MODOT AND RECYCLING

Dale A. Williams, PE May 20, 2010

Early RAP Use

First used in 70's & 80's
 Premature failure

 Dry mixes – 4% to 5% AC
 High RAP content – 35% to 40%

 Discontinued use

Why Did We Change

► NCHRP 9-12 Increasing costs of virgin material >Underutilization of a valuable resource \triangleright Industry desire to invest in lowering overall cost of mixtures >MoDOT's desire to become more **Environmentally Responsible**

Non Superpave (less than 600 trucks)

2003 – 15% shoulders only
 2004 – Allowed use in mainline paving
 2005 – 20%
 2008 – Unlimited use, Over 20% testing required

SuperPave

2005 – 10% surface, 20% base
 2008 – Unlimited Use, over 20% testing required

2010 – PROPOSED Unlimited use, over 30% replacement testing required

RAP Underutilized

Waste

Misuse

Internal Culture Change

DOT used to retain all RAP
 Maint. viewed RAP as "FREE" Rock
 Contractor now retains all RAP

RAP USE

RAP Use

Performance
 Equal or better than non-RAP mixtures
 Limitations
 Pavement rehab strategies
 Budget

Construction Program Cliff

*2010-2015 Awards based on FY09 financial forecast (Excludes engineering, payments and right-of-way) **MHTC Taking Care of the System (TCOS) Funding Distribution (Includes Engineering)

RAS History

2003 – Contractor request
 2004 – Contractor demonstration project
 2005 – First DOT pilot project
 2006 – Specification added

In The Beginning

 Approached by Pace Construction, Peerless Landfill and MO DNR
 MoDOT Not Using RAP in Mixtures
 Deleterious Material
 Stiffness of Asphalt in Shingles

MoDOT Goals

 Engineering Properties First
 Harmful Effects of Deleterious Material
 Asphalt Binder Properties
 Traffic Safety – Nails, etc.
 If Everything Else Works Out, Landfilling is Reduced

Concerns

How Will Deleterious Material Affect the Mixture Can the Low Temperature Grading be Maintained at Various Blending Ratios

Deleterious Material

Nails
Wood
Plastic
Cellophane
Paper
Fiber Board

Rte. 61/67, St. Louis Co. 19 mm PG 70-22 Binder Course

 PG 58-28
 PG 58-28 / 5% RAS
 PG 64-22 / 5% RAS
 PG 64-22

Minimal Reflective Cracking & No Rutting to Date...

Problems with RAS Mixtures

 Sporadic Mixing Problems Confined to Plants not Mixture
 Harder to Place in Cool Weather

RAS Specifications

7% maximum allowed
 Manufacturer waste
 New
 Post consumer (tear off)
 Not allowed in polymer modified mixes
 30% replacement requires PG58-22 or PG58-28

QUESTIONS

High RAP Warm Mix Asphalt Exceeding the 20% Threshold Blending Charts Softer Binder Availability – \$\$\$ >Oxidation Reduction – Warm Mix **Evotherm DAT** >NOR I-44 near Six Flags

35% RAP Warm Mix

20% RAP Hot Mix Control

20% RAP Warm Mix

28% RAP Warm Mix

High RAP Warm Mix Asphalt

	Control	20% RAP	28% RAP	35% RAP
Pen	29	39	32	28
Viscosity	25,920	16,087	16,738	23,470
Ductility	38	79	54	42
DSR 64	7.35	4.39	5.74	7.56
MSCR	26	42	37	32
DSR 70	3.48	2.11	2.91	3.59
BBR -12	0.394	0.437	0.406	Q.393

Further Mixture Testing

IDT
Beam Fatigue
Dynamic Modulus
Rut Testing