CORDIC-based Numerically Controlled Oscillator (NCO)

Jie Qin, Charles Stroud, Foster Dai Auburn University

Outline

- Overview of traditional NCO
- ▶ Introduction to traditional CORDIC
- Hybrid CORDIC with partial dynamic rotation and LUT
- Experimental Results

Direct Digital Synthesis

- ▶ A complete DDS consists of NCO, DAC and LPF
- NCO¹ Transform the linear phase word into a digital sin/cos word
 - M: bit-width of phase address to LUT
 - N: bit-width of the DAC
- NCO: numerically controlled oscillator

Performance Merits of DDS and NCO

- ▶ Signal-to-noise ratio (SNR): Ratio between the signal power and noise power over $(0, f_s/2)$ excluding spurs
- Signal-to-noise and distortion ratio (SINAD): Ratio between the signal power and noise power over $(0, f_s/2)$ including spurs
- Spur-free dynamic range (SFDR): Ratio between the signal power and the worst spur

SNR of NCO

- M: bit-width of the phase address to LUT
- N: bit-width of the DAC

- NCO performance depends on both M and N
 - To fully utilize the dynamic range of the DAC, M > N
 - ▶ LUT size increases exponentially as N increases

Introduction of CORDIC

- What is CORDIC?
 - ▶ An acronym for COordinate Rotation DIgital Computer
- What can CORDIC do?
 - Calculate sine, cosine, magnitude, and phase
 - using only LUT, shift and addition/subtraction operations
- How does CORDIC calculate these functions?
 - Through successive vector rotations basically
- Potential Applications in BIST
 - NCO (Numerically Controlled Oscillator)
 - BIST Calculation (square root and arctangent)

View Point of Vector

- Two forms to represent a vector
 - Polar form: $Ae^{j\theta}$
 - Cartesian form:

$$(a, b) = a + b \cdot j = A\cos\theta + j \cdot A\sin\theta$$

- Cartesian forms are used in CORDIC
- NCO: polar form to Cartesian form
 - Knowing θ , needs $cos\theta + j \cdot sin\theta$
 - Can be obtained by rotating a unit vector (1, 0) by θ
- BIST calculation: Cartesian from to polar form
 - Knowing $DC_1 + j \cdot DC_2$, needs A and θ
 - Can be obtained by rotating the vector back to x-axis

Illustration of Successive Rotation

- Achieve 65° through a series of rotations
 - The phase step θ_i every rotation takes is given that $\tan \theta_i = 2^{-i}$
 - The rotation starts from 0° whose cosine and sine are 1 and 0

Phase	Tangent
45°	1
26.565°	1/2
14.026°	1/4
7.125°	1/8
3.576°	1/16
1.790°	1/32
0.895°	1/64
0.448°	1/128
0.224°	1/256
	••

How CORDIC Performs Rotation

• Rotating a vector $e^{j\varphi i}$ by θ_i gives

$$e^{j(\phi_i + \theta_i)} = \cos(\phi_i + \theta_i) + j\sin(\phi_i + \theta_i)$$

$$= (\cos\phi_i \cos\theta_i - \sin\phi_i \sin\theta_i) + j(\sin\phi_i \cos\theta_i + \cos\phi_i \sin\theta_i)$$

$$= \cos\theta_i [(\cos\phi_i - \tan\theta_i \sin\phi_i) + j(\sin\phi_i + \tan\theta_i \cos\phi_i)]$$

▶ Rotations of θ_i are purposely chosen that $\tan \theta_i = 2^{-i}$

$$e^{j(\phi+\theta_i)} = \cos\theta_i [(\cos\phi-2^{-i}\sin\phi)+j(\sin\phi+2^{-i}\cos\phi)]$$
 Scaling factor K Bit-shift and Subtraction Bit-shift and Adder Rotation

- CORDIC algorithm only utilizes CORDIC rotation
 - Scaling factor K is discarded, thus $\frac{e^{j(\phi_i+\theta_i)}}{\cos\theta_i} = \frac{e^{j(\phi_i+\theta_i)}}{e^{j(\sum_{i=0}^{N-1}\pm\theta_i)}}$
 - Vector (1, 0), after N rotations, becomes $\frac{c}{\prod_{i=0}^{N-1} \cos \theta_i}$
 - Not a problem as long as N is same

CORDIC Rotation Stage

Pros and Cons of CORDIC

Pros of CORDIC

- No cos/sin ROM needed
- Only a small phase LUT, shifts and adders needed

Cons of CORDIC

- A number of rotations required
 - Low speed if the rotation stage is reused
 - Heavily Pipelined design for high-speed requirement
- Two solutions are proposed to reduce # of rotations
 - Partial dynamic rotation (PDR)
 - Hybrid architecture to incorporate LUT and CORDIC rotation

Phase Oscillation in CORDIC Rotation

Desired phase: 27.7°
Different between the accumulative phase and the desired phase versus number of total phase rotations

- Phase Oscillation makes slow phase convergence
 - Rotation step is fixed in each stage
 - Dynamic rotation is needed for fast phase convergence
 - Find the optimistic (closest) rotation step on-the-fly

Issues with Dynamic Rotation

Scaling factor issue for dynamic rotation

$$e^{j(\phi+\theta_i)} = \cos\theta_i [(\cos\phi-2^{-i}\sin\phi)+j(\sin\phi+2^{-i}\cos\phi)]$$
 CORDIC Rotation Scaling factor K Bit-shift and Subtraction Bit-shift and Adder

- K is ignored to eliminate the needs for multipliers
 - Not a problem for static CORDIC rotation
 - \rightarrow since all θ_i in LUT will be gone through
 - Serious issue for dynamic rotation
 - No constant amplitude for output vectors

$$\frac{e^{j(\sum_{i=0}^{N-1} \pm \theta_i)}}{\prod_{i=0}^{N-1} \cos \theta_i}$$

- Issue of hardware overhead
 - Dynamic rotation selection and programmable shifter required
 - More hardware overhead than static rotation stage

Partial Dynamic Rotation

- Partially Dynamic Rotation (PDR)
 - If θ_i small enough, no scaling factor issue since $\cos \theta_i \approx 1$.
 - ightharpoonup Static rotation for large θ_i
 - ightharpoonup Only dynamic rotation for small θ_i
 - Speed up the phase convergence
- It is safe to use PDR from 3.576° for a 12-bit NCO

Phase	Tangent	Cosine
45°	1	0.7071
26.565°	1/2	0.8944
14.026°	1/4	0.9701
7.125°	1/8	0.9923
3.576°	1/16	0.9981
1.790°	1/32	0.9995
0.895°	1/64	0.9999
0.448°	1/128	≈1
0.224°	1/256	≈1
	• • •	

Hybrid Structure

(M ¹ , N ²)	Hardware Resource	LUT	Static CORDIC	PDR CORDIC
9 and 8	# of 4-input LUTs	142	314	337
	# of DFFs	0	318	228
11 and 10	# of 4-input LUTs	508	448	464
	# of DFFs	0	451	307
13 and 12	# of 4-input LUTs	1534	590	578
	# of DFFs	0	598	466

- LUT is much more efficient when N is small
 - LUT and PDR are combined to achieve the best result
- ▶ It is hard to synthesize a LUT with wide address bus
 - 1. M: bit-width of the phase address to LUT
 - 2. N: bit-width of the DAC

Pros of Dynamic Rotation

- Converge faster, thus less # of rotations required
- Natural dithering effect in phase domain
 - Thus clean spectrum

FCW=8193

CORDIC Dynamic Rotation Stage

Architecture of PDR-CORDIC

	W	M	P	Q	N	# of Static Stages	# of PDR Stages	RC Synthesized Area (um²)
CORDIC_ATO (without Σ - Δ)	32	9	8	13	15	0	2	28,203+52,423
CORDIC_DTO	32	6	9	15	12	0	2	15,767+24,010
BTM (Two NCOs)	32							26,231+49,621

SINAD vs. FCW

- CORDIC for DTO
 - Worst SINAD
 - ▶ About 63.5dB

- CORDIC for ATO
 - Worst SINAD
 - ► About 73.4dB

SFDR vs. FCW

- CORDIC for DTO
 - Worst SFDR
 - ▶ About 66dB

- CORDIC for ATO
 - Worst SFDR
 - ▶ About 78dB

Worst-Case SFDR

2nd Worst-Case SFDR

Architecture of PDR-CORDIC with Σ - Δ

- \blacktriangleright Σ - Δ is adopted to further randomize the phase residue
 - For better spectrum performance

2^{nd} Worst-Case SFDR after $\Sigma\Delta$

Conclusion

- Hybrid CORDIC with PDR and LUT is a very strong candidate for implementing high speed and high-resolution NCO
 - Much faster convergence speed than traditional CORDIC
 - Less area overhead than traditional CORDIC
 - Comparable to BTM ROM compression technique
 - Quiet Spectrum

