
Data Quality for ML Based Software Security
Solutions: Lessons and Recommendations

Ali Babar

CREST – Centre for Research on Engineering Software Technologies

Auburn University, 5th October, 2023

Brief Bio

2

M. Ali Babar
• Professor, School of Computer Science, University of

Adelaide, Australia – Nov. 2013 -

• Founding Lead – The Centre for Research on
Software Technologies (CREST) – Nov 2013 –

• Theme Lead – Platforms and Architectures for
Security as Service, Cyber Security Cooperative
Research Centre (CSCRC)

• For current research areas: please visit CREST
website: crest-centre.net

Previous Work History
• Senior research and academic positions in UK, Denmark

& Ireland

• CREST’s Data Centric Software Security Research

• Data-Centric Software Security Quality Assurance

• Data Quality Problems Experienced/Observed

• Some Recommendations to Deal with Challenges

Talk’s Roadmap

Software/AI is Everywhere

• Approximately 90% of cyber incidents are caused by the
vulnerabilities rooted in software – proprietary or sourced

• Software Bill Of Material (SBOM) is becoming ineffective in
answering critical questions

• Q1: Do we really know what’s in software coming into the organisation?

• Q2: How do we establish trust and preserve the security of software coming
into the organisation?

Software Vulnerabilities and Cybersecurity Incidents

Data-Driven Software Security at CREST

Software Vulnerability
Prediction

Software Vulnerability
Assessment &
Prioritisation

Software Vulnerability Knowledge Support

1. A survey on data-driven software vulnerability assessment and prioritization (CSUR '22)
2. On the use of fine-grained vulnerable code statements for software vulnerability

assessment models (MSR '22)
3. An investigation into inconsistency of software vulnerability severity across data sources

(SANER '22)
4. DeepCVA: Automated commit-level vulnerability assessment with deep multi-task

learning (ASE '21)
5. Automated software vulnerability assessment with concept drift (MSR '19)

1. LineVD: statement-level vulnerability detection using graph
neural networks (MSR '22)

2. Noisy label learning for security defects (MSR '22)
3. KGSecConfig: A Knowledge Graph Based Approach for

Secured Container Orchestrator Configuration (SANER '22)
4. An empirical study of rule-based and learning-based

approaches for static application security testing (ESEM '21)

1. An empirical study of developers’ discussions about security challenges of different programming languages (EMSE '22)
2. Well begun is half done: an empirical study of exploitability & impact of base-image vulnerabilities (SANER '22)
3. PUMiner: Mining security posts from developer question and answer websites with PU learning (MSR '20)
4. A large-scale study of security vulnerability support on developer Q&A websites (EASE '21)

No perfectly clean dataset of vulnerabilities:

• Label noise

• False positives of data collection

• Constantly discovered new vulnerabilities

• Data noise (e.g., duplicates)

Assumption Reality

GOALS
Robust & noise-tolerant

learning techniques
Data Quality

Assessment & Analysis

Data Quality for Data-Driven Software Security

1. Data Quality for Software Vulnerability Datasets, ICSE '23 (CORE A*)
2. Data preparation for software vulnerability prediction: A systematic literature review, TSE '22 (A*)
3. Noisy label learning for security defects, MSR '22 (CORE A)
4. An investigation into inconsistency of software vulnerability severity across data sources, SANER '22 (CORE A)

Data-Centric Software Security Assurance

• Data Requirements determine the types and source of data for building a model

• “Data Wrangling” (collection, labelling and cleaning) steps of ML Workflow

• “Data Wrangling” (or preparation) can take up to 25% of an industry project time

14

Data Preparation for ML Based Security Solutions

1. Data Quality for Software Vulnerability Datasets, ICSE '23 (CORE A*)
2. Data preparation for software vulnerability prediction: A systematic literature review, TSE '22 (A*)
3. Noisy label learning for security defects, MSR '22 (CORE A)
4. An investigation into inconsistency of software vulnerability severity across data sources, SANER '22 (CORE A)

• Software Vulnerabilities Prediction (SVP) approaches
purport to learn from history and predict SV

• Prediction approaches are becoming popular as early
lifecycle software security assurance techniques

• SVP models may or may not analyse program syntax
and semantic; the latter leverages DL

• Being ML dependent, SVP needs data preparation as
per the workflow of ML shown on the last slide

• SVP data preparation needs several important
consideration including source and labelling

Data-Centric Software Security Assurance

1. Data Quality for Software Vulnerability Datasets, ICSE '23 (CORE A*)
2. Data preparation for software vulnerability prediction: A systematic literature review, TSE '22 (A*)
3. Noisy label learning for security defects, MSR '22 (CORE A)
4. An investigation into inconsistency of software vulnerability severity across data sources, SANER '22 (CORE A)

• Data requirements vary depending upon the context
and capabilities needed of a ML model

• Data may be collected from real-world, synthetic
code or mixed code – training/testing model

• Trade-off between scarcity and realism

• Gathered data need labelling – provided by
developers (NVD), tools based, or based on patterns

• Labelling non-vulnerable class is problematic

• Data cleaning is required for a certain format and
reducing noise from collected/labelled data

Data Preparation Consideration for SVP

Data Quality Challenges in MLC

Software Vulnerability
Prediction

Software Vulnerability
Assessment &
Prioritisation

Software Vulnerability Knowledge Support

DATA

Data-Driven Software Security at CREST

Data Quality for Data-Driven Software Security

DATA

Challenges (What, Why, So What)

Recommendations (Dos & Donts)

Security Data Challenges

Scarcity (In)Accuracy (Ir)Relevance Redundancy (Mis)Coverage

Non-
Representative-

ness
Drift (In)Accessibility (Re)Use Maliciousness

Info
(What)

Cause
(Why)

Impact
(So What)

Scarcity (In)Accuracy (Ir)Relevance Redundancy (Mis)Coverage

Non-
Representative-

ness
Drift (In)Accessibility (Re)Use Maliciousness

Security Data Challenges

Data Scarcity
• Hundreds/Thousands security issues vs. Million images
• Security issues < 10% of all reported issues (even worse

for new projects)Info

Causes

• Lack of explicit labeling/understanding of security issues
• Imperfect data collection (precision vs. recall vs. effort)
• Rare occurence of certain types of security issues

Impacts

• Leading to imbalanced data
• Lacking data to train high-performing ML models
• More data beats a cleverer algorithm

R. Croft, et al., Proceedings of the IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022, 435-447.
T. H. M. Le, et al., Proceedings of the 17th International Conference on Mining Software Repositories (MSR), 2020, 350-361.

Data (In)Accuracy
• (Non-)Security issues not labelled as such
• FN: Critical vulnerabilities unfixed for long time (> 3 yrs)
• FP: Wasting inspection effortInfo

Causes

• We don't know what we don't know (unknown unknowns)
• Lack of reporting or silent patch of security issues
• Tangled changes (fixing non-sec. & sec. issues together)

Impacts

• Criticality: Systematic labeling errors > random errors
• Making ML models learn the wrong patterns
• Introducing backdoors of ML models

R. Croft et al., Proceedings of the IEEE/ACM 45th International Conference on Software Engineering (ICSE), 2023, 121-133.
R. Croft, et al., Proceedings of the IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022, 435-447.
T. H. M. Le, et al., Proceedings of the 36th International Conference on Automated Software Engineering (ASE), 2021, 717-729.

Without latent SVs With latent SVs

Data (Ir)Relevance
• Not all input is useful for predicting security issues
• Ex1: Code comments for predicting vulnerabilities?!
• Ex2: A file containing fixed version update is vulnerable?!Info

Causes

• Lack of data exploratory analysis
• Lack of domain expertise (e.g., NLPers working in SSE)
• Trying to beat that state-of-the-art

Impacts

• Negatively affecting the construct validity
• Reducing model performance (e.g., code comments

reduced SVP performance by 7x in Python)
Security fixes (87c89f0) in the Apache jspwiki project

T. H. M. Le, et al., Proceedings of the IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022, 621-633.
T. H. M. Le, et al., Proceedings of the 36th International Conference on Automated Software Engineering (ASE), 2021, 717-729.

Data Redundancy

• Same security issues found across different software versions,
branches, & even projects

Info

Causes

• Cloned projects from mature projects (e.g., Linux kernel)
• Merged code from feature branches into the master branch
• Renamed files/functions with the same code content
• Cosmetic-only changes (different white spaces or new lines)

Impacts

• Limiting learning capabilities of ML models
• Leading to bias and overfitting for ML models
• Inflating model performance (same training/testing samples)

Thousands of cloned projects
sharing same vulns as the Linux kernel

Vulnerability prediction performance before & after
removing the redundancies in common datasets

R. Croft et al., Proceedings of the IEEE/ACM 45th International Conference on Software Engineering (ICSE), 2023, 121-133.
T. H. M. Le, et al., Proceedings of the IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022, 621-633.
R. Croft, et al., Proceedings of the 15th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), 2021, 1-12.

Data (Mis)Coverage
• Security issues spanning multiple lines, functions, files,

modules, versions, & even projects, but...
• Current approaches mostly focus on single function/fileInfo

Causes

• Partial security fixes in multiple versions
• For ML: coverage vs. size (↑ as granularity ↓)
• For Devs: coverage vs. convenience (inspection effort)
• Fixed-size (truncated) input required for some (DL) models

Impacts

• Lacking context for training ML models to detect complex
(e.g., intra-function/file/module) security issues

• Incomplete data for ML as security-related info. truncated

User's malicious input?
How to know using only

the current function?

Deleted line
Added line

Func_a1 Func_b1

File b

Module A

File a

Func_a2 Func_b2

Func_b3

Assume that Module A
is vulnerable then:
• Vuln. module: 1
• Vuln. files: 2
• Vuln. functions: 5

T. H. M. Le, et al., Proceedings of the IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022, 621-633.
T. H. M. Le, et al., Proceedings of the 36th International Conference on Automated Software Engineering (ASE), 2021, 717-729.

Cylinder vs. Circle vs. Rectangle?

Data (Non-)Representativeness
• Real-world security issues (e.g., NVD) vastly different from

synthetic ones (e.g., SARD)
• Varying characteristics of security issues across projectsInfo

Causes

• Synthetic data: local & created by pre-defined rules
• Real-world data: inter-dependent & complex
• Different features & nature between apps

Impacts

• Perf. (F1) gap: Synthetic (0.85) vs. Real-world (0.15)
• Lack of generalisability & transferability of ML models
• Within-project prediction > Cross-project prediction

R. Croft, et al., IEEE Transactions on Software Engineering, 2022.
S. Chakraborty, et al., IEEE Transactions on Software Engineering, 2021.

Sy
nt

he
tic

 d
at

a
R

ea
l-w

or
ld

 d
at

a

Data Drift
• Unending battle between attackers & defenders
• Evolving threat landscapes è Changing characteristics

of security issues over timeInfo

Causes

• New terms for emerging attacks, defenses, & issues
• Changing software features & implementation over time

Impacts

• Out-of-Vocabulary words è Degrading performance
• Data leakage è Unrealistic performance (up to ~5 times

overfitting) using non-temporal evaluation technique

R. Croft et al., Proceedings of the IEEE/ACM 45th International Conference on Software Engineering (ICSE), 2023, 121-133.
R. Croft, et al., Proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), 2022, 338-348.
T. H. M. Le, et al., Proceedings of the 16th International Conference on Mining Software Repositories, 2019, 371-382.

New threats/affected products in NVD over time

Test Non-temporal evaluation
è (Future) data leakage

Data (In)Accessibility
• Security data not always shared
• Shared yet incomplete data è Re-collected data may be

different from original dataInfo

Causes

• Privacy concerns (e.g., commercial projects) or not?!
• Too large size for storage (artifact ID vs. artifact content)
• Data values can change over time (e.g., devs' experience)

Impacts

• Limited reproducibility of the existing results
• Limited generalisability of the ML models (e.g., open-

source vs. closed-source data)

"We have anonymously uploaded the database
to https://www.dropbox.com/s/anonymised_link
so the reviewers can access the raw data
during the review process. We will release the
data to the community together with the paper."

Click the link

R. Croft, et al., Empirical Software Engineering, 2022, 27: 1-52.
T. H. M. Le, et al., Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering (EASE), 2021, 109-118.

Data (Re-)Use
• Finding a needle (security issue) in a haystack (raw data)
• And ... haystack can be huge
• Reuse existing data > Update/collect new dataInfo

Causes

• Completely trusting/relying on existing datasets
• Unsuitable infrastructure to collect/store raw data

Impacts

• Making ML models become obsolete & less generalised
• Being unaware of the issues in the current data

è Error propagation in following studies

1,229 VCCs
(> 1TB)

200 real-world
Java projects

Clone
projects

~70k security posts~20 mil posts (> 50 GB)

T. H. M. Le, et al., Proceedings of the 36th International Conference on Automated Software Engineering (ASE), 2021, 717-729.
T. H. M. Le, et al., Proceedings of the 17th International Conference on Mining Software Repositories, 2020, 350-361.

Data Maliciousness

• Threat/security data is itself a threat (e.g., new vulns)
• Using/sharing threat data without precautions

Info

Causes

• Simply an oversight / afterthought
• Private experiment vs. Public disclosure (Big difference!)
• Open science vs. Responsible science

Impacts

• Violating ethics of the community
• Shared security data maybe exploited by attackers
• Affecting maintainers & users of target systems

The identified vulns later get exploited by attackers

They move on to submit & publish the paper

They don't report the vulnerabilities to project
maintainers to fix

They identify new vulnerabilities using the model

Researchers develop a SOTA ML-based
vulnerability prediction model

An example of malicious/irresponsible data sharing

Slide 35

Dataset Accuracy Uniqueness Consistency Completeness Currentness

Big-Vul 0.543 0.830 0.999 0.824 0.761

Devign 0.800 0.899 0.991 0.944 0.811

D2A 0.286 0.021 0.531 0.981 0.844

Significantly reduce SVP performance, e.g., data accuracy (30 – 80% ↓ in MCC)

Automatic data cleaning: ↑ performance by ~20%, but still far from perfect

Prevalent noise in current real-world vulnerability datasets

1. Data Quality for Software Vulnerability Datasets, ICSE '23 (CORE A*)
2. Data preparation for software vulnerability prediction: A systematic literature review, TSE '22 (A*)
3. Noisy label learning for security defects, MSR '22 (CORE A)
4. An investigation into inconsistency of software vulnerability severity across data sources, SANER '22 (CORE A)

Data Quality for Data-Driven Software Security

Some Recommendations

• Identification of Missing Vulnerability Data
• Automatic labeling of silent fixes & latent vulnerabilities (beware of false positives)

• Consideration of Label Noise
• Noisy Label Learning and/or Semi-Supervised Learning (small clean data & large unlabelled data)

• Consideration of Timeliness
• Currently labeled data & more positive samples; Preserve data sequence for training

• Use of Data Visualization
• Try to achieve better data understandability for non data scientists

• Creation and Use of Diverse Language Datasets
• Bug seeding into semantically similar languages

• Use of Data Quality Assessment Criteria
• Determine and use specific data quality assessment approaches

• Better Data Sharing and Governance
• Provide exact details and processes of data preparation

Recommendations for Dealing with Data Quality Issues

Acknowledgements

• This talk is based on the research studies carried out by the CREST researchers,
particularly by Roland Croft, Triet Le, Yongzheng Xie, Mehdi Kholoosi.

• Triet Le led the efforts for developing the content for this presentation

• Discussions in the SSI cluster of the CREST provided insights included in this presentation

• Our research partially funded by the Cybersecurity CRC

• We are grateful to the students, RAs and Open Source data communities

CRICOS 00123M

Contact: Ali Babar
ali.babar@adelaide.edu.au

mailto:Roshan.Rajapakse@Adelaide.edu.au

