CORDIC-based Numerically Controlled Oscillator (NCO)

Jie Qin, Charles Stroud, Foster Dai Auburn University

Outline

\blacktriangleright Overview of traditional NCO

- \blacktriangleright Introduction to traditional Introduction to traditional CORDIC
- Hybrid CORDIC with partial dynamic rotation and LUT
- \blacktriangleright Experimental Results

Direct Digital Synthesis

- A complete DDS consists of NCO, DAC and LPF
- \triangleright NCO¹ Transform the linear phase word into a digital sin/cos word
	- M: bit-width of phase address to LUT
	- \blacktriangleright N: bit-width of the DAC

[▶] NCO: numerically controlled oscillator

Performance Merits of DDS and NCO

- ▶ Signal-to-noise ratio (SNR): Ratio between the signal power and noise power over (0, *fs*/2) excluding spurs
- Signal-to-noise and distortion ratio (SINAD): Ratio between the signal power and noise power over (0, *fs*/2) includingspurs
- ▶ Spur-free dynamic range (SFDR): Ratio between the signal
	- power and the worst spur

D

- NCO performance depends on both M and N
	- \blacktriangleright To fully utilize the dynamic range of the DAC, M $>$ N
	- LUT size increases exponentially as N increases

Introduction of CORDIC

- What is CORDIC?
	- An acronym for COordinate Rotation DIgital Computer
- What can CORDIC do?
	- \blacktriangleright Calculate sine, cosine, magnitude, and phase
		- using only LUT, shift and addition/subtraction operations
- ▶ How does CORDIC calculate these functions?
	- \blacktriangleright Through successive vector rotations basically
- \blacktriangleright Potential Applications in BIST
	- NCO (Numerically Controlled Oscillator)
	- \blacktriangleright BIST Calculation (square root and arctangent)

View Point of Vector

Two forms to represent a vector

- Polar form: *Aej θ*
- Cartesian form:
	- $(a, b) = a + b \cdot j = Acos\theta + j \cdot Asin\theta$
- Cartesian forms are used in CORDIC

NCO: polar form to Cartesian form

- Knowing *θ*, needs *cosθ + j · sinθ*
- \blacktriangleright Can be obtained by rotating a unit \forall ector $(1, 0)$ by θ

BIST calculation: Cartesian from to
Polar form polar form

- **R** Knowing $DC_1 + j \cdot DC_2$, needs A and θ
- ▶ Can be obtained by rotating the vector \blacktriangleright back to x-axis

Illustration of Successive Rotation

▶ Achieve 65° through a series of rotations

- The phase step θ_i every rotation takes is given that tan $\theta_i = 2^{-i}$
- \blacktriangleright The rotation starts from 0 $^{\circ}$ whose cosine and sine are 1 and 0 \blacktriangleright

 $\mathsf{Accumulative\ Phase:}\quad \pmb{\Phi}\text{--}\pmb{\text{---}}\pmb{\text{---$

How CORDIC Performs Rotation

Rotating a vector $e^{j\varphi i}$ by θ_i gives

$$
e^{j(\phi_i + \theta_i)} = \cos(\phi_i + \theta_i) + j\sin(\phi_i + \theta_i)
$$

- = $(\cos \phi_i \cos \theta_i -\sin\phi_i\sin\theta_i$) + $j(\sin\phi_i\cos\theta_i + \cos\phi_i\sin\theta_i)$
- $=$ $\cos \theta_i[(\cos \phi_i \tan \theta_i \sin \phi_i) + j(\sin \phi_i + \tan \theta_i \cos \phi_i)]$
- **Rotations of** θ_i **are purposely chosen that** $tan\theta_i = 2^{-i}$

Scaling factor K Bit-shift and Subtraction Bit-shift and Adder

- \blacktriangleright CORDIC algorithm only utilizes CORDIC rotation
	- \blacktriangleright Scaling factor K is discarded, thus

$$
\overline{\cos \theta_i} \bigg|_{\mathcal{C}^{j\left(\sum_{i=0}^{N-1} \pm \theta_i\right)}}
$$

Rotation

- \blacktriangleright Vector (1, 0), after N rotations, becomes
	- $\overline{\prod_{i=0}^{N-1}\cos\theta_i}$
- \blacktriangleright Not a problem as long as N is same

Pros and Cons of CORDIC

▶ Pros of CORDIC

- ▶ No cos/sin ROM needed
- Only a small phase LUT, shifts and adders needed

▶ Cons of CORDIC

- A number of rotations required
	- \blacktriangleright Low speed if the rotation stage is reused
	- \blacktriangleright Heavily Pipelined design for high-speed requirement
- \blacktriangleright Two solutions are proposed to reduce # of rotations
	- Partial dynamic rotation (PDR)
	- Hybrid architecture to incorporate LUT and CORDIC rotation

Phase Oscillation in CORDIC Rotation

- Phase Oscillation makes slow phase convergence
	- \blacktriangleright Rotation step is fixed in each stage
	- Dynamic rotation is needed for fast phase convergence \blacktriangleright
		- \blacktriangleright Find the optimistic (closest) rotation step on-the-fly

Issues with Dynamic Rotation

\blacktriangleright Scaling factor issue for dynamic rotation

Scaling factor $K \Longleftrightarrow B$ it-shift and Subtraction Bit-shift and Adder

\blacktriangleright K is ignored to eliminate the needs for multipliers

- ▶ Not a problem for static CORDIC rotation
	- \blacktriangleright \blacktriangleright since all θ_i in LUT will be gone through
- Serious issue for dynamic rotation
	- \triangleright No constant amplitude for output vectors \blacktriangleright

- **Issue of hardware overhead**
	- Dynamic rotation selection and programmable shifter required
		- \blacktriangleright More hardware overhead than static rotation stage

Partial Dynamic Rotation

Partially Dynamic Rotation (PDR)

- \blacktriangleright If θ_i small enough, no scaling factor i ssue since $\cos\theta_i \approx 1$.
	- \blacktriangleright Static rotation for large $\theta_{\rm i}$
	- \blacktriangleright Only dynamic rotation for small $\theta_{\rm i}$
- \blacktriangleright Speed up the phase convergence
- It is safe to use PDR from 3.576°for a 12-bit NCO

…

Hybrid Structure

- \blacktriangleright LUT is much more efficient when N is small
	- ▶ LUT and PDR are combined to achieve the best result
- \blacktriangleright It is hard to synthesize a LUT with wide address bus

2. N: bit-width of the DAC

 \blacktriangleright

^{1.} M: bit-width of the phase address to LUT

Pros of Dynamic Rotation

- \blacktriangleright Converge faster, thus less $\#$ of rotations required
- \blacktriangleright Natural dithering effect in phase domain
	- **Thus clean spectrum**

CORDIC Dynamic Rotation Stage

Architecture of PDR-CORDIC

b

SINAD vs. FCW

▶ CORDIC for DTO Worst SINADAbout 63.5dB

- ▶ CORDIC for ATO
	- Worst SINAD
		- About 73.4dB

▶ CORDIC for DTO Worst SFDRAbout 66dB

- ▶ CORDIC for ATO
	- Worst SFDR
		- About 78dB

Worst-Case SFDR

Architecture of PDR-CORDIC with Σ-∆

- \triangleright Σ - \triangle is adopted to further randomize the phase residue
	- ▶ For better spectrum performance

nd Worst-Case SFDR after Σ∆

Conclusion

- \blacktriangleright Hybrid CORDIC with PDR and LUT is a very strong candidate for implementing high speed and high-resolution NCO
	- Much faster convergence speed than traditional CORDIC
	- ▶ Less area overhead than traditional CORDIC
		- \blacktriangleright Comparable to BTM ROM compression technique
	- Quiet Spectrum