Development of a RAP Characterization Process for Alabama

Andrea Kvasnak

Outline

- Define RAP
- Benefits of RAP
- Use of RAP in mix design
- Characterization
- ALDOT Research Plan
- Status of Research

What is RAP?

 Reclaimed Asphalt Pavement

 Aggregate
 Asphalt

Benefits of RAP

- Economics
 - Aggregate
 - Asphalt
 - No/Low hauling costs

Environment

- Reduces demands of non-renewable resources
- Reduces landfill space demands

How Do You Use RAP?

- Account for RAP in mix design
- Characterize RAP
 - Asphalt PG
 - Aggregate properties
 - Aggregate gradation
 - Asphalt content

Traditional RAP Characterization

- Solvent extraction
 - Reclaim aggregate
 - Asphalt content
- Extracted asphalt recovery
 - Allows for PG classification
 - Idea of blended binder properties

Why A New Method?

Obstacles

- Characterization of RAP via solvents
 - Environmental concerns
 - Health concerns
 - Change in binder properties

Solution

 Characterize RAP without using traditional solvents

 Mix tests → Effective binder grade

Initial Plan

- Characterize Asphalt

 Effective PG from mix test
- Characterize Aggregate
 - Ignition oven
 - Environmentally friendly solvent
- Quantify Asphalt
 - Ignition oven
 - Environmentally friendly solvent

Effective PG Methods

Dynamic Modulus

- Bending Beam Rheometer
- Dynamic Shear Rheometer Torsion Beam

Dynamic Modulus

- Elastic Modulus
- Repeated loads \rightarrow displacement measured
- Temperatures
 - -14, 40, 70, 100, 130°F
- Frequencies

-0.1, 0.5, 1, 5, 10, 25 Hz

Bending Beam Rheometer

- Binder thermal cracking test
- Applies load at center of beam
- Tested at low temperature
- Stiffness of mix

Dynamic Shear Rheometer

- Controlled strain mode (0.01%)
- Dimensions
 - 10mm X 12mm X 50mm
- Temperatures
 - 50 169°F
- Frequencies

- 0.01, 0.02, 0.05, 0.1, 1.0, 5.0, 10.0, and 15.0 Hz
- Mix complex shear modulus

How do mix results give you binder properties?

Binder Changes

- Previous research shows mix test sensitive to binder PG changes
- Detect changes in binder
- Evaluate RAP binder and mix binder
- Stiffer binder → stiffer mix
 Appropriate for area?

Need A Model!

Hirsch Model

- Developed in 1962
- Mechanical behavior of HMA
- Back calculate binder properties from:
 - Mix properties (E*, S, G*mix)
 - 2. Voids in mineral aggregate
 - **3**. Voids filled with asphalt

Experimental Plan

Evaluate effective binder techniques

Select a method(s)

- Develop preliminary specification
- Apply to RAP mixes

Where Are We At?

- Evaluate methods
 - Collected material
 - Characterized RAP via traditional method
 - Working on evaluating 100% RAP specimen
- Next for evaluation stage
 - Evaluate blended RAP and virgin material
 - Different % of RAP

Future Plans

- Write a preliminary specification
 - Characterize RAP
 - Characterize blended asphalt
- Apply to Alabama materials

Make adjustments to specification

Feedback

Interested in feedback

ank0004@auburn.edu

RAP Survey

RAP Experience Survey for Contractors

- Variability
- Operations

Questions?

24