ARC Research on RAP

Western Regional Superpave Center UNIVERSITY OF NEVADA

CONSORTIUM MEMBERS

- Western Research Institute
- Texas A&M University
- University of Wisconsin Madison
- University of Nevada Reno
- Advanced Asphalt Technology

PROGRAM AREAS

- Moisture Damage
- Fatigue Damage
- Engineered Materials
- Vehicle-Pavement Interaction
- R&D Validation
- Technology Development
- Technology Transfer

RAP Research

Objective: Work Element E2b
 Develop testing and analysis procedures that can be effectively used to evaluate RAP materials and optimize the performance of HMA mixtures containing RAP materials

Super ave

RAP Research

- Develop a System to Evaluate the Properties of RAP Materials
- Compatibility of RAP and Virgin Binders
- Develop a Mix Design Procedure
- Impact of RAP Materials on Performance of Mixtures
- Field Trials

RAP Research

- Approach of ARC/FHWA
 - Work Plan is Flexible
 - Take input from Industry
 - Cooperate with other activities
 - Reduce Overlap

Properties of RAP Aggregates

 As percent of RAP increases (30-50%) the properties of RAP aggregates become critical

• Evaluate the impact of: Centrifuge, Reflux, and ignition oven on the properties of RAP aggregates

Super ave

Properties of RAP Aggregates

- Four Aggregates:
 - UNR: andesite and granite with one binder

Super Rave

- NCAT: Hard limestone and soft limestone with one binder

Properties of RAP Aggregates

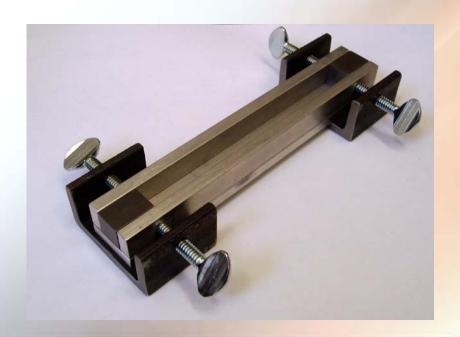
- Properties before and after long-term lab simulated aging:
 - gradation
 - LA abrasion
 - Soundness
 - Absorption
 - Specific Gravity
 - FAA
 - CAA
 - SE

Extraction/recovery is unpractical

 Evaluating the properties of the RAP materials or the RAP mortar can reveal information about the properties of the RAP binder

Super av

RAP mortar: -#8 RAP materials


 Measure the properties of the RAP mortar using the BBR or DSR

 Measure the dynamic modulus of the RAP materials

- RAP Sources:
 - Modified-Stiff
 - Modified-Very Stiff
 - Un-modified-Stiff
 - Unmodified-Very Stiff
- Virgin Binders:
 - PG64-22
 - PG64-28
 - PG58-34

- Testing RAP mortar in the BBR:
 - The aggregates in the mortar were too large for the current BBR sample
 - Modified the BBR sample to: 12.7 x
 12.7 mm cross section

Super:

5/4/2011

DSR-Torsion Cylinder: Testing

- •Stress-control ed **Testing**
- •100 kPa to 575 kPa
- Height used in test varies within a narrow range + 0.5

Field Trials

- Can 40% RAP be used without changing the grade of the binder
 - section with 40% RAP+ same binder

Super ave

- section with 40% RAP+ diff binder

Laboratory Trial 1

Super Rave

Plant Waste RAP

• 15% RAP

- Target Binder Grade PG64-28
 - PG64-28 virgin binder
 - PG64-34 virgin binder

Laboratory Trail 1

T-283 TSR

- 0% RAP + PG64-28: 82%

- 15% RAP + PG64-28: 90%

- 15% RAP + PG64-34: 66%

APA at 140F

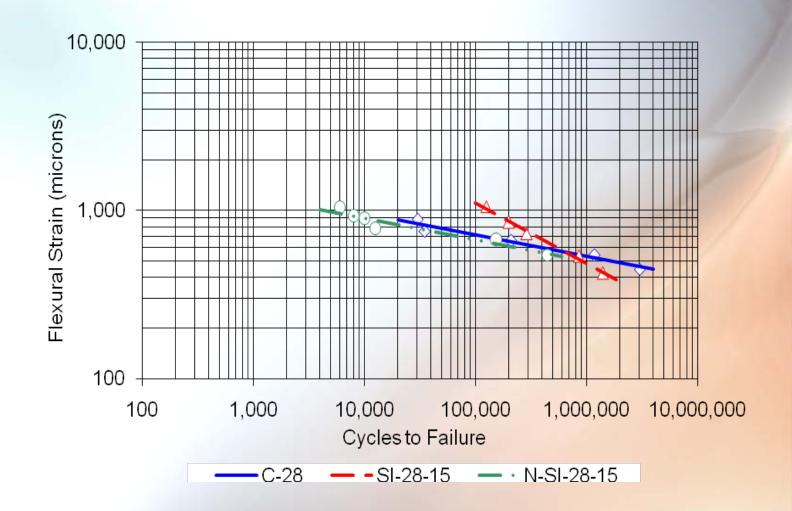
- - 0% RAP + PG64-28: 2.1 mm

- 15% RAP + PG64-28: 1.4 mm

- 15% RAP + PG64-34: 2.1 mm

Super Rave

Laboratory Trial 1


TSRST

- 0% RAP + PG64-28: -24C

- 15% RAP + PG64-28: -31C

- 15% RAP + PG64-34: -39C

Super Regional Parties

Super Pave

Laboratory Trial 2

- Virgin binder: PG58-28
- Mixtures: 0, 20%, and 40% RAP
- TSR: all the same at 97%
- Low Temp (0°C) TS:
 - 0% RAP: 168 psi
 - 20%RAP: 178 psi
 - 40% RAP: 188 psi
- 40% RAP with the same binder: no detrimental effect – Wisconsin Conditions

