

Power Reduction Through RTL Clock Gating

By
Frank Emnett and Mark Biegel

Automotive Integrated Electronics Corporation

ABSTRACT

This paper describes a design methodology for reducing ASIC power consumption through use
of the RTL clock gating feature in Synopsys Power Compiler. This feature causes inactive
clocked elements to have clock gating logic automatically inserted which reduces power
consumption on those elements to zero when the values stored by those elements are not
changing. The RTL clock gating feature allows easily configurable, automatically implemented
clock gating which allows maximal reduction in power requirements with minimal designer
involvement and no software involvement. The paper also discusses the integration of RTL clock
gating with full scan techniques, allowing designs to be both low-power and fully testable. The
methodology was proven in a 200K-gate ASIC, which implemented full scan testing and used
RTL clock gating to reduce its power consumption by two-thirds.

SNUG San Jose 2000 Power Reduction Through RTL Clock Gating 2

1.0 Introduction

This paper describes our experience with the RTL clock gating feature of Synopsys Power
Compiler. The chip in question is a specialized microcontroller peripheral ASIC designed for
performing real-time control of an internal combustion engine. The design was originally scoped
at around 60K gates with a 50mA dynamic current specification. Over the course of the program
development, features and capacity were added to the ASIC until the gate count increased to
200K gates. The technology for the design was restricted to a 0.5µm technology due to a 5 V
power supply and I/O voltage specification. The power budget for the chip could be increased to
only 100 mA without a redesign of the power supply. In addition, the chip was to be in an engine
control module mounted in the engine compartment of a vehicle, with an ambient temperature
specification of 125°C and no active cooling. The materials used in the chip packaging required
a junction temperature of no more than 150°C. The module specification required that we
assume that no heat was dissipated from the device through convection; only through conduction
through the package pins. This further limited our temperature rise above the board temperature
to approximately 10°C, which required that we dissipate no more than 500mW under normal
operating conditions. With no clock gating and limited power management on the internal dual
port RAM’s, the first pass of silicon had a dynamic IDD consumption of 280 mA, which resulted
in a junction temperature of approximately 155°C. We needed to find a way to reduce the
dynamic current consumption of the part to less than 100 mA. After investigation of possible
solutions, we settled on two approaches: active power management of the dual port RAM cells,
and use of the RTL clock gating feature in Synopsys Power Compiler.

2.0 First Steps

After receiving the dynamic IDD consumptions reports on the first pass of the design, we
performed a detailed analysis of the design’s power consumption (see Table 1). This design
incorporated seven dual ported RAM cells. These cells consume considerable power while
enabled. It turned out that one of the data ports on four of the RAM cells (which all performed a
similar function) were enabled all the time, while there were actually long periods of time during
which these ports could be disabled. Adding logic to capture the read data from these ports and
then disable the RAM when accesses were not necessary reduced dynamic IDD by 64 mA,
bringing the total dynamic IDD down to 216 mA, still far above the required value. While
searching for additional ways to reduce power consumption, we encountered the RTL Clock
Gating feature supported by Power Compiler.

COMPONENT CURRENT COMSUMPTION
Clock tree 36 mA
RAMs 64 mA
Flip-Flops 170 mA
Combinatorial
Circuitry

10 mA

Total 280 mA

Table 1 Current consumption analysis of first pass design

SNUG San Jose 2000 Power Reduction Through RTL Clock Gating 3

3.0 RTL Clock Gating

In the traditional synchronous design style used for most HDL and synthesis-based designs, the
system clock is connected to the clock pin on every flip-flop in the design. This results in three
major components of power consumption: 1) power consumed by combinatorial logic whose
values are changing on each clock edge; 2) power consumed by flip-flops (this has a non-zero
value even if the inputs to the flip-flops, and therefore, the internal state of the flip-flops, is not
changing); and 3) the power consumed by the clock buffer tree in the design. The design
controls a mechanical system (an internal combustion engine) in which control and sense signals
have data rates in the 1 KHz to 1 MHz range, far below the 32 MHz system clock speed.
Therefore, the first component of the power consumption due to combinatorial logic was by far
the smallest contributor to the total power consumption. Because of this, strategies such as gate
resizing for power reduction (also offered by Synopsys Power Compiler) were not used. On the
other hand, RTL clock gating had the potential of reducing both the power consumed by flip-
flops and the power consumed by the clock distribution network.

RTL clock gating works by identifying groups of flip-flops which share a common enable term (a
term which determines that a new value will be clocked into the flip-flops). Traditional
methodologies use this enable term to control the select on a multiplexer connected to the D port
of the flip-flop or to control the clock enable pin on a flip-flop with clock enable capabilities.
RTL clock gating uses this enable term to control a clock gating circuit which is connected to the
clock ports of all of the flip-flops with the common enable term. Therefore, if a bank of flip-
flops which share a common enable term have RTL clock gating implemented, the flip-flops will
consume zero dynamic power as long as this enable term is false. The Verilog code in Example
1 is an RTL description of a three-bit up counter.

module counter (CLK, RESET_, INC, COUNT);
input CLK;
input RESET_;
input INC;
output [2:0] COUNT;

reg [2:0] COUNT;

always @(posedge CLK or negedge RSTN)
if (~RESET_)
COUNT <= #1 3’b0;

else if (INC)
COUNT <= #1 COUNT + 1;

endmodule

Example 1 - RTL code for three-bit up counter

The counter has an asynchronous reset whenever RESET_ is asserted low, increments on every
clock cycle when INC is asserted high, and holds the old value when INC is deasserted low. We
see the traditional implementation without clock gating in Figure 1. Note that the clock is routed
directly to each of the flip-flops in the design, which means that they will be clocked
continuously, with the old data recirculated into the flip-flops through the multiplexers on the
flop inputs, when the INC input is low.

SNUG San Jose 2000 Power Reduction Through RTL Clock Gating 4

Figure 1 – Three Bit Counter Traditional Implementation

In Figure 2, the same circuit is implemented with clock gating. The circuit is similar to the
traditional implementation except that a clock gating element has been inserted into the clock
network, which causes the flip-flops to be clocked only when the INC input is high. When the
INC input is low, the flip-flops are not clocked and therefore retain the old data just as in the
original implementation. This allows the three multiplexers in front of the flip-flops to be
removed, which can result in significant area savings when wide banks of registers are being
implemented.

Figure 2 – Three Bit Counter with Clock Gating

COUNT_1

COUNT_2

COUNT_0

CLK

RESET

INC

Incrementer
Mux

Mux

Mux

COUNT_1

COUNT_2

COUNT_0

CLK

RESET

INC

Incrementer

Clock Gating
Circuit

SNUG San Jose 2000 Power Reduction Through RTL Clock Gating 5

Enabling RTL clock gating in a design requires only two modifications to the standard synthesis
flow: using the set_clock_gating_style command to select parameters for determining
when to use clock gating and the particular type of clock gating desired, and using the –
gate_clock option to the elaborate command to instantiate the clock gating circuitry.
Example 2 shows a basic synthesis script with these changes applied.

set_clock_gating_style –sequential_cell latch
-positive_edge_logic {and} –negative_edge_logic {or}

analyze counter.v
elaborate counter –gate_clock
current_design counter
/* apply necessary timing constraints */
propagate_constraints –gate_clock
compile

Example 2 - Script for Basic Clock Gating

The set_clock_gating_style command has many options. Perhaps the most important option is
the choice of latch-based or latch-free clock gating styles. The latch-free clock gating style (see
Figure 3) uses a simple AND or OR gate (depending on the edge on which flip-flops are
triggered), and imposes a requirement on the circuit that all enable signals be held constant from
the active (rising) edge of the clock until the inactive (falling) edge of the clock (see Figure 4), in
order to avoid truncating the generated clock pulse prematurely or generating multiple clock
pulses where one is required.

Figure 3 - Latch Free Clock Gating Circuit

Figure 4 - Operation of Latch Free Clock Gating Circuit

This restriction makes the latch-free clock gating style inappropriate for our single-clock flip-flop
based design. The latch-based clock gating style adds a level-sensitive latch to the design to hold
the enable signal from the active edge of the clock until the inactive edge of the clock, making it
unnecessary for the circuit to itself enforce that requirement (Figures 5). Since the latch captures
the state of the enable signal and holds it until the complete clock pulse has been generated, the
enable signal need only be stable around the rising edge of the clock, just as in the traditional
ungated design style (see Figure 6). Apart from the latch-free vs. latch-based style issue, for our
application, the defaults usually proved to be sufficient. By default, Power Compiler inserts
clock gating circuits for banks of registers with common enable terms of 3 bits or more in width.

GATED_CLK
EN

CLK

COUNT

CLK
Region of Stability

GATED_CLK

SNUG San Jose 2000 Power Reduction Through RTL Clock Gating 6

Figure 5 - Latch Based Clock Gating Circuit

Figure 6 - Operation of Latch-Based Clock Gating Circuit

4.0 Interaction of RTL Clock Gating with DFT

Due to the complexity, high volume, and high quality requirements for this automotive
application (every field return must have a full failure analysis performed on it), we elected to use
a full scan multiplexed flip-flop DFT methodology to ensure high manufacturing fault coverage.
We initially had concerns regarding the effect of RTL clock gating on the operation of scan
insertion and ATPG, as the full scan technique traditionally assumes a synchronous design style
in which all flip-flops are clocked directly from the system clock.

Power Compiler offers several options for controllability and observability enhancements to the
basic clock gating circuit to enable its use within a scan methodology. A controllability signal
which causes all flip-flops in the design to be clocked, regardless of the enable term value, can be
added to allow the scan chain to shift information normally. This signal can be ORed in with the
enable term either before (specified with the –control_point before option to the
set_clock_gating_style command) or after (-control_point after) the latch,
and can be connected to either a test mode enable signal (specified using -control_signal
test_enable) which is asserted throughout scan testing or to a scan enable signal (-
control_signal scan_enable) which is asserted only during scan shifting. The
combination of parameters –control_point before –control_signal
scan_enable provides the best testability of the clock gating circuits. A basic script using
this configuration appears in Example 3.

EN

CLK GATED_CLK

Latch

COUNT

CLK
Region of Stability

GATED_CLK

SNUG San Jose 2000 Power Reduction Through RTL Clock Gating 7

set_clock_gating_style –sequential_cell latch
–positive_edge_logic {and} –negative_edge_logic {or}
–control_point before –control_signal scan_enable

analyze hdl.v /* hdl.v needs test_se hack for v1999.05 and
previous */

elaborate top –gate_clock
current_design counter
hookup_testports /*valid only for v1999.10 and newer*/
/* apply necessary timing constraints */
propagate_constraints –gate_clock
compile –scan
/* perform check_test, scan chain routing, etc. */

Example 3 - Script for clock gating with scan insertion

The clock gating circuit constructed by using this configuration appears in Figure 7. The other
options are provided as workarounds if the test generation tool cannot handle this optimal
configuration. When using this configuration, testability is essentially the same as a design
without clock gating.

Figure 7 - Clock Gating Circuit with Optimal Scan Control Circuit

Unfortunately, for software versions 1999.05 and previous, RTL clock gating and DFT do not
coexist peacefully. When using the set_clock_gating_style options –control_signal scan_enable,
the software creates a test_se port on the design and routes it to the similarly named port on all of
the clock gating circuits. Unfortunately, when the design is specified using implicit notation for
port connections, these test_se ports are not always inserted when necessary in the instantiations
of the subdesigns which have had the test_se ports added to them. One workaround is to use
only explicit notation for port connections on instantiations. Another is to modify the input
netlist to add a test_se port connection to the port list on instantiations of subdesigns which do
not contain clock gating cells, but which contain subdesigns that do. The resulting netlist will
not be accepted by a Verilog simulator, due to these connections to non-existent ports, but is
accepted by the analyze command without complaint, and the test ports are hooked up correctly
in the end. We added these dummy port connections using a Perl script just before reading the
netlist for synthesis.

Fortunately, with software version 1999.10, the process of creating these new test signals in the
design has been completely revamped, causing the designer to make some modifications to the
synthesis scripts but allowing the use of implicit notation in HDL designs without the
workarounds noted above. The designer must now run the new hookup_testports
command to insert these test-related control signals into the design.

EN

CLK
GATED_CLK

TEST_SE

Latch

SNUG San Jose 2000 Power Reduction Through RTL Clock Gating 8

5.0 Implications of RTL Clock Gating for the Layout Flow

For layout, we used the Cadence Silicon Ensemble tools. The major effect of using RTL clock
gating on the layout flow was on the clock tree generation step. The Cadence CT-Gen tool was
able to product a clock tree including the clock gating elements introduced by RTL clock gating
without any special action on our part; however, the results were less than optimal, and hand-
tuning of the CT-Gen operation was required.

One problem is that CT-Gen, if not otherwise instructed, tends to build the clock tree using the
largest available buffers. In our technology, these buffers had 32x the normal drive capability. A
clock tree constructed of these large buffers generally had good insertion delay and skew
characteristics, but consumed much more power then necessary. Since a primary design goal was
low power consumption, we elected to manually direct CT-Gen to use smaller buffers, directing
our selection using the maximum transition times for the technology library as a guide.

Another problem with the default CT-Gen methodology is that it tended to put as much of the
buffering as possible upstream of the clock gating elements. For example, if one branch of the
clock tree was much faster than the others, a CT-Gen inserted a buffer string in front of the clock
gating element. This means that this string of buffers would consume power on every transition
of the system clock. If these buffers were placed downstream of the clock gating element, then
they would consume power only when the enable term for that clock gating element was active.
By manually editing the buffer tree produced by CT-Gen, we caused these buffer chains to be
placed after the clock gating elements whenever possible, reducing clock tree power
consumption. A side effect of this practice is that the enable terms for the clock gating elements
now have to be valid sooner, to allow the gated clock to propagate down the buffer chain after it
is enabled. This did not cause much of a problem for us, for in practice, the enable terms for the
clock gating elements had positive slack, and any timing violations introduced by this manual
clock tree buffer structuring were fixed by placement-based optimization. The timing analyzer
embedded in Synopsys allows this to be analyzed post-layout. If problems are anticipated, the –
setup option to the set_clock_gating_style command allows the designer to
anticipate the additional setup time requirement for clock gating elements during initial synthesis.

A general effect on the clock tree generation is that the introduction of clock gating elements into
the clock tree introduces some structure onto the tree which must be maintained regardless of
placement. This does make extremely low clock skew numbers difficult to attain (our worst-case
clock skews were on the order of 1.1 ns); however, once again, placement-based optimization
comes to the rescue by fixing setup and hold time violations introduced by the additional clock
skew (we allowed for the increased clock skew in the initial synthesis run, and did not fix hold
violations in Synopsys, instead allowing the placement-based optimization tool to take care of
any hold violations).

With the default clock gating structures provided by Synopsys using standard library cells, we
did have to construct two separate clock trees in order to get CT-Gen to produce good results:
one clock tree which went to the latches in the clock gating structures, and a second clock tree
which went to the AND gates in the clock gating structures. With version 1999.05, Power
Compiler allowed the use of a specialized integrated clock gating cell, which is just the standard
Synopsys clock gating circuitry contained in a single standard cell. The major advantage to us of

SNUG San Jose 2000 Power Reduction Through RTL Clock Gating 9

using the integrated clock gating cell is that since it has a single clock pin as opposed to the two
pins which are connected to the clock signal in the discrete circuit, it allowed us to halve the
number of endpoints on the clock tree for gated elements, helping us to reduce the size of the
clock tree and making low skew easier to attain. Also, in the discrete version of the clock gating
circuit, the latch element was sometimes separated from the AND gate by a significant distance.
Engineers at Intel reported success in replacing the clock gating circuits with hard macro cells
using a netlist post processing approach [KM99]. More recently, starting with software revision
1999.05, Power Compiler has added the capability to automatically use such a hard macro cell,
termed by Synopsys an integrated clock gating cell. A SNUG paper written by engineers at
STMicroelectronics [ZVB99] demonstrated successful use of the integrated clock gating cell
using this new methodology. After discussions with the authors, we asked our ASIC vendor
(coincidentally, also STMicroeletronics) to produce an integrated clock gating cell for our 0.5 µm
technology (such a cell is standard for their 0.25 µm and smaller technologies). Example 4 is a
script that uses an integrated clock gating cell.

set_clock_gating_style –sequential_cell latch
–positive_edge_logic integrated –negative_edge_logic
integrated

analyze counter.v
elaborate counter –gate_clock
current_design counter
compile

Example 4 - Script for Clock Gating Using Integrated Clock Gating Cell

Another advantage of using an integrated clock gating cell is that the clock signal integrity
checks performed by the –setup and –hold options to the set_clock_gating_style
command are specified in the cell library entry for the integrated clock gating cell, and the
designer no longer needs to specify these parameters to the command (indeed, they are ignored
when the integrated clock gating cell is used).

One issue we noted when using the integrated clock gating cell was due to our use of a bottom-
up compile methodology (based on modified versions of the long-existing compile scripts written
by Glenn Dukes [SYN98]). We discovered that if the design comprising the clock gating circuit
(created during the elaborate command and given a name starting with the string
“SNPS_CLK_GATE”) was compiled directly, the software creates a discrete implementation of
the clock gating circuit with no indication that the integrated clock gating cell specification was
ignored. Only if this circuit is left uncompiled and the design containing these clock gating
subdesigns is compiled (after issuing any necessary uniquify commands which are helpfully
pointed out by the elaborate command) is the integrated clock gating cell used.

The use of the integrated clock gating cell resulted in the elimination of 567 end points from the
clock tree (out of a total of 8824), since the AND gate pin and the latch D pin are combined in
the integrated clock gating cell.

SNUG San Jose 2000 Power Reduction Through RTL Clock Gating 10

6.0 Results

The combination of DPR power management with RTL clock gating yielded massive
improvements in current consumption, as detailed in Table 2 below.

COMPONENT CURRENT COMSUMPTION REDUCTION
Clock tree 36 mA 0%
RAMs ~0 mA ~100%
Flip-Flops 32 mA 81%
Combinatorial
Circuitry

10 mA 0%

Total 78 mA 72%
Table 2 - Current Consumption Analysis of Clock Gated Design

The total current consumption, both for the ungated design and the clock gated design, was
measured from prototype silicon. The calculation of the contributions of the different parts of the
circuit was performed manually.

RTL clock gating helped us reduce current consumption significantly, mainly in the area
consumed by the flip-flops which were being gated. Our analysis did not show a significant
improvement in clock tree power consumption, as we expected. We allocated the power
consumed in the last stage of the clock tree to the flip-flops, which

Statistics for the generated clock tree as reported by the report_clock_gating command are as
follows:

Gating elements 567
Gated registers 7310 (88.53%)
Ungated registers 947 (11.47%)

Considering that each gating element has an area of 6.33 equivalent gates in the implemented
technology, and that each multiplexer eliminated because of the clock gating circuitry has an area
of 2.33 equivalent gates, the use of clock gating resulted in a cell area savings of 13,465
equivalent gates, approximately 6.7% of the total design area.

Skew for the two clock trees remained at about 1.0ns. We made no attempt to improve beyond
this figure on the pass of the design with clock gating.

7.0 Conclusion

For this design, RTL clock gating allowed us to reduce the dynamic current consumption of a
200K-gate ASIC from 280 mA to 78 mA. Although the chip is planned to enter production for
the 2002 model year, prototypes are operational in several hundred modules installed in pre-
production vehicles. Except for the reduced power consumption, the RTL clock gating flow is
invisible to both the HDL designer and to the end user. It has a fairly minor impact on the
synthesis flow and a larger impact on the layout flow. As an added bonus, significant cell area
reduction was seen as well.

SNUG San Jose 2000 Power Reduction Through RTL Clock Gating 11

The main reason we found it necessary to use RTL clock gating for this chip was a combination
of design size increase due to feature creep without a corresponding increase in dynamic power
budget, along with the hard reality of thermal problems in the high-temperature the device was
required to work in. In other cases, we have migrated schematic-based legacy designs, which
made much use of asynchronously-clocked latches and other non-synchronous design techniques,
to an HDL and logic synthesis-based methodology. This was done for ease of future technology
migration, application of automated DFT techniques, and preparation for eventual inclusion in
SoC designs. These legacy designs historically have had low power consumption due to the non-
synchronous design techniques used in the original schematic implementation. Our customers
would not tolerate a large increase in power consumption for these circuits due to our
methodology change to a fully synchronous design style. RTL clock gating made it possible for
us to enjoy the ease-of-use and portability benefits of using a synchronous design style while
maintaining the relatively low power consumption of the non-synchronous versions of the
designs. For these reasons, the benefits of RTL clock gating, along with the ease of using it, have
made it a standard part of our design flow.

8.0 References

[KM99] Khan, Zia, and Mehta, Gaurav. Automatic Clock Gating for Power Reduction, SNUG

San Jose, 1999.
[SYN98] Synopsys Inc. Design Compiler Reference Manual: Fundamentals, Release 1998.08,

1998.
[ZVB99] Zafalon, Roberto; Veggetti, Andrea; and Burger, Roberta. New Clock Gating Feature

in Power Compiler v1999.05, SNUG San Jose, 1999.

	Power Reduction Through RTL Clock Gating
	Automotive Integrated Electronics Corporation
	
	
	Figure 6 - Operation of Latch-Based Clock Gating Circuit

	COMPONENT

