NCHRP 9-46 RAP ETG meeting

Irvine, CA May 10, 2011

Outline

- Mix Design Concept for High RAP Content Mixes
- Back-calculation Analyses
- Comparison of Dynamic Modulus results
- Flow Number
- Selection of a Fatigue Test

Mix Design for High RAP Contents

- Start mix design with bumped virgin binder grade
- Design mix to meet M 323
- Moisture Susceptibility (always)
 - TSR or Hamburg
- Permanent Deformation (mixes within top 100 mm)
 - AMPT Flow Number or APA
- Fatigue (surface or base mixes)
 - AMPT fatigue or Overlay Tester
- Low Temperature (for cold climates)
 - SCB and BBR with mix beams

Experiment

- Mix Designs with 4 sets of materials: UT, MN, NH, FL
- RAP Contents: 0 & 40% or 0, 25, & 55%
- Two binder grades and two binder sources
- Volumetrics, E*, FN, TSR, SCB and BBR, and a fatigue test

Dynamic Modulus of RAP Mixtures and Backcalculation of Binder Properties

E* Testing Methodology

- AASHTO TP 62-07
- Temperatures
 - 4.4, 21.1, 37.8, and 54.4 °C
- Frequencies
 - 25, 10, 5, 1, 0.5, 0.1 Hz
- Confined: 10 psi
- Target Strain: 100με
- Data quality assured
- Sigmoidal function to create mastercurves

AMPT

Error in Original Testing

- Holes were cut in membrane around LVDT mounting studs
- Eliminated sample confining pressure

Error in Original Testing

- Samples were not allowed to vent to atmospheric pressure
- Pore pressure in air voids counteracting the confining pressure

Correct Method

Cracking Tests

Dynamic Modulus Effect of Confinement

Statistical Comparisons of E* for 9-46 Mixes

Statistically Significant Factors for E*

Region	Variables	4.4C	21.1C	37.8C	54.4C
FL	% RAP	% RAP	% RAP	% RAP	% RAP
MN	% RAP	% RAP	None	%RAP	% RAP
NH	Binder Grade Binder Source % RAP	Source % RAP	Grade % RAP	Grade % RAP	Grade Source % RAP
UT	Binder Grade Binder Source % RAP	Source % RAP	Grade % RAP	Grade % RAP	Grade Source % RAP

Statistic: General Linear Model ($\alpha = 0.05$)

Dynamic Modulus

Florida Average E* Results at 1 Hz

Percent Difference in E* by % RAP

			/ Dijjerence @ Temperata					
	Mix 1	Mix 2	4.4	21.1	37.7	54.4		
	FL 9.5mm Virgin	FL 9.5mm 40% RAP	19.8%	38.9%	85.3%	26.8%		
	FL 19mm Virgin	FL 19mm 40% RAP	34.5%	63.6%	77.3%	21.6%		
	MN 9.5mm Virgin	MN 9.5mm 40% RAP	60.5%	-5.4%	24.9%	33.5%		
	MN 19mm Virgin	MN 19mm 40% RAP	77.4%	229.5%	185.1%	51.5%		

% Difference @ Temnerature C

Percent Difference in E* by % RAP

			% Difference @ Temperature, C			
Mix 1	Mix 2	4.4	21.1	37.7	54.4	
NH 58-28A Virgin	NH 58-28A 25% RAP	21.5%	49.0%	71.5%	43.9%	
NH 58-28A Virgin	NH 58-28A 55% RAP	39.9%	77.2%	103.9%	30.1%	
NH 58-28A 25% RAP	NH 58-28A 55% RAP	15.1%	18.9%	18.9%	-9.6%	
NH 58-28B Virgin	NH 58-28B 55% RAP	12.7%	31.0%	14.4%	3.7%	
NH 70-28A Virgin	NH 70-28A 25% RAP	8.2%	28.9%	21.1%	46.1%	
NH 70-28A Virgin	NH 70-28A 55% RAP	17.8%	18.3%	10.8%	20.1%	
NH 70-28A 25% RAP	NH 70-28A 55% RAP	8.9%	-8.2%	-8.5%	-17.8%	
NH 70-28B Virgin	NH 70-28N 55% RAP	10.6%	13.6%	22.3%	15.1%	

Percent Difference in E* by % RAP

		% Difference @ Temperature, C			
Mix 1	Mix 2	4.4	21.1	37.7	54.4
UT 58-34A Virgin	UT 58-34A 25% RAP	51.9%	66.2%	48.9%	21.9%
UT 58-34A Virgin	UT 58-34A 55% RAP	54.2%	87.3%	56.3%	40.1%
UT 58-34A 25% RAP	UT 58-34A 55% RAP	1.5%	12.7%	5.0%	14.9%
UT 58-34B Virgin	UT 58-34B 55% RAP	94.3%	101.7%	34.5%	2.8%
UT 64-34A Virgin	UT 64-34A 25% RAP	15.7%	15.2%	13.6%	29.8%
UT 64-34A Virgin	UT 64-34A 55% RAP	80.3%	136.3%	92.7%	33.3%
UT 64-34A 25% RAP	UT 64-34A 55% RAP	55.9%	105.2%	69.6%	2.7%
UT 64-34B Virgin	UT 64-34B 55% RAP	98.2%	150.2%	131.3%	53.9%

% Difference in E* by Binder Grade

		% Difference @ Temperature, C			
Mix 1	Mix 2	4.4	21.1	37.7	54.4
NH 58-28A Virgin	NH 70-28A Virgin	23.0%	55.0%	83.2%	45.2%
NH 58-28A 25% RAP	NH 70-28A 25% RAP	9.5%	34.0%	29.4%	47.5%
NH 58-28A 55% RAP	NH 70-28A 55% RAP	3.6%	3.4%	-0.5%	34.1%
NH 58-28B Virgin	NH 70-28B Virgin	-4.7%	21.8%	43.6%	28.2%
NH 58-28B 55% RAP	NH 70-28B 55% RAP	-6.5%	5.6%	53.6%	42.3%
UT 58-34A Virgin	UT 64-34A Virgin	-15.2%	-15.2%	-2.7%	-1.4%
UT 58-34A 25% RAP	UT 64-34A 25% RAP	-33.9%	-39.9%	-25.7%	5.0%
UT 58-34A 55% RAP	UT 64-34A 55% RAP	1.6%	9.5%	20.0%	-6.2%
UT 58-34B Virgin	UT 64-34B Virgin	2.3%	18.1%	-4.0%	-10.1%
UT 58-34B 55% RAP	UT 64-34B 55% RAP	4.3%	46.4%	65.1%	34.5%

% Difference in E* by Binder Source

		% Difference @ Temperature, C				
Mix 1	Mix 2	4.4	21.1	37.7	54.4	
NH 58-28A Virgin	NH 58-28B Virgin	-12.9%	-21.4%	-20.9%	-26.0%	
NH 58-28A 55% RAP	NH 58-28B 55%	9.0%	10.3%	32.2%	-0.4%	
NH 70-28A Virgin	NH 70-28B Virgin	12.5%	4.6%	5.3%	-11.2%	
NH 70-28A 55% RAP	NH 70-28B 55% RAP	17.9%	8.4%	-4.6%	-6.6%	
UT 58-34A Virgin	UT 58-34B Virgin	25.0%	31.9%	13.0%	-0.1%	
UT 58-34A 55% RAP	UT 58-34B 55% RAP	5.4%	26.6%	25.1%	26.6%	
UT 64-34A Virgin	UT 64-34B Virgin	11.6%	7.4%	14.1%	8.8%	
UT 64-34A 55% RAP	UT 64-34B 55% RAP	2.8%	2.0%	-3.0%	-5.3%	

Tukey-Kramer Grouping of E* (MN and FL mixtures)

- No virgin mixtures from FL were grouped with RAP mixtures
- Both MN virgin and RAP mixtures were grouped together at 21.1C
- MN 9.5mm virgin and MN 9.5 mm 40% RAP were grouped together at 37.7C

Tukey-Kramer Grouping of E* (NH Mixtures)

- Changing the binder grade from a PG 58-28 to PG 70-28 statistically affected E* at 21.2, 37.8, and 54.4C
- E* was statistically different between binder sources at 21.2 and 37.8C
- E* of virgin and 25% RAP mixtures similar at 4.4C
- E* of 25 and 55% RAP mixtures only statistically different at 54.4C

Tukey-Kramer Grouping of E* (UT Mixtures)

- Changing the binder grade from a PG 58-34 to PG 64-34 never statistically affected E*
- E* was statistically different between binder sources at 21.2C
- E* of virgin and 25% RAP mixtures similar at 37.8C
- E* of 25 and 55% RAP mixtures statistically similar at 54.4C

Back-calculation of Binder Properties from E*

Backcalculation of Binder Properties

Methodology

Use Hirsch model to backcalculate G*

$$E_{\max}^{*} = P_{C} \left[4,200,000(1 - \frac{VMA}{100}) + 3G^{*}(\frac{VFA^{*}VMA}{10,000}) \right] + (1 - P_{c}) \left[\frac{1 - (VMA/100)}{4,200,000} + \frac{VMA}{3(VFA)G^{*}} \right]^{-1}$$

- E* = limiting maximum HMA dynamic modulus, psi
- VMA = voids in mineral aggregate, %
- VFA = voids filled with asphalt, %
- G*= shear dynamic modulus of binder, psi

Backcalculation of Binder Properties

- Average E* from three tests at each frequency and temperature
- Microsoft © Excel macro developed to backcalculate G* from Hirsch Model
- Christensen-Anderson Model model used to create G* master curves
- Solved for high and intermediate critical temperatures
 - High temp: $G^*/sin(\delta) = 2.2$ kPa
 - Intermediate temp: G*sin(δ)= 5,000 kPa

Mixtures Analyzed

- FL 19 mm No RAP
- FL 9.5 mm No RAP
- NH 58-28A No RAP
- NH 58-28B No RAP
- NH 70-28A No RAP
- NH 70-28B No RAP
- UT 58-34B No RAP
- UT 64-34A No RAP
- 2009 Test Track Mixtures

ITY

Summary

- Backcalculation procedure inconsistent for critical high temperature prediction
 - Both G* and δ erroneous
- Backcalculation procedure underpredicts the intermediate critical temperature
 - Procedure underpredicts G*
 - Procedure overpredicts δ

Flow Number

Fn Procedure

- Protocol originally recommended by FHWA.
- Loose mix aged for 4 hrs. at 135°C in accordance with AASHTO R 30.
- Specimens compacted to 150 x 170 mm, then cut and cored to 100 mm dia. x 150 mm ht. with a target V_a of 7±0.5%.
- Prior to testing, specimens were preheated to the 50% reliability high-temperature from LTPP for the location of the respective RAP materials.
- The deviator stress used was 70 psi, and the confining stress was 10 psi. Test to 20,000 cycles or until the specimen 25 reached 5% strain.

NCHRP 9-46

FL 9.5 mm NMAS

FL 19.0 mm NMAS

Selection of a Cracking Test

Outline

- Possible tests to consider
 - Bending Beam Fatigue
 - Push-Pull, Simplified Viscoelastic Continuum Damage
 - Texas Overlay Tester
 - Semi-Circular Bend
 - IDT Fracture Energy
- Advantages & Disadvantages
 - Specimen preparation
 - Equipment
 - Complexity

Bending Beam Fatigue (AASHTO T 321 or ASTM D 7460)

Cracking Tests

Specimen and Parameters

- Beam size 2.5" by 2" by 15"
 - Usually @ 7% air voids
- Loading
 - Haversine strain control
 - 0.1 sec load and 0.4 sec unload
 - 10 Hz
- Test temperature
 - 20 ± 0.5°C

Test Results

- Test termination
 - 50% loss in initial beam stiffness
 - 70% loss in initial beam stiffness
 - Initial stiffness measured at 50th cycle
- Determination of No. of cycles to failure
 - AASHTO T 321: 50% loss in initial beam stiffness
 - ASTM D 7460: max Normalized Modulus × Cycles
- Fatigue tests are usually plotted as log strain vs Log N (number of cycles)

BBF Results, 2006 RAP Test Sections

at AUBURN UNIVERSITY

BBF Summary

- Suitable for research, but not for routine usage
 - Specimen fabrication
 - Specialized equipment
 - Time consuming method

Push-Pull, Simplified Viscoelastic Continuum Damage (Draft Procedure)

Push-Pull Fatigue

- Draft procedure by NCSU
- 4+ replicates
- Must have E* information for mixtures
- 19°C (or based on MAAT?)
- 10Hz
- 2 strain levels (tricky)
- Currently limited to one specimen per day

Cracking Tests

Push-Pull Fatigue

- Constant actuator displacement
- Failure defined as a sharp reduction in phase angle
- Two failure targets
 - N_f: 1,000 and 10,000
 - Two replicates each
- Estimate initial on-specimen microstrain to yield appropriate N_f

Push-Pull Fatigue

- Pseudostiffness versus damage curve (c vs. s)
- Uses NCSU program
 - Software calibrated below 15% RAP
- Allows user to characterize N_f at multiple strains, temperatures, and frequencies

S-VECD Testing Methodology

IPC Global AMPT

- Software developed by NCSU to perform test by NCSU draft AASHTO Specification
- Data Analysis performed by NCSU ALPHA-F Software Package
 - Modified by NCSU to Accept AMPT Output Files
- Samples Prepared in Accordance with AASHTO PP60-09

S-VECD Testing Methodology

- Use ALPHA-F software to develop C vs. S curves for tested samples
- Simple Power function used to model C vs. S curve for each mix
- Excel Sheet Developed for Fatigue Predictions
 - Hou et al. AAPT 2010
 - ALPHA-F Predictions not used
 - Equation Parameters calibrated to maximum 15% RAP
 - Parameters from Individual tests utilized for prediction

S-VECD Testing Prediction

- Controlled Strain Test Predictions Made for Each Mix
 - 200, 400, 600, 800 Target Microstrain
 - Developed Fatigue Curve for Each Mix
 - Relative Comparisons

Summary of S-VECD Fatigue Prediction

at AUBURN UNIVERSITY

Push-Pull Test Issues

- Must make educated 'guess' of target microstrain value to get desired cycles to failure
- Difficult to Find Acceptable Testing Strain Level with More Brittle Mixtures
 - Higher RAP, Lower AC
 - Small 'Window' of target microstrain between immediate fracture and perpetual behavior
- No automatic software cut-off at failure

Push-Pull Fatigue Summary

- Test method is complex
 - Challenging to choose appropriate strain magnitude
 - Time consuming test
 - Only one sample glued per day
- Field validation is necessary
- Can theoretically determine mixture's cycles until failure for numerous strain, temperature, and frequency combinations

Texas Overlay Tester (Tex-248-F)

Texas Overlay Tester (OT) Test

- Specimen cut from field core or SGC specimen
 - 6" x 3" x 1"
- Two available procedures
 - Zhou et al
- Not as complex as Push-Pull fatigue

Testing Method

- Tex 248-F (January 2009)
 - Testing Temperature = 77°F
 - Cycle Length = 10 seconds (5 open/5 close)
 - Max Opening Displacement = 0.025"
 - Maximum Cycles = 1,200
 - Waveform = Sawtooth
- Parameters are Adjustable in the Software
 - Temperature
 - Crack opening

Overlay Tester Cycles to Failure

at AUBURN UNIVERSITY

OT Results, 2006 RAP Test Sections

Cracking Tests

at AUBURN UNIVERSITY

Semi-Circular Bend (Draft Procedure)

Semi-Circular Bend (SCB) Test

- Half-moon specimens cut from SGC cylinders or cores
- Procedure al la Wu, et al
- Notches cut to three depths
- Not as complex as low-temperature SCB
- Constant cross-head rate of 0.5 mm/min.
- Capture load and vertical displacement

SCB Test

- Determine U, strain energy, for each notch depth, a
- Calculate Jc, Critical J-integral, as slope of U vs a divided by specimen thickness, b

at AUBURN UNIVERSITY

SCB Summary

- The method is simple
 - Moderately simple sample preparation
 - Simple monotonic loading and vertical displacement
 - Analysis is straight forward, but it sounds high tech
- Has been used by several asphalt research organizations (LTRC, FHWA, Delft) to rank fracture resistance of mixes
- Results seem to be sensitive to binder properties
- No link to field performance has been established

IDT Fracture Energy

Cracking Tests

Fracture Energy

• IDT Fracture Energy at 20°C

Indirect Tensile Fracture Energy

- R. Kim and H. Wen, AAPT 2002
- Correlation with fatigue cracking at WesTrack

Cracking Tests

FE Results, 2006 NCAT Test Track

Cracking Tests

at AUBURN UNIVERSITY
IDT Fracture Energy Summary

- Fairly simple test except for strain measurements
 - Simple sample preparation
 - Monotonic loading, 4 strain measurements
 - 20°C test temperature
 - Quick test
 - Analysis is straight forward
- Has been shown to be strongly related to fatigue cracking at one APT facility

IDT Fracture Energy Testing

- All samples fabricated
- Long-term conditioning before testing
- Half of the tests are completed, remainder should be done in a few weeks.

Thank You

