

Data Quality for ML Based Software Security Solutions: Lessons and Recommendations

Ali Babar

CREST – Centre for Research on Engineering Software Technologies

Auburn University, 5th October, 2023

Brief Bio

M. Ali Babar

- Professor, School of Computer Science, University of Adelaide, Australia – Nov. 2013 -
- Founding Lead The Centre for Research on Software Technologies (CREST) – Nov 2013 –
- <u>Theme Lead Platforms and Architectures for</u> <u>Security as Service, Cyber Security Cooperative</u> <u>Research Centre (CSCRC)</u>
- For current research areas: please visit CREST website: crest-centre.net

Previous Work History

 Senior research and academic positions in UK, Denmark & Ireland

Talk's Roadmap

- CREST's Data Centric Software Security Research
- Data-Centric Software Security Quality Assurance
- Data Quality Problems Experienced/Observed
- Some Recommendations to Deal with Challenges

Software/AI is Everywhere

Australians warned of widespread Log4j software vulnerability

'The exact extent of the exposure is still unravelling.'

NEWS

Alert: Apache Log4j vulnerabilities

The NCSC is advising organisations to take steps to mitigate the Apache Log4j vulnerabilities.

IIII SNEWS

National Latest Politics World Videos Live Today Show ACA

News / Technology

What you need to know about the security flaw that could impact the entire internet

Software Vulnerabilities and Cybersecurity Incidents

- Approximately 90% of cyber incidents are caused by the vulnerabilities rooted in software – proprietary or sourced
- Software Bill Of Material (SBOM) is becoming ineffective in answering critical questions
 - Q1: Do we really know what's in software coming into the organisation?
 - Q2: How do we establish trust and preserve the security of software coming into the organisation?

Data-Driven Software Security at CREST

- 1. LineVD: statement-level vulnerability detection using graph neural networks (MSR '22)
- 2. Noisy label learning for security defects (MSR '22)
- 3. KGSecConfig: A Knowledge Graph Based Approach for Secured Container Orchestrator Configuration (SANER '22)
- An empirical study of rule-based and learning-based approaches for static application security testing (ESEM '21)
- 1. A survey on data-driven software vulnerability assessment and prioritization (CSUR '22)
- 2. On the use of fine-grained vulnerable code statements for software vulnerability assessment models (MSR '22)
- 3. An investigation into inconsistency of software vulnerability severity across data sources (SANER '22)
- DeepCVA: Automated commit-level vulnerability assessment with deep multi-task learning (ASE '21)
- 5. Automated software vulnerability assessment with concept drift (MSR '19)

Software Vulnerability Prediction Software Vulnerability Assessment & Prioritisation

Software Vulnerability Knowledge Support

- 1. An empirical study of developers' discussions about security challenges of different programming languages (EMSE '22)
- 2. Well begun is half done: an empirical study of exploitability & impact of base-image vulnerabilities (SANER '22)
- 3. PUMiner: Mining security posts from developer question and answer websites with PU learning (MSR '20)
- 4. A large-scale study of security vulnerability support on developer Q&A websites (EASE '21)

Data Quality for Data-Driven Software Security

Data-Centric Software Security Assurance

Data Preparation for ML Based Security Solutions

- Data Requirements determine the types and source of data for building a model
- "Data Wrangling" (collection, labelling and cleaning) steps of ML Workflow
- "Data Wrangling" (or preparation) can take up to 25% of an industry project time
- 1. Data Quality for Software Vulnerability Datasets, ICSE '23 (CORE A*)
- 2. Data preparation for software vulnerability prediction: A systematic literature review, TSE '22 (A*)
- 3. Noisy label learning for security defects, MSR '22 (CORE A)
- 4. An investigation into inconsistency of software vulnerability severity across data sources, SANER '22 (CORE A)

14

Data-Centric Software Security Assurance

- Software Vulnerabilities Prediction (SVP) approaches purport to learn from history and predict SV
- Prediction approaches are becoming popular as early lifecycle software security assurance techniques
- SVP models may or may not analyse program syntax and semantic; the latter leverages DL
- Being ML dependent, SVP needs data preparation as per the workflow of ML shown on the last slide
- SVP data preparation needs several important consideration including source and labelling
- 1. Data Quality for Software Vulnerability Datasets, ICSE '23 (CORE A*)
- 2. Data preparation for software vulnerability prediction: A systematic literature review, TSE '22 (A*)
- 3. Noisy label learning for security defects, MSR '22 (CORE A)
- 4. An investigation into inconsistency of software vulnerability severity across data sources, SANER '22 (CORE A)

Data Preparation Consideration for SVP

- Data requirements vary depending upon the context and capabilities needed of a ML model
- Data may be collected from real-world, synthetic code or mixed code training/testing model
 - Trade-off between scarcity and realism
- Gathered data need labelling provided by developers (NVD), tools based, or based on patterns
 - Labelling non-vulnerable class is problematic
- Data cleaning is required for a certain format and reducing noise from collected/labelled data

Data Quality Challenges in MLC

Data-Driven Software Security at CREST

Data Quality for Data-Driven Software Security

Security Data Challenges

Security Data Challenges

Data Scarcity

Info

•

Hundreds/Thousands security issues vs. Million images Security issues < 10% of all reported issues (even worse for new projects)

- Lack of explicit labeling/understanding of security issues
- Imperfect data collection (precision vs. recall vs. effort)
- Rare occurence of certain types of security issues

- Leading to imbalanced data
- Lacking data to train high-performing ML models
- More data beats a cleverer algorithm

R. Croft, et al., *Proceedings of the IEEE/ACM 19th International Conference on Mining Software Repositories (MSR)*, 2022, 435-447. T. H. M. Le, et al., *Proceedings of the 17th International Conference on Mining Software Repositories (MSR)*, 2020, 350-361.

Data (In)Accuracy

Info

- (Non-)Security issues not labelled as such
- FN: Critical vulnerabilities *unfixed* for long time (> 3 yrs)
- FP: Wasting inspection effort

Vulnerability-Contributing Commit: bba4bc2 (Sep 30, 2011) Commit Message: WstxDriver did not trigger Woodstox, but BEA StAX implementation File: xstream/src/java/com/thoughtworks/ xstream/io/xml/WstxDriver.java

Code Diff:

protected XMLInputFactory createInputFactory() {
 return new MXParserFactory();
 return new WstxInputFactory();

Trace last commit that touched the modified line(s)

Vulnerability-Fixing Commit: e4f1457 (Oct 7, 2015) Commit Message: Disable external entities for StAX drivers File: xstream/src/java/com/thoughtworks/ xstream/io/xml/WstxDriver.java Code Diff:

- protected XMLInputFactory createInputFactory() {
 return new WstxInputFactory();
 final XMLInputFactory instance = new
- WstxInputFactory()
 + instance.setProperty(XMLInputFactory.
- + return instance;

Impacts

- We don't know what we don't know (unknown unknowns)
- Lack of reporting or silent patch of security issues
- Tangled changes (fixing non-sec. & sec. issues together)
- Criticality: Systematic labeling errors > random errors
- Making ML models learn the wrong patterns
- Introducing backdoors of ML models

Without latent SVs

With latent SVs THE UNIVERSITY #ADELAIDE

R. Croft et al., Proceedings of the IEEE/ACM 45th International Conference on Software Engineering (ICSE), 2023, 121-133. R. Croft, et al., Proceedings of the IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022, 435-447. T. H. M. Le, et al., Proceedings of the 36th International Conference on Automated Software Engineering (ASE), 2021, 717-729.

Data (Ir)Relevance

Info

Not all input is useful for predicting security issues
Ex1: Code comments for predicting vulnerabilities?!
Ex2: A file containing fixed version update is vulnerable?!

Impacts

- Lack of data exploratory analysis
- Lack of domain expertise (e.g., NLPers working in SSE)
- Trying to beat that state-of-the-art
- Negatively affecting the construct validity
- Reducing model performance (e.g., code comments reduced SVP performance by 7x in Python)

@@ -1,3 +1,9 @@

- 2019-04-23 Dirk Frederickx (brushed AT apache DOT org)
 - * 2.11.0-M4-git-05
 - * [JSPWIKI-1108] interwiki links with illegal characters causes XSS vulnerability

Image: Image: Image: second content is a second content of the second content of the

	@@ -72,7 +72,7 @@ public final class Release {	
72	*	
73	* If the build identifier is empty, it is no	ot added
	*/	
	- public static final String BUILD =	• "04";
75	+ public static final String BUILD =	= "05";

Security fixes (87c89f0) in the Apache jspwiki project

T. H. M. Le, et al., Proceedings of the IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022, 621-633. T. H. M. Le, et al., Proceedings of the 36th International Conference on Automated Software Engineering (ASE), 2021, 717-729.

Data Redundancy

Info

- Same security issues found across different software versions, branches, & even projects
- Cloned projects from mature projects (e.g., Linux kernel)
- Merged code from feature branches into the master branch
- Renamed files/functions with the same code content
- Cosmetic-only changes (different white spaces or new lines)

Thousands of cloned projects sharing same vulns as the Linux kernel

Dataset	With Duplication	Without duplication	Change
Big-Vul	0.826	0.816	1.2%↓
Devign	0.285	0.247	13.3%↓
D2A	0.748	0.020	97.3%↓
Juliet	0.910	0.861	5.5%↓

Causes

- Limiting learning capabilities of ML models
- Leading to bias and overfitting for ML models
- Inflating model performance (same training/testing samples)

Vulnerability prediction performance *before* & *after* removing the redundancies in common datasets

R. Croft et al., Proceedings of the IEEE/ACM 45th International Conference on Software Engineering (ICSE), 2023, 121-133. T. H. M. Le, et al., Proceedings of the IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022, 621-633.

R. Croft, et al., Proceedings of the 15th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), 2021, 1-12.

Data (Mis)Coverage

- Security issues spanning multiple lines, functions, files, modules, versions, & even projects, but...
- Current approaches mostly focus on single function/file

Partial security fixes in multiple versions

For ML: coverage vs. size (\uparrow as granularity \downarrow)

the current function? otected Object getOverrideExpr(ActionInvocation invocation, Object value; return "" + value + ""; Deleted line

Added line

User's malicious input? How to know using only

Module A File a Func_a1 Func_a2 Func_b3

return escape(value);

Assume that Module A is vulnerable then:

- Vuln. module: 1
- Vulli. Mouule.
- Vuln. files: 2
- Vuln. functions: 5

Causes

Info

Lacking context for training ML models to detect complex (e.g., intra-function/file/module) security issues

For Devs: coverage vs. convenience (inspection effort)

Fixed-size (truncated) input required for some (DL) models

Incomplete data for ML as security-related info. truncated

Cylinder vs. Circle vs. Rectangle?___

THE UNIVERSITY

T. H. M. Le, et al., *Proceedings of the IEEE/ACM 19th International Conference on Mining Software Repositories (MSR)*, 2022, 621-633. T. H. M. Le, et al., *Proceedings of the 36th International Conference on Automated Software Engineering (ASE)*, 2021, 717-729.

Data (Non-)Representativeness

- Real-world security issues (e.g., NVD) vastly different from synthetic ones (e.g., SARD)
- Varying characteristics of security issues across projects
- Synthetic data: local & created by pre-defined rules
- Real-world data: inter-dependent & complex
- Different features & nature between apps

Info

Causes

Impacts

- Perf. (F1) gap: Synthetic (0.85) vs. Real-world (0.15)
- Lack of generalisability & transferability of ML models
- Within-project prediction > Cross-project prediction

/orld							
hetic							
	0	10		30 atio (%)	40	50	60
Synthetic data	Techniqu	ie	Training	Acc	Prec	Recall	F1
ö	VulDeePe	ecker	NVD/SARD		86.90	2.3	85.40
<u>.0</u>	SySeVR		NVD/SARD	95.90	82.50		85.20
ਭੂ	Russell et al.	Juliet	•			84.00	
<u></u>	reason of		Draper				56.6
7			FFMPeg+Qemu	72.26		3 . (73.26

Vulnerable Data Ratio (%)

ata	Approach	Acc	Prec	Recall	F1
σ	Russell et al.	90.98 (0.75)	24.63 (5.35)	10.91 (2.47)	15.24 (2.74)
Keal-world	VulDeePecker	89.05 (0.80)	17.68 (7.51)	13.87 (8.53)	15.7 (6.41)
Š-	SySeVR	84.22 (2.48)	24.46 (4.85)	40.11 (4.71)	30.25 (2.35)
Yea	Devign	88.41 (0.66)	34.61 (3.24)	26.67 (6.01)	29.87 (4.34)
		10.10		0.000 A	

R. Croft, et al., *IEEE Transactions on Software Engineering*, 2022. S. Chakraborty, et al., *IEEE Transactions on Software Engineering*, 2021.

R

Data Type

Data Drift

- Unending battle between attackers & defenders
- Evolving threat landscapes → Changing characteristics of security issues over time
- New terms for emerging attacks, defenses, & issues
- Changing software features & implementation over time

New threats/affected products in NVD over time

Causes

Info

Out-of-Vocabulary words → Degrading performance
 Data leakage → Unrealistic performance (up to ~5 times overfitting) using non-temporal evaluation technique

Non-temporal evaluation → (Future) data leakage

R. Croft et al., Proceedings of the IEEE/ACM 45th International Conference on Software Engineering (ICSE), 2023, 121-133. R. Croft, et al., Proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), 2022, 338-348. T. H. M. Le, et al., Proceedings of the 16th International Conference on Mining Software Repositories, 2019, 371-382.

Data (In)Accessibility

Info

Security data not always shared

 Shared yet incomplete data → Re-collected data may be different from original data "We have anonymously uploaded the database to <u>https://www.dropbox.com/s/anonymised_link</u> so the reviewers can access the raw data during the review process. We will release the data to the community together with the paper."

- Privacy concerns (e.g., commercial projects) or not?!
- Too large size for storage (artifact ID vs. artifact content)
- Data values can change over time (e.g., devs' experience)

Limited generalisability of the ML models (e.g., opensource vs. closed-source data) That didn't work for some reason If it's a fluke, it might work if you refresh the page. You can also ask us for help.

Back to fil

Click the link

R. Croft, et al., Empirical Software Engineering, 2022, 27: 1-52.

T. H. M. Le, et al., Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering (EASE), 2021, 109-118.

Data (Re-)Use

T. H. M. Le, et al., *Proceedings of the 36th International Conference on Automated Software Engineering (ASE)*, 2021, 717-729. T. H. M. Le, et al., *Proceedings of the 17th International Conference on Mining Software Repositories*, 2020, 350-361.

Data Maliciousness

Info

Causes

Impacts

- Threat/security data is itself a threat (e.g., new vulns)
 - Using/sharing threat data without precautions

Simply an oversight / afterthought

- Private experiment vs. Public disclosure (Big difference!)
- Open science vs. Responsible science

maintainers to fix

They don't report the vulnerabilities to project

Researchers develop a SOTA ML-based

vulnerability prediction model

They identify *new vulnerabilities* using the model

They move on to submit & publish the paper

The identified vulns later get exploited by attackers

An example of malicious/irresponsible data sharing

- Shared security data maybe exploited by attackers
- Affecting maintainers & users of target systems

Data Quality for Data-Driven Software Security

Dataset	Accuracy	Uniqueness	Consistency	Completeness	Currentness
Big-Vul	0.543	0.830	0.999	0.824	0.761
Devign	0.800	0.899	0.991	0.944	0.811
D2A	0.286	0.021	0.531	0.981	0.844

Prevalent noise in current real-world vulnerability datasets

Significantly reduce SVP performance, e.g., data accuracy (30 – 80% ↓ in MCC)

- Automatic data cleaning: 1 performance by ~20%, but still far from perfect
- 1. Data Quality for Software Vulnerability Datasets, ICSE '23 (CORE A*)

2. Data preparation for software vulnerability prediction: A systematic literature review, TSE '22 (A*)

- 3. Noisy label learning for security defects, MSR '22 (CORE A)
- 4. An investigation into inconsistency of software vulnerability severity across data sources, SANER '22 (CORE A)

Some Recommendations

Recommendations for Dealing with Data Quality Issues

- Identification of Missing Vulnerability Data
 - Automatic labeling of silent fixes & latent vulnerabilities (beware of false positives)
- Consideration of Label Noise
 - Noisy Label Learning and/or Semi-Supervised Learning (small clean data & large unlabelled data)
- Consideration of Timeliness
 - Currently labeled data & more positive samples; Preserve data sequence for training
- Use of Data Visualization
 - Try to achieve better data understandability for non data scientists
- Creation and Use of Diverse Language Datasets
 - Bug seeding into semantically similar languages
- Use of Data Quality Assessment Criteria
 - Determine and use specific data quality assessment approaches
- Better Data Sharing and Governance
 - Provide exact details and processes of data preparation

Acknowledgements

- This talk is based on the research studies carried out by the CREST researchers, particularly by Roland Croft, Triet Le, Yongzheng Xie, Mehdi Kholoosi.
- Triet Le led the efforts for developing the content for this presentation
- Discussions in the SSI cluster of the CREST provided insights included in this presentation
- Our research partially funded by the Cybersecurity CRC
- We are grateful to the students, RAs and Open Source data communities

Contact: Ali Babar ali.babar@adelaide.edu.au

CRICOS 00123M