# Maximizing RAPUse







#### **Rutting Often Occurs in Older Overlay Pavements**



#### Milling and Inlays Prevent Re-Rutting





#### End of Load Segregation



#### **Rock Quarry**

# Barriers to increasing the use of more Recycle

- Meeting voids & asphalt content with Superpave Mix Design
- Meeting skid requirements
- Hardness of asphalt with high RAP need to use softer virgin asphalt cement...fatigue cracking
- Special mixes like SMA
- Limit RAP to 15% when polymers are used

# Meeting Superpave Mix Design requirements

Controlling Air Voids and Asphalt Content = Controlling Segregation



### **BATCH PLANT** ONE BIN COLD FEED





### **BATCH PLANT** FOUR BIN COLD FEED





#### **Full-Lane Milling Machine**



#### RAP Pile With 1/2" Minus to 3/4" Minus Aggregate



#### 1980-1990's HMA Facility with Single RAP Bin



# SUPERPAVE MIX WITH 1/2 RAP





# 1/2 x 4 4% AC



### **Surface Area**

- 1 lb. of  $\frac{3}{8}$ " Aggregate = 1 sq. ft. - 1 lb. of -200 mesh = 150 sq. ft.

# Liquid Asphalt coats Surface Area







#### PROCESSED RAP SCREENED TO ORIGINAL INGREDIENTS











## **SUPERPAVE MIX** with processed RAP - CHOICE #2

# Use of RAP for High Traffic Surface Mixes

- Is RAP made from skid resistance aggregate?
  - Yes! No problem
  - No! By fractionating RAP the minus 1/4", it can be used in any mix since aggregates finer than 1/4" do not effect skid numbers



### **SUPERPAVE MIX** with processed rap - choice #1

# Changing the grade of liquid when RAP increases...WHY?

- To obtain density in mix
- "Is this beneficial or necessary?" Perception has been that it is necessary to extend pavement life



# With Warm Mix (hot foam), we can achieve density without changing grades at 50% RAP

**Foam Liquid Asphalt** How much water? 1 ton mix - 2,000 lb.20 cu ft. (25% void or 5 cu. ft.) 5.3% liquid – 106 lb. Volume of liquid – 1.63 cu. ft. 1 lb.  $H_2O$  when converted to steam = 30 cu. ft. Expansion -  $\frac{30}{1.63} = 18$ 

However only room for 5 cu. ft.

Therefore only 1/6 lb. of H<sub>2</sub>O ends up in foam

#### AFTER COMPACTIONS Air voids = 5% or 1 cu. ft.

Therefore only 1/30 lb. of H<sub>2</sub>O remains in liquid

#### NOZZLE VALVE **NOZZLE VALVE** ADJUSTABLE ADJUSTABLE CLOSED **OPEN** JET JET AC MANIFOLD AC MANIFOLD T WATER IN WATER IN WATER WATER PASSAGE PASSAGE WATER WATER 360° PASSAGE PASSAGE **4 POINTS** BOILING BOILING CHAMBER CHAMBER SPRAY NOZZLE SPRAY NOZZLE FOAM NOZZLE CLOSED FOAM NOZZLE OPEN **FOAM NOZZLE**






### **COATING THICKNESS**

### VISCOSITY / TEMPERATURE PG 64 -22 (Approx.)





VISCOSITY / TEMPERATURE PG 64 -22 (Approx.)

### No Smoke – No Smell...Why?

- Light oils are either put in asphalt or left in asphalt during refining
- These light oils boil at above 285°F
- By mixing at below 285°F, the boiling point is never reached...eliminating smoke (vapor) and corresponding smell



### High Percentage Recycle Mix with Standard Grade of Asphalt

- To achieve compaction (density)...run 275°F and foam virgin liquid
- By using a standard liquid 64-22, you produce a much softer product than with virgin mix due to:
  - Lower temperature results in less
    oxidation
  - Light oil remains in liquid
  - Steam produced from drying the RAP creates an inert atmosphere



#### **RAP GENERATES STEAM IN OUTER DRUM**

# What AC hardness do we really need?

### - France

uses 30/50 penetration (76 or 82-22) in virgin mix and the same in 50% RAP

### – Sweden

uses 70/100 penetration (64-22) in both virgin and 50% RAP

### Is Changing a Grade Beneficial?

### 1983 Florida DOT Test on Asphalt Hardness

#### **Batch Plant Produced Mixes**

#### Long Range Effect on Rutting

|           | Section 3 (High Light Ends) | Section 7 (Steam Distilled) |  |
|-----------|-----------------------------|-----------------------------|--|
|           | Viscosity - 2000*           | Viscosity - 4000*           |  |
| Date      | Rutting (in.)               | Rutting (in.)               |  |
| 12/27/84  | 0.00                        | 0.00                        |  |
| 03/19/85  | 0.04                        | 0.00                        |  |
| 08/06/85  | 0.03                        | 0.00                        |  |
| 09/27/85  | 0.06                        | 0.00                        |  |
| 12/03/85  | 0.06                        | 0.03                        |  |
| 12/22/86  | 0.08                        | 0.07                        |  |
| 11/30/88  | 0.14                        | 0.06                        |  |
| 02/28/91  | 0.35                        | 0.16                        |  |
| 12/24/92  | 0.46                        | 0.15                        |  |
| 01/26/95  | 0.60                        | 0.18                        |  |
| 03/22/99  | 0.60                        | 0.27                        |  |
| ong Range | Effect on Cracking          |                             |  |
| Date      | Cracking sq. ft./1,000 ft.* | Cracking sq. ft./1,000 ft.* |  |
| 12/27/84  | 0.0                         | 0.0                         |  |
| 03/19/85  | 0.0                         | 0.0                         |  |
| 08/06/85  | 0.0                         | 0.0                         |  |
| 09/27/85  | 0.0                         | 0.0                         |  |
| 12/03/85  | 0.0                         | 0.0                         |  |
| 12/22/86  | 3.0                         | 2.5                         |  |
| 11/30/88  | 2.0                         | 1.6                         |  |
| 02/28/91  | 61.1                        | 2.0                         |  |
| 12/24/92  | 49.0                        | 1.1                         |  |
| 01/26/95  | 175.6                       | 38.6                        |  |
| 03/22/99  | 120.2                       | 207.5                       |  |

\* In each inspection period - 1,000 ft. of the 4,000 ft. test sections were analyzed. Each time the same 1,000 ft. was not analyzed; therefore, the overall average results are more meaningful.

# Will high RAP in surface mix effect the Life of the Pavement?

### Yes...It will

- Reduce rutting and
- Give at least as long life in fatigue



# Can RAP be used in SMA mixes?



### SUPERPACE MIX with processed RAP - CHOICE #3

### Should the RAP be limited to no more than 15% when using Polymers?



### RAP STUDY MATS











### Rutting Performance @ 9.0M ESALs



Virgin and RAP Mixtures



# Substitute 50% RAP for 4% polymers can achieve practically the same results

### Benefits of High RAP & Warm Mix



### For the Producer/Contractor

- Improved Workability
- No Smoke No Smell
- High Percentage Recycle Mix with Standard Grade of Asphalt
- 14% Less Fuel
- 14% Higher Production
- Reduces Cost



#### For the Worker

Comfort & Safety



### For the DOT/Public

- Comfort & Safety of workers
- Improve Mixes

## Why will we have a Longer Life Pavement?

- Less oxidation of mix
- More uniformity of compaction
- With fractionating RAP...more uniform

#### Longer Life



VIRGIN AGGREGATE HARDER LIQUID TRANSFERRED FROM RAP PREVENTS STRIPPING NEW HOT FOAM AC HELPS DURABILITY

### **Moisture Susceptibility**

| Mix Type         | Average Air<br>Void Content<br>Dry (%) | Dry Indirect<br>Tensile Strength<br>(kPa) | Average Air<br>Void Content<br>Conditioned<br>(%) | Conditioned<br>Indirect Tensile<br>Strength (kPa) | Tensile Strength<br>Ratio (%) |
|------------------|----------------------------------------|-------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------|
| Virgin           | 7.2                                    | 806.7                                     | 7.2                                               | 625.2                                             | 77.5                          |
| 15% RAP          | 6.5                                    | 878.1                                     | 6.5                                               | 769.5                                             | 87.9                          |
| 15% RAP / 5% MSM | 6.8                                    | 985.1                                     | 6.5                                               | 818.6                                             | 83.1                          |
| 50% RAP          | 7.2                                    | 1166.2                                    | 7.1                                               | 1124.7                                            | 96.4                          |

#### -ASHTO T-283

LAFARGE

- Aggregate temperatures >200°C
- -Aggregate moisture contents 0.04% 0.1%
- •Mix moisture contents <0.1%</p>



#### For the DOT/Public

- Comfort & Safety of workers
- Improve mixes
- Sustainability

### Why Sustainability?

- By Milling & Recycling 100% of the material can be re-used
- Reduce new aggregate requirement by 245,000,000 tons/year...annually (from 15% to 50%)
- Reduce oil consumption by 80,000,000
  bbl/year...approximately 7 days of
  imported oil



#### For the DOT/Public

- Comfort & Safety of workers
- Improve mixes
- Sustainability
- Green

### It's Green!

- Use 14% less fuel due to 50°F lower temperature
- No volatiles
- Use more recycle



#### For the DOT/Public

- Comfort & Safety of workers
- Improve mixes
- Sustainability
- Green
- Reduce Cost



30,000 Tons of RAP

#### 0-0-0 0-0-0-0-0-0-0-0-0 0-10-00 00-10-00 0-01-00 0-10-00 0-0-00-00-00-00-00-00-00-00 0-10-00 0 0 0 0 0 0 0 0 0 0 0 0-01-00 0-01-00 0 00-10 0 00-10 0 00-10 0- 01 0-0-0-0 00-0-0 00-0-00-0 0-0-0-00 00-0-00 00-0-00 00-00-00 0- 01- 11 0-0-0-00 00-00-00 0-00-00-00 0- 01-0-10-00 00-10-0 00-10-0 00-10-0 0-01-00 0-0-00-00-00-00-00-00-00-00-00-00 0- 0- 00

#### 70 - 6,000 Gallon Transport Trailers and 28,200 Tons of Clean Aggregate



#### **RAP is Worth the Virgin Material It Replaces**

### **BID**: \$5,000,000.00

| Aggregate<br>AC @ 600. <sup>00</sup> | \$ 15. <sup>00</sup>        |
|--------------------------------------|-----------------------------|
| x 0.55                               | <b>33.</b> <sup>00</sup>    |
|                                      | \$ 48. <sup>00</sup>        |
| Plant Cost                           | \$ 10. <sup>00</sup>        |
| Trucking                             | <b>4.</b> <sup>00</sup>     |
| Laydown                              | <u>3.<sup>00</sup></u>      |
|                                      | \$ 17. <u>00</u>            |
| <b>Overhead &amp; Profit</b>         | <u>6.<sup>00</sup></u>      |
|                                      | <b>23.</b> <sup>00</sup>    |
|                                      | <b>\$ 71.00</b> Price / ton |
| Tons = \$5,000,000.00                | p = 70,422 tons Agg. tons = |
| \$71. <sup>00</sup>                  |                             |



66,549 tons

When paying 50% of the value of RAP less Milling, Trucking and Processing Cost

| Milling    | \$ 3. <sup>00</sup> /ton |
|------------|--------------------------|
| Trucking   | 3. <sup>00</sup> / ton   |
| Processing | <u>3.00</u> /ton         |
|            | \$ 9. <sup>00</sup> /ton |

Tons =  $\frac{$5,000,000^{00}}{0.5(48^{00}) + 0.5(9^{00}) + 23^{00}} = 97,087 + 38\%$ 

- Plus 48,543 tons at \$9.00 / ton cost of RAP left over to use in other mix
- Tons of stone used 45,873
- If RAP is used at 50% on other jobs and an additional 45,873 tons of stone will be used...Total stone used 91,946 tons


## What we have done to date

- Installed over 100 units to create hot foam mechanically
- Produced between 1 and 2 million tons from 30 to 50% RAP with warm mix
- Stored in silo for 4 days
- Produced 76-22 (Polymers) and placed at 270°F
- Produced rubber mix at 270°F

## What we have done to date

## Demonstration Projects

- North Carolina
- South Carolina
- Tennessee x 4
- Alabama
- Texas
- Arkansas
- California
- Kentucky

- British Columbia
- Ohio x 2
- Illinois
- Maryland
- Louisiana
- Florida x 2
- Massachusetts

## **Conclusions:**

- 1. HMA is 100% Recyclable
- 2. Milling corrects road profile, corrects drainage, eliminates raising shoulders and guardrails, and maintains bridge clearances...and generates RAP
- 3. By fractionating RAP and using Warm Mix (hot foam) with 50% RAP, it will produce a rut resistant, longer life pavement. It can be produced with a standard grade of AC. Density can be achieved with one less roller and centerline joint density is substantially improved
- 4. More miles can be paved at substantially less cost
- 5. Greenhouse emissions and imported oil are greatly reduced