Overview of Current RAP Research

RAP ETG May 4, 2007

RAP

- RAP can be cost effective and environmentally friendly ⁽³⁾
 BUT....
- Variability of material ☺
- Compactibility and workability 🛞
- Designing mix 🛞

Variability

- RAP stockpiles can contain:
 - Material with no known properties
 - Several sources
- Solutions:
 - Screening/
 Fractionation
 - Characterization procedure

Characterization of RAP and Blend

- Material properties vary from source to source
- Unknown properties of RAP and virgin blended
- Solution:
 - Characterize RAP
 Characterize Blend

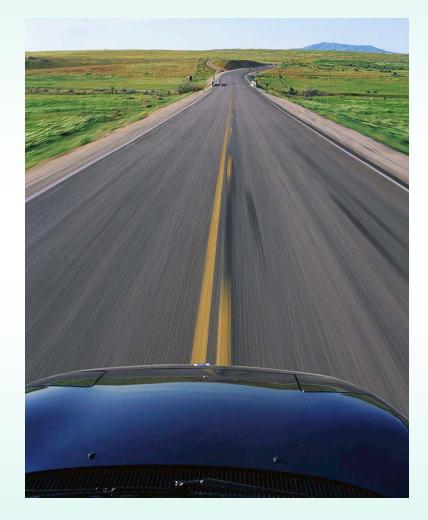
Characterization of RAP

- Advanced Asphalt Technologies
 - Ray Bonaquist
 - Plant Produced 35%-45% RAP mixes
 - Dynamic Modulus
 - Sensitive to binder changes
 - Backcalculate G* using Hirsch
 - Effective PG
 - Compared estimated binder to recovered
 - Good correlation
 - Possible to estimate stiffness

Characterization of RAP cont.

- Univeristy of Minnesota
 - Zofka, Marasteanu, Clyne, Li, & Hoffman
 - BBR mix specimens
 - 101mm X 10mm X 8mm
 - 0, 20%, & 40%
 - Creep compliance and stiffness
 - Backcalculation of effective binder stiffness via Hirsch Model
 - Phase angle log of contact factor (Pc)
 - Binder stiffness=3 x G*
 - Predicted and actual stiffness same trend
 - Predicted often resulted in lower stiffness values
 - Some beams too wide for supports
 - Additional work on refinement

RAP Stiffness Modulus


- Worcester Poly. Inst. & U of T El Paso
 - Mallick, Bradley, and Nazarian
 - Reclaimed layers
 - Stiffness modulus computed via seismic testing
 - Layer thickness
 - FWD and ground penetrating radar
 - Deflection and stiffness correlated
 - Feasible method for DOTs to determine modulus
 - MEPDG

Characterization of RAP cont.

- Auburn University
 - Carter (Stroup-Gardiner)
 - Indirect tension stress relaxation test
 - 5 and 22°C
 - Initial stress relaxation modulus
 - Curvature coefficient
 - Linear viscoelastic range (3 reps)
 - Compute required modulus based on knowing desired and RAP modulus
 - 0, 15%, 25%, and 50% RAP (2 sources)
 - 64-22 (neat) and 76-22 (mod.)
 - Use RAP % and RAP modulus to determine blend modulus

Bad RAP?

- Are there
 pavements that
 should not be
 recycled?
- Are certain additives bad?

Crumb Rubber RAP

- GA. Southern U., Chongqing Jiaotong University, and Clemson
 - Shen, Amirkhanian, Lee, and Putnam
 - Evaluated use of old crumb rubber pavements used as RAP
 - 3 crumb rubber RAP & 3 virgin mixes
 - Artificially aged mixes
 - 15% RAP
 - Crumb rubber pavement can be recycled using normal recycling procedures

Effects of RAP on Performance

- How does RAP affect mix properties?
- Are differences positive or negative results?

Mechanistic and Volumetric Properties

- University of New Hampshire
 - Daniel and Lachance
 - -0%, 15%, 25%, 40% RAP
 - Processed and unprocessed RAP
 - Dynamic Modulus, creep compliance, and creep flow
 - Changes in dynamic modulus and VMA

Mechanistic Properties Cont.

- N. Central Superpave, Heritage, FHWA
 - McDaniel, Shah, Huber, and Gallivan
 - RAP and Virgin Mixes
 - 0, 15%, 25%, & 40% RAP
 - PG 64-22 & PG 58-28
 - Complex Dynamic Modulus |E*|
 - Low temp. creep compliance and indirect tensile strength
 - Estimate critical cracking temp
 - No drastic changes in properties with RAP

Mix Design

- Do typical mix design procedures work?
- Is additional testing requires?

Mechanical Characterization

- U. of Minhu & U. of Coimbra (Portugal)
 - Pereira, Oliveira, & Picado-Santos
 - Investigated if Marshall design can be used for 50% RAP mixes
 - Compared to 100% virgin
 - Four point beam fatigue and repeated simple shear test (deformation)
 - Results positive thus far, but research continues

Pavement Design with RAP

- Indian Inst. of Tech. Kanpur
 - Aravind & Das
 - Marshall tests to evaluate performance
 - Aimed for desired viscosity and performance
 - Two RAP mixes & one virgin mix
 - Dense-graded
 - Aim target viscosity
 - Based proportions on visc. calculations

Sensitivity of MEPDG to RAP

- Penn State & UNH
 - Chehab and Daniel
 - Pavement properties and conditions constant except surface
 - Varied RAP content and effective PG
 - MEPDG sensitive to assumed PG
 - Thermal cracking and rutting
 - Important to determined effective PG correctly when using MEPDG

Blending of RAP

- U. of Tenn. and LSU
 - Huang, Li, Vukosavljevic, Shu, and Egan
 - Evaluated 20% of RAP blended with virgin
 - Staged extraction
 - 3 min TCE soaks (4 soaks)
 - Small % of RAP binder mixed with virgin materials
 - Rest black rock

Resilient Modulus

- University of Nevada
 - Hajj & Sebaaly
 - Evaluated blending chart, mixing of blends, and M_r as performance test
 - 3 RAP sources, 2 binders, 3 aggregate sources, 3 percentages (0%, 15%, 30%)
 - Blending chart worked
 - Mixing process adequate
 - M_r correct for thermal cracking, but not rutting and fatigue

Workability and Compactibility

- RAP tends to be stiffer
- Requires higher temperatures during production
- Solution:
 - Additive to adjust viscosity of mix

Warm Mix in High Content RAP

- Iceland and Maryland
 - Kristjansdottir, Muench, Michael, & Burke
 - Warm mix additives
 - Improve workability & compactibility
 - Maryland
 - 35 and 45% RAP in HMA and WMA
 - Sasobit blown into HMA via fiber feeder
 - Stiffness, rutting, fatigue, thermal cracking, moisture sensitivity, & aging evaluated
 - No adverse effect on performance RAP HMA vs RAP WMA
 - Seemed more workable compared to RAP HMA

WMA and RAP cont.

• Worcester Poly. Inst. & Maine DOT

– Mallick, Bradley, & Bradbury

- Lab study evaluated compaction effort, stiffness, and retained tensile strength
- 100% RAP (target)
 - Emulsion @ 3%, Asphalt @ 2%, and Sasobit @1.5%
- Sasobit allowed for lower temperatures with equivalent workability and compaction
- Asphalt dispersion improved with Sasobit

Warm Mix and RAP

- Hong Kong Poly. U. & Changsha U.
 - Gui-ping & Wing-gun
 - Compared permanent deformation of foamed asphalt RAP to virgin
 - 0%, 20%, 40%, and 60% RAP
 - Creep strain slope not affected by RAP
 - Permanent deformation not significantly affected by RAP in foamed asphalt