

## **UNH Research Update**

#### **Jo Sias Daniel**

**RAP ETG Meeting** 

May 11, 2011

UNIVERSITY of NEW HAMPSHIRE

### Projects

- Northeast High RAP Pooled Fund Study
  High RAP Case Studies
- Aging of RAP mixtures
- Shingles work





## Northeast High RAP Pooled Fund Study Update



### Background

 2009 extracted binder study on plant mixtures by NHDOT and Pike Industries, Inc.
 NEAUPG RAP Task Force developed scope of work for expanded mixture & binder testing study on plant produced mixtures ~\$750,000
 Scope of work to include 60 mixtures



### **Current Participants**

- NHDOT lead agency
- States: MD, NH, NJ, NY, PA, RI, and VA (\$90k each over 3 years)
- FHWA at \$150k for NCSU work
- Research Team: UNH, Rutgers,
   UMass Dartmouth, NC State



## High RAP Pooled Fund Study

- Producers have volunteered to produce mixtures at different RAP contents
- Mixtures sampled and taken to lab for testing
- SGC specimens compacted at time of production
- Data collected on plant operations, raw material info, placement location & conditions (field cores if possible)



### Phase I: 2010-11

- 18 Mixtures
- Focus on evaluating effect of binder grade and plant type

| Dhart       | NMAS       | PG    | RAP Content (%) |    |    |    |  |  |
|-------------|------------|-------|-----------------|----|----|----|--|--|
| Plant       | (mm)       | Grade | 0               | 20 | 30 | 40 |  |  |
| Callanan NY |            | 64-22 | Х               | Х  | Х  | Х  |  |  |
| (drum)      | 12.5       | 58-28 |                 |    | x  | x  |  |  |
| Pike VT     | о <b>г</b> | 58-28 | Х               | х  | х  | Х  |  |  |
| (batch)     | 9.5        | 52-34 | Х               | X  | Х  | x  |  |  |
| Pike NH     | 10 F       | 64-28 | х               | N  | X  | N  |  |  |
| (drum)      | 12.5       |       |                 | Χ  | X  | X  |  |  |

| Phase I mixtures |             |       |              |      |      |           |        |       |            |      |       |       |       |
|------------------|-------------|-------|--------------|------|------|-----------|--------|-------|------------|------|-------|-------|-------|
| ID               | Production  | Plant | PG           | % ac | NMAS | %         | % ac   | % ac  | Dis.       | Com. | Gmm   | VMA   | VFA   |
|                  | Plant       | Туре  | grad         |      | (mm) | RAP       | of RAP | Rep.  | Tem        | Tem. | Junin |       |       |
| NYb40            | Callanan NY | Drum  | <b>58-28</b> | 5.2  | 12.5 | 40        | 4.9    | 37.69 | 330        | 275  | 2.540 | 12.70 | 88.36 |
| NYb30            | Callanan NY | Drum  | 58-28        | 5.2  | 12.5 | 30        | 4.93   | 28.44 | 305        | 275  | 2.539 | 13.70 | 81.12 |
| NYd40            | Callanan NY | Drum  | 64-22        | 5.2  | 12.5 | 40        | 4.9    | 37.69 | <b>330</b> | 290  | 2.546 | 12.53 | 87.90 |
| NYd30            | Callanan NY | Drum  | 64-22        | 5.2  | 12.5 | 30        | 4.93   | 28.44 | 305        | 290  | 2.543 | 12.96 | 85.08 |
| NYd20            | Callanan NY | Drum  | 64-22        | 5.2  | 12.5 | 20        | 4.95   | 19.04 | 320        | 290  | 2.528 | 14.09 | 79.86 |
| NYd00            | Callanan NY | Drum  | 64-22        | 5.2  | 12.5 | 0         |        | 0.00  | <b>310</b> | 290  | 2.530 | 12.64 | 89.32 |
| VTa40            | Pike VT     | Batch | 52-34        | 6.6  | 9.5  | 40        | 5.41   | 32.64 | 300        | 295  | 2.472 | 18.00 | 77.78 |
| VTa30            | Pike VT     | Batch | 52-34        | 6.6  | 9.5  | 30        | 5.41   | 24.74 | 320        | 320  | 2.466 | 17.72 | 82.51 |
| VTa20            | Pike VT     | Batch | 52-34        | 6.8  | 9.5  | 20        | 5.41   | 16.01 | 324        | 324  | 2.458 | 18.75 | 81.86 |
| VTa00            | Pike VT     | Batch | 52-34        | 6.7  | 9.5  | 0         |        | 0.00  | 340        | 340  | 2.465 | 20.23 | 76.28 |
| VTe40            | Pike VT     | Batch | 64-28        | 6.6  | 9.5  | 40        | 5.41   | 33.04 | 295        | 295  | 2.473 | 18.24 | 76.43 |
| VTe30            | Pike VT     | Batch | 64-28        | 6.6  | 9.5  | <b>30</b> | 5.41   | 24.55 | 322        | 310  | 2.464 | 19.10 | 75.91 |
| VTe20            | Pike VT     | Batch | 64-28        | 6.7  | 9.5  | 20        | 5.41   | 16.13 | 300        | 300  | 2.467 | 18.69 | 79.67 |
| VTe00            | Pike VT     | Batch | 64-28        | 6.5  | 9.5  | 0         |        | 0.00  | <b>330</b> | 300  | 2.482 | 20.33 | 71.48 |
| NHe40            | Pike NH     | Drum  | <b>64-28</b> | 5.7  | 12.5 | 40        | 4.79   | 33.61 | 335        | 315  | 2.435 | 14.50 | 82.10 |
| NHe30            | Pike NH     | Drum  | 64-28        | 5.7  | 12.5 | 30        | 4.79   | 25.21 | 335        | 315  | 2.434 | 14.40 | 81.30 |
| NHe20            | Pike NH     | Drum  | 64-28        | 5.7  | 12.5 | 20        | 4.79   | 16.81 | 315        | 310  | 2.430 | 14.50 | 79.90 |
| NHe00            | Pike NH     | Drum  | 64-28        | 5.7  | 12.5 | 0         |        | 0.00  | 330        | 300  | 2.419 | 14.90 | 74.80 |



### Testing

- Recovered & virgin binder
  - PG grade, master curves
  - CCT
  - ABCD
  - Mixture
    - Complex Modulus
    - Hamburg & TSR
    - Low Temperature Creep & Strength
    - Fatigue (S-VECD protocol)
- Additional testing
  - Overlay tester
  - ACCD

### Schedule/Progress

- Mixture testing started late 2010
- Extraction and recovery of binder has been completed
- Phase I testing will be completed over next few months
- Plan for Phase II to be developed this month
- Phase II mix production & testing 2011-2013



#### Dynamic Modulus Master Curves NY Callanan PG 64-22 Lab Compacted Mixtures





#### Dynamic Modulus Master Curves NY Callanan PG 58-28 and Virgin PG 64-22 Plant Compacted Mixtures





#### Dynamic Modulus Master Curves NY Callanan 30% RAP Mixtures





#### Dynamic Modulus Master Curves NY Callanan 40% RAP Mixtures







#### Dynamic Modulus Master Curves Pike NH RAP Mixtures – Plant Compacted





#### Dynamic Modulus Master Curves Pike NH o% RAP – Plant Compacted and Reheated Mixtures





### **HWTD Results**





### **Overlay Tester: NY Mixtures**



### **Overlay Tester: NH Mixtures**





### High RAP Performance Case Studies



### Background

- To compare the long term performance of RAP pavements to virgin pavements using several case studies
- Started from April 2009 RAP ETG
- Funded through the RMRC
- Project Completed
  - Evan Anderson thesis
  - paper to be submitted



### List of Case Studies

- Washington, I-90
  - Renslow to Ryegrass
  - Akima River to W.
     Ellensberg
- Durango, CO
- Willow, AK
- London, Ontario -Highway 401
- Connecticut Rt. 2
- Woodstock-Lincoln, NH

- Wyoming
  - I-90
  - I-25
  - US-85
  - **I-80**
- Arizona
  - SR-73
  - US-180
  - US-191
- Florida
- Boston-Logan Airport

### Wyoming Average PSR



Note: 25% and 45% RAP levels only represented by one section each. UNIVERSITY of NEW HAMPSHIRE

### WY Average PSR Deterioration Rates



UNIVERSITY of NEW HAMPSHIRE

### Wyoming Average PCI



UNIVERSITY of NEW HAMPSHIRE

### WY Average PCI Deterioration Rates



UNIVERSITY of NEW HAMPSHIRE

1.0

### Wyoming Average Ride Quality



WIVERSITY of NEW HAMPSHIRE

### WY Avg. Ride Index Deterioration Rates



WIVERSITY of NEW HAMPSHIRE

### Wyoming Average Rut Index



University of New Hampshire

### WY Avg. Rut Index Deterioration Rates



UNIVERSITY of NEW HAMPSHIRE

### Summary of Findings – WY

### Wyoming Index Statistics

 RAP Sections not statistically different from one another, only 20% RAP sections PSR was statistically worse than virgin sections

### Wyoming Deterioration Rate Statistics

 RAP sections deteriorate in ride quality significantly faster than virgin sections. 30% RAP PSR deteriorates significantly faster than virgin section.



## Summary of Findings – Demo 39

- Washington, Renslow to Ryegrass
  - Comparable performance rating after 9 Years of available data
- Washington, Akima River to W. Ellensberg
  - Comparable performance rating after 6 years of available data
- Durango, CO
- Similar levels of maintenance over 21 years
  Willow, AK
  - Provided level of performance typical to the region for
     23 years

### **Summary of Findings - Arizona**

### Arizona SR-73

- Similar levels of performance and maintenance between RAP and virgin sections
- Arizona US-180
  - Smoother ride in RAP Section, higher maintenance costs for Virgin section
- Arizona US-191
  - Similar levels of performance between RAP and virgin sections



### **Summary of Findings**

- London, Ontario Highway 401
  - Slightly more rutting and smoother ride in RAP section, comparable performance
- Connecticut Route 2
  - No significant rutting in any section, Underlying conditions control cracking, smoother ride in most RAP sections
- Woodstock-Lincoln, NH
  - Presence of RAP does not affect long term
     performance, Higher ride comfort in virgin sections

### **Summary of Findings**

#### Florida Recycled Projects

- No statistical difference between amounts of RAP and life span except for the 45% RAP sections, which performed best
- Boston-Logan International Airport
   Meets design life expectations for region





## Aging of RAP Mixtures



### Aging of Recycled Asphalt Mixtures Project Objective

- The objective of this project is to evaluate how the properties of asphalt mixtures containing RAP and RAS change with aging as compared to a virgin mixture.
- Plant produced mixtures
  - o, 20, 30, 40% RAP, one RAS mixture
- Specimens are aged to four different levels following existing SHRP recommendations for laboratory aging.

### Performance Evaluation Testing

- All RAP specimens have been fabricated and aged
- Testing is in progress and includes:
  - Dynamic Modulus (AASHTO TP62)
  - Fatigue (S-VECD protocol)
  - Binder testing?



### Performance Evaluation |E\*| Master Curve Comparison



### Performance Evaluation |E\*| Comparisons With Temperature

Average Ratio at 8 Days of Aging



### Performance Evaluation |E\*| Comparisons With Temperature

Average Ratio at 4 Days of Aging





## **Shingles Research**



# RAP & RAS : AAPT 2011 paperRAS source

- Post consumer
- Manufacturer waste
- Blend
- RAS amount
  - 3 levels of RAS





### **Questions?**

