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Abstract
Small Delay Faults (SDFs) due to weak defects and marginalities have to be distinguished from extra delays due to process 
variations, since they may form a reliability threat even if the resulting timing is within the specification. In this paper, it is 
shown that these faults can still be identified, even if the corresponding defect cell is deeply embedded into a combinational 
circuit and its observability is restricted. The results of a few delay tests at different voltages and frequencies serve as the 
input to machine learning procedures which can classify a circuit as marginal due to defects or just slow due to variations. 
Several machine learning techniques are investigated and compared with respect to accuracy, precision, and recall for dif-
ferent circuit sizes and defect scales. The classification strategies are powerful enough to sort out defective devices without 
a major impact on yield.
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1 Introduction

Resistive opens and resistive bridges result often in SDFs 
[1, 2, 3] which are hard to detect during production testing. 
Since they may evolve rather early in the circuits lifetime 
and turn into catastrophic faults, they have to be covered 
during the test of high-quality systems [4, 5, 6]. It is well 
known that testing at varying voltages and especially low 
voltage testing increase the fault coverage significantly 
[7, 8, 9, 10], and modern systems with Adaptive Voltage 
Frequency Scaling (AVFS) have all the means to support this 
test strategy [11]. However, technology scaling comes with 
the additional difficulty that circuits are subject to process 
variations, which similarly affect the timing as SDFs do. In 
both cases, the circuit behavior may be slowed down but 
stays still within the specification. Yet, a slow circuit due to 
variations may be safe whereas a slow circuit due to resistive 
weak defects may form a reliability threat. Distinguishing 
cells slow due to variations from defective cells has been the 
subject of ongoing research [10, 12–14] and [15]. A severe 

limitation of the previous works comes with the fact, that the 
defective cells are subject to variations too. In some cases, a 
defective fast cell may still be faster than a defect-free one.

Process-induced variability due to imperfect fabrica-
tion process is unavoidable and has an impact on transistor 
attributes such as length, width, and oxide thickness. Means 
such as AVFS are exploited to countermeasure the effects 
of process-induced variability, and the emerging FinFET 
technology reduces its impact to some degree, but cannot 
suppress it entirely.

The performance degradation due to variations is benign 
if the timing is within the specification, and unlike chips 
with defects, they are safe to be used.

Figure 1 shows the produced delay bins for 4000 NAND 
cell instances in 14 nm FinFET technology only with varia-
tions (green bars) and those with an additional injected open 
defect (red bars). Already a large portion of the introduced 
delays have similar sizes, which makes it difficult to deter-
mine the source of the delay.

Figure 2 shows similar histograms for a circuit including 
a NAND cell in front of a chain of 16 inverters. The over-
lapped delay bins appear for a higher number of instances 
in larger circuits. In addition, variations from other cells 
in a circuit filter some important timing information of an 
embedded cell, which is necessary for defect identification. 
Fig. 3 shows the timing behavior of two defect-free NAND 
cells which are slow (dashed-green curve) and fast (solid 
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green curve) due to variations. An instance with an injected 
open defect between NMOS transistors behaves as depicted 
by the dashed red curve. It is clear that a single measure-
ment at any voltage cannot distinguish a defective cell from 
a defect-free one, since its timing is always between two 
defect-free timing and within the specification. The paper 
at hand enhances the method presented in [16] and analyzes 
the timing behavior of circuit instances, where an embedded 
cell is targeted under different operation voltages and applies 
statistical learning schemes to distinguish defective embed-
ded cells from defect-free instances.

The main enhancements of this paper compared to [16] 
are as follows: 

1. A complete defect identification approach is explained 
and formulated starting from isolated cells towards cells 
embedded in a circuit.

2. A precise variation-aware model is considered, in 
which the transistor models are updated [17] and the 
process-induced variability values and distributions are 
obtained from the recent industrial measurements by 
Intel [18, 19]. All experiments are performed from the 
scratch using the new real industrial data. Details will 
be further discussed in Section 2.

3. The applicability of the proposed approach is evaluated 
through additional combinational benchmark circuits.

4. The new realistic variability model leads to significantly 
improved results.

We show that filtering is transparent enough to distin-
guish the defect behavior from variations by machine learn-
ing techniques. Various statistical learning schemes are 
investigated and the one based on Random Forest (RF) can 
achieve an accuracy and a precision above 0.9 even for the 
largest circuit under investigation.

The analysis in this paper consists of the four major 
phases depicted in Fig. 4. The first two phases characterize 
the delay behavior of defect-free and defective circuits and 
result in the dataset required for the machine learning phase. 
The third phase selects and applies appropriate supervised 
machine learning-based classification schemes to the gen-
erated dataset, and finally, the created classifier is able to 
identify resistive open defects, even if the defect behavior is 
within the specification of the circuit.

The rest of the article is organized as follows. The next 
section gives some overview of the state of the art for defect 
identification under varying operating conditions. Section 3 
describes some electronic fundamentals of delay faults under 
variations which will be exploited by the proposed strategy 
in this work. The challenges of defect identification under 
variations are explained in Section 4. The detailed steps 
of dataset generation by Monte Carlo Spice simulation, 
which is needed for training and validation of the machine 

Fig. 1  Delay histograms of an isolated NAND cell at nominal voltage

Fig. 2  Delay histograms of a NAND cell in front of a chain with 16 
Inverters at nominal voltage

Fig. 3  Simulated delay vs. V
dd

 for a NAND Cell
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learning-based approach are described in Section 5. The 
supervised machine learning-based classification techniques, 
as well as the validation metrics are presented in Section 6. 
Section 7 evaluates the performance of the proposed classi-
fication approach for different learning schemes and various 
cases from individual cells to embedded cells in circuits with 
different sizes. Remarks on further work and applications 
conclude the article in Section 8.

2  State of the Art

Physical weak defects such as resistive open, resistive 
bridge, and gate-oxide pinhole are considered as important 
sources of Early Life Failure (ELF), which appear as delay 
faults [20]. Delay test has been used to detect physical weak 
defects in a chip, e.g., [5, 10, 12, 15, 21–23].

Delay fault testing and the impact of operating conditions 
such as supply voltage have been investigated thoroughly in 
the past. It has been shown that reducing the supply volt-
age increases the transistor channel resistance, which results 
in an increasing electrical impact of a gate-drain (or gate-
source) resistive bridge defect, or a drain (or source) resistive 
open defect [10]. Circuit test under varying operating condi-
tions has been studied in many works such as [24, 25], which 
investigate the effect of supply voltage on the circuit delay 
and delay testing. The very-Low-Voltage test is exploited to 
detect ELF-related defects in [7, 8]. They studied the voltage 
dependence of CMOS logic circuit operation in the presence 
of physical flaws and showed that weak CMOS logic ICs can 
be forced to malfunction while truly good ICs continue to 
function at a certain much-lower-than-normal power supply 
voltage. The varying delay defect behavior at different volt-
ages has been exploited in other works as well such as [26], 
which proposed the employment of testing at more than one 
supply voltage setting to improve defect coverage.

Since process-induced variations also produce timing var-
iation in a chip, it needs to be considered in delay test [27], 
which is discussed in the concept of variation-aware test 
in [28]. The authors of [29] introduced a delay test method 
based on observing the outputs at multiple time intervals to 
detect the SDFs in the presence of variations.

As mentioned before, process-induced variation should 
be distinguished from physical weak defects [13] uses out-
put delay correlation of two logic paths, which is called 
inter-paths information to screen out SDFs and distinguish 
them from process variations. It exploits the fact that delay 
measurements for a pair of paths must agree with their inter-
path correlation. Otherwise, a defect is present in one of 
the paths. Delay test under varying voltages is exploited for 
the aim of distinguishment in [14, 21]. They use the fact 
that the relative delay contribution of an outlier transistor 
due to variations increases with decreasing Vdd , while the 
relative delay contribution of a resistive defect decreases 
with increasing Vdd . However, the investigations have been 
performed on conventional planar technology and the defect 
models lack precision in considering the variation-aware 
concept.

Machine learning-based classification to distinguish open 
defects from process-induced variations considering a more 
precise variation-aware defect model in the leading edge Fin-
FET technology has been investigated in [16, 30, 31, 32] for 
detection of weak defects in cells, interconnects, embed-
ded cells, and long paths of bigger circuits, respectively. 
However, the process-induced variability parameters in 
[16, 30, 31] consider a simplified model, which is suffi-
cient for the proof of concept, but is not based on realistic 
measurements.

The paper at hand enhances the method presented in [16] 
and investigates the classification by using various machine 
learning techniques considering a precise variation-aware 
defect model.

Root causes of process-induced variability are metal-
gate-granularity (MGG), line-edge-roughness (LER), 
which consists of fin-edge-roughness (FER) and gate-edge-
roughness (GER) [19, 33], less impact have random-dopant-
fluctuations (RDF) and oxide-thickness-variation (OTV). 
MGG determines the metal-work-function (MWF), and has 
an impact on both the sub-threshold swing as well as the 
threshold voltage, while LER mainly causes variations of 
the threshold voltage.

Unlike [16], which uses the simple free-PDK finFET tran-
sistor model, the paper at hand uses the industry-standard 
compact transistor model and process-induced variability 

Fig. 4  Creating an identifier for 
resistive open defects
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parameters based on recent industrial measurements 
obtained from Intel for FinFET 14nm technology [18]. In 
particular, [16] considered transistor length (L) and width 
(W) as the variability parameters. The paper at hand mod-
els variations by more comprehensive parameters includ-
ing transistor gate length (L), fin thickness (tfin), fin height 
(hfin), gate dielectric thickness (eot), and the impact of 
MGG on the work function of the gate ( �g ). The silicon-
validated parameter distributions accurately model process 
variation in the transistor based on industrial measurements.

3  Electronic Analysis of Delay Faults 
under Variations

According to [34], the delay �(Vdd) of a CMOS transistor can 
be roughly expressed by the following equation.

Here � denotes the delay, CL is the capacitance at the gate 
output, Vdd is the supply voltage, Vt is the transistor threshold 
voltage, � is the Sakurais index which can be taken equal to 
1 in scaled technologies, L is the transistor channel length, W 
is the transistor channel width, � is the carriers mobility, tox 
is the gate oxide thickness, and �ox is the gate oxide permit-
tivity. For a robust analysis, other environmental conditions 
such as temperature are considered to be constant.

The delay �(Vdd) under various voltages (Vdd) for two 
defect-free NAND instances, which are fast and slow due to 
variations, can be seen as the solid and dashed green curves 
respectively in the plot of Fig. 3.

Threshold voltage fluctuation is considered as the major 
source of variations in timing [35] and is the focus of this 
work. Assume, Vt is now increased by � due to process vari-
ations. By replacing Vt with Vt + � and some mathematical 
reformulations, Eq. (1) is transformed into the new delay 
function ��(Vdd) as presented in Eq. (2).

Part I of Eq. (2) shifts the solid green curve to the right by 
� , and part II scales it decreasing with Vdd . Combining this 
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results in the dashed green curve in Fig. 3, which is in fact 
observed in simulation.

On the other hand, for constant Vt , the delay of a primitive 
gate can be expressed by the usual RC model Eq. (3).

A resistive open will just increase Reff  by some �′ . The new 
delay is:

which means a resistive defect of size �′ will shift the solid 
green curve of Fig. 3 upwards by CL ∗ �� resulting in the 
dotted red curve. The simulated dotted red curve is a fast 
instance in which a resistive open is injected at the pull-
down network, as shown in Fig. 5.

A similar analysis can be performed for resistive bridges 
and gate oxide pinholes, but is beyond the scope of this paper.

Figure 3 indicates that it may be impossible to distinguish 
a slow defect-free and a fast defective cell, based just on the 
delay measurement at a single voltage. However, the shapes 
of the two functions are sufficiently different, such that delay 
measurements at only 13 different voltages allow a highly 
accurate defect classification by statistical learning methods 
as seen in Section 7.

Each of the curves in Fig. 3 represents a delay �(Vdd) , where 
the timing simulation is performed for a set Vop of voltages 
Vdd ∈ Vop . The vector

describes the measured performances for a produced chip 
c ∈ C depending on the supply voltages. Each c has specific 
variability parameters. The vectors Mc for defect-free and 
defective chips are used further to train a machine learning-
based classification technique, which is able to identify a 
defective new sample by its �c(Vdd) vector.

In this work, we use transient analysis with SPICE to 
simulate the Mc vectors. In silicon production, these data 
can be obtained by real measurements as well.

(3)� = CL ∗ (Reff )

(4)�� = CL × (Reff + ��)

(5)Mc = (�c(Vdd) ∣ Vdd ∈ Vop)

Fig. 5  A NAND-gate suffering from a resistive open defect
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4  Masking Mechanisms and Defect 
Identification

It has been discussed before that the shapes of the two func-
tions �(Vdd) for a defect-free and a defective cell may be 
sufficiently different to allow defect identification. However, 
the deeper a cell is embedded into combinational logic, the 
more its timing behavior will be blurred or even masked at 
the primary outputs.

Figure 6 shows an embedded cell under investigation, 
which can be subject to several masking effects described 
below.

– Logical masking: To detect a delay, a propagation path 
has to be sensitized. The discussion below assumes that 
only appropriate test patterns are used. ATPG is not the 
subject of this article.

– Electrical masking: CMOS is a self-restoring technol-
ogy that filters short pulses and reshapes the slopes of 
transitions. Therefore, not only the cell under investiga-
tion but also the entire propagation path has to be subject 
to analog simulation. We will model the electrical mask-
ing by using an inverter chain, and analog simulation at 
a small combinational circuit. A section of the inverter 
netlist is shown in Fig. 8 where also the location of the 
resistive open defect is marked. The output of the embed-
ded NAND cell is connected to a chain of � inverters 
and all transistors are subject to individual random varia-
tions following a Gaussian distribution N(�, �) . Figure 2 
depicts a histogram of NAND cell with a resistive defect 
of the size of 3�� and a defect-free one, both in front of a 
chain of 16 inverters where all the transistors individually 
are subject to variations according to silicon-validated 
parameter distributions [19]. The points where the red 
and green curves of Fig. 3 get close are reflected here 
as those delay bins where red and green bins overlap. 
Exactly these bins form the challenge for any classifica-
tion technique to be addressed in the next two sections.

– Timing masking: All the cells on the propagation path suf-
fer from variations, and in general the propagation time of 
a path has to be modeled by a skewed multi-variable distri-
bution [36, 37]. Since this distribution does not affect the 

output shape with respect to different voltages, it is assumed 
below that the path propagation delay follows a Gaussian 
distribution. The signal under observation has to be cap-
tured at the circuit output within a certain time window. 
Large defect sizes, which lead the circuit out of the specifi-
cation will be detected by a standard delay test and are not 
the subject of our investigations. Small delay sizes, which 
do not affect the critical path, cannot be observed by any 
means. This defines a small interval of possible defect sizes, 
which intensifies the masking impact. If the defective cell 
is embedded in a combinational circuit with some conver-
gences, all the three masking effects challenge the defect 
identification. The small benchmark circuit C17 from the 
ISCAS benchmark set [38] is used as an illustrative example 
(Fig. 6). The corresponding histogram considering various 
defect sizes from the smallest 0.5� to the largest within the 
specification of the circuit ( 3� ) are shown in Fig. 7. Here � 
is defined based on the delay distribution of the defective 
embedded cell ( �cell ). More details about the defect sizes 
are described in the following chapters. As expected, with 
the smaller defect size the overlapped delay range between 
defect-free and defective circuits is larger, and hence the 
defect identification is more challenging.

5  Data Generation

For a supervised learning scheme, the delay characterizations 
M = {Mc ∣ c ∈ C} of both defect-free and defective circuits 
have to be generated. The subset DSdf ⊂ M gets the label 
defect-free, and DSd = M ⧵ DSdf  are the characterizations of 
defective circuits and receive the corresponding defect label. 
The details of the delay characterization are described below 
first for a single cell, and then for complete circuits.

5.1  Delay Characterization of Single Cells

Cell characterization is the process of modeling and meas-
uring the characteristics of a single cell, e.g., propagation 

Fig. 6  An embedded slow cell 
in a synthetic combinational 
benchmark circuit
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delays, pin transition times, power consumption, and setup/
hold constraints. The resulting models are collected in a 
cell library to capture the delay measurements under a cer-
tain operation corner, in our case, a certain Vdd . This sec-
tion describes how the required Mc vectors are simulated 
for both defect-free and defective cells from the open cell 
library (OCL).

5.1.1  Defect‑free Cells

The machine learning procedures presented in Section 6 
need simulation results of cell instances which follow the 
variability parameters of the underlying transistors. Hence, 
the standard formats for describing cell variability as the 
Library Variation Format (LVF) cannot be used, and a large 
standard cell library is built, which consists of hundreds of  
cells of the same cell type, only with different process-
induced variability parameters.

The timing behavior of each of the cells is determined 
by SPICE simulation, with the already introduced model 
from [17].

All the mentioned variability parameters are modeled 
by a Gaussian distribution N(�, �) . The nominal values 
� are as defined in the industry-standard compact BSIM-
CMG transistor model [17]. The process to assign the 
standard deviation values � is explained in [19], in which 
the authors calibrated the values against industrial 14nm 

FinFET technology measurements from [18]. As stated 
in [19], ��g∕��g% = 0.34% with the ��g = 4.425V  for 
the nFinFET transistors and ��g = 4.7V  for the pFinFET 
transistors. The �∕�% for the remaining variability sources 
(L, tfin, hfin, eot) are set to 0.642%.

For supervised learning, a set TC of defect-free cells and 
a set FC of defective cells have to be generated. The propa-
gation delay of each cell instance is characterized for a set 
of Vdd ∈ Vop and stored as defect-free delay vectors into the 
corresponding dataset ( DSdf ).

5.1.2  Defective Cells

To allow a balanced supervised learning scheme, a set FC 
of defective cell instances has to be generated, which has 
a similar amount as the defect-free one TC. First, another 
set of defect-free instances is generated as described before, 
then a weak resistive open defect is injected into each of the 
cells. Similar to the defect-free characterization, from each 
instance c ∈ FC the same variation parameters are evalu-
ated iteratively for different voltages to generate the vector 
Mc for c.

In this work, a single resistive open defect is injected into 
the critical area of the cell, which has a relatively high prob-
ability of getting a cut. To determine the critical area of each 

(6)DSdf = {Mc ∣ c ∈ TC}

Fig. 7  Delay histograms of 
C17 combinational benchmark 
circuit at the nominal voltage 
for various defect sizes within 
the specification of the circuit. 
(DF: Defect-free Circuits, D: 
Defective Circuits)

Fig. 8  Embedded NAND cell with the resistive open defect in front of an inverter chain
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cell in the standard library, layout-based defect injection is 
performed as originally proposed as inductive fault analy-
sis [39] and later commercialized as cell-aware test [40]. 
The defect sizes are quantized and defsize contains defects 
within the acceptable performance margin. A defective cell 
is within the specified margin of that cell if its delay under 
variations is less than ��cell

+ 3��cell
 , where ��

cell
 is the nomi-

nal delay of the NAND cell, and ��cell is the standard devia-
tion due to variations. Clearly, any defect larger than this 
size is easier to identify. The resulting defective cell netlists 
( FC(defsize) ) capture the impact of the resistive open with 
the corresponding defect size in the cell.

By applying Monte-Carlo SPICE simulations, the defec-
tive netlists for each cell and each defsize are collected as a 
defective cell library. The propagation delay of each defec-
tive cell instance with a specific defect size defsize is then 
characterized for a set of Vdd ∈ Vop and stored as defect delay 
vectors into the corresponding dataset for that defect size 
( DSd(defsize)).

5.2  Chain of Inverters

In the previous subsection, we described the training and test 
dataset generation for an isolated cell. In order to investigate 
the electrical masking impact on the circuit delay ( �c(Vdd) ), 
we model a simplified combinational circuit including an 
embedded NAND cell in front of an inverter chain.

The inverter-chain is selected since it has the minimum 
number of transistors and often the highest impact of the 
variations on the delay behavior of the embedded cell. The 
parasitic elements and buffers are added to the chain to con-
sider the fanout impact as well.

Figure 8 shows the location of the resistive open defect 
based on cell-aware analysis. A resistive open defect at a 
gate input would have a somewhat higher probability. The 
experimental results in Section 7 cover both cases. The out-
put of the embedded NAND cell is connected to a chain of 
� inverters. All transistors of the NAND cell and the inverter 
chain are subject to individual random variations following 
a Gaussian distribution N(�, �) . More complex modeling 
with chains of more complex cells and even with individual 
and correlated distributions is possible [36, 37], but does 
not affect the arguments below. With this modeling, we do 
not need the complete layout of the circuit in applying the 
random variations for transistors. Correlated variations form 
often an easier case for classification, the exact analysis is 
left for further investigations.

The embedded NAND cell in the circuit is implemented 
by either a defect-free or a defective NAND to model the 

(7)
DSd(defsize) = {Mc ∣ c ∈ FC(defsize)}

defsize ∈ Defsize

defect-free (TC) and defective circuits (FC). Monte-Carlo 
SPICE simulations are performed on TC and FC while 
varying the variability parameters to create the defect-free 
dataset ( DSdf  ), and defect dataset ( DSd ) by generating the 
Mc vectors in Eqs. (6) and (7). Various chain lengths � are 
considered to investigate the filtering impact of the inverters 
on the delay propagation of the embedded cell.

If ��
emb

 is the nominal delay of the embedded NAND cell 
and ��

Inv
 is the nominal delay of each inverter, then Eq. (8) 

defines the expected delay of the entire circuit.

For the corresponding standard deviations ��emb and ��Inv 
of the cells, the standard deviation of the circuit output is 
as follows.

An inverter chain including a defective embedded NAND 
is considered within the specification if the circuit delay is 
less than ��out

+ 3��out
In summary, a large data set of modules will be generated 

for different chain lengths ( � ), where all the transistors have 
individual random delays.

5.3  Benchmark Circuits

ISCAS C17 and ITC99 b02 benchmark circuits are selected 
as case studies to evaluate the proposed approach. The size 
of these circuits is selected so that their timing behavior 
could be analyzed by commercial and open-source SPICE 
simulators [41] in less than one day of computing time on 
a general-purpose processor. If a massive-parallel SPICE 
simulator for GPUs is available, e.g. [42], even circuits of 
several magnitudes larger can be validated.

5.3.1  ISCAS C17

The circuit C17 from ISCAS benchmark set [38] is used 
as an illustrative example in this work. Figure 6 shows 
the schematic of this circuit. C17 has 5 primary inputs 
( PI1 − PI5 ), 2 primary output (PO1, PO2), and 6 NAND 
gates ( N1 − N6 ). In this experiment, the deepest gate, 
which is the N2 NAND gate, is considered as the slow 
embedded cell, and all transistors in the circuit are subject 
to variations. N2 is located in the output-cone for both 
POs, but we only analyze the behavior of output PO1. 
Observing more outputs will even improve the results fur-
ther. The Mc vectors for defect-free and defective embed-
ded NAND N2 are collected from PO1 and stored in data-
sets DS to train and validate the machine learning-based 
classifiers.

(8)��out
= ��emb

+ � ∗ ��Inv

(9)��out =
√

�2
�emb

+ � ∗ �2
�Inv
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The embedded NAND N2 is either a defect-free NAND 
cell or a defective one, which is modeled as discussed in 
Section 5.1. The rest of the cells in the circuit suffer also 
from variations, which may cause timing and electrical 
masking. To build the dataset DS, Monte-Carlo SPICE simu-
lations together with varying parameters are performed on 
the defect-free circuit instances TC as well as the circuit 
instances FC, in which the embedded NAND cell is replaced 
by a defective NAND. The Mc vectors are obtained from the 
PO1, and are divided into the defect-free ( DSdf  ), and defect 
( DSd ) datasets according to Eqs. (6) and (7), to compre-
hensively investigate the quality of the defect identification.

5.3.2  ITC'99 b02

The circuit b02 from ITC99 benchmark set [43] is a 
Finite-State Machine (FSM) that recognizes Binary Coded 
Decimal (BCD) numbers, and the combinational version 
(-c) has 5 primary inputs ( PI1 − PI5 ), 4 primary output 
( PO1 − PO4 ), and 21 standard gates (G1-G21). In this 
experiment, an embedded NAND gate (G15) is considered 
as the slow embedded cell, and all transistors in the circuit 
are subject to variations. Delay characterization of G15 
can be observed from PO4. The Mc vectors for defect-free 
and defective embedded G15 NAND cells are collected 
from PO4 and stored in the dataset. Defect-free (TC) and 
defective (FC) circuit instances are modelled similar to 
C17, and the corresponding Mc vectors are stored accord-
ing to Eqs. (6) and (7) in defect-free ( DSdf  ), and defect 
( DSd ) datasets. The merged DSdf  and DSd builds the final 
dataset, which is used to train and validate the machine 
learning-based classifiers.

Figure 9 shows a section of the benchmark circuit, 
which includes the victim NAND cell and the correspond-
ing PO4.

6  Classification by Supervised Learning

The dataset for the machine learning-based classification con-
tains the Mc vectors corresponding to Eq. (5). The process 
to collect the delay vectors of defect-free circuit instances 
(TC) and defective ones (FC) is described in Sections 4 and 5 
(Eqs. 6 and 7). DSdf  and DSd are combined to create the final 
dataset, which is used for the classifier. We use a supervised 
machine learning classifier, which means all samples in the 
training set (each row) should incorporate a label. Instances 
of the set DSdf  get the label defect-free and the ones in the 
set DSd come with the label defective in the dataset. The col-
umns (features) are the supply voltages Vdd ∈ Vop , at which 
the delays are measured. Here the set Vop has � members, 
i.e., supply voltages, and other controllable parameters such 
as temperature are constant in the created model. In this 
paper, voltage and frequency serve as features, since they 
are parameters rather easy to control and observe. Adding 
other parameters like temperature and current might improve 
the performance of the classification but would require more 
effort for implementing the measurements. They are outside 
the scope of this paper and left to further research.

6.1  Learning Schemes

The performance of three different statistical learning 
schemes is compared. The setup used for each scheme is 
described below.

– Support Vector Machines (SVM): The Support Vector 
Machine algorithm separates data points with the larg-
est margin into classes by constructing a hyper-plane 
between them. SVM is an effective supervised learn-
ing method in high dimensional spaces, and the kernel 
method is useful in implementing non-linear classifica-

Fig. 9  A section of the b02 
benchmark circuit including 
the slow NAND cell and its 
sensitized path to PO4
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tion [ 44]. In this work, the Support Vector Classifier 
(SVC) with radial basis function (RBF) [ 45] kernel is 
used. RBF kernel is a kernel function, which is suitable 
for finding a non-linear classifier.

– k -Nearest Neighbors (KNN): The k-Nearest Neighbors 
algorithm finds the distances of a new data point to the 
k-nearest data points and votes for the most frequent 
label. KNN algorithm is among the simplest and yet most 
efficient classification rules and is widely used in practice 
[ 46]. The distance is computed by the Euclidean metric.

– Random Forest (RF): The Random Forest scheme is an 
ensemble learning scheme, which deploys bootstrap aggre-
gating (bagging) of multiple decision trees, and evaluates 
the final result by majority voting. The number of trees is 
determined by the saturation of the classification accuracy. It 
may undertake dimensionality reduction methods to handle 
datasets with higher dimensionality [ 47]. A decision tree is a 
tree whose internal nodes can be taken as tests on input data 
patterns and whose leaf nodes can be taken as categories of 
these patterns [ 48]. Tree-based algorithms empower predic-
tive models and map well to non-linear relationships as well 
as imbalanced data sets. Moreover, they do not get influenced 
by outliers to a fair degree and have high execution speed 
[ 49]. The Gini coefficient is used as the decision criteria, and 
the maximum depth of the tree is set to avoid over-fitting.

6.2  Evaluation

The classification quality for the three schemes introduced 
before is evaluated with respect to the standard metrics used 
in statistical learning [50]. The attribute P of an instance 
means defect (positive), and N means no-defect (negative). 
A correct classification is true (T), otherwise false (F). The 
results of the test instances are partitioned into four groups.

• True Positive (TP): Defective instances correctly identi-
fied as defective.

• True Negative (TN): Defect-free instances correctly iden-
tified as defect-free.

• False Positive (FP): Defect-free instances wrongly clas-
sified as defective.

• False Negative (FN): Overlooked defective instances 
wrongly classified as defect-free.

Precision Precision indicates the ratio of the correctly clas-
sified instances, over all the classified instances of that class. 
Usually, different values for the class defect (D) and no-
defect (ND) are observed.

(10)PrecD ∶=
|TP|

|TP| + |FP|
,PrecND ∶=

|TN|
|TN| + |FN|

1 − PrecD gives us the ratio of false alarms from all the alarms.

Recall represents the ratio of the correctly classified 
instances in a class, over the entire class instances. Similar 
to precision, different values for the class defect (D) and no-
defect (ND) are observed.

RecallD can be considered as the defect coverage, and 
1 − RecallND relates to the unwanted yield loss.

Accuracy denotes how much of the test data are in total clas-
sified correctly. Accuracy is prone to get biased by imbal-
anced data sets. Assuming N′ as the size of the overlap test 
data, accuracy is defined as follows.

The F1-score is defined as the harmonic mean of the 
corresponding precision and recall for the defect (D) and 
no-defect (ND).

All the metrics mentioned above are applied to the three 
Machine Learning (ML) schemes. To generate a robust and 
fair evaluation, K-fold cross-validation is used [51]. The 
data set of N′ instances is partitioned into k = 10 disjoint 
randomly selected subsets. In a round-robin fashion, the 
label is removed from one subset in order to be used as 
a test set, and the union of the remaining sets is used for 
training. The metrics above are obtained as the average 
outcome of these k = 10 experiments.

7  Simulation Results

To evaluate the quality of the trained classifier, several 
experiments have been performed. In the first subsection, 
the three ML schemes are compared according to the dif-
ferent metrics mentioned in the previous section for a single 
NAND cell from OCL. The second and third subsections 
present the evaluation results for an embedded cell in an 
inverter chain with various lengths, and the b02 circuit from 
the ITC99 benchmark respectively.

The set Vop of supply voltages is defined by the interval 
[ 0.4,… , 1.0 ] with a step size of 0.05 and requires 13 meas-
urements for Fc

max
(Vdd) , for Vdd ∈ Vop . The number of gen-

erated instances (n) for each defect-free and defect dataset 
( DSdf  and DSd ) is 2000.

(11)RecallD ∶=
|TP|

|TP| + |FN|
,RecallND ∶=

|TN|
|TN| + |FP|

(12)Accuracy ∶=
|TP| + |TN|

N�

(13)

F1 − score(D,ND) ∶=
2

1∕Recall(D,ND) + 1∕Precision(D,ND)
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7.1  Defect identification for an isolated NAND cell

As described in Subsection 5.1.2, the two most critical 
defect locations are extracted from cell-aware test and a sin-
gle resistive open defect with four various defect sizes of 
3��emb , 2��emb , and 1��emb , and even 0.5��emb is injected once at 
a time such that the new delay of the defective instance ( �′ ) 
with an additional delay due to defect satisfies Eq. (14). One 
defect location is as shown in Fig. 5, and the second one is 
on the primary output.

for i = 0.5, 1, 2, 3

The delay characterization of defect-free and defective 
single NAND cells are simulated and stored in DSdf  and DSd 
respectively as described in Subsections 5.1. All three machine 
learning-based classification schemes are applied on the gener-
ated datasets, and the classification results are evaluated based 
on K-fold cross-validation, where K equals 10. The numbers 
TP, TN, FN, and FP are extracted for the dataset of each fold 
and the average of the evaluation metrics are reported for each 
classifier using Scikit-learn [52]. The classification metrics for 
an individual NAND cell can be seen in Table 1.

The classification results reported in Table 1 means for all 
three larger defect sizes of 1� , 2� , and 3� , all instances can be 
classified correctly using any of the three machine learning-
based classification schemes. We reduce the defect size to even 
0.5� , but still, all schemes can classify defect-free and defec-
tive instances with very high precision, recall, and accuracy 
between 99 to 100 percent. It should be noted that all these 
four defect sizes lead to a behavior within the specification of 
the cell. For the rest of this paper, only two smaller defect sizes 
of 1� and 0.5� , which are harder to be classified are presented.

7.2  Defect Identification for an Embedded Cell 
in an Inverter Chain

Defect-free and defective NAND cells are embedded in the 
front of a chain of inverters to analyze the masking impact 
on its timing information in combinational circuits. The 
chain has various lengths ( � ) of 2, 4, 8, and 16 to investigate 
the impact of the sensitized path depth on the defect identi-
fication of an embedded cell.

(14)��
i�
= ��cell

+ i��cell

The delay characterization of defect-free and defective 
circuit instances are simulated by Monte Carlo SPICE simu-
lation and stored in DSdf  and DSd respectively as described 
in Subsections 5.2.

Tables 2 and 3 present the evaluation metrics for the 
developed classifier based on each machine learning scheme 
for the 1� and 0.5� defect size from equations Eq. (14) 
respectively. The most left column denotes the number of 
inverters in the chain ( � ) or in other words the chain length.

The impact of the defect size from Eq. (14) on the classifica-
tion quality can be seen by comparing Tables 2 and 3, in which 
the embedded NAND cell is injected with a 1� and 0.5� defect 
size respectively. The general trend is that with increasing defect 
size the defect-free and defective instances behave more dis-
tinctly and can be easier classified. Therefore, the performance 
of all schemes is increasing further. For all larger defect sizes 
within the specification, we observed around 100% classification 
quality, which for the sake of brevity is not presented here. The 
impact of the circuit depth, which is the main cause of the tim-
ing information masking in a circuit can be observed for each 
fixed defect size, by moving from the up to the downside of 
the table. The classification results reported in both Tables 2 
and 3 show a constant decrease in the classification quality by 
increasing the circuit depth. This is due to the fact that in larger 
circuits, more cells appear on the sensitized path from the slow 
embedded cell to the observation point on the primary output. 
Each cell on the path has an additional masking impact on the 
timing information of the embedded cell, which results in filter-
ing some useful timing information from the embedded cell and 
makes the classification harder. On the other hand, Eqs. (8) and 
(9) show how the distribution of the circuit delays will change 
and gets wider deviation by having more cells in the circuit. This 
results in having a larger overlap between delay characterization 
of defect-free and defective circuits, which makes the classifica-
tion even more challenging.

7.3  Defect Identification for an Embedded Cell 
in C17 and B02 Benchmark Circuits

To investigate the additional masking impact of fan-out and 
multiple paths on the defect classification of embedded cells, 
two combinational benchmark circuits C17, and b02 from 
ISCAS and ITC99 benchmark sets are investigated.

Table 1  Classification results 
for an individual NAND cell

Schemes Defect Size Prec
D

Prec
ND

Recall
D

Recall
ND

F1 − score
D

F1 − score
ND

Accuracy

kNN 1� , 2� , 3� 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.5� 1.0 0.998 0.999 1.0 1.0 0.999 0.999

SVM 1� , 2� , 3� 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.5� 1.0 0.984 0.989 1.0 0.996 0.993 0.993

RF 1� , 2� , 3� 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.5� 1.0 0.990 0.995 0.997 0.997 0.994 0.994
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Defect-free and defective embedded NAND cells are 
placed in each circuit and its timing information is collected 
from a primary output as described in Subsections 5.3.1 and 
5.3.2. The delay characterization of defect-free and defec-
tive circuit instances are simulated by Monte Carlo SPICE 
simulation and stored in DSdf  and DSd respectively.

Tables 4 and 5 present the evaluation metrics for the 
developed classifier based on each machine learning scheme 
for the C17 and b02 circuit respectively. The most left col-
umn in each table denotes the defect size considered in the 
simulation of each circuit, which here are the two most chal-
lenging defect sizes of 1� and 0.5� from Eq. (14).

For C17, which is a smaller benchmark circuit, the 
defect size of 1� can be classified with 100% accuracy, 
and the smaller defect size of 0.5� can also be classified 
with all the metrics above 96% . The lowest metric, which 
belongs to PrecND by using SVM means 96% of all the 
instances, which are classified as defect-free are correctly 
classified and in only 4% a warning should have been given 
as defective. The similar metric for defect classification 
( PrecD ) in the same scenario, shows 99% , which means 

99% of the instances, which are classified as defective, are 
in fact defective and only 1% is a false alarm. Depending 
on the yield, this metric can also be used as reliability bin-
ning. Here, it should be considered that the experiment is 
performed with a balanced data set. In practice, the defec-
tive parts should be much less than 50% , and the portion 
of overlooked cases will be much less as well.

In b02, which is larger than C17, and has more recon-
vergences from other paths to the sensitized path of the 
slow embedded cell, we observe a lower classification 
quality. But still, all the schemes reach an accuracy sig-
nificantly larger than 98% , and all other metrics are above 
96% . The lowest RecallD belongs to 0.5� when using the 
kNN scheme. RecallD = 0.979 means that only 2% of mar-
ginal chips will pass, and RecallND = 0.998 when using 
RF denotes a yield loss of only 0.2% by sorting out correct 
chips.

It is observed that for almost all circuits and scenarios 
the best results are obtained by the RF scheme. This is due 
to the fact that tree-based classification schemes map well 
to non-linear relationships, as well as imbalanced data sets, 

Table 2  Classification results 
for an embedded NAND cell 
with defect size of 1� in an 
inverter chain

� Schemes Prec
D

Prec
ND

Recall
D

Recall
ND

F1 − score
D

F1 − score
ND

Accuracy

kNN 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 SVM 1.0 1.0 1.0 1.0 1.0 1.0 1.0

RF 1.0 1.0 1.0 1.0 1.0 1.0 1.0
kNN 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4 SVM 1.0 1.0 1.0 1.0 1.0 1.0 1.0
RF 1.0 1.0 1.0 1.0 1.0 1.0 1.0
kNN 0.995 0.98 0.973 0.998 0.984 0.988 0.985

8 SVM 0.994 0.972 0.962 0.998 0.976 0.984 0.981
RF 0.998 0.982 0.978 0.999 0.988 0.991 0.989
kNN 0.975 0.952 0.939 0.98 0.957 0.964 0.961

16 SVM 0.979 0.95 0.936 0.983 0.958 0.967 0.96
RF 0.996 0.972 0.964 0.999 0.98 0.985 0.982

Table 3  Classification results 
for an embedded NAND cell 
with defect size of 0.5� in an 
inverter chain

� Schemes Prec
D

Prec
ND

Recall
D

Recall
ND

F1 − score
D

F1 − score
ND

Accuracy

kNN 0.988 0.956 0.942 0.993 0.964 0.972 0.969
2 SVM 0.987 0.941 0.924 0.994 0.956 0.964 0.960

RF 0.980 0.957 0.941 0.986 0.962 0.971 0.965
kNN 0.987 0.950 0.958 0.984 0.973 0.967 0.969

4 SVM 0.979 0.947 0.952 0.975 0.968 0.960 0.961
RF 0.979 0.950 0.956 0.972 0.968 0.962 0.964
kNN 0.957 0.939 0.920 0.966 0.938 0.951 0.945

8 SVM 0.958 0.917 0.896 0.967 0.926 0.943 0.936
RF 0.960 0.931 0.910 0.970 0.934 0.950 0.943
kNN 0.884 0.874 0.840 0.909 0.861 0.891 0.877

16 SVM 0.910 0.785 0.697 0.942 0.787 0.857 0.828
RF 0.924 0.893 0.861 0.940 0.889 0.918 0.905
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and get less influenced by outliers. In addition, RF can boost 
the tree-based models by executing bias-variance trade-off 
analysis. It also selects the features based on classification 
scores, which enables it to handle a big set of data.

It has to be noted that only the N′ hard-to-classify 
instances, which can be seen as the overlapped range in 
Figs. 1, 2 and 7 are under investigation. Without the pro-
posed technique to distinguish defect from defect-free, this 
part of the produced chips ( N′ ) should be either completely 
removed from the final product which means a high and 
expensive yield loss, or be kept, which increases the rate 
of ELF.

The Monte Carlo simulation time to generate the Mc vec-
tors for 2000 instances of each circuit is in the order of hours 
and the run-time for training and validation with machine 
learning-based classification in Python is in the order of 
seconds.

7.4  Application Scenarios

According to the presented results, the RF scheme is able to 
identify resistive opens with high classification quality. This 
result is encouraging enough to train such an ML model on 
real silicon data for which industrial support is needed. It 
has been shown that the electrical and timing masking are 
transparent enough to convey the useful timing information 
needed for an accurate defect classification for embedded 
cells in the presence of variations.

To investigate the proposed method on larger bench-
mark circuits, dataset generation with the accurate but slow 

HSPICE simulation is not feasible. Instead, a more compre-
hensive cell characterization under various conditions can 
be exploited to speed up the process. The exact steps for a 
new gate-level netlist are as follows:

• Characteristics of the standard cells are simulated 
by SPICE Monte Carlo and stored in an extended 
cell library, in which each standard cell has multiple 
instances and each instance has unique variability 
parameter values.

• The same amount of instances for each cell type are 
simulated with different variability parameter values and 
additionally injected with a defect to build the popula-
tion of defective standard cell instances and stored in the 
extended cell library.

• The generated cell characterization library should be 
done once and can be sampled for the analysis of large 
circuits later.

• To reduce the complexity of the cell characterizations, 
methods such as [53] based on machine learning have 
been proposed, which speeds up the characterization 
process.

• Tools such as timing-aware simulation tool [54] as well 
as Static Timing Analysis (STA) [55] can randomly 
select from the already generated cell characterization 
library and use them for timing analysis and generating 
the required vectors Mc.

• During the chip manufacturing, vectors Mc can be 
obtained directly from real measurements at the speed-
binning [32] or faster-than-at-speed test [4].

Table 4  Classification results 
for an embedded NAND cell in 
C17 benchmark circuit

Defect Size Schemes Prec
D

Prec
ND

Recall
D

Recall
ND

F1 − score
D

F1 − score
ND

Accuracy

kNN 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1� SVM 1.0 0.99 1.0 1.0 1.0 1.0 1.0

RF 1.0 0.99 1.0 1.0 1.0 1.0 1.0
kNN 0.994 0.978 0.983 0.990 0.988 0.985 0.985

0.5� SVM 0.995 0.962 0.969 0.990 0.981 0.976 0.978
RF 0.995 0.980 0.987 0.992 0.990 0.988 0.988

Table 5  Classification results 
for an embedded NAND cell in 
b02 benchmark circuit

Defect Size Schemes Prec
D

Prec
ND

Recall
D

Recall
ND

F1 − score
D

F1 − score
ND

Accuracy

kNN 1.0 0.996 0.992 1.0 0.998 0.997 0.997
1� SVM 1.0 0.995 0.989 1.0 0.997 0.997 0.996

RF 0.996 0.992 0.990 0.999 0.993 0.996 0.993
kNN 0.995 0.984 0.979 0.999 0.989 0.990 0.990

0.5� SVM 1.0 0.969 1.0 0.962 0.981 0.983 0.982
RF 0.992 0.984 0.979 0.998 0.987 0.990 0.988
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8  Conclusion and Further Work

Resistive opens can be identified in a cell, even if it is deeply 
embedded into a combinational circuit and does not change 
the circuit behavior beyond the specification. A machine 
learning scheme based on Random Forest is able to classify 
these cells under variations with very high accuracy. The 
encouraging result can be used for quality screening, bin-
ning, and diagnosis with a negligible impact on the yield.
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