

Utilization of Post Consumer Shingles in Asphalt Mixtures

R. Christopher Williams Ross Bentsen Andrew Cascione December 8, 2009

Presentation Outline

Introduction Federal requirements Source material properties Mix design & properties Ongoing Research National Pooled Fund Study - Illinois Tollway Concluding thoughts

Introduction

Asphalt shingles Manufacturing scrap Post consumer 60% of shingle sales are due to storm damage Asphalt shingles have multiple beneficial components for use in asphalt mixtures - Asphalt, Aggregate, Fibers, & Limestone filler

23 CFR Section 637B

Quality Assurance Procedures for Construction

637.201 Purpose.

To prescribe policies, procedures, and guidelines to assure the quality of materials and construction in all Federal-aid highway projects on the National Highway System

- 637.203 Definitions.
- 637.205 Policy.
- 637.207 Quality assurance program.
- 637.209 Laboratory and sampling and testing personnel qualifications.

Product Quality Characteristics

Source material- recycled shingles

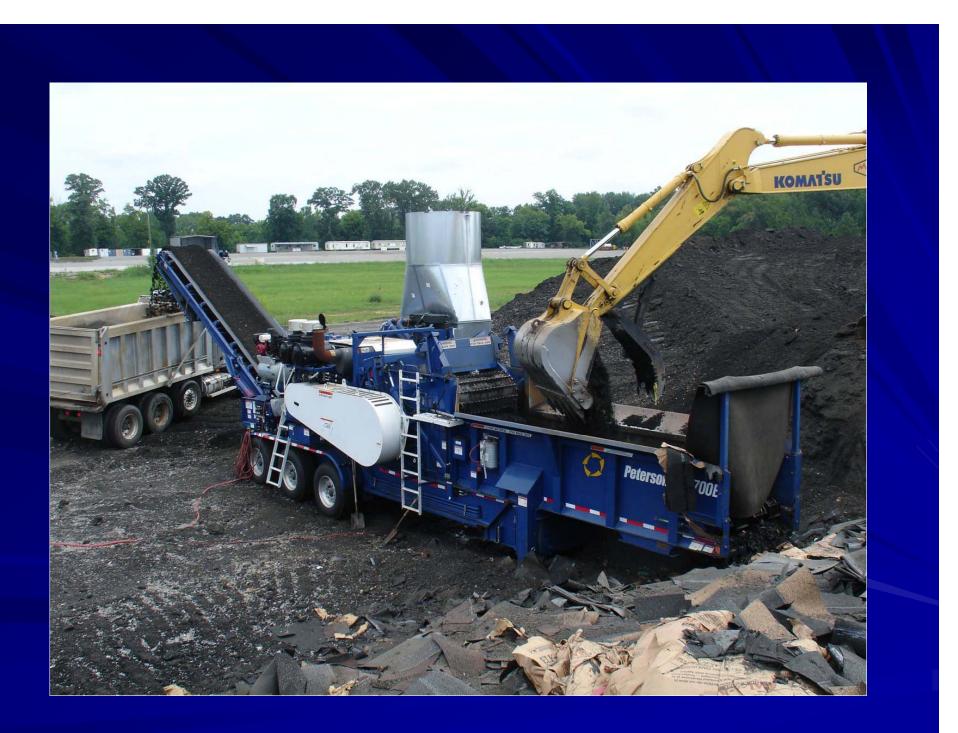
- Limit loads of post-consumer shingles to residential buildings with four or fewer dwelling units (these buildings are not "regulated facilities" according to state and federal NESHAP 40 CFR Part 61, Subpart M).
- Asbestos free
- Deleterious material
- Grind size
- Moisture content

Product Quality Characteristics

Asphalt mixture (hot mix or warm mix)

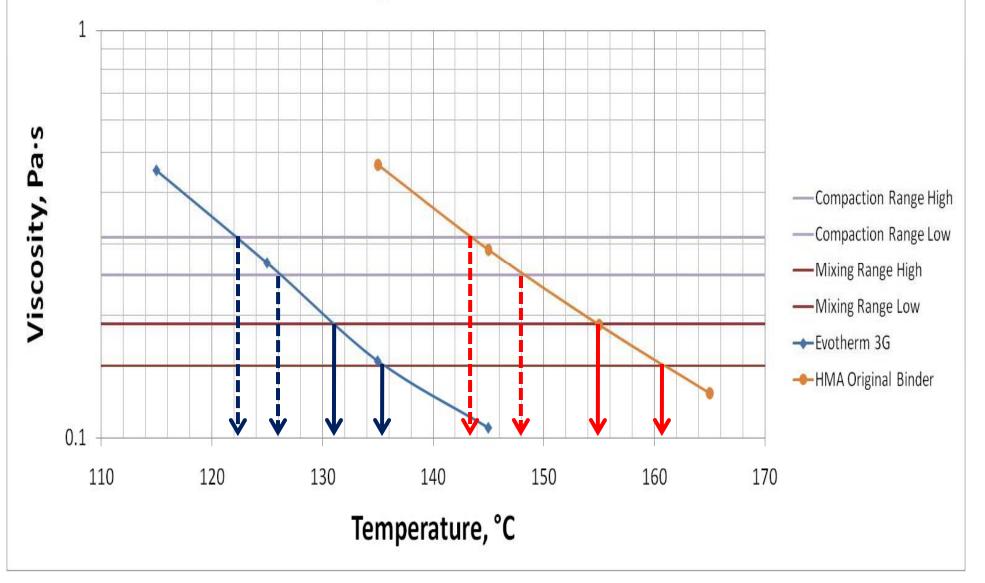
- Limiting recycled asphalt binder content
- Binder content
- Voids criteria (lab air voids, field air voids, VMA , etc)
- Smoothness

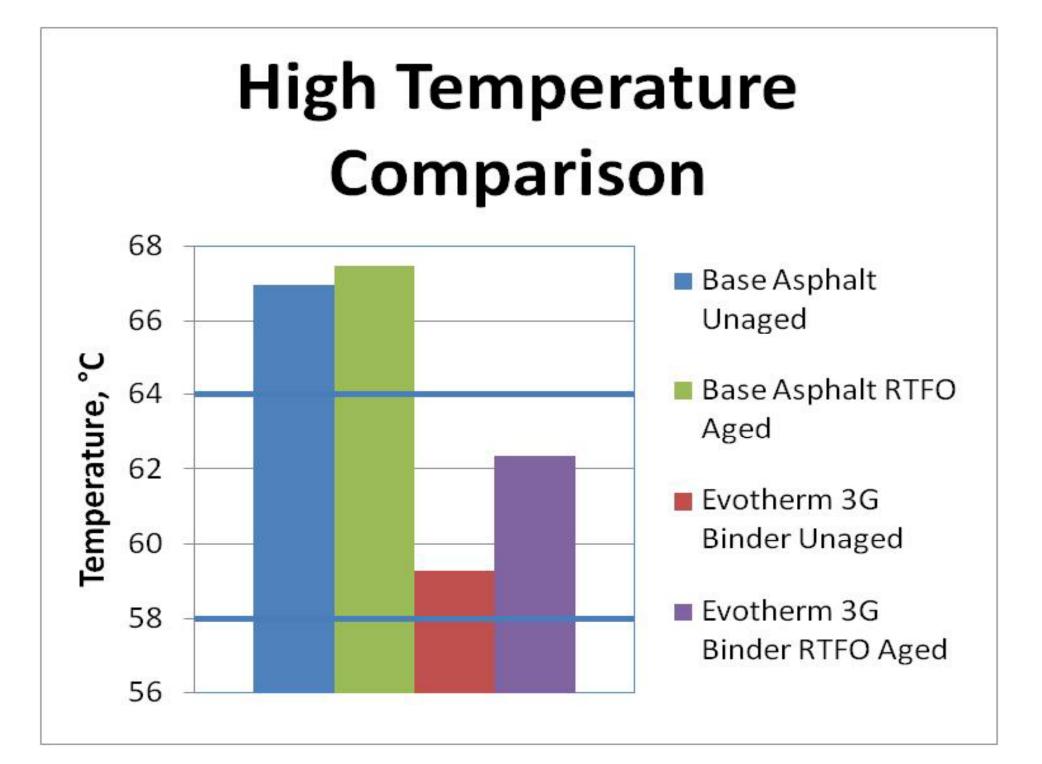
Quality Assurance

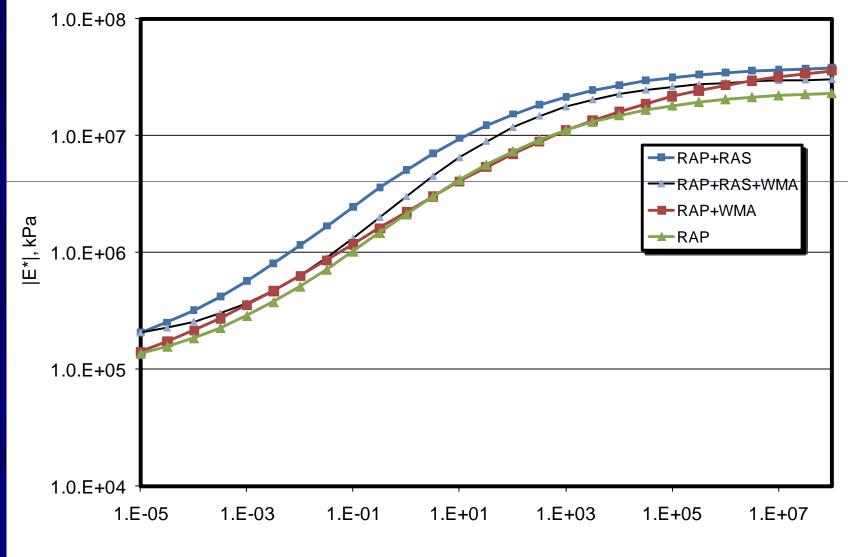

Must be a statistically based approach
 FHWA has promoted percent within limit

 Achieving product targets
 Product consistency

Sorting is manual






Challenge- Many new technologies in the asphalt industry Recycled shingles High RAP mixes Fractionated RAP Warm Mix Asphalt - Foaming Technologies - Organic Additives - Chemical Additives Bio Asphalt (non-petroleum)

Viscosity Comparison of Evotherm 3G & Original HMA Binder

Comparison of Field vs. Lab

Frequency, Hz

What are our expectations?

Performance expectations are met
 Materials and production/construction processes are economical
 Integration of sustainability

 Recycling

- Reduction of emissions
- Carbon credits

Performance Expectations

Source materials
 Performance testing

 Permanent deformation
 Fatigue cracking
 Thermal cracking

Mix Design Approaches for Integration of RAS into HMA

Development of Mixture Design

Process is no different than current methods of asphalt mix design development.

- Need to pay attention to integration of RAS into batching materials
 - Proportioned materials should be pre-blended prior to placement into oven.
 - Ensures even distribution of RAS throughout aggregate structure.

Outcomes of Mix Design

- Virgin binder content will be lower when RAS is utilized.
- 60-80% of RAS binder will be integrated into HMA mix.
- Voids in the Mineral Aggregate will increase with RAS utilization.
- Contribution of RAS binder to overall binder grade will not be known.....but!

Challenges

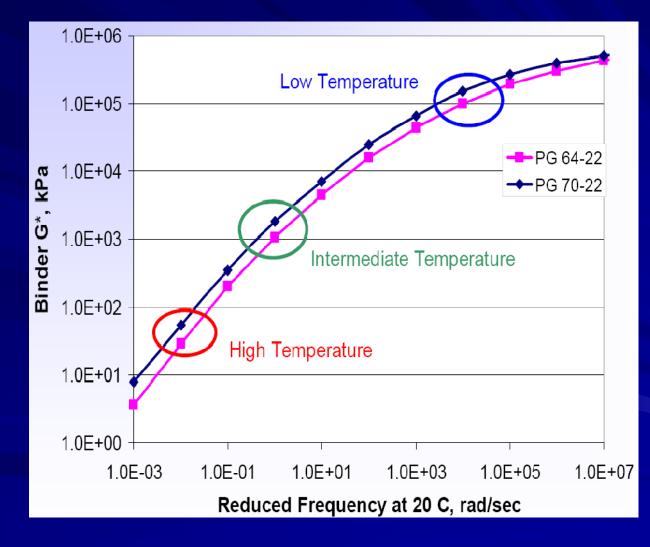
AASHTO M323 binder recommendations assume complete mixing of new and recycled binder

AASHTO M323 does not address RAS binders

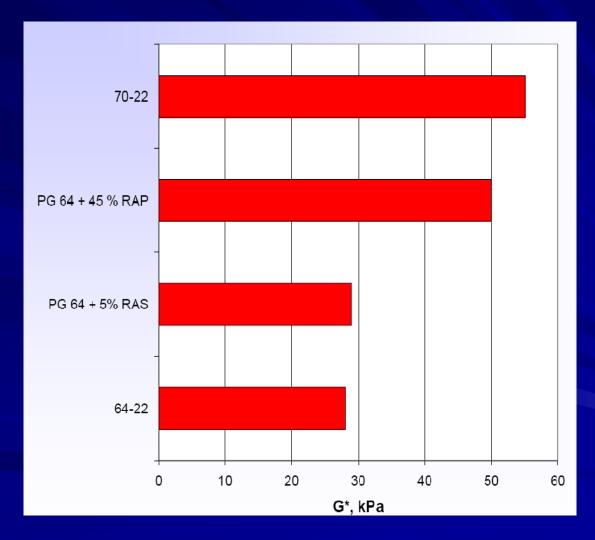
RAS rheology is different than paving binders

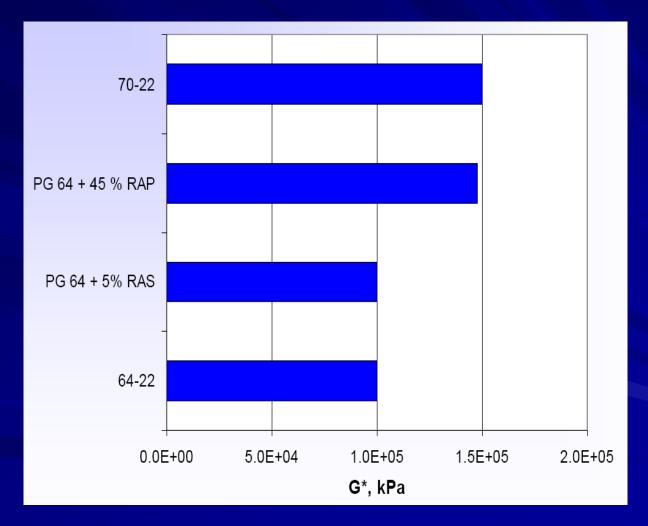
RAS Contribution to Performance Grade

Recovered binder properties
 Estimated binder properties through mix testing


- Dynamic modulus testing
- Very sensitive to binder properties
- Estimate effective performance grade
- Hirsch and Witzcak Models
- Mix Modulus = f(Binder modulus, VMA, & VFA)

Simple Performance Test




Graphical Representation

High Temperature

Low Temperature

Ongoing Research Work

National Pooled Fund Study
Illinois Tollway
Region 5 EPA
Headquarters EPA

National Pooled Fund Study

MO DOT is the lead state (Joe Schroer, JD Wenzlick, Karmen Stockman)
 Participants: FHWA, MO, IA, IN, MN, WI
 Research Team: IA State, Deb Haugen, MN/DOT, Univ. of MN

Literature Review

- Nationwide Reports
- Case Studies
 - Past
 - Current
 - Scheduled
- Publications
- Updated review of state specifications and environmental white papers on asbestos and PAH's in RAS

Made available on study website

Review and Implementation of Quality Control/Quality Assurance for Processing and Sourcing Shingles

- Working with environmental agencies on standard operating plans to ensure final product meets environmental requirements
 - Asbestos
 - Deleterious content
 - Sizing

Working with HMA producers to ensure final product meets agency specifications

- Sizing
- Deleterious content
- Moisture content
- Asphalt content
- Aggregate specific gravity
- Aggregate absorption

Development of Mix Design and Construction Specification Criteria for RAS in HMA

- Specifications for demonstration projects
 - Mix type
 - RAS content
 - RAS and RAP content
 - RAS and FRAP content
 - Virgin binder content

Demonstration Projects

- Sampling of materials
 - RAS
 - Virgin asphalt binders
 - Field produced mixes
- Project descriptions
 - Location
 - Pavement structure
 - Pavement design parameters
- Production and construction processes
- Project conditions
 - Weather, tonnage etc.

- Characterization of RAS, Recovered Mix and Virgin Binders
 - Dynamic shear rheometer
 - Bending beam rheometer
 - Aging tests
 - rolling thin film oven test
 - rolling thin film oven and pressure aging vessel
 - Asphalt recovered from RAS
 - AASHTO T170
 - Recovery of Asphalt from Solution by Abson Method
 - Create a blend chart

Mix Performance Testing of Design Mixtures and Field Produced Mixtures

- Prior to construction
- Field produced mixes
- Performance tests will be conducted at low, medium and high temperatures
- Other ongoing research on RAS
 Warm Mix Asphalt

Field Performance Surveys of Constructed Demonstration Projects

- Two field condition surveys
 - Distress Identification Manual for the Long-Term Pavement Performance Project

Digital Photo's

Statistical Analysis

- Develop sampling frequency for asbestos testing based upon Bayesian Statistics/Probability
- Analysis of binder test data including blending charts to determine the percentage of allowable RAS
- Analysis of mix performance data to determine the relative influence of RAS on mix performance which will include tests at low, intermediate and high temperatures
- Development of Final Report

Project Schedule

Task	2009			20	2011			
IGN	Oct-Dec	Jan-Mar	Apr-Jun	Jul-Sept	Oct-Dec	Jan-Mar	Apr.Jun	Jul-Sept
1. Literature Review								
2. QC/QA for Processing & Sourcing RAS	99 20							
3. & 6. Performance Testing of Design & Field Mikes				-				
4. Construction of Demonstration Projects	6			÷				
5. Characterization of RAS, Recovered Mix & Binders	10 11			ų į				
7. Performance Surveys of Demonstration Projects								
8. Statistical Analysis								
9. Development of the Final Report								
		19.						

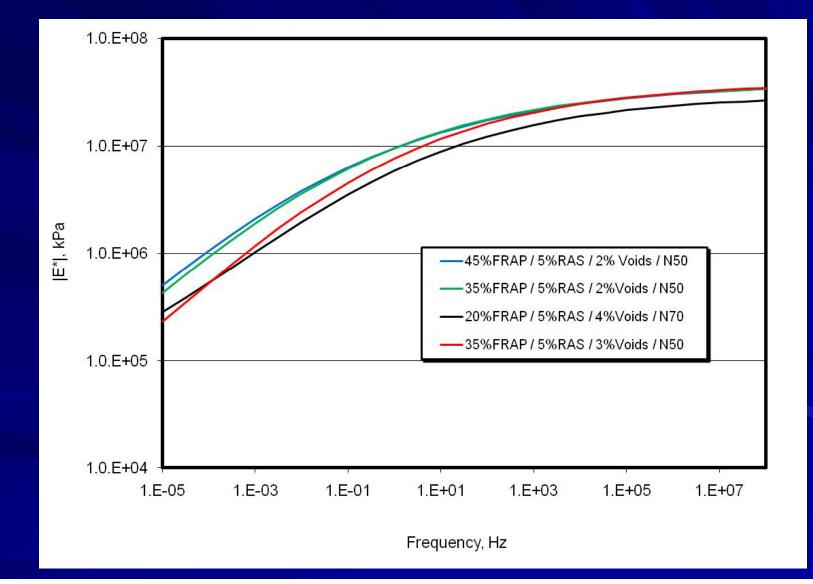
2009 Tollway RAS Research

Recycled asphalt shingles (tear-offs) into high FRAP mixes Shoulder Binder and Bases -5% RAS with 3 levels of FRAP (25%, 35%, 45%) Shoulder Surface -5% RAS with 20% FRAP SMA Surface (SBS PG 76-22) -5% RAS with 15% Fine FRAP

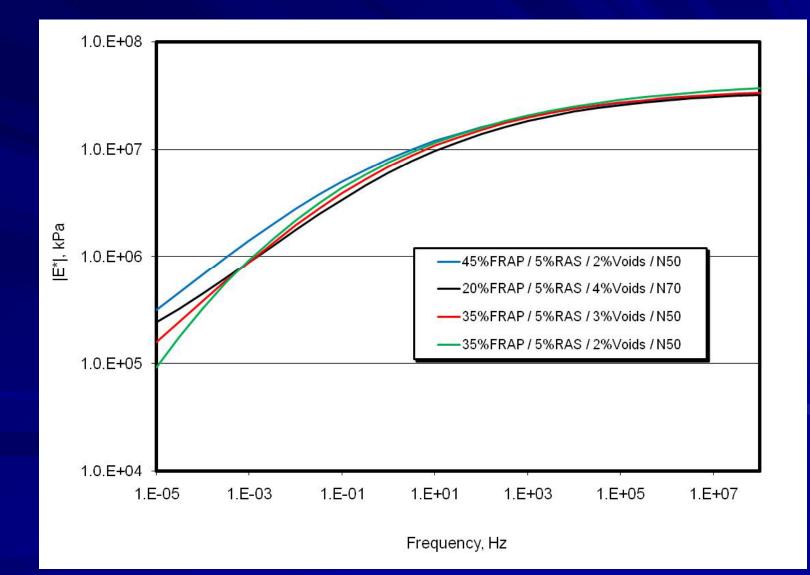
2009 Tollway RAS Research

2009 Tollway RAS Research

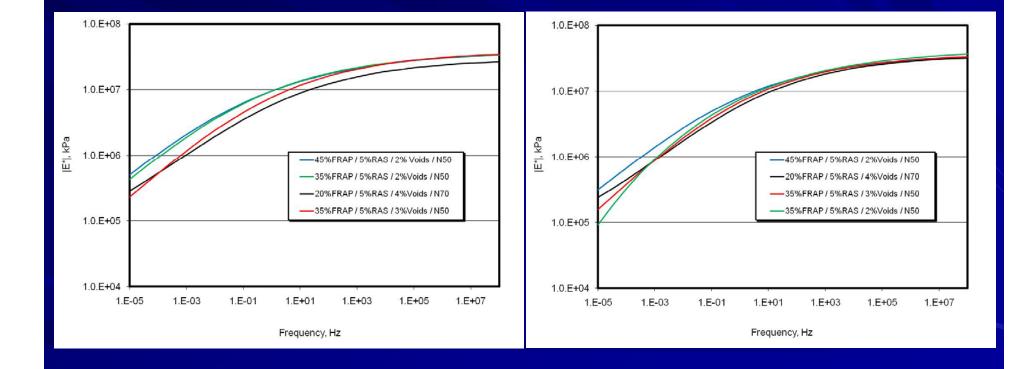
3.5 mile length of Outside Shoulder: I-90 Placement July-August 2009 8 Test Sections 4 Different RAS Shoulder Binder Mixes - 850 to 1300 tons each Standard (25% FRAP) and RAS Shoulder Surface placed over each - 1300 tons RAS Shoulder Surface


Tollway RAS Test Sections

Illinois Tollway Shingle Research Test Section Layout													
PROJECT	r I-08-5543 – Jane Addams Memorial Tollway – I-90												
LOCATION	Westbound Outside Shoulders												
TEST SECTION	1	2	3	4	Ile	4	5		5	6	7	8	N/A
SECTION LENGTH, #	2345	2214	1926	1990		826	1714	Burr	630	1388	2592	2150	
SURFACE MIX NUMBER	90BITRS05	90B	IT0823	90BITRS05		90BI	ITRS05			90BIT	0823	90BITRS05	
SURFACE MIX TYPE	20% FRAP / 5% RAS N70 SCS	25% FR/	AP N70 SCS 20/5 RAS				FRAP / S N70 SCS	1		25% FRAP N70 SCS		20% FRAP / 5% RAS N70 SCS	
STAR	363+25 MP 71 1/4	339+00 MP 71.7	298+40	239-50				250+60- 248+60			202+50	002+59 MP 74 1/4 166+60	
DATE PLACED	8/10/2009	8/10)/2009	9 8/10/20				09 8/10/2			2009 8/10/20		009
TONNAGE	256.41	6	16.6			L			633.09		532.69		
BASE MIX NUMBER	90BITR	90BITRS04 90BITRS				90BITR502	908/TRS08			90BITR503 90BI		TRS01	MILLED MATERIAL
BASE MIX TYPE	25% FRAP/5% RAS BIT BASE 35% FRAP/5% RAS B			S BIT BASE	IT BASE Total Strate Strate		45% FRAP/ 5% RAS BIT BASE	Ouk Bridge 5		45% FRAP/ % RAS BIT BASE	35% FRAP/5% RAS N50 BCS		
STA #	363+25	317+66	117+66 MP 72.1		278+50- 276+00	267+74	267+74 MP 73.1	250+60- 248+60	0- 228442		228+42 181+00 73.8 MP 74.7		
DATE PLACED	7/29/2009 7/29/2009			7/29/2009				7/30					
TONNAGE	1272.96 1295.86			846.23				13	1314.36				


Not to Scale

Lab Tests Lab & Field Produced Mixes Dynamic modulus Beam fatigue Disc Compact Tension Recovered Binders


Laboratory Mixes

Field Mixes

Lab vs. Field

Summary

- The RAS binder contribution to the "mix" performance grade of combined binder can be reasonably estimated
- Warm mix asphalt technology is employing the same approach
- Warm mix asphalt & shingles are synergistic
- The approach is consistent with future mix performance testing

Concluding thoughts/questions

Integrating shingles into asphalt mixture specifications is challenging.

- New technologies
- Composition of shingles is changing
- Are post consumer shingles a solid waste today, in 5 years, or 10 years?
- Two demonstration projects have been placed in Indiana- lab testing of materials will begin soon.

Acknowledgements

Steven Gillen, Illinois Tollway Jay Behnke, STATE Testing Ray Bonaquist, AAT Chris Robinette, Granite Construction Jason Bausano, Navy Tamer Breakah, Iowa State University Andrea Kvasnak, NCAT

Thank You! & Questions?

HMA Production Considerations

Production Facilities

Storage of RAS is for a limited time

 2-3 weeks
 Can blend with a sand to extend storage time

 Counter Flow Drum is preferred
 2nd Recycle Chute is preferred upstream of RAP
 How is liquid asphalt paid for?

- Separate- need to be able to track added RAS