

High RAP Research and Applications

RAP ETG April 22, 2009

Illinois Tollway – Key Statistics

286-mile system comprised of four tollways

- Tri-State (I-94/I-294/I-80)
- □ Jane Addams Memorial (I-90)
- Reagan Memorial (I-88)
- □ Veterans Memorial (I-355)
- Opened in 1958 as a bypass around Chicago to connect Indiana and Wisconsin
- Carries more than 1.4 M vehicles per day
- User-fee system no state or federal gas tax dollars used for maintenance and operations

Congestion-Relief Program–Phase One

\$6.3 Billion Congestion-Relief Program (CRP) to reduce travel times by:

- Rebuilding/Restoring nearly the entire
 286-mile system 50% Complete
- Widening many miles of major roads 50% Complete
- Converting 20 barrier toll plazas to **Open Road Tolling**
- Building the 12.5-mile extension ofI-355 to serve fast-growing Will County

Early 2007 Fatigue Testing

Jane Addams Memorial Tollway (I-90) Reconstruction & Widen Project

- 2007 FRAP test mixtures on widening and crossovers
- 2008 EB reconstruction
- 2009 WB reconstruction
- Contractor willingness to participate - vital

Collaborative Effort

- Illinois Tollway
- IDOT
- Rock Road Companies
- Rockford Blacktop
- Seneca Petroleum
- Heritage/Levy Slag
- Rib Mountain Aggregate
- ARA & STATE Testing
- University of Illinois Center for Transportation

FRAP Research Goals

Mixture Quality Control can be maintained

Retain long-term performance at lower costs

Fatigue and Strength analysis

- Are mix properties compromised with higher RAP?
- □ How soft for the PG with the increased RAP?

(64-22 vs. 58-22 vs. 58-28)

Tollway FRAP Specifications

■ 2 splits: minus ½ inch/plus #4, and minus #4

Category 1 FRAP
 From Tollway Mainline
 Crushed Aggregates only
 Required in SMA (fine portion only)

Category 2 FRAP

□ From other Tollway or State projects

□ Allowable in all dense graded mixtures

Tollway Mainline

Open Roads for a Faster Future

Tollway Mainline FRAP Allowances

Tollway Shoulders

- Thicker Shoulder Pavement for Temporary Construction Traffic
 - Standard" shoulders are 6 inches thick

Tollway Shoulder FRAP Allowances

Nine FRAP Research Mixtures (2007)

- 3 SMA mixtures (Steel slag, trap rock, and crushed gravel coarse aggregates).
 - □ Used GTR modified PG 76-22 liquid.
- N70 binder 40% FRAP
- N70 Surface 25% FRAP
- N50 Binder 40% FRAP, PG 58-28 & PG 58-22
- N50 Base 40% FRAP, PG 58-28 & PG 58-22

The FRAP Process

The FRAP Process

2007 FRAP Research Goals & Results

Quality Control maintained e

Retain long-term performance at lower costs

Fatigue and Dynamic Modulus analysis
 Are mix properties compromised with higher RAP? (No.)
 How soft for the PG? (64-22? vs. <u>58-22</u> vs. <u>58-28</u>)

Fatigue Analysis

Binder Mix Double Bump

The performance of the 2 mixes is nearly identical

Base Mix Double Bump

The performance of the 2 mixes is nearly identical

Dynamic Modulus Results

Modulus Test Interpretation

- The results are typical of all-virgin-aggregate IDOT mixtures.
- The magnitude of the modulus values are typical of IDOT mixtures,
- No extra hardening of these mixes with the high RAP content.
- Compaction to lower voids increases the modulus slightly, as expected.
- Performance should be the same as a typical IDOT mix with all new materials.

Reconstruction Stage 1 - Complete

2008 FRAP and Mix Research

- N70 Binder, 4% Air Voids
- 3 asphalt grades (PG 64-22, PG 58-22, & PG 58-28)
- 3 percentages of FRAP (10%, 27.5%, & 45%)
- Lab-produced samples; production samples
- Fatigue and Dynamic Modulus Analysis

2008 FRAP Research - Lab Mixes

	Percent FRAP		
PG Grade	10	27	45
PG 64-22	113	99	80
PG 58-22	161	131	138
PG 58-28	92	106	76

Predicted Fatigue Endurance Limit from fatigue curve (Carpenter 2008 AAPT)

- FEL generally decreases with more FRAP
- Single bump helps the FEL
- Double bump is the same or worse (confirms NCHRP 9-38)
- All mixes have FEL above 70 (current Tollway full-depth design criteria)

Cost Savings and Moving Forward

Estimated \$10 million+ HMA savings – I-90

■ GTR modified binder – avoided SBS "shortage"

Tollway specs give FRAP option (with increased RAP allowance) on all contracts

Results of 2008 research to be shared with industry.

The FRAP Process

The FRAP Process

Resource Conservation

Additional research and applications

Recycling of asphalt shingles
 Recycled Tear-offs into high FRAP mixes
 Sand Mix with fine-graded FRAP
 Warm Mix GTR modified SMA

Sand Mix Leveling Course

Sand Mix Leveling Course

GTR modified SMA – Warm Mix

GTR modified SMA – Warm Mix

GTR SMA -

□ 310°F typical mixing temperature

- □ Compactable to 240°F
- Evotherm modifier
- Warm Mix
 - □ Started mixing at 310°F
 - □ Mixed down to 250°F
 - □ Compactable to 190°F

THANK YOU