Investigation of Low and High Temperature Properties of Plant-Produced RAP Mixtures

RAP ETG December 17, 2009

What We Did

- Five contractors (4 IN, 1 MI)
- Six plant-produced mixes
 - ♦ Binder properties PG binder tests
 - Mix properties Indirect Tensile Strength, Dynamic Modulus, Blending analysis
 - ♦ 3 to 4 samples tested
 - Compacted to $7 \pm 1\%$ air voids
 - Samples provided to TFHRC, UW

Experimental Design

	Reclaimed Asphalt Pavement					
Asphalt Binder Grade	0%	15%	25%	40%		
PG 64-22	X	Х	Х	Х		
	Mix A	Mix B	Mix C	Mix D		
PG 58-28			X	X		
			Mix E	Mix F		

Mixture Info

- RAPs were all screened or crushed/screened over ½ or 5/8 in sieves
- Plants were counterflow, double drum and parallel flow
- Contractors did designs -- typically one complete and others were one point verifications
- Not all mixtures met all volumetric requirements during production

Recovered Binder

- Determined true grade of virgin and recovered binders
- Estimated critical cracking temperature from BBR and DT results

Example Binder Data

ID	Grade	HT Grade	LT Grade	True	T _{crit}
		(DSR)	(BBR)	Grade	(TSAR)
Virgin	PG64-22	67.4	-24.2	67-24	
Binders	PG58-28	60.7	-28.3	60-28	
4A	PG64-22	73.7	-20.5	73-20	-22.6
4B		72.8	-20.8	72-20	-22.5
4C		74.4	-20.5	74-20	-20.1
4D		75.0	-19.6	75-19	-20.2
4E		67.8	-24.2	67-24	-26.2
4F	rujo-20	70.0	-23.3	70-23	-23.4

Binder Extraction/Recovery

- Compared AASHTO T319 with nPB to Abson with reagent grade methylene chloride
 - ♦ T319 stiffer than Abson in Phase I
- One set of six mixes
- Master curves developed
- No consistent difference in stiffness of binders recovered with different techniques
- Little to no difference in most cases

Phase 1 Data

One Example - Mix |E*|

Log Reduced Frequency, Hz

One Example - Mix |E*|

Control versus PG58-28

One Example - Mix |E*|

PG64-22 versus PG58-28

Log Reduced Frequency, Hz

Second Example - Mix |E*|

Control versus PG58-28

Statistical Analysis

- |E*| at 25 Hz at 4, 20,37.8 and 54.4°C
- ANOVA and Comparison of Means
- Generally, either
 - No statistically significant difference, or
 - Mix D different from A, B and C
 - More difference with PG58-28 binder (E vs F)

Blending Analysis

- Bonaquist approach
- Recovered binder test results and mix volumetrics used to estimate mix modulus using Hirsch model
- Compared to measured mix modulus
- Substantial overlap suggests good blending
- Three out of four data sets showed good blending, one is questionable

Control mix showed poor blending!

Mix 5B

IDT Strength Example 1

IDT Stiffness Example 1

IDT Strength Example 2

IDT Strength Example 3

IDT Stiffness Example 3

Mixture Fatigue

- TFHRC testing
- Cyclic Pull-Pull test
- Most testing complete but data analysis pending
- Expected to be complete in three weeks
- Summary will be added to this report

- Recovered binder tests
 - As RAP increases, high temp grade increases
 - As RAP increases, low temp grade increases but not as much as high temp grade
 - Softer binder decreased HT and LT by half a grade or more
 - Increasing RAP content to 25% changed critical cracking temperature no more than 2°
 - Extraction/recovery method did not appear to cause significant differences

- Dynamic Modulus
 - Increase in RAP content caused increase in |E*|, especially at intermediate and high temps
 - Stats generally showed no significant difference in PG64-22 mixes; sometimes 40% RAP was significantly different
 - Softer virgin binder generally led to lower stiffness
 - Moduli of PG58-28 mixes with 25 and 40%
 RAP were often significantly different

- Blending
 - Significant blending occurred in 3 of 4 cases
- Low Temperature Cracking (IDT)
 - Slight effects on critical cracking temp at up to 25% RAP with PG64-22
 - Critical cracking temp of 40% RAP with PG64-22 was slightly warmer but still around -22°C

- Based on these results and extensive testing and characterization of RAP stockpiles, Indiana DOT changed specs
 - ◆ Allow up to 25% RAP before changing grade
 - Also changed to percent RAP binder

Status

• Putting finishing touches on final report

• Will add summary of TFHRC fatigue testing and resubmit to FHWA within three weeks

- Low Temperature Cracking (IDT)
 - Slight effects on critical cracking temp at up to 25% RAP with PG64-22
 - Critical cracking temp of 40% RAP with PG64-22 was slightly warmer but still around -22°C

QUESTIONS? COMMENTS?

