Full Scale Accelerated Pavement Test Cracking Performance of High RAP + WMA Experimental Design and Timeline

RAP Expert Task Group July 24, 2012

Nelson Gibson FHWA Office of Infrastructure R&D

What is requested from the ETG?

- Some questions related to production and construction may not be answered until the pre-bid meeting or until the contractor is selected
- Thus far,.... Does the experimental design look sound enough to write specifications up to the pre-bid stage?

Stakeholder Input on Next ALF Exp. Combined Polling Results

1. Fatigue performance of High RAP HMA & Overlays

- 2. Cracking & durability of ultrathin HMA overlays as pavement preservation
- 3. Thinner & cheaper perpetual pavements with premium HMA
- 4. Cost effectiveness of high-modulus high binder HMA base
- 5. More structure oriented experiments and less binderoriented experiments
- 6. Shorter turn around time

Convergence of Two Initiatives

High RAP Content

- Less virgin binder
- Degree of mixing?
- Cracking/durability performance one of highest concerns

Warm Mix Asphalt

- Sometimes less asphalt content than HMA
- Cracking less concern
- Affect blending of RAP for the better?
- <u>OBJECTIVE</u>: Establish realistic boundaries for high-RAP mixtures employing WMA technologies based on percent binder replacement and binder grade changes when using high RAP with WMA

Key Features of Experiment

- Focus on fatigue cracking, temp. controlled at 20°C no high temperature rutting*
- Three year completion
 - 2 years of loading
 - 2 ALF units allow simultaneous loading
- Unmodified PG64-22 binder for all lanes
- WMA Technology which does not change PG grade
- 10 kip single wheel = 20 kip equivalent axle
- 4-inch total asphalt thickness

1 15% 300°C	2 TBD	3 25% 300°C Foam	4 25% 300°C Chem.	5 40% 300°C Foam	6 40% 300°C Chem.	7 25% 250°C Foam	8 25% 250°C Chem.	9 40% 250°C Foam	10 40% 250°C Chem.	11	12

- In each Lane there are 4 Test Sites
- Current planning is to use only 1 of 4 for the "core of the experiment"
- Leave 3 other sites to explore the following at a later date
 - Long term aging (natural or accelerated)
 - Extension of life from pavement preservation treatments

Tonnage

- Each Constructed Lane will Require
- 30 Tons Waste **Actual Test Lane** 50 Tons **Test Strip (Parking Lot) 109 Tons** – Total Production: **189** Tons Total Mix **1890 Tons** Total RAP Required + extra **631 Tons** – Have contractor set aside reserved stockpile? About 19 ft tall & 54 ft wide

Proposed Loading Sequence

		ALF #1	ALF #2	
	1 st	15% - 350F – (none)	TBD	
ears –	2 nd	25% - 350F - Foam	25% - 250F – Chem	ears
2	3 rd	25% - 350F - Chem	25% – 250F- Foam	2
	4 th	40% - 300F - Foam	40% - 250F – Chem	
V	5 th	40% - 300F – Chem	40% - 250F - Foam	

Lab Characterization to Address Field Sequencing

- Plant Produced Lab Compacted
 - Immediate
 - Long Term Oven Aged
 - AMPT
- Plant Produced Field Compacted
 - Post Construction
 - After Completion of each ALF site loading
 - AMPT
 - Bending Beam Fatigue

In-Situ Characterization to Address Field Sequencing

- Portable Seismic Pavement Analyzer (PSPA)
 - Monthly, background aging
 - During ALF loading
- Seasonal FWD
 Unbound Layers

Exploratory RAP Mix Designs Made with Milled ALF + Virgin ALF

As-Milled

After Heating

Original PG Grade PG72-23 Extracted PG Grade High 94 to 88 Low -10 to -4

	0% RAP	20% RAP	40% RAP
NDESIGN *Last ALF mix was 65GYR	75	75	75
Air Voids	2.32	2.89	2.33
VMA	15.0	15.1	14.4
VFA	84.5	81.0	83.8
Total Binder	5.34	5.24	5.35
Virgin Binder	5.34	4.29	3.29
Dust : Binder	5.0	4.7	4.7
Passing #200	1.25	1.41	1.32

Dynamic Modulus (No WMA Used)

Dynamic Modulus (No WMA Used)

		R	AP Conte	nt
		0%	20%	40%
E* 10	0Hz 21ºC [MPa]	6,985 (100%)	8,509 (122%)	9,363 (134%)
Tensile	10 kip / 100psi Proposed Next ALF	298 (100%)	259 (87%)	242 (81%)
strain [με]	16.6 kip / 120 psi Last ALF Experiment	427 (100%)	375 (88%)	351 (82%)

Structural Response – Last ALF

Laboratory Fatigue Response

[...ongoing...]

Next Steps

- Construction coordination meeting July 18th
- Gather RAP/WMA ETG input on July 24th
 - Out for Bid/Award in Fall/Winter 2012
 - Construction Starts Spring 2013
 - Finish Paving End of July 2013
 - Accelerated loading beginning in Fall 2013

Thank you for your time

Name & Affiliation (if you care to provide)

- Feedback
 - RAP Contents?

- Temperature Production Range?

- WMA Technology?
- Other Comments?

1 15% 300°C	CHIP SEAL
2 ? TBD	
3 25% 300°C Foam	SLURRY SEAL
4 25% 300°C Chem.	MICROSUFACING
5 40% 300°C Foam	CHIP SEAL
6 40% 300°C Chem.	THIN OVERLAY
7 25% 250°C Foam	SLURRY SEAL
8 25% 250°C Chem.	MICROSURFACING
9 40% 250°C Foam	OTher
10 40% 250°C Chem.	Other
11	
12	