Design Factors For Using RAP In Hot Mix Asphalt

Greater Iowa Asphalt Conference March 2006

What is RAP ? <u>Recycled</u> <u>Asphalt</u> <u>Pavement</u>

Why Use RAP in HMA ?

Economics Components of RAP have value High quality aggregate Asphalt binder No (or low) hauling cost

20% RAP = 20% Savings in new asphalt binder (at \$250/ton and 5% binder = \$2.50/ton mix)

RAP in HMA Material Factors

Variability in the pavement materials

- multiple layers
- different mix designs

Age of the hot mix asphalt

Storage & management of RAP

- Classified RAP (known materials)
- Unclassified RAP (unknown materials from multiple projects stored in same stockpile)

RAP in HMA Binder Grade Selection >> Iowa Specification <<

ACTION	Percent RAP	
No Change in Binder Grade	20% or less	
One Grade Lower	>20 - 30%	
Use Blending Charts	>30%	

RAP in HMA Critical RAP Properties

Low RAP (up to 30% RAP)

- Asphalt Content of RAP
- Aggregate Gradation of RAP
- RAP Specific Gravity
- Consensus Aggregate Properties

High RAP (more than 30% RAP)
All of the above - PLUS >>
Asphalt binder physical properties

Extraction and Recovery Procedures

Extraction

- Determine asphalt content of RAP
- Determine RAP aggregate gradation
- Necessary for mix design
- Recovery
 - Determine asphalt binder physical properties
 - Necessary for blending charts
 - Required for RAP content greater than 30%

RAP in HMA The Black Rock Question Does RAP act like a black rock in the mixture?

When a chunk of RAP is added to the mix does the asphalt binder in the RAP interact (blend) with the virgin AC ?

- Case A = black rock = virgin binder with virgin aggregate plus extracted RAP aggregate.
- Case B = standard practice = virgin binder with virgin aggregate plus RAP
- Case C = total blending = virgin binder physically blended with recovered RAP binder, then added to aggregate.

If no blending: Case A = Case B If partial blending: Case A < Case B < Case C

Shear Testing

10% RAP

Cycles

40% RAP

Black Rock Research Indirect Tensile Testing

Black Rock Research Indirect Tensile Testing

Creep Stiffness at -20°C

NCHRP 9-12 Results

 Blending occurs at higher RAP contents. At low RAP contents, effects are not significant.

Results from all phases support concept of a tiered system.

NCHRP 9-12 Recommendations

- RAP mixtures should be able to perform at least as well as virgin mixes.
- RAP aggregates need to be included in consensus properties and gradations.
 Watch changes in aggregates due to extraction.
 - Exception: sand equivalent value.

Extraction and Recovery

Solvent Extraction

- ASTM D2172 -- Quantitative Extraction of Bitumen from Bituminous Paving Mixtures
 - Method A (Centrifuge) most common
 - Method B (Reflux) completely contained
 - Method E (Vacuum)
- Ignition Oven

Reflux Extraction

Obtain mix sample, determine weight, and place into two conical containers (with filters)

Reflux Extraction

- Place conical containers in cylinder
- Place cylinder with solvent on hot plate
- Seal top of cylinder with condenser unit

 Begin reflux extraction and continue until the effluent from the lower cone is a light straw color

Component Analysis of RAP

After Extraction Procedure...

 Determine the final mass of the sample and the amount of asphalt binder extracted

Asphalt Content

Use extracted aggregate for further testing

Gradation

To Determine the Physical Properties of RAP Binder

- Conducted after extraction procedure
- ASTM 1856 Recovery of Asphalt from Solution by Abson Method
- ASTM D5404 Recovery of Asphalt from Solution Using the Rotavapor Apparatus
- AASHTO TP2 Quantitative Extraction and Recovery of Asphalt Binder from Hot Mix Asphalt (HMA)

RAP in HMA Binder Grade Selection

Blending Method	A	В
Binder Grade Required by the Project	\checkmark	\checkmark
Recovered RAP Binder Properties	\checkmark	\checkmark
Percentage of RAP in Mixture	\checkmark	?
Virgin Binder Properties/Grade	?	\checkmark

Blending at a Known RAP Percentage (Virgin Binder Grade Unknown)

$$T_{virgin} = \frac{T_{blend} - (\% RAP \times T_{RAP})}{1 - \% RAP}$$

T(virgin) = Tc of virgin binder T(blend) = Tc of blended binder (desired) T(RAP) = Tc of recovered RAP binder %RAP = percentage of RAP (expressed as a decimal) RAP in HMA Blending - Method A Example Desired Final Binder Grade: PG 64-22 RAP Percentage: 30% RAP Binder Properties:

Aging	Property	Critical Temperature, C		
Original	DSR G*/sind	High	86.6	
RTFO	DSR G*/sind	High	88.7	
	DSR G*sind	Intermediate	30.5	
	BBR S	Low	- 4.5	
	BBR mvalue	Low	- 1.7	
	PG	Actual	PG 8611	
		MP1	PG 8210	

RAP in HMA **Blending Method - A** Example Desired Final Binder Grade: PG 64-22 RAP Percentage: 30% T_{blend} - (%RAP × T_{RAP}) T_{virgin} = 1 - % RAP

T_{virgin} (High) =

 $\frac{64.0 - (0.30 \times 86.6)}{(1 - 0.30)} = 54.3$

RAP in HMA Blending Charts - Method A

RAP in HMA Blending Chart - Method A

RAP in HMA Blending Chart - Method A

RAP in HMA Blending - Method A Virgin Binder Properties Required:

Aging	Property	Critical	Temperature,	С
Original	DSR G*/sm	High	54.3	
RTFO	DSR G*/sin	High	53.4	
PAV	DSR G*sià	Intermediate	22.6	
	BBR s	Low	-15.2	
	BBR mvalue	Low	-16.4	
		Actual Grade MP1 Grade	PG 54-26 PG 58-28	

From the Example:

- To achieve a final asphalt binder grade of PG 64-22...
 - Recovered RAP Binder Grade = PG 82-10
 - 30% RAP used in mixture
- ...the virgin asphalt binder needs to be PG 54-26 (PG 58-28)

Blending with a Known Virgin Binder Grade (RAP Percentage Unknown)

$$\frac{T_{blend} - T_{virgin}}{T_{RAP} - T_{virgin}}$$

T(virgin) =Tc of virgin binderT(blend) =Tc of blended binder (desired)T(RAP) =Tc of recovered RAP binder%RAP = percentage of RAP expressed as a decimal

<u>Example</u>

Desired Final Binder Grade: PG 64-22 Virgin and RAP Binder Properties:

		Critical Temperature, C		
		Temp.	Virgin	RAP
Aging	Property	Range	Binder	Binder
Original	DSR G*/sind	High	60.5	86.6
RTFO	DSR G^* sin δ	High	61.0	88.7
PAV	DSR G*sin∂	Intermediate	14.2	30.5
	BBR S	Low	-22.2	4.5
	BBR m-value	Low	-19.0	-1.7
	PG	Actual MP1	PG 60-29 PG 58-28	PG 86-11 PG 82-10

RAP in HMA Blending - Method B Example Desired Final Binder Grade: PG 64-22 Known Virgin and RAP Binder Properties

 $\frac{T_{blend} - T_{virgin}}{T_{RAP} - T_{virgin}}$ %RAP (High) = $\frac{64.0 - 60.5}{86.6 - 60.5} = 13.4\%$

Percent RAP Required to Achieve Final Blend:

			Percentage of RAP to Achieve:	
Aging	Property	Temp.	PG 6422	PG 7028
Original	DSR G*/sib	High	13.4%	36.4%
RTFO	DSR G*/sin	High	10.8%	32.5%
PAV	DSR G*sind	Internotiate	66.3%	
	BBR S	Low	57.6%	23.7%
	BBR m-value	Low	40.5%	5.8%

From the Example:

- To achieve a final asphalt binder grade of PG 64-22...
 - Recovered RAP Binder Grade = PG 86 -11
 - Virgin Binder Grade = PG 60-29 (PG 58 -28)
- ...the allowable RAP percentage is between 14% and 40%.

RAP in HMA Binder Grade Selection >> Iowa Specification <<

ACTION	Percent RAP
No Change in Binder Grade	20% or less
One Grade Lower	>20 - 30%
Use Blending Charts	>30%

Handling RAP During the Mix Design Process

RAP Heating Procedure

- 110 C (230 F) for 2 hours (max)
- Suitable for 1-2 kg batches
- Higher temperature or longer time may affect properties of some RAP

 Virgin Aggregate Heating Procedure
 Heat to 10 C above mixing temperature (typically 275 + 20 = 295 F)

RAP in HMA Practical Considerations

Mixtures with 10 to 15% RAP may become more common.
 At high RAP contents, gradation and properties of RAP aggregate may limit amount of RAP used.
 Processing or screening RAP ?

- RAP variability must be controlled to meet production tolerances.
- Binder blending methods are used for high RAP contents.
- Designs with modified binder require special attention.

