Reclaimed Asphalt Pavement Mixing and Compatibility

Eric W. Kalberer P. Michael Harnsberger

Recycled Asphalt Pavement Expert Task Group Meeting Irvine, CA May 10-11, 2011

 Alternative methods for determining the degree of mixing found in asphalt-RAP mixtures

• Determining compatibility of asphalt-RAP mixtures

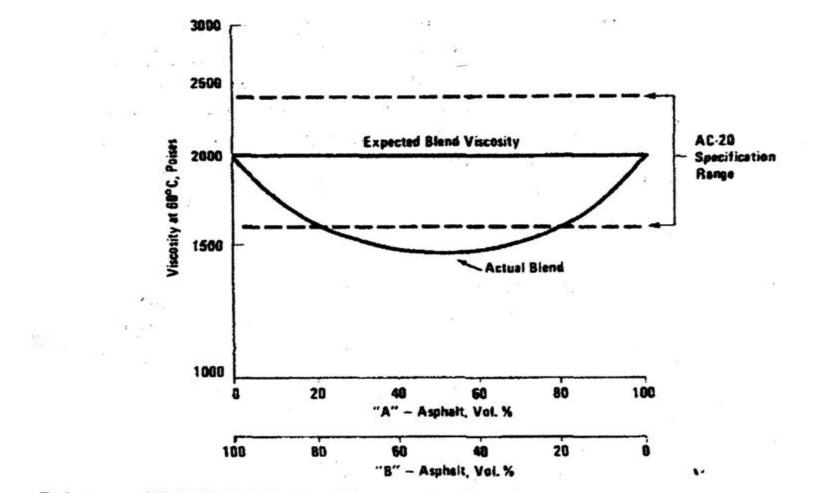
- RAP samples and materials from 4 different sources
 - Iowa
 - Palm Dale, CA
 - South Carolina
 - Manitoba:
 - RAP
 - 2 binders; 150/200 and 200/300
 - 15% RAP + 150/200
 - 50% RAP + 200/300
 - 50% RAP + 150/200

- Solvent extraction study combined with characterization
 - Toluene/EtOH vs. Cyclohexane
 - Cyclohexane ~ solvent characteristics of asphalt while tol-eth is a much stronger solvent system
- Characterization
 - % Recovered
 - Compositional chromatographic characterization
 - Rheological

- Does initial mixing of RAP and virgin aggregate occur with any selectivity in the mix plant?
- Do the RAP aggregates and the virgin aggregates end up as different materials at high RAP concentration?
 - Physical study with additional characterization similar to solvent extract study.
- How does this affect material performance?????

- Automated Flocculation Titrimetry
 - Colloidal stability ~ Rheological properties
 - Heithaus Solubility Parameters
 - The mixing of RAP and Virgin binders will have profound affects on the colloidal stability of the virgin binder at high RAP concentrations.
- Automated testing for performance prediction
 - Many RAP stockpiles can be applied to mix design using the well known blending chart approach.
 - What has happened when the blends turn out much too soft or, even worse, much too stiff?

(D) AAD Asphaltenes (6%)


	Components of Mixture	Neat			TFOT + PAV, 60°C, 144 hours		
Mix #		Vis., Pa•s 25°C, 1 r/s	Tan ∂ 25°C, 1 r/s	R. S. Visc. 25°C, 1 r/s	Vis., Pa•s 25°C, 1 r/s	Tan ∂ 25°C, 1 r/s	Aging Index 60°C, 1 r/s
I (A)	AAD Maltenes (79%) AAD Asphaltenes (21%)	49,011	3.2	705	550,650	1.5	15.4
VII (B)	AAG Maltenes (94%) AAG Asphaltenes (6%)	389,100	6.3	64	1,086,400	1.6	4.2
			Cross Ble	ends	1		
V (C)	AAG Maltenes (79%) AAD Asphaltenes (21%)	4,970,900	1.5	287 (?)*	20,662,000	0.8	15.5
III (A) (C)	AAD Maltenes (79%) AAG Asphaltenes (21%)	62, 908	3.7	906	552,310	1.8	9.0
II (D)	AAD Maltenes (94%) AAG Asphaltenes (6%)	1,023	>10	35	7,108	<10	3.7
VI (B)	AAG Maltenes (94%)	337,190	6.0	54	2,125,400	2.3	5.3

Data from: "Fundamental Properties of Asphalts and Modified Asphalts", Vol. 1: Interpretive Report FHWA-RD-99-212, Oct. 2001. (JCP, 09/08)

*Value is suspect. Reduced specific viscosity at 60°C is reported as 393.

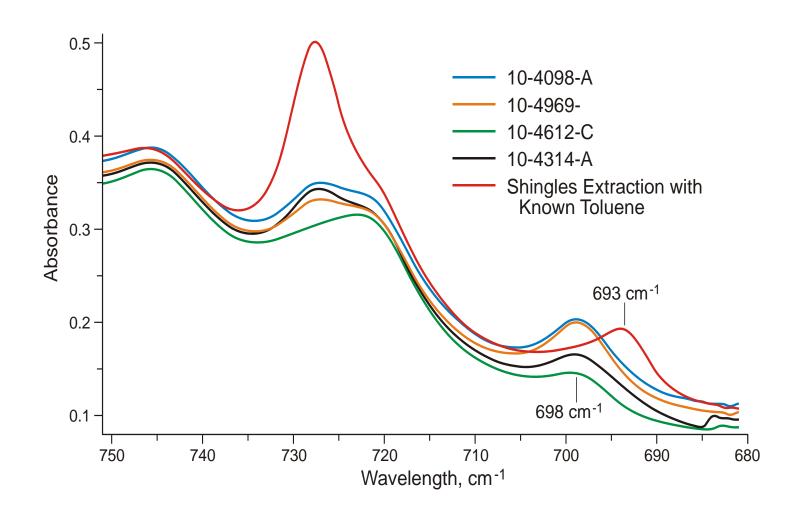
Compatibility – Blending

Reference: W. J. Kari. "Effects of Construction Practices on the Asphalt Properties in the Mix", *Proc. Canadian Tech. Asphalt Assn.*, vol. XXVII (1982), pp. 321-334. (cited in AAPT, Anderson, Petersen and Christensen, v. 55 (1986), pp. 250-268.

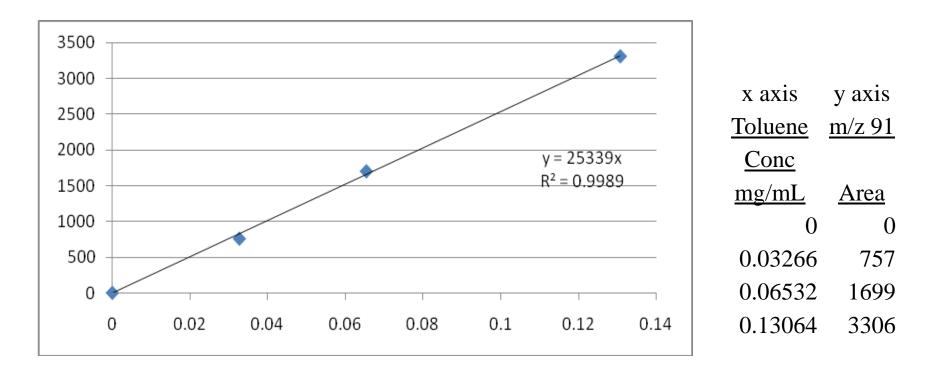
Compatibility as Asphalt Ages

Sample ID		AFT Parameter Data			Wiehe Blending N	Wiehe Blending Numbers		
		P_a	Po	Р	δ_{floc}	$oldsymbol{\delta}_{oil}$		
<u>Virgin Binder</u>	70-22	0.70	0.75	2.5	7.5	8.4		
<u>Aged Binder</u>		0.6	0.76	1.9	7.7	8.3		
<u>Virgin Binder 1</u>		0.73	0.81	3.0	7.4	8.2		
<u>Virgin Binder 2</u>		0.73	0.81	3.0	7.4	8.2		
<u>Blended Binders</u>								
<u>50/50</u>		0.78	0.87	3.9	7.3	9.4		

- Blending of characterized RAP and virgin asphalts to determine effects of mixing.
 - BI0001 and BI0002 (Venezuelan and San Juaquin)
 - Use of AFT as a tool for material selection in respect to compatibility/colloidal stability
 - Compositional (AFT, AD/WD, SARA) and rheological analyses will be used to further characterize the changes in material properties as a result of blending


- Solvent extraction and material comparison studies underway
 - Delay due to sample backlog as a result of major downtime while acquiring/installing new rheometers.
- AFT testing of virgin binder and Manitoba RAP mixtures underway
- Results from testing of unexpected asphalt softening in Oregon....some additional samples ⁽²⁾

- Samples supplied by Prof. Todd Sholz at Oregon St.
 - Virgin binder samples from two different projects on US-20 (70-22) and I-5 (70-28)
 - RAP modified (extracted at WRI)
 - RAP/RAS modified (extracted at WRI)
 - FTIR for excess solvent in extracted materials (extracted by ODOT or OSU)
 - AFT testing to determine a change in compatibility when reclaimed asphalt was blended.



FTIR for Toluene

Toluene in Sample Calculation: 0.059% wgt/wgt

590 ppm

1:19 molecules

Sample ID	AFT Parameter Data			Wiehe Blending Numbers	
	P _a	Po	Р	$\delta_{ m floc}$ $\delta_{ m oil}$	
<u>I-5</u>					
70-22	0.70	0.75	2.5	7.5 8.4	
70-22 RAP	0.64	1.2	3.3	7.6 9.3	
70-22 RAP+RAS	0.62	1.5	3.9	7.6 9.3	
<u>US-20</u>					
70-28	0.73	0.81	3.0	7.4 8.2	
70-28 RAP	0.63	1.0	2.8	7.4 8.5	
70-28 RAP+RAS	0.63	1.3	3.4	7.6 9.4	

Compositional data still needed for correlation