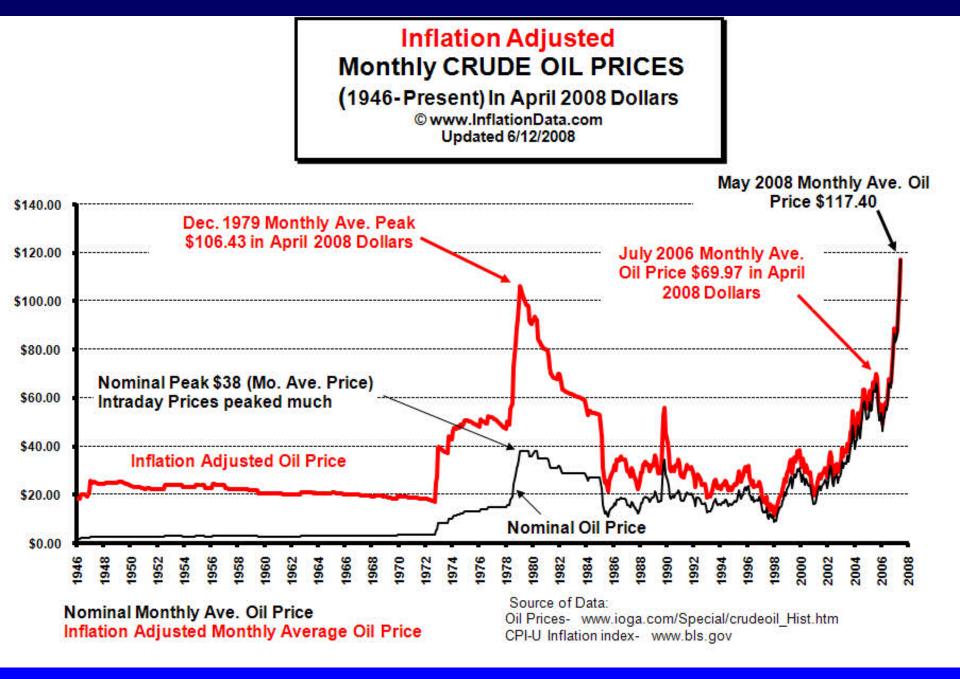
Hot Central Plant Recycling Benefits

National Center for Asphalt Technology

ectober 9. 12

2008


Introduction
Sources of Information
Pavement Design
Life Cycle Assessment
Summary

Introduction

Sources of Information Pavement Design Life Cycle Assessment Summary

Historical Perspective

Concerns	1970's	2000's
Price of Asphalt Binder	X	X
Availability of Asphalt Binder	X	X
Limited Funds Available	X	X
Environmental Concerns	X	X
Energy Concerns	X	X
Inflation	X	

Year		Material			
	Crude Oil, \$/bbl	Asphalt Binder, \$/ton	HMA, \$/ton		
1970	3.39	20.00	8.04		
1980	37.42	160.00	25.29		
1990	23.19	142.00	24.52		
2000	27.39	200.00	35.15		
2005	50.04	232.00	45.56		
2008	120.00?	650.00?	80.00?		

Products of the 1970's

- Development and use of cold milling machines
- Popularization of reclaimed asphalt pavement (RAP) in hot mix asphalt (HMA)
- RAP processing
- Introduction of drum mix plant
- Vibratory roller
- Pavement Management Programs

Recycling Benefits

Conservation

- Materials (aggregate and asphalt binder)
- Energy (burner fuel, trucking, etc.)

Preservation of environment

- Landfill
- Green house gases (global warming)
- Sustainability

Economics

- Reduce first and life cycle cost
- Complete reconstruction vs. alternative methods
- Increased contractor competition

Objectives

Analyze benefits of Reclaimed Asphalt Pavement

Analysis metrics

- Energy
- Emissions (CO₂, CO, NO_x, SO₂ and PM-10)

Resource conservation

Price of construction, maintenance and rehab

Introduction
Sources of Information
Pavement Design
Life Cycle Assessment
Summary

Information Sources

	NCHRP 214	Colas Group	PaLATE	Contractor Data	DOT Data
	1980	2003	2003	2007	2004-2007
Energy Consumption	X	X	X		
Emissions Generation			X		
Conservation of Resources				X	
Price of Construction				X	X

Energy Consumption - Btu/sq yd-in

Operations	Rep. Range	Rep. Value
Cold Milling Asphalt Pavement	1,000 – 2,500	1,800
HMA Paving – 0% RAP	27,000 – 34,000	30,000
15% RAP in HMA	27,900	27,900
25% RAP in HMA	26,600	26,600
50% RAP in HMA	23,100	23,100

Emissions Generation - Ib/sq yd-in

Operations	CO_2	
Cold Milling Asphalt Pavement	Total	0.609
	Materials	10.551
HMA Paving - 0% RAP	Equip & Trucking	0.540
	Total	11.091
15% RAP in HMA	Materials	9.544
25% RAP in HMA	Materials	8.873
50% RAP in HMA	Materials	7.194

Note: Emissions for CO, NO_x, SO₂ and PM-10 were also estimated

Conservation of Natural Resources

Engineering assumptions are necessary RAP

- 4-percent asphalt binder
- 96-percent aggregate

Price of Construction - \$/sq yd-in*

	Cold Milling Asphalt	
Operations	Pavement	Hot Mix Asphalt
California		4.75
Colorado		2.85
Indiana	0.35	2.65
New Hampshire		3.43
New York		3.71
Texas	0.40	3.07
Utah	0.38	3.55
Washington	0.54	3.30
Wyoming	0.31	
Contractor	0.62	3.84
Rep. Range	0.30 - 0.60	2.60 - 3.90
Rep. Value	0.45	3.25

Why Use RAP in HMA

Assumptions:

- Asphalt binder price: \$650/ton
- Aggregate price: \$7/ton
- Asphalt content: 4-percent
- RAP processing, stockpiling and handling cost:
 \$6/ton

Value of R	AP	Cost, \$/ton	Savings, \$/ton	Savings, %
	0% RAP	52.37	-	-
HMA	15% RAP	48.36	4.01	7.66
	25% RAP	45.69	6.68	12.76
	50% RAP	39.01	13.36	25.51
Aggragato	0% RAP	7.00	-	-
Aggregate Base	50% RAP	6.50	0.50	7.14
Dase	100% RAP	6.00	1.00	14.29

Alternative RAP Uses

Shoulder backing

- Material removed from roadway
- Material pushed up to roadway shoulder when construction finished
- Value = eliminates transportation + cost conventional shoulder material
- Credit to City/County
 - DOT gives to City/County for transportation programs
 - Value = cost of dust palliative + transportation savings

Introduction
 Sources of Information
 Pavement Design
 Life Cycle Assessment
 Summary

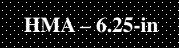
High Traffic Volume Roadway

Pavement Structure - Materials Alternatives

Conventional Agg Base – 13-in

Subgrade – M_r 8,000psi (CBR ~5) **Rehabilitation** Mill & Fill 2-in Overlay 2.5-in

Maintenance Crack Seal **Years of Rehab** 14 / 23 / 32


Years of Maintenance 7 / 11 / 19 / 28 / 37

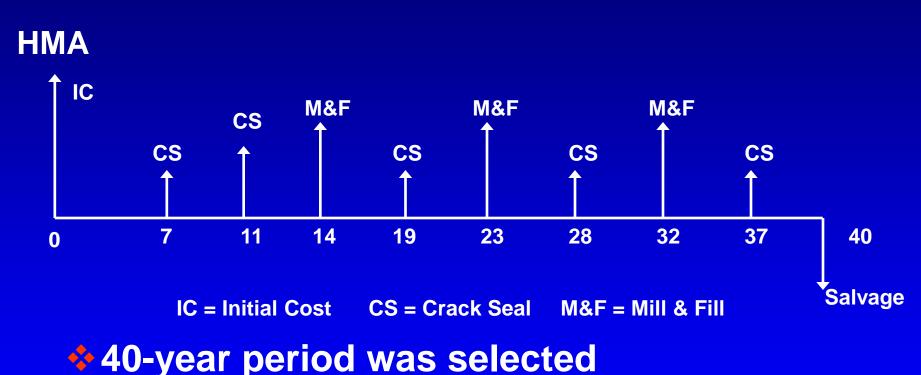
High Traffic Volume – 20M ESALs

Low Traffic Volume Roadway

Pavement Structure - Materials Alternatives

Conventional Agg Base – 9.25-in

Subgrade – M_r 8,000psi (CBR ~5) **Rehabilitation** Mill & Fill 2-in Overlay 1.5-in


Maintenance Crack Seal **Years of Rehab** 14 / 23 / 32

Years of Maintenance 7 / 11 / 19 / 28 / 37

Low Traffic Volume – 1M ESALs

Introduction
Sources of Information
Pavement Design
Life Cycle Assessment
Summary

Life Cycle Assessment Format

4-percent discount rate – inflation free rate

LCA Spreadsheet

Granite West Recycling Group document
Deterministic and Probabilistic Analyses
Outputs

Energy consumption
Emissions generation
Natural resource consumption
Price of construction

Value of Recycling - Percent Savings Relative to Conventional Materials - Initial Construction*

	15% RAP in HMA	25% RAP in HMA	50% RAP in HMA
Energy, BTU	5	8	16
AC Consumed, tons	12	19	39
Aggregate Consumed, tons	6	10	22
Price, \$	3	5	11
CO ₂ , lb	7	12	25

Value of Recycling - Percent Savings R<u>elative to Conventional Materials - LCA</u>*

	15% RAP in HMA	25% RAP in HMA	50% RAP in HMA
Energy, BTU	6	10	21
AC Consumed, tons	12	19	39
Aggregate Consumed, tons	8	13	31
Price, \$	4	6	13
CO ₂ , lb	9	15	30

Introduction
Sources of Information
Pavement Design
Life Cycle Assessment
LCA Results
Summary

Recycling Benefits

Conservation

- Materials (aggregate and asphalt binder)
- Energy (burner fuel, trucking, etc.)

Preservation of environment

- Landfill
- Green house gases (global warming)
- Sustainability

Economics

- Reduce first and life cycle cost
- Complete reconstruction vs. alternative methods
- Increased contractor competition

Impact on the US

	Annual Consumption/ Production	Estimated Annual Savings		
	Troduction	15% RAP	25% RAP	50% RAP
Asphalt Binder, tons	29M	3.5M	5.5M	11.3M
Aggregate, tons	521M	31.2M	52.1M	114.6M
HMA Price, \$	44B	1.3B	2.2B	4.8B
Energy, 10 ¹² Btu*	300	15	24	48
CO ₂ , tons	55.5M	3.9M	6.7M	13.9M

*Annual Energy Consumption is 100x10¹⁵-Btu

