, making the use of silicon meas-
urements important. It is possible to obtain the theoretical 
distribution of parameters from simulations using Integrated 
Circuit (IC) layout schematics and fabrication parameters. 
However, this could be time-consuming, especially for a 
large number of measured specifications, and inaccurate due 
to model inaccuracies.

An assumption that most of the measurement sites 
are good and only a few are issue sites is used in [16]. In 
the paper, all the measurements by test sites are lumped 
together to form a reference distribution. However, this 
is not good enough. While this may work if only a few 
sites have issues, it will be a problem if more than one site 
has issues. Given that each site has been affected by small 
amounts of nonlinearities and noise, this approach can lead 
to a quick build-up of error.

For example, in scenarios like [21], when only one test 
site has issues, it does not affect the 3IQR limit for outlier 
detection. However, when the number of issue test sites is 
significant, it makes a lot of difference as the 3IQR limit is 
affected. This bolsters the point that lumping the measure-
ments of all sites together will not be accurate as a reference 
distribution. In Fig. 2, there are three good sites and one 
issue site. We see that if all the sites are lumped together, 
the resulting normalized histogram does not accurately rep-
resent the normalized histograms of the good sites. However, 
suppose by some algorithm, only the good sites are used in 
the generation of the reference distribution. In that case, the 
resulting estimate is a good representation of the distribution 
of the good sites. With such a reference, it will be easier to 
identify issue sites, while in the other case, issue sites may 
not be easily distinguishable.

The generation of the reference distribution in this 
paper involves first using an algorithm to identify high-
confidence good sites. High-confidence good sites refer to 
sites that suffer from minimal site-to-site variations. The 
resulting set of sites is termed Site0 [16]. In this paper, 
we employ an algorithm that uses ordinal optimization 
[22–24] and K-Means Clustering [25] for an effective and 
accurate selection of sites to form Site0. Details of the 
steps are presented in Algorithm 1.
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Fig. 2   Normalized histogram plot of three good sites, one bad site, bad 
Site0 and a good Site0. We show that lumping all the measurements of 
all dies together is not an accurate estimation of the reference distribution

In Algorithm 1, the result is Site0, which is the set of good 
sites. Before lumping all the measurements from the good 
sites together, we implement a data transformation method 
to correct for systematic errors introduced by each test site.
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It should be emphasized that Algorithm 1 is not the only 
way of identifying Site0. A simple comparison of the statistical 
properties of the sites can be used to find the most similar sites. 
However, our proposed method provides better guarantees of 
not including potential issue sites.

Let Dj
x be the volume test measurement data for site x, 

parameter j, and site x belongs to Site0. This data is trans-
formed as follows:

where σ0 and σx are the standard deviations for Site0 and site 
x, respectively, for parameter j. Similarly, μx and μ0 are the 
mean for Site0 and site x for parameter j. Since we do not 
know the true mean and variance of the various sites, we use 
unbiased estimates, which are given as:

The standard deviation and mean for Site0 are computed as 
weighted averages of the same values for each site in Site0. i.e.

where N0 is the total number of sites in Site0 of parameter j, 
yj is the data samples and Nx is the die count for each site x.

The proposed transformation method is applied to ADC 
Offset error measurements obtained from an actual multi-
site testing system. The results are presented In Fig. 3.

Figure 3 shows the boxplots for the offset error test 
measurements from a subset of sites. The figure also 
shows the Site0 boxplot obtained by just lumping the data 
together and the boxplot obtained after applying the data 
transformation method. The Site0 boxplot of the trans-
formed data does not indicate a similar high variance, has 
the same width as most sites, and is properly centered. 
This suggests that the transformation yields a reference 
distribution much closer to the ideal distribution.

In addition to the visual inspection, we adopted a sta-
tistical method to demonstrate the efficacy of the proposed 
methodology. The Kruskal-Wallis test is a non-parametric 

(2)D
j
x =

σ0

σx

(
Dj

x
− μx

)
+ μ0

(3)μx =
1

Nx

Nx∑
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∑N0

x=1
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(6)σ2
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∑N0

x=1

�
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�
σ2
x�∑N0

x=1
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�
− 1

method for testing if random samples belong to the same 
distribution [26]. Theoretically speaking, all the Site0 sites 
die test measurements after transformation must come 
from the same underlying distribution. The Kruskal Wal-
lis test tests for the null hypothesis that all the samples are 
from the same distribution and, depending on the probabil-
ity value, rejects or accepts it. The hypothesis is accepted 
if the probability value is greater than a set significance 
level. A similar test is performed on the Site0 sites die 
measurements without the transformation. Another test is 
also performed on the die measurements of all sites, which 
represents the case when all sites are lumped together, and 
the results are displayed in Table 1 and Fig. 4.

From Table 1, we see that the proposed approach yields 
the highest probability and passes the test, whiles the other 
two approaches fail. This result demonstrates the supe-
riority of our algorithm. It must be emphasized that the 
method works only if the assumption that the majority 
of the sites are good is valid. During test board design, 
engineers conduct rigorous checks to ensure that all test 
sites are good. Changes in the test site hardware may occur 
during use; hence there are periodic checks during tests to 
ensure that the test sites are behaving as expected.

4 � Proposed Weighted‑Bin Difference 
Method

The Site0 distribution serves as the reference distribution 
for the measured parameter j. We proceed to construct 
histograms for all test sites and references. We define the 
actual bin center value and the normalized bin count for 
bin m from a Site x to be bx

m
 and hx

m
 respectively. For Site0 
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Fig. 3   ADC Offset boxplot for selected sites (blue). The conventional 
approach of just lumping data together results in lots of outliers which 
leads to high variance (red) whiles our approach results in a much 
better reference distribution (black) when compared to the N sites
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this corresponds to b0
m
, h0

m
 . The same bin intervals are used 

for all sites, including Site0, therefore b0
m
= bx

m
= ym.

The idea behind the WBD method is to give a score to 
each site based on the "difference" between its normalized 
histogram and that of Site0.

where B = number of bins, μ0 = mean of Site0 and σ0 = 
standard deviation of Site0.

The choice for f(x) and g(x) is unlimited; however, the 
aim is to choose functions that make differences in the 
normalized histogram more evident and make it easier 
to identify issue sites. This point is illustrated In Fig. 5, 
which shows the distribution of Site0 and site x. Since 
these distributions are symmetric, the mean corresponds 
to the center of the curves. In this figure, two different 
points have been marked, A and B. The distance between 
point A and the center of the Site0 distribution is smaller 
when compared to that of point B. Any function, f (x), 
chosen must make these differences more pronounced, 
i.e., the small distance between A and the mean of Site0 

(9)WBD score for Site x =

B∑

m=1

f

(
ym − μ0

σ0

)
g
(
h0
m
− hx

m

)

must be made smaller, whiles the more considerable dis-
tance observed for point B must be increased further. 
The function f (x) = x2 satisfies the requirements. This 
choice also precludes the possibility of artificially gener-
ated low scores since the square of a number is always 
non-negative.

Also, the function, g(x), must differentiate between 
cases where distances to the mean are the same but nor-
malized histogram counts are different. This scenario is 
seen In Fig. 5, where points C and D are the same dis-
tance from the mean of Site0; however, their normalized 
histogram counts are different. Any function, g(x), must 
account for this and circumvent any chance of the cumu-
lative sum of the differences "artificially," resulting in a 
zero value. i.e., 2 ∗ (3 − 2) + 2 ∗ (2 − 3) = 0 , which would 
falsely imply that there are no differences between Site0 
and site x. A good choice for g(x) is x2 for the same reasons 
quoted above. Another viable choice is g(x) = |x| . From 
empirical observations, g(x) = |x| and f (x) = x2 are suit-
able choices for the WBD definition given that they satisfy 
the requirements. It should, however, be noted that these 
are not the only applicable functions, but these choices 
make the derivation of a boundary condition more math-
ematically tractable.

The resulting WBD definition is consequently given as:

From Eq. (10), an upper bound can be computed for the 
WBD score for each parameter j, and any site whose score 

(10)

WBD(x) =

B∑

m=1

(
ym − μ0

σ0

)2
|||h

0

m
− hx

m

|||

=

B∑

m=1

(
ym − μ0

)2

σ2
0

|||h
0

m
− hx

m

|||

Table 1   Table showing the Kruskal Wallis test that they are from the 
same distribution

Reference probability value

Proposed Method 0.9999
Proposed Method without transformation 0
Lump all sites 0

Source       SS         df         MS        Chi-sq   Prob>Chi-sq
-----------------------------------------------------------------
Groups   7.75462e+07      14   5.53901e+06    2.2       0.9999   
Error    7.24806e+11   20551   3.52686e+07                       
Total    7.24883e+11   20565                                     

Kruskal-Wallis ANOVA Table

Source       SS         df         MS        Chi-sq    Prob>Chi-sq
------------------------------------------------------------------
Groups   8.07934e+10      14   5.77096e+09   2292.27        0     
Error    6.44042e+11   20551   3.13387e+07                        
Total    7.24836e+11   20565                                      

Kruskal-Wallis ANOVA Table

Source       SS         df         MS        Chi-sq    Prob>Chi-sq
------------------------------------------------------------------
Groups   1.34946e+12      39   3.46016e+10   4149.43        0     
Error    1.89671e+13   62432   3.03805e+08                        
Total    2.03166e+13   62471                                      

Kruskal-Wallis ANOVA Table

Fig. 4   Summary of results from Kruskal Wallis test for the three 
approaches. The proposed method (p – value Site0) has the least Chi 
square error and the highest probability showing it passes the test 
even at high significance levels
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Fig. 5   Normalized histogram of Site0 in blue and normalized histo-
gram of Site x in orange
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is greater than this upper bound is identified as an issue site. 
The derivation of this upper bound is as follows:

where Z =
∑B

m=1

(ym−μ0)
2

σ2
0

hx
m

 and Q =
∑B

m=1

(ym−μ0)
2

σ2
0

h0
m

.

As B → ∞ and bin intervals get smaller, the summation 
term in Eq. (11) can be treated as an integral, and the Z and 
Q can be computed as follows.

A similar analysis can be done for Z.

where μx , σ2x are the true mean and variance for each site x 
measurements of parameter j. It should be noted that μ0 and 
σ0 are unbiased estimates which are computed using Eqs. 
(5) and (6). Even if all the sites follow the Site0 distribution, 
μx and σx will not necessarily equal μ0 and σ0 respectively 
and this is because of the finite number of DUTs measured 
at each site. The deviations from the desired values are, 
however, expected to fall within tolerable intervals centered 
around μ0 and σ0 . In other words, for each good Site x, we 
expect that

From the theory of hypothesis testing [27], we can then 
determine the required δ for a given significance level α . i.e.

Given that the maximum number of samples/ test meas-
urements from the sites in Site0 is NT , then we can approxi-
mate δ to be

(11)

WBD(x) =
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2
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(14)μx ∈
[
μ0 − δ, μ0 + δ

]

(15)P
(||μx − μ0

|| > δ
)
= α

where norminv refers to the inverse of the cumulative distri-
bution function of the Gaussian distribution [27].

A similar approach can be adopted for σx ; the standard 
deviation for each site x. Each σ2

x
 is treated as an estimate of 

σ2
0
 . This means that for

We can then find l and u as u = chi2inv
(
1 − α∕2,NT − 1

)
 

and l = chi2inv
(
α∕2,NT − 1

)
 where chi2inv refers to the 

inverse cumulative distribution function of the Chi-square 
random variable [27]. The smaller α is, the tighter the 
bounds. Inherent in this approach is the assumption that the 
underlying distribution is Gaussian. Whiles this is not nec-
essarily true, it is sufficient for our purposes and works no 
matter the distribution of the parameter of interest.

Consequently, we have

For any parameter j, we specify an α and compute the cor-
responding μ0, σ0 and consequently the upper bound. Any site 
whose WBD score is greater than this upper bound is identi-
fied as an issue site. It should be noted in this case that the 
bound is capped at 1. We cannot go below that which means 
reducing � beyond a specific limit provides no further benefit.

5 � Results

This section demonstrates the effectiveness of the proposed 
algorithm. We apply the proposed method to simulation data 
in Part A and real ATE volume test data in Part B.

5.1 � Results on Multi‑site Measurement Testing 
Simulation Data

A 14-bit SAR ADC is modeled in MATLAB®, and each 
ADC has been modeled to have capacitor mismatches 
which account for the unavoidable intrinsic errors one 
would expect due to process variations in the wafer. The 

(16)δ =
σ0k√
NT

, k = norminv(1 − α∕2)

(17)0 ≤ l ≤ u,P

(
NT − 1

u
σ2
0
≤ σ2

x
≤

NT − 1

l
σ2
0

)
= α

(18)μx = μ0 + δ

(19)�2
x
=

NT − 1

l
σ2
0

(20)Upper Bound = max

(
σ2
x

σ2
0

+

(
μ0 − μx

)2

σ2
0

, 1

)
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simulation setup consists of 60 sites with 200 ADCs per 
site. Measurement errors have been modeled to stem from 
noise on voltage supplies and small nonlinearities present 
in the voltage supplies. Out of the 60 sites, some of the sites 
were randomly selected to have higher noise variance and 
nonlinearity coefficients which models the typical site-to-
site variations observed in reality. We consider two param-
eters: Offset error and Gain error. We apply the algorithm 
with a significance level, α , of 0.05, which is standard in 
most statistical studies. We focus on the sites that violate 
the flagging criteria and sites with a relatively higher WBD 
score (marginally bad sites).

Test measurement data are usually visualized via box-
plots, and we follow the same approach here to display the 
results of the algorithm. We begin by looking at Offset Error.

From Fig. 6A, we see that some of the identified issue 
sites (sites in red) have a wider bar than those of the non-
issue sites. Some also display a median shift when com-
pared to Site0. In Fig. 6B, we see that these issue sites have 
a WBD score greater than that of the non-issue sites and 
bigger than the flagging or upper bound of 1. The margin-
ally bad sites also display similar characteristics but without 
violating the bounds.

We apply the QQ [16] algorithm to the same measure-
ment data, and the results are displayed In Fig. 7 for a flag-
ging boundary of 3. The boundary is then changed to 2, and 
the results are displayed In Fig. 8. In addition to the flagging 
boundary not being obvious, it is observed that the number 
of sites identified as issue sites can change drastically with 
just a small change in the boundary. This could lead to test 
engineers wrongfully pausing production tests over an issue 
that may not be severe and probably due to wafer-to-wafer 
variations.

From Fig. 9A, we realize that the issue sites, in this case, 
have the same median as the non-issue sites, but there is 
a difference in the length of the boxplot of each issue site 
compared to that of the non-issue sites. This is indicative 
of a higher spread/variance in the issue sites. The algorithm 
successfully identifies these sites, as shown In Fig. 9B. The 
sites that have been identified as marginally bad also dis-
play such long bars in comparison to Site0. The QQ scores 
are displayed In Fig. 10. Note that changing the boundary 
from 3 to 2 does not increase the number of issue sites 
identified in this case.

These two examples demonstrate our algorithm's 
strength in identifying two possible forms of variations; 
median shifts and an increase in the variance. These are 
not necessarily the only variations the algorithm can cap-
ture. It also demonstrates the robustness and consistency 
of the flagging boundary introduced in this paper.

5.2 � Results on Industry Multi‑site Volume Silicon 
Measurement Test Data

The algorithm is applied to ATE volume test measurement 
data obtained from Texas Instruments. The parameter con-
sidered is the ADC minimum integral nonlinearity, which 
has an unsymmetrical distribution. For confidentiality rea-
sons, we do not reveal the actual number of sites, but we 
present selected measurement/test sites together with Site0. 
We also cannot display the range of the measurement val-
ues. Just as was done in the case of the simulation data, we 
display the results via boxplots. The algorithm is applied to 
this dataset with α = 0.05, and the results are displayed In 
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Fig. 11A with issue sites in red, non-issue sites in blue, and 
marginal issue sites in magenta.

From Fig. 11B, we observe that the sites flagged by the 
algorithm display the most shift in the median. The marginal 
issue sites do not display any obvious variations and are only 
marginal because they have the largest scores amongst sites 
that do not violate the flagging boundary. Test engineers are 
free to further examine if these sites need extra attention but 
the results, which is further corroborated by the boxplot, 
shows there is no need for concern.

The QQ algorithm is also applied to this same set of 
measurements, and the results are displayed in Figs. 12 and 
13 for a boundary of 3 and 2, respectively.

For a boundary of 3, the QQ algorithm fails to identify 
sites 32 and 47, which are obvious issue sites, consequently 
implying them to be good enough. The boxplot In Fig. 11A 
clearly contradicts this inference. The boundary must be 
lowered to ±2 before identifying any issue sites. The QQ 
algorithm flags the first site even though, from the boxplot, 
it is not an issue site. This, however, leads to a number of 
false positives. This is clearly seen by visually comparing 
site 1 to the reference.

6 � Future Work

While important, identifying issue sites in the multi-site 
testing system for analog and mixed-signal devices is 
only the first step toward increasing the number of test 
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sites. The identified issue sites must be worked on to 
remove the site-induced errors. To the best of our knowl-
edge, only [23, 28, 29] propose a method to calibrate 
for the errors introduced by test sites during multi-site 
testing. The proposed method is run offline and has been 
shown to identify systematic errors introduced by test 
sites successfully. There is room for more novel calibra-
tion methods that can be run online. In other words, there 
is a need for methods that identify the induced systematic 
error whiles the test is being done.

Another significant problem has to do with identi-
fying the root causes of site-to-site variations. Once 
issue sites are identified, it would be beneficial to know 
which hardware variations or possibly testing schemes 
contributed to the errors introduced by these issue sites. 
This can help test engineers design better test programs 
and better inform them on how best test boards can be 
designed to minimize site-to-site variations.

All the methods discussed so far assume a smooth 
wafer pattern and no cross-wafer variation. However, 
it has been observed in [30, 31] that wafers exhibit a 
mixture of smooth and systematic stepper patterns. The 
effects of these non-smooth patterns on site-to-site vari-
ations need to be investigated. Die outlier screening is 
also a well-known problem in the semiconductor field. 
Site-to-site variations can cause false labeling of dies 
which could lead to yield loss and test escapes. There 
is, therefore, a need for an issue site-aware outlier iden-
tification algorithm.

7 � Conclusion

This paper investigates site-to-site variations inherent in 
massive multi-site testing systems and presents an algo-
rithm to identify sites that suffer from extreme site-to-site 
variations. The proposed weighted bin difference method 
detects issue sites by comparing the weighted bin scores 
for each test site to an analytically derived boundary. A 
mathematical derivation of the upper bound of the WBD 
scores is provided. A method to estimate the reference 
distribution from multi-site test data is also reviewed and 
modified. The algorithm was applied to simulation data 
and real ATE volume measurement data, and its effec-
tiveness was clearly demonstrated. Comparison of the 
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proposed method was compared to the Quantile-Quantile 
algorithm and was shown to provide superior results.

Once issue sites have been identified, testing can be 
temporarily paused to identify the source of the errors. 
Mechanical hardware calibration can be applied. Other 
proposed approaches to calibrating the measurements at 
the issue sites could also be considered [28].
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