

FHWA National Pavement Testing Program

Audrey Copeland

May 11, 2011

RAP ETG Meeting, Irvine, CA

Previous NPT Programs

- **1.** Initial Exploratory ALF Trials
- 2. WASHTO and Other Field Trials "Road Trip"
- 3. Evaluation of Tire Load, Type and Pressure Effects on Pavement Performance
- 4. Post SHRP Validation of Superpave Asphalt Binder Fatigue and Cracking PG Tests
- 5. Design and Performance of Ultrathin Whitetopping
- 6. TPF-5(019) & SPR-2(174) Full Scale Accelerated Performance Testing for Superpave and Structural Validation

Overview

- Critical evaluation of rutting and fatigue cracking
 - All of the mixes were the same
 - Only binder was different; polymer modified & unmodified
 - Binder specification test methods were correlated with laboratory and full scale performance
- Experiment also appraised the strengths of:
 - Crumb Rubber Modified Asphalt and Fibers
 - Asphalt Mixture Performance Tester (AMPT) currently being implemented by FHWA in TPF-5(178)
 - NCHRP Mechanistic-Empirical Pavement Design and Analysis Methodology

Overarching Findings: TPF-5(019) & SPR-2(174)

- Binder Specs for Implementation
 - MSCR
 - Calculated Critical Tip Opening Displacement (CTOD) for fatigue cracking
- Crumb rubber modified asphalts exhibited excellent resistance to bottom-up fatigue cracks
- Fiber reinforced hot mix asphalt exhibited resistance to fatigue cracking

Overarching Findings: TPF-5(019) & SPR-2(174)

- The AMPT axial test method may be used as an alternative to flexural beam fatigue
- Flow Number (rutting) test is strong predictor of rutting
- The current MEPDG (DARWin-ME) has weaknesses with polymer modified mixtures

- Comprehensive 290 page final report + database
- First of two close-out webinars completed, recorded and available on DVD

For more information, contact Nelson Gibson at nelson.gibson@dot.gov

Status of Current NPT Program Studies

- Enhanced Analysis of TPF-5(019) Binder & Full Scale Fatigue
 - Testing complete
 - Analysis confirms CTOD method (double data points)

- Pavement Preservation with 4.75 mm mix with RAP
 - Ongoing Study

Future NPT Program Study

• Full-scale Evaluation of High RAP & WMA Mixtures for Performance

- Every Day Counts

Biggest potential impact is WMA combined with high RAP

- NCHRP Projects Results

New guidance for WMA and High RAP use

NCHRP	WMA 8	RAP	Projects
-------	-------	-----	----------

- 9-43 Mix Design Practices for WMA
- 9-46 Improved Mix Design, Evaluation, and Materials Management Practices for HMA with High RAP Content
- 9-47 Engineering Properties, Emissions, and Field Performance of WMA Technologies
- 9-47A Properties and Performance of WMA Technologies
 - Performance of WMA Technologies: Moisture Susceptibility
- 9-49A

9-49

Performance of WMA Technologies: Long-Term Field Performance

U.S. Department of Transportation Federal Highway Administration

Two more WMA projects in the pipeline...

Future NPT Program Study

• Full-scale Evaluation of High RAP & WMA Mixtures for Performance

Objectives:

- Quantify performance of combined use of WMA and High RAP for three different WMA processes
- Verify guidance as a result of recent and on-going NCHRP research projects
- Develop recommendations for RAP use by percent binder replacement and binder grade changes when using high RAP

What can the ALF do?

- Rapid simulation of traffic loading with controlled temperature (19°C to 70°C ± 1 to 2°)
- Rutting & Fatigue
- Distress survey methods including NDE
- Full forensic analysis
 - Trenching/severe coring
- MDD, Pressure Cells

• Major upgrade in 2011

What can FHWA's Laboratories do?

Proposed Activities (2011-2016)

- Stakeholder Engagement
- Development of Research Proposal & Review
- Design, Materials, & Lab Experiments to Support Field Study
- ALF Test Lane Construction & Instrumentation
- Full-scale ALF Testing and Analysis
- Research Dissemination
- Implementation of Research Results

Experimental Design

Laboratory	ALF	Field?
Binder Characterization		
Aggregate Char.	Up to 12	?
RAP Sources(s)	Lanes with Supportive	
Mixture Char.		
WMA Technologies	Lab Testing	
Chemical Char.		

Possible ALF Matrix – Up to 12 Lanes

% RAP	HMA	WMA ?	WMA ?	WMA ?
Zero	Control	-	-	-
25%	-	Х	Х	Х
Higher	-	Х	Х	Х
Other	?	?	?	?

What Key Questions Will Be Answered?

- What is the benefit of the combined use of WMA and High RAP?
- Is recent guidance valid?
- What should AASHTO specifications be to best capture the combined benefits of WMA and High RAP?
- What else?

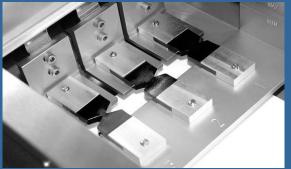
Implementation and Payoff - "Benefits"

- Takes risk off of State Highway Agencies
- Understanding field performance of WMA & high RAP mixture under actual conditions
- Controlled materials, processing, construction, and test sections including extensive laboratory characterization and performance monitoring
- Addresses climatic region not addressed by other test tracks
- The widespread use of WMA with high RAP may provide the largest impact for improved performance and direct cost savings.

Discussion / Questions

Overview

- Critical evaluation of rutting and fatigue cracking
 - All of the mixes were the same
 - Only binder was different; polymer modified & unmodified
 - Binder specification test methods were correlated with laboratory and full scale performance
- Experiment also appraised the strengths of:
 - Crumb Rubber Modified Asphalt
 - Asphalt Mixture Performance Tester (AMPT) currently being implemented by FHWA in TPF-5(178)
 - NCHRP Mechanistic-Empirical Pavement Design and Analysis Methodology



Key Findings – Asphalt Binder Specs

- Strongest Implementable Specification Parameters are:
 - Multiple Stress Creep and Recovery (MSCR) and similar Oscillatory-based non-recoverable stiffness for rutting
 - Calculated Critical Tip Opening Displacement (CTOD) for fatigue cracking
- These are more performance related than what is currently being used
 - $|G^*|sin\delta \& |G^*|/sin\delta from SHRP$

**Polymer modified asphalts clearly improve rutting and fatigue cracking performance.

Key Findings – Crumb Rubber Asphalt

- Gap-graded crumb rubber modified asphalt mix (Arizona 'wet process') placed in a composite pavement structure exhibited excellent resistance to bottom-up fatigue cracks.
 - Fatigue cracks initiated and propagated up through the bottom layer but did not progress through any of crumb rubber mix on top.

• A newer "hybrid" terminally blended crumb Rubber modified asphalt binder performed well in fatigue and rutting and had easier handling and construction characteristics than Arizona 'wet process'

Key Findings – Fiber Modified Asphalt

- Fatigue cracking was measurably better than those of the polymer modified sections even though a less fatigue resistant unmodified asphalt binder was used in the mix.
- No substantial improvement in rutting performance

~25 mm polypropylene

 Some of the better laboratory mixture tests still have trouble capturing the observed performance

Key Findings – AMPT Equipment

- <u>Fatigue Cracking</u> An alternative test for flexural beam fatigue was shown to account for fatigue performance and have the ability to generate fatigue properties with a smaller experimental program with more user friendly, implementable equipment
- <u>Rutting</u> Flow Number and SST Repeated Shear at Constant Height (SHRP) were the two strongest indicators of ALF rutting. The AMPT Flow Number test is a stronger predictor and more implementable.

Key Findings – M·E Performance Prediction

- By design the ALF experiment utilized polymer modified asphalt binders which naturally challenged the MEPDG calibration having very few test sections with polymer modified asphalt
 - A single, global calibration for rutting and fatigue cracking could not capture the ALF performance ranking
- Additional mixture-specific characterization inputs are needed above and beyond the |E*| dynamic modulus to be able to better discriminate and rank performance of modified and unmodified asphalt.
 - To illustrate this, an analysis was completed using AMPT inputs for rutting which confirmed the NCHRP 9-30A approach (near completion) for mixture-specific tests that improve rutting prediction

Overarching Findings

- Polymer modified asphalts are good
- Crumb rubber modified asphalts are good
- Fiber reinforced hot mix asphalt is good
- MSCR binder test (rutting) is good
- CTOD binder test is (cracking) good
- The AMPT Flow Number (rutting) test is good
- Axial fatigue alternative to beam fatigue is good (AMPT)
- The current MEPDG has weaknesses with polymer modified mixtures