

U.S. Department of Transportation Federal Highway Administration

Updates on High RAP Field Projects

Audrey Copeland and Andrea Kvasnak

RAP ETG October 28, 2008 Phoenix, AZ

High RAP Field Projects to Date

State	Permitted Intermediate	Permitted Surface	RAP Percentage Used	Date of Paving
North Carolina*	20%	20%	40%	September 2007
South Carolina	15%	15%	30% and 50%	October 2007
Wisconsin	≥30%	20%	25%	November 2007
Florida*	≥30%	0%	45%	December 2007
Kansas	25%	25%	30 – 40 %	May 2008
Delaware	20%	10%	30%	Summer 2008

* Warm mix asphalt process

Project Information

- <u>Plant Location</u>: Daytona Beach, FL
- <u>Construction Site</u>: Deland, FL (15 miles from plant)
- Two lane road
- <u>Dates of paving</u>: December 2007 – January 2008, daytime conditions

Job Mix Formula Information

Міх Туре	Superpave 12.5 mm		
Mix Use	Structural		
Design Traffic Level	3 to <10 (1 x 10 ⁶ ESAL's)		
Gyrations @ Ndes	75		
Total Binder Content	5.6 %		
RAP Binder	2.8 %		
Virgin Binder (RA 800)	2.8 %		
Antistrip	0.75 %		
	Control	Warm Mix	
Mixing Temp	310º F	270º F	
Compacting Temp	300° F	260º F	

Pavement Layer Information

1.5" Wearing Course, Dense Graded

1.5" Structural Layer with 45% RAP

Milling depth irregular due to sloped surface Millings may contain ground rubber Polymer was not regularly used in FL until after 2000.

-Tillime +

2/05/2007

Paving level with shoulder and then slopes up to crown about 2° for finished lift.

Fractionated RAP

Fine

Coarse

- Design called for up to 45% RAP
- QC manager indicated between 40%-45% RAP used
- First big production of warm mix (besides trials)

Astec Double Barrel Green Process
- Water injection

Results Summary

- FDOT Research Lab
 - Virgin and Recovered Binder Viscosity Results
 - Gradation
 - Volumetrics
 - Performance Testing (T 283 and APA)
- Contractor's Quality Control (QC)
 - Gradation
 - Volumetrics

- NCAT
 - Virgin and RAP PG
 - Gradation
 - Performance Testing
 - T 283
 - APA
 - Hamburg
 - IDT
 - Dynamic Modulus
 - Beam Fatigue
- FHWA MAMTL
 - Virgin and Recovered Binder PG
 - Performance Testing (AMPT)
 - Dynamic Modulus
 - Flow Number

Performance Grade Results

Binder	M320-Table 1	M320 – Table 2	M320 - Continuous
Virgin Binder 1 NCAT	n/a	64-22	64.7-25
Virgin Binder 2 (RA 800) NCAT	n/a	52-28	57.5-29.1
Virgin Binder 2 (RA 800) FHWA	52-28	52-28	55.4-30.5
Warm Mix Hi RAP (FHWA)	52-16	52-22	57.2-27.3
Control Mix Hi RAP (FHWA)	64-16	64-16	68.4-19.2
Coarse RAP (NCAT)	n/a	82-16	82.9-17.2
Fine RAP (NCAT)	n/a	82-10	85.2-14.2

Mixture Performance Testing by FHWA

- Asphalt Mix Performance Tester (AMPT)
 - Dynamic Modulus (*E**) and Flow Number (Fn) were tested according to NCHRP 9-29 protocols.
 - Dynamic Modulus: Plant produced mix tested at 21.1° C (70° F) and 37.8° C (100° F).
 - Flow Number: Plant produced mix tested at 60° C (140° F).

Comparing Measured E* Values

(Hirsch Model at 21.1° C)

(Hirsch Model at 37.8° C)

(Witczak Model at 21.1° C)

(Witczak Model at 37.8° C)

Flow Number (Fn)

- Determined using repeated load permanent deformation test
- Indicates rutting resistance
- Francken model used to predict Fn
- Steady State Slope and Slope at 2% Strain were found to be robust indicators of rust resistance.

AMPT Flow Number Results for FL

Flow Number vs. Slope at 2% Strain

"Close" Data Point

"FAR" Data Point

Slope at % Strain vs. Steady State Slope

Summary for FL Performance Data

- E* predictive models input use recovered binder G* data (full blending) and do not account for lower effective binder content due to incomplete blending at lower temperature.
- PG grading, E*, and Fn results indicate that due to low plant temperatures (less aging), Warm Mix is less stiff.
- Flow Number
 - Didn't test at high enough temperature
 - High RAP mixtures may not reach tertiary (consolidation) phase as quickly as regular/low RAP mixtures.

Acknowledgements

- John D'Angelo, FHWA
- Matthew Corrigan, FHWA
- Chuck Paugh, ESC, Inc.
- Satish Belagutti, ESC, Inc.
- Raj Dongre, DLS, Inc.
- David Heidler, ESC, Inc.
- Darnell Jackson, ESC, Inc.
- Terry Arnold, FHWA-TFHRC
- Turner Fairbank Highway Research Center Asphalt Labs

- Jim Musselman, FDOT
- Gregory Sholar, FDOT
- Ken Green, FDOT
- Shanna Johnson, FDOT

U.S. Department of Transportation Federal Highway Administration

Thank you! Questions?