

Subtask E2b-1.a: Impact of current extraction techniques on properties of extracted RAP aggregates

UNR and NCAT

HMA Recycling Expert Task Group May 10, 2011 Irvine, California

Develop a System to Evaluate the Properties of RAP Objective

- Impact of current extraction techniques on properties of extracted RAP aggregates.
- Extract aggregates from simulated RAP mixes using:
 - Centrifuge (Trichloroethylene)
 - Reflux (Trichloroethylene)
 - Ignition oven

Develop a System to Evaluate the Properties of RAP Aggregate Sources

- Nevada: Rhyolite (UNR)
- California: Granodiorite (UNR)
- Alabama: Hard Limestone (NCAT)
- Florida: Soft Limestone (NCAT)

Develop a System to Evaluate the Properties of RAP Simulated RAP

- SP mix design: intermediate gradation.
- Subject <u>loose</u> samples to STOA (4 hrs at 275°F) followed by LTOA (5 days at 185°F).
- Extract aggregates from aged loose specimens.
- Measure extracted aggregates physical properties.

Develop a System to Evaluate the Properties of RAP Extracted Binder Contents

Extraction Method	Aggregate Source	Rep	Extracted Binder Content (%)	True Binder Content (%)	Difference Between Extracted and True Binder Content	Allowable Difference Two-Sigma (d2s)	p-value (α=0.05)	95% Clª	Sig. Ievel ^b
Centrifuge	Alabama	13	4.87	5.30	0.430		< 0.001	4.70-5.04	SL
	Florida	12	5.43	6.00	0.570*	0 5 2 0	< 0.001	5.29-5.57	SL
	Nevada	4	5.65	5.85	0.200	0.520	< 0.001	5.62-5.68	SL
	California	4	4.61	4.89	0.280		0.002	4.53-4.69	SL
	Alabama	15	4.98	5.30	0.320		< 0.001	4.85-5.11	SL
Doflux	Florida	12	5.62	6.00	0.380	0 5 2 0	< 0.001	5.51-5.73	SL
Reflux	Nevada	4	5.76	5.85	0.090	0.520	0.082	5.65-5.87	NS
	California	4	4.70	4.89	0.190		0.154	4.38-5.02	NS
lgnition Oven	Alabama	14	5.13	5.30	0.170		0.024	4.99-5.27	SL
	Florida	14	5.80	6.00	0.200*	0.196	0.001	5.70-5.90	SL
	Nevada	3	5.79	5.85	0.060		0.001	5.77-5.81	SL
	California	3	4.82	4.89	0.070		0.007	4.80-4.85	SL

Develop a System to Evaluate the Properties of RAP Measured Aggregate Properties

Property	Specification
Sieve Analysis	AASHTO T 27, T30
Coarse Aggregate Durability	AASHTO T 210
Fine Aggregate Durability	AASHTO T 210
Sand Equivalent	AASHTO T 176
LA Abrasion	AASHTO T 96
Specific Gravity and Absorption of Coarse Aggregate	AASHTO T 85
Specific Gravity and Absorption of Fine Aggregate	AASHTO T 84
Fine Aggregate Angularity	AASHTO T 304
Fractured Faces	ASTM D 5821
Percent of Loss in the Microdeval	ASTM D 7428
Soundness	AASHTO T 104
Aggregate Imaging System (AIMS)	

Develop a System to Evaluate the Properties of RAP Focus of the Presentation

- BSG of coarse aggregates & fine aggregates
- Consequences of extraction method on SP mix design.
- Effect of RAP aggregate SG on VMA

Develop a System to Evaluate the Properties of RAP Coarse Aggregate – Bulk Dry Specific Gravities (Gsb)

Extraction Method	Aggregate Source	Average	Standard Deviation	Maximum Difference (Max – Min)	Difference Between Extracted and Virgin Aggregates	Allowable Difference Two-Sigma (d2s)	Paired Mean Comparisons
Coarse Aggregates							
	Alabama	2.739	0.007	0.013			
Nono	Florida	2.419	0.009	0.017			
None	Nevada	2.584	0.008	0.018			
	California	2.544	0.004	0.008			
	Alabama	2.728	0.008	0.015	-0.011		NS
Contrifuce	Florida	2.430	0.005	0.009	0.011	0.025	SH
Centrinuge	Nevada	2.569	0.003	0.005	-0.015	0.025	SL
	California	2.521	0.007	0.014	-0.023		SL
	Alabama	2.725	0.002	0.003	-0.014		NS
Dofluy	Florida	2.429	0.006	0.010	0.010	0.025	SH
Reflux	Nevada	2.581	0.004	0.008	-0.003	0.025	NS
	California	2.561	0.003	0.006	0.017		SH
lgnition Oven	Alabama	2.683	0.004	0.007	-0.056*		SL
	Florida	2.400	0.007	0.013	-0.019	0.005	SL
	Nevada	2.564	0.007	0.015	-0.020	0.025	SL
	California	2.538	0.006	0.012	-0.006		NS

Develop a System to Evaluate the Properties of RAP Fine Aggregate – Bulk Dry Specific Gravities (Gsb)

Extraction Method	Aggregate Source	Average	Standard Deviation	Maximum Difference (Max – Min)	Difference Between Extracted and Virgin Aggregates	Allowable Difference Two-Sigma (d2s)	Paired Mean Comparisons
				Fine Aggregates			
	Alabama	2.661	0.004	0.007			
Nono	Florida	2.585	0.010	0.010			
None	Nevada	2.491	0.010	0.019			
	California	2.541	0.009	0.017			
	Alabama	2.711	0.015	0.029	0.050*		SH
0 antrifu da	Florida	2.583	< 0.001	0.010	-0.002	0 0 2 2	NS
Centrituge	Nevada	2.486	0.016	0.031	-0.005	0.032	NS
	California	2.577	0.010	0.021	0.036*		SH
	Alabama	2.718	0.010	0.019	0.057*		SH
Deflux	Florida	2.622	0.010	0.020	0.037*	0 0 2 2	SH
Reflux	Nevada	2.522	0.013	0.025	0.031	0.032	NS
	California	2.576	0.010	0.021	0.035*		SH
lgnition Oven	Alabama	2.690	0.004	0.007	0.029		SH
	Florida	2.521	0.010	0.020	-0.064*	0 0 2 2	SL
	Nevada	2.512	0.017	0.032	0.021	0.032	NS
	California	2.583	0.008	0.015	0.042*		SH

Develop a System to Evaluate the Properties of RAP

Asphalt Resea

Summary of Paired Mean Comparisons Results for Various Aggregate Properties

Aggregate Properties		Centrifuge			Reflux			Ignition		
		NS	SH	SL	NS	SH	SL	NS	SH	
Sieve analysis										
- 1/2 inch sieve		4			4			4		
- No. 4 sieve		4		1	2	1		3	1	
- No. 8 sieve	1	2	1	2	1	1	1	2	1	
- No. 50 sieve	1	1	2	1	2	1		2	2	
- No. 200 sieve	1	2	1	1	2	1	2		2	
Coarse aggregate specific gravities										
 Bulk dry specific gravity 	2	1	1		2	2	3	1		
 Saturated surface dry specific gravity 	1	3		1	3		1	3		
 Apparent specific gravity 	1	3		1	3		1	3		
Fine aggregate specific gravities										
 Bulk dry specific gravity 		2	2		1	3	1	1	2	
 Saturated surface dry specific gravity 	1	2	1		2	2	1		3	
 Apparent specific gravity 	1	3		1	3			3	1	
Coarse aggregate absorption	1	3		3	1			1	3	
Fine aggregate absorption	3	1		4			2	1	1	
Coarse aggregate durability index		2	2	1	2	1	1	-	3	
Sand equivalent		2	2		2	2		2	2	
C LA abrasion mass loss	1	3			3	1		1	3	
Uncompacted void content	3		1	3		1	3		1	

Develop a System to Evaluate the Properties of RAP Consequences of the Extraction Method on the SP Mix Design

Aggregate Property	Centrifuge	Reflux	Ignition Oven
Passing #4 sieve	Close estimate 100% of time.	Close estimate 50% of time and 25% of time over- or under- estimate. <i>May result in</i> <i>spec violation 50% of</i> <i>time.</i>	Close estimate 75% of time and 25% of time over-estimate. <i>May</i> <i>results in spec violation</i> 25% of time.
Passing #200 sieve	Close estimate 50% of time and 25% of time over- or under- estimate. <i>May result in</i> <i>spec violation 50% of</i> <i>time.</i>	Close estimate 50% of time and 25% of time over- or under- estimate. <i>May result in</i> <i>spec violation 50% of</i> <i>time.</i>	Over-estimate 50% of time and under- estimate 50% of time. <i>May result in spec</i> <i>violation 50% of time.</i>
Combined bulk specific gravity, dry	Over-estimate 50% of time and under- estimate 50% of time.	Over-estimate 100% of time.	Over-estimate 50% of time and under- estimate 50% of time.

- SG of the combined gradation of RAP and virgin aggregates is required for the volumetric calculations of a mix design.
- BSG of each aggregate stockpile, including RAP aggregate needs to be determined for the calculation of BSG of combined aggregates.

• Method A: Difference in VMA

Centrifuge Reflux Ignition oven 0.9 • Method B: 0.6 Difference in VMA 0.3 **Difference in VMA** E 0.0 -0.3 -0.6 10% RAP -0.9 -1.2 1.25Pba 0.75Pba 1.25Pba 0.75Pba 1.25Pba 0.75Pba Pba Pba Pba Extraction Method Centrifuge Reflux Ignition oven 0.9 0.6 **Difference in VMA** 0.3 0.0 -0.3 -0.6 -0.9 50% RAP -1.2 Pba 1.25Pba 0.75Pba 1.25Pba 0.75Pba 1.25Pba 0.75Pba Pba Pba Extraction Method Asphalt Research Consortium Alabama (hard limestone) □ Florida (soft limestone) California (Granodiorite) Nevada (rhyolite)

• Method C: Difference in VMA

Centrifuge

RAP Content

RAP Content

Ignition Oven

RAP Content

- RAP asphalt content:
 - Ignition method appears to give the most accurate results.
 - Solvent extraction methods do not appear to remove all of the aged binder from RAP
 - RAP asphalt contents using these methods tend to be lower than they actually are.

• RAP aggregate specific gravity:

– For high RAP content mix designs, the best method for determining the RAP aggregate specific gravities is to use a solvent extraction method (centrifuge or reflux) to recover the aggregate and then test the coarse and fine parts of the recovered aggregate using AASHTO T85 and T84 respectively.

- RAP aggregate specific gravity (cont'd):
 - Ignition furnace may also be used to recover the RAP aggregate except for some aggregate types which undergo significant changes in specific gravity when subjected to the extreme temperatures used in the ignition method.
 - As RAP contents approach 50%, the net effect may be an error in the VMA determination of +/- 0.4%.

- RAP aggregate specific gravity (NCHRP Report 452) – Method B
 - Correct the G_{se} to an estimated G_{sb} using an assumed value for RAP asphalt absorption.
 - Correction is only reliable when asphalt absorption can be assumed with confidence.
 - Correction is very sensitive to the assumed asphalt absorption value and can lead to errors in VMA that are 0.5% or more.

- RAP aggregate specific gravity (NCHRP Report 452) – Method C
 - -Although some agencies use the G_{se} for the RAP aggregate in the calculation of VMA, the authors strongly advise against this practice.

Recommended Practice

Methods for estimating		Fynected		
RAP aggregate specific	Ex	Error in VMA		
gravity	Centrifuge	Reflux	Ignition Oven	
Mathad A.	≤ 25%	≤ 25%	\leq 10%	0.2%
Wiethou A ^c	25% - 50%	25% - 50%	10% - 25%	0.4%
Mothod D f.e	≤ 10%	≤ 10%	\leq 15%	0.2%
	10% - 20%	10% - 20%	15% - 25%	0.4%

e using measured specific gravities of coarse and fine fractions of the extracted RAP aggregate along with the measured percent fine material (i.e. passing No. 4 sieve) in the RAP.

*f*assuming asphalt absorption along with measured theoretical maximum specific gravity and binder content for RAP. *g*assumed asphalt absorption for the RAP aggregate within 25% of the true value.

