

Research Report

Application of Advanced Simulation Tools for Optimizing Signal Timing for Local Transportation Agencies

Submitted to

Auburn University Highway Research Center

Prepared by

Huaguo Zhou, Ph.D., P.E. Chennan Xue Dan Xu

March 2021

Highway Research Center

Harbert Engineering Center Auburn, Alabama 36849

1.	Report No.	2. Government Accession No.	3.	Recipient Catalog No.	
4.	Application of Advanced Simulation Tools for Optimizing Signal		5.	Report Date 03/2021	
			6.	Performing Organization Code	
7.	Author(s)		8.	Performing Organization	
	Huaguo Zhou, Chennan Xue, and Dan Xu			Report No.	
9.	8 8		10	10. Work Unit No. (TRAIS)	
	Highway Research Center		11	. Contract or Grant No.	
	Department of Civil Engineering 238 Harbert Engineering Center		11.	. Contract of Grant No.	
	Auburn, AL 36849				
12	. Sponsoring Agency Name and	d Address	13	. Type of Report and Period	
	Highway Research Center			Covered	
	Department of Civil Engineer	_	1/1	. Sponsoring Agency Code	
	238 Harbert Engineering Center Auburn, AL 36849		14	. Sponsoring Agency Code	

16. Abstract

15. Supplementary Notes

Traffic signals are one of the primary constraints on corridor capacity in the highway/arterial network. The progression of the major corridor is heavily dependent on the quality of the signal timings. Poor signal timings can result in significant congestion that could be minimized through signal timing optimization. The congestion typically contributes to increased delays, complaints, pollution, reduced fuel efficiency, and other economic losses. The purpose of this study was to develop and use the Synchro and TranSync models in the assessment of signal timing alternatives on a congested corridor. The simulation models were used to assess alternatives to improve operations in the congested corridor of Atlanta Highway between Federal Dr and Eastern Blvd in the City of Montgomery, Alabama. New signal timing plans were developed for AM and PM peak hours. The results showed that the optimum timings can reduce the through-movement delays by 20% and queue lengths by 25% on the corridor. They also helped shorten daily commuting time by 15%. Findings of the engineering analysis and simulation surprisingly indicated that the benefits of signal timing optimization were high with a benefit/cost ratio (b/c ratio) of over 10:1. Transportation agencies can utilize the procedure to develop, diagnose, and verify timings for improving corridor progression. The materials developed in this study can also be used as a reference for training purposes for traffic engineers and college students.

17. Key Words Signal timing, optimization, simulation, diagnosis		No restrictions.	
19. Security Classification (of this report)	20. Security Classification (of this page)	21. No. of pages 361	22. Price
Unclassified	Unclassified		

Research	n Report

Application of Advanced Simulation Tools for Optimizing Signal Timing for Local Transportation Agencies

Submitted to

Auburn University Highway Research Center

Prepared by

Huaguo Zhou, Ph.D., P.E. Chennan Xue Dan Xu

March 2021

DISCLAIMERS

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of Auburn University or the Highway Research Center. This report does not constitute a standard, specification, or regulation. Comments contained in this paper related to specific testing equipment and materials should not be considered an endorsement of any commercial product or service; no such endorsement is intended or implied.

NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES

Chennan Xue Dan Xu

Research Supervisors
Huaguo Zhou

ACKNOWLEDGMENTS

This project was sponsored by the Auburn University Highway Research Center. The authors would like to thank Wesley Cox (Director of Traffic Engineering) and Tim Foster (ITS Manager) in Montgomery, AL for providing data and coordinating field work. The authors are sincerely thankful to Dr. Zong Tian from University of Nevada Reno and Dr. Hongchao Liu from Texas Tech University for sharing TranSync and providing technical support. The authors also would like to thank all the students at Auburn University for their volunteer work.

ABSTRACT

Inefficient or improperly functioning traffic signals create frustrations for those who use them on a daily basis. Optimization of signal timings is one of the most cost-effective tools available to transportation professionals to improve the performance of the roadway system. It is a proven method for deceasing vehicle fuel consumption, vehicle emissions and motorist delays. The primary purpose of this study was to improve traffic flow along Atlanta Highway in the city of Montgomery, Alabama, and improve the efficiency of traffic signal operations. Additionally, the optimization aimed to reduced emissions and fuel consumption. For this study, a total of 14 intersections were selected, which were poorly coordinated and included in 5 subsystems. Twohour traffic counts were conducted in the field during the PM peak hours and additional videos were recorded to monitor the field condition. Signal timing data were acquired from the central control system in the Traffic Management Center. Geometric data were obtained from Google Maps and verified in the field. Two traffic simulation tools, Synchro and TranSync, were used in this study. Synchro was utilized to analyze the operation conditions as well as optimizing the signal timings. TranSync was employed to diagnose and verify the timings in the field. It also helped with developing optimum signal timings for the corridor. Analysis of existing conditions indicated that the low efficiency of progression on the corridor was due to the long cycle length and inappropriate coordination. Thus, new timing plans were developed with optimized cycle length, offsets, and phasing sequence. Based on the before-and-after comparisons, the optimized timings increased the bandwidth of green band for both directions by at least 20%. Thus, they reduced the average delay by 20% and queue length by 25% for the through vehicles on the major arterial. Additionally, the new timing plans can shorten daily commuting time by 15%, which is roughly 4 minutes per vehicle per day. The overall benefits of signal timing optimization, which include the reductions of delay, emission, and fuel consumption, were high with a benefit/cost ratio (b/c ratio) of over 10:1. Transportation agencies can utilize the procedure to diagnose and verify existing timings in order to increase the reliability of traffic signal operations. The method introduced in this study can also be used to develop new timings to improve the corridor progression. The materials developed in this study can be provided to traffic engineers and college students for training purposes.

Table of Contents

Table of Contents	iv
List of Tables	v
List of Figures	vi
Chapter 1: Introduction	1
1.1 Background	
Chapter 2: Literature Review	3
2.1 Signal Timing Optimization	9
Chapter 3: Methodology	13
3.1 Traffic Signal Optimization Models 3.2 Traffic Signal Timing Model Development and Adjustments 3.3 Field Diagnosis and Verification	14
Chapter 4: Data Collection	17
4.1 Site Description	
Chapter 5: Analysis of Existing Condition	22
Chapter 6: Analysis of Corridor Optimization	26
6.1 Optimization of Cycle Length	26 30
Chapter 7: Implementation and Fine-Tuning	36
7.1 Schedule and Process	36 37
Chapter 8: Conclusions and Recommendations	40
References	42
Appendix A: Optimized Signal Timing Plans	
Appendix B: Synchro Outputs	
Appendix C: Raw Signal Timing Data	
Appendix D: Phasing Diagrams	

List of Tables

Table 2.1 Minimum Green Time for Pre-timed and Actuated Signals (ALDOT 2015)
Table 2.2 Proposed Signal Control at Intersections along Arterials (Gordon et al. 2005)
Table 2.3 Proposed Signal Control at Intersections in Grid Systems (Gordon et al. 2005)
Table 2.4 Annual Network Benefits from Signal Timing Optimization 12
Table 4.1 Intersections and Subsystems on the Study Segment
Table 4.2 Data Collection of Turning Movement Counts
Table 4.3 Information Collected from Raw Timing Data
Table 5.1 Average Delay and LOS on the Major Arterial23
Table 5.2 Average Queue Length on the Major Arterial23
Table 6.1 Change in Traffic Performance Measures34
Table 6.2 Corridor Benefits during PM Peaks35
Table 7.1 Adjustments to the AM Timing Plans38

List of Figures

Figure 2.1 Time-Space Diagram of a Coordinated Timing Plan (NASEM 2015) 7
Figure 3.1 Link-Node Diagram Developed in Synchro15
Figure 3.2 Field Diagnosis and Verification Using TranSync 16
Figure 4.1 Atlanta Highway Corridor Map17
Figure 4.2 Equipment for Counting Traffic Volumes19
Figure 4.3 NEMA Standard Phasing Diagram20
Figure 5.1 Time-Space Diagram of Subsystems 1 to 324
Figure 5.2 Travel Time on the Major Arterial25
Figure 6.1 Before TSD (Federal Dr to Bellehurst Dr)27
Figure 6.2 After TSD (Federal Dr to Bellehurst Dr)28
Figure 6.3 Before TSD (East Mount Plaza to East Eastern Blvd)29
Figure 6.4 After TSD (East Mount Plaza to East Eastern Blvd)29
Figure 6.5 Improvements in Major-Road Progression during PM Peaks (Eastbound)
Figure 6.6 Improvements in Major-Road Progression during PM Peaks (Westbound)
Figure 6.7 Travel Time before and after Optimization (Eastbound)
Figure 6.8 Travel Time before and after Optimization (Westbound)
Figure 7.1 Real-Time Trajectory-Based Field Verification
Figure 7.2 Ring-Barrier Diagram of Intersection at Perry Hill/Dalraida Rd 38

Chapter 1: Introduction

1.1 Background

A well-timed, coordinated signal timing plan plays an irreplaceable role in mitigating the traffic congestion of urban roads (Wu et al. 2013). Optimized signal timing can reduce delay, increase the capacity of the urban road network, and improve traffic mobility. Traffic signal coordination has proven to be a low-cost method for improving traffic operations with a high benefit-cost (B/C) ratio up to 40:1 (Sunkari 2004). Traffic signals have many drawbacks when they fail to be designed properly, which may cause adverse impacts on motorist delay and safety (ALDOT 2015). Currently, existing signal timings in many small cities in Alabama have not been timely updated due to a lack of knowledge and training on how to use signal optimization tools. For instance, the signal timings on many intersections in the city of Montgomery were implemented more than 10 years ago. Due to the lack of advanced simulation tools, many local agencies do not have alternative timing plans for work zones, major events, or traffic incidents.

Currently, signal optimization software such as Synchro, TSIS, and VISSIM have been commonly used in developing optimized and coordinated timing plans. Many new features have been added to the latest versions of these software for developing adaptive and actuated signal timings in a short-time period. Past studies showed corridors have less delay and a better Level of Service (LOS) after optimizing signal timing (MnDOT 2013, Urbanik et al. 2015).

This project applied advanced simulation tools (Synchro and TranSync) to optimize the traffic signal timings along the Atlanta Highway corridor from Federal Dr to Eastern Blvd in the City of Montgomery, Alabama. The project outcomes (tools and strategies) can be applied by other local transportation agencies in Alabama.

1.2 Objectives

The primary purpose of this project was to develop the optimized traffic signal timing to improve traffic flow along the Atlanta Highway corridor in the City of Montgomery, Alabama, while also maintaining efficient and safe travel for road users. Following are five tasks conducted to achieve the goals in this study:

- 1. Collect existing traffic data, such as turning movement counts, signal timing plans, and intersection geometry.
 - 2. Develop and calibrate Synchro and TranSync models for the existing conditions.

- 3. Develop a set of new timing plans for different time periods. The focus was on afternoon peak hours when the most congestion occurs.
- 4. Field implementation of new signal timings and fine-tuning of the offset between signals.
- 5. Evaluate the operational performance and benefits based on before-and-after studies.

Chapter 2: Literature Review

This chapter presents a literature review of signal timing studies in three categories: signal timing optimization, model calibration and verification, and benefits of signal timing improvements.

2.1 Signal Timing Optimization

2.1.1 Traffic Signal Timings and Control Algorithms

This section gives a brief introduction of traffic signal timing concepts and typical control algorithms.

Basic Actuated Control

There are three key components arriving at the green time for a given phase: initial interval, unit extension, and maximum green (Roess et al. 2004). The initial interval and unit extension are set based on the detector layout on the approach served by the given phase. The maximum green can be set based on the desired operation at the signalized intersection.

The initial interval plus the unit extension is the minimum green that an approach will receive if no additional detections are presented once the phase is given. Because the unit extension can be short, the majority of time in this minimum green is the initial interval. It should be designed to allow the space between the detector and the stop line to clear of vehicles (Roess et al. 2004). Because there are different types of detection at different sizes and distances from the stop bar, the initial interval can range from 0 seconds to as much as 20 to 30 seconds. Table 2.1 lists the recommended minimum green time by Alabama Department of Transportation (ALDOT) based on the type of street.

Table 2.1 Minimum Green Time for Pre-timed and Actuated Signals (ALDOT 2015)

	Minimum Green Time (seconds)		
Movement Type	Pre-Timed	Actuated	
Major Street Thru (≥45 mph)	20	20	
Major Street Thru (<45 mph)	15	15	
Major Street Left Turn	6	4	
Minor Street Thru	8	6	
Minor Street Left Turn	6	4	

The unit extension time is the time the green is extended for each arrival at the detector, from the instant of arrival at the detector (Roess et al. 2004). To avoid vehicles being hesitated/stopped between the detector and the stop line, the vehicle interval must be at least the "passage time" of a vehicle from the detector to the stop line.

The maximum green is the total time to be allowed to the phase (Roess et al. 2004). If each phase at an intersection will be called and consistently extended to the maximum green, then the actuated controller will replicate fixed-time operation, in which case the maximum green can be set to the optimized green time for a fixed-time operation. If the phase ends because the unit extension time expires without a new detection being sent to the controller, it is called "gap out". Otherwise, if the phase ends because the maximum green has been reached, it is called "max out". According to the ALDOT Traffic Signal Design Guide and Timing Manual (ALDOT 2015), the green time required to discharge *n* vehicles per cycle in a single lane is 2.1*n*+3.7 seconds.

Two other important settings are the yellow clearance interval and the all-red interval. The purpose of the yellow clearance interval is to alert drivers that the green interval is being terminated and that right of way is being assigned to another movement. ALDOT recommends a yellow clearance interval between 3.0 and 6.0 seconds. Moreover, yellow intervals longer than 5.0 seconds may encourage red-light running. The purpose of the all-red interval is to allow any vehicles that entered the intersection during the yellow interval to safely clear the intersection before a green indication is given to a conflicting movement. ALDOT recommends using an all-red interval that is less than 3.0 seconds.

Semi-Actuated Coordinated Control

In coordinated environments, only minor non-coordinated movements are actuated. The actuated features are turned off for the main street through phase since it serves the traffic movement to be coordinated. In this operation, the main street through phase receives a minimum green interval that is typically set to be long enough so that if it receives no other green time, it will still be of sufficient duration to serve the demand. The main street through phase also receives any time that is not used by the minor uncoordinated phases through their actuated operation.

Providing coordination requires the introduction of three additional signal timings: cycle length, split, and offset (Roess et al. 2004). The semi-actuated operation requires three more signal timing parameters: yield point, force off, and permissive period.

A cycle length is one complete sequence of signal indications (Roess et al. 2004). In a coordinated system, each intersection should have the same cycle length, which is called the system cycle length. At intersections with significantly less demand for minor movements, a cycle length that is half the system cycle length can also be used. Using such cycle length keeps the intersection coordinated with the system while reducing the wait time for minor-road traffics.

The split for a given phase is the percentage of the cycle length devoted to the given phase (Roess et al. 2004). The split includes the green time and clearance interval(s). Splits are typically provided in percentage form, in which case the sum of all the splits at an intersection must equal 100%.

Each intersection in the system will have an offset. The offset is defined as the difference between reference points in the system cycle length time and the beginning or end of the reference phase. The offsets are generally referenced to the beginning or end of green at the master controller (Roess et al. 2004).

The yield point is the time in the cycle when the coordinated phase will end and yield to the non-coordinated actuated phases if the appropriate call has been placed (Koonce and Rodegerdts 2008). Each non-coordinated phase has an associated force-off point, which is assigned to each actuated phase so the phase being served can terminate to service another actuated phase. The beginning of each permissive period is usually the force-off point of the proceeding phase. The end permissive period is the time when there is still sufficient time remaining to service the minimum green or pedestrian crossing time (the greater of the two values) and all vehicle clearances.

Traffic Adaptive Signal Control Systems

Adaptive Signal Control Technology (ASCT) adjusts the timing of each phase to accommodate changing traffic patterns and ease traffic congestion (FHWA 2017). By receiving and processing data from strategically placed sensors, ASCT can determine which traffic lights should be red and which should be green. Many choices are available from many vendors, with more in development. Available ASCTs include the Split Cycle Offset Optimization Technique (SCOOT), Sydney Coordinated Adaptive Traffic System (SCATS), Real-Time Hierarchical Optimized Distributed Effective System (RHODES), and Optimized Policies for Adaptive Control (OPAC) "Virtual Fixed Cycle" and Adaptive Control Software (ACS) Lite.

SCOOT is a dynamic, on-line, real-time method of signal control that continuously measures traffic demand on all approaches to intersections in a network and optimizes the signal timings at each intersection to minimize delay and stops. Timing changes are small, to avoid major disruption to traffic flows, and frequently, to allow rapid response to changing traffic conditions (Siemens 2020).

SCATS is an intelligent transportation system that manages the dynamic (on-line, real-time) timing of signal phases at traffic signals, meaning that it tries to find the best phasing (i.e. cycle times, phase splits and offsets) for a traffic situation (for individual intersections as well as for the whole network) (Sims and Dobinson 1980). SCATS is based on the automatic plan selection from a library in response to the data derived from loop detectors or other road traffic sensors.

Input detector data from induction loops, video, etc. are taken by RHODES for real-time measurement of traffic flow (Mirchandani and Head 2001). Estimates of the load on each particular link, in terms of vehicles per hour, can be calculated. The load estimates then allow RHODES to allocate "green time" for each different demand pattern and each phase.

OPAC, which is also called "Virtual Fixed Cycle", is an on-line control algorithm designed to optimize the performance of individual traffic signals. It is a building block for demand-responsive control of a distributed signal system (Gartner et al. 1991).

ACS Lite, a reduced-scale version of the Federal Highway Administration's (FHWA) Adaptive Control Software (ACS), offers small and medium-size communities a low-cost traffic control system that operates in real-time, adjusting signal timing to accommodate changing traffic patterns and ease traffic congestion (FHWA 2006). ACS

Lite can be used with new signals or to retrofit existing traffic signals. It is designed for closed-loop systems, providing cycle-by-cycle control.

2.1.2 Bandwidth Maximization and Delay Minimization

A green band is a "window" of green time through the arterial signal system through which a platoon of vehicles can travel without stopping (Roess et al. 2004). The duration of this window is the bandwidth. Figure 2.1 presents a Time-Space Diagram (TSD). The parallel arrows indicate the green band for each direction. The first and last of vehicle trajectories outline the bandwidth. As the bandwidth gets wider, potential progression opportunities increase for vehicles traveling along the coordinated corridor. To maximize the bandwidth and to move the anticipated platoons on the main street, settings such as cycle length, splits, and offsets need to be optimized. A typical software package that performs this type of signal system timing is Synchro. Another new software called TranSync has been showing cost-effective results in the field. They will be further introduced in the next chapter.

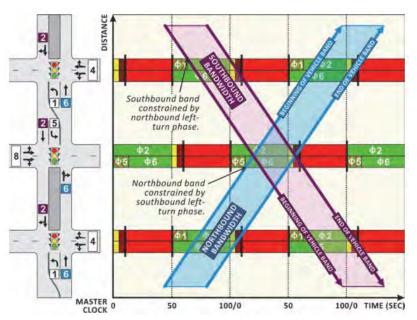


Figure 2.1 Time-Space Diagram of a Coordinated Timing Plan (NASEM 2015)

2.1.3 Arterial Signal Timing and Optimization Signal System Type

According to the Traffic Control Systems Handbook (Gordon et al. 2005), the selection between pretimed, semi-actuated, and fully actuated control on arterials and grid

networks are listed in Tables 2.2 and 2.3, based on the cross-street traffic volumes and through traffic movements on the arterial.

Each type of control offers varying performance and cost characteristics depending on the installation and prevailing traffic conditions. In general, the semi-actuated control is recommended unless the cross street has a high v/c (volume to capacity) ratio. It is anticipated that if the cross street is near saturation, the system would operate as a pretimed signal.

Table 2.2 Proposed Signal Control at Intersections along Arterials (Gordon et al. 2005)

Cross Street Traffic	Turning Arterial Volume/Cross Street V		oss Street Volume
V/C	Movements*	<u><</u> 1.3	> 1.3
Low to Moderate	≤ 20%	Actuated ¹	Actuated ²
V/C < 0.8	> 20%	Actuated ²	Actuated
High	≤ 20%	Pretimed	Pretimed
V/C > 0.8	> 20%	Pretimed	Pretimed

^{*}Percent of Arterial Through Traffic

Notes:

¹Pretimed control at an intersection with balanced volumes and high turning traffic from the cross street without exclusive lanes.

²Pretimed operation if the early start of the green leads to additional stops and delays at the downstream signal. Also, boundary intersections may operate as pretimed if they are critical to the arterial's time-space diagram and define the leading edge of the green bandwidth.

Table 2.3 Proposed Signal Control at Intersections in Grid Systems (Gordon et al. 2005)

Network	Intersection	Number of Phases		
Configuration	V/C	2	4	8
Crossing	<u><</u> 0.8	Pretimed	Actuated ¹	Actuated ¹
Arterials	> 0.8	Pretimed	Pretimed ²	Pretimed ²
Dance Naturalis	<u><</u> 0.8	Fully Actuated ³	Actuated	Fully Actuated
Dense Network	> 0.8	Pretimed	Actuated	Fully Actuated

Notes:

¹The through phases may operate as pretimed if the volumes on each arterial are approximately equal, or semi-actuated operation leads to additional stops at the downstream signal(s).

²Left turn phases at critical intersections may operate as actuated. Any spare green time from the actuated phases can be used by the through phases.

³Intersections that require a much lower cycle than the system cycle length and are located at the edge of the network where the progression would not be influenced.

Signal Timing Optimization

Synchro uses a performance index (PI) in the optimization of cycle length (Trafficware, 2014). It is calculated from the Percentile Signal Delay (D), a Queue Penalty (QP), and Vehicle Stops (St), as follows:

$$PI = (D \times 1 + St \times 10 + QP \times 100)/3600$$

The PI is heavily affected by the queue penalty, which is calculated by multiplying the traffic volume in the queue by the percent of time blocked.

Splits at each intersection are then optimized based on each lane group's 90th percentile traffic flow divided by its adjusted saturation flow rate (Trafficware 2014). In optimizing offsets, Synchro evaluates the delays associated with different offsets and finalizes the best offset with the least delay.

2.2 Traffic Simulation Models

2.2.1 Overview of Traffic Simulation Software

Synchro is a software originally developed for modeling and optimizing traffic signal timings (Jones et al. 2004). Synchro provides a Windows-based, easy-to-use solution for single intersection capacity analysis and signal timing optimization. In addition to calculating capacity, Synchro can also optimize signal timings. Its easy-to-use interface has made it an increasingly popular choice among traffic professionals.

TranSync is the first of its kind and the only mobile tool currently available in the world for real-time diagnosis and evaluation of traffic signal timing plans using mobile devices (TranSync 2015). It enables users to develop virtual signal controllers on their mobile devices, which run the same timing plans as that running in the field. Together with its advanced features of geo-referencing and dynamic time-space diagram, it allows users

to easily diagnose common issues with actuated coordinated signals, such as phase early return, transition, clock drifting, and erroneous offset inputs.

VISSIM is a microscopic, behavior-based multi-purpose traffic simulation to analyze and optimize traffic flows (Fellendorf and Vortisch 2010). It offers a wide variety of urban and highway applications, integrating public and private transportation. Complex traffic conditions are visualized in high level of detail supported by realistic traffic models.

Highway Capacity Software (HCS) is a traffic analysis software that is produced by McTrans Moving Technology (Khasawneh and Obadat 2013). It is used to model signalized intersections, roundabouts, freeway facilities, two-lane two-way highways and multilane highways based on the procedures defined in the Highway Capacity Manual (HCM). With known traffic volumes and many other inputs, this software can determine the current and projected Level of Service (LOS) for all of the above traffic facilities.

CORSIM is a comprehensive traffic simulation package developed to model surface streets, freeway systems, and combined networks having simple or complex control conditions. The strengths of the model lie in its ability to simulate a wide variety of traffic conditions from signalized arterial corridors and freeway corridors to stop-controlled intersections. Owen et al. (2000) presented an excellent overview of the CORSIM model and its uses. In particular, they focused on its ability to model special circumstances such as HOV(high occupancy vehicle) facilities and real-time adaptive traffic control systems.

2.2.2 Model Calibration

Calibration is defined as the adjustment of model parameters to improve the model's ability to reproduce local driver behavior and traffic performance characteristics (Dowling et al. 2004). Verification is also essential to ensure the model replicates the existing field conditions. In general, the following variables need to be calibrated and verified:

- Traffic volumes,
- Signal timings,
- Lane configurations,
- Travel time runs, and
- Queuing/congestion locations.

For the traffic volumes, the default saturated flow rate is 1900 vehicle per lane per hour with the assumption of the average headway of 1.9 seconds. The saturated flow rate

will need to be adjusted based on the average vehicle headway observed in the field. Based on the field observations, lane configurations and queuing conditions can be compared with the model output. Other parameters can be adjusted include the total lost time, lane utilization factor, turning factors, area type, and buses and parking. Simulation animation can be also used to verify the model input with the field condition.

2.3 Benefits of Signal Timing Improvements

Many anticipated benefits of traffic signal coordination were pointed out in past studies (Roess et al. 2004) including:

- Reduction in user costs resulting from fewer stops and delay,
- Queue length reduction which reduces queue spill-back between intersections,
- Conservation of energy and the preservation of the environment,
- Maintenance of a preferred speed on the arterial, which can be used as a form of speed control, and
- Formation of platoons of traffic, which tends to smooth traffic flow, reduce speed differentials, and shorten queues.

American Association of State Highway Transportation Officials (AASHTO 2003) also indicated that the three savings in user costs resulting from traffic signal timing improvements are:

- Travel time improvements resulting from less delay experienced by vehicle users.
- Lower operating costs resulting from a reduction in the time spent idling or traveling very slowly while queued.
- Lower accident costs, if applicable.

Table 2.4 shows the overall measure of effectiveness (MOE) improvement for the various traffic signal system improvement projects in Texas (Fambro et al. 1992). Though new equipment can bring cutting-edge features, the evaluation shows that periodic updating of timing plans proves to be more beneficial than upgrading the equipment. The benefit/cost (B/C) ratio can be as high as 65:1. Even though it is important to note that signal timing optimization can increase delays and/or fuel consumption on side streets, these increases in delay or fuel consumption often prove negligible compared with the total network improvement.

Table 2.4 Annual Network Benefits from Signal Timing Optimization

Table 2.4 Allitudi Network Beliefits from Signal Tilling Obtimization					
Coordination/Equipment	Reduction in	Reduction in	Reduction in Fuel		
Status	Stops (%)	Delay (%)	Consumption (%)		
Uncoordinated arterial with existing equipment	10	24	8		
Uncoordinated arterial with new equipment	18	21	14		
Partially coordinated arterial with existing equipment	6	9	3		
Partially coordinated arterial with new equipment	15	18	3		
Coordinated arterial with existing equipment	16	23	17		
Coordinated arterial with new equipment	14	23	12		

Chapter 3: Methodology

This chapter summarizes the following methodologies utilized in this study: the selection of traffic simulation models, the diagnosis of inputs in the field, the optimization of timing plans, and the verification of the results.

3.1 Traffic Signal Optimization Models

Numerous traffic signal optimization models have been developed by public agencies, research organizations, and private vendors/consultants. Methodologies of these models are mostly based on the Highway Capacity Manual (HCM) procedures. However, they are primarily designed to develop optimal signal phasing and timing plans for isolated signal intersections, arterial streets, or signal networks. This may include capacity calculations, cycle length and split optimizations, and coordination/offset plans. Two advanced traffic simulation tools were selected in this study, which are Synchro 9.0 and TranSync.

Synchro is a macroscopic analysis and optimization software application. Synchro supports the Highway Capacity Manual's (HCM) 6th Edition, 2010 and 2000 for signalized intersections, unsignalized intersections, and roundabouts. Synchro also implements the Intersection Capacity Utilization method for determining intersection capacity. Synchro's signal optimization routine allows the user to weigh specific phases, thus providing users more options when developing signal timing plans.

TranSync has two different versions, TranSync-D and TranSync-M. TranSync-D, which is the abbreviation for TranSync-Desktop, is the Windows-based desktop application with enhanced features for systematic management, optimization, and performance evaluation of traffic signal timing plans. It provides users with many advanced and easy-to-use functions to meet the various needs of different levels of skills and backgrounds by traffic signal engineers. TranSync-M, which is short for TranSync-Mobile, is the first of its kind and the only mobile tool currently available in the world for real-time diagnosis and evaluation of traffic signal timing plans using mobile devices. It enables users to develop virtual signal controllers on their mobile devices, which run the same timing plans as running in the field. Together with its advanced features of geo-referencing and dynamic time-space diagrams, it allows users to easily diagnose common issues with actuated coordinated signals, such as phase early return, transition, clock drifting, and erroneous offset inputs.

3.2 Traffic Signal Timing Model Development and Adjustments

Synchro was utilized to develop coordinated traffic signal timing plans. The link-node diagram was created first (Figure 3.3). Each intersection is considered as a node. The link distance is measured from the center of one intersection to the center of the adjacent intersection. The link distance between adjacent intersections was first measured from Google Maps and then scaled in Synchro. The speeds assigned to a link match onstreet regulatory speed limits from Google Maps. The primary settings of the simulation model are geometric, volume, and timing settings.

Geometric inputs such as lane settings were obtained from Google Maps and later verified in the field. Storage length is used for analyzing potential blocking problems. The number of storage lanes, their lengths, and actual lane widths were collected and measured by using Google Maps. Channelized right-turn lanes were coded according to the field condition, in which all of them are under yield control. No noticeable grade was reported. For the area type, the corridor was classified as a non-Central Business District (CBD) environment.

As turning movement counts were conducted in 15-min intervals, the highest 15-min counts were multiplied by four as the hourly volumes. A value of 1.00 was used as the peak hour factor. Heavy vehicles are defined as those with more than four tires touching the pavement. The heavy vehicle percentage was calculated based on the field counts. Adjustments to the ideal saturated flow (vphpl) are to ensure that saturated flow replicates field conditions as much as possible. The default ideal saturation flow is 1900 passenger car per hour per lane, with the assumption of the average headway of 1.9 seconds. The field measurement indicated an average headway of 2.0 seconds. Thus, the adjusted saturated flow was set as 1800 vphpl.

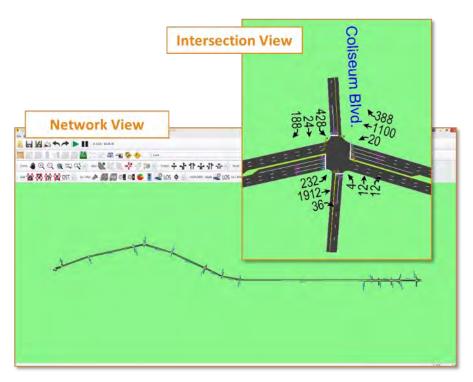


Figure 3.1 Link-Node Diagram Developed in Synchro

The mode of control which is included with the signal timings information was provided by the city. The Atlanta Highway corridor is configured to operate in semi-actuated mode, in which the detection is provided only on the side-street approaches. It is used to provide progressive vehicle flow through a series of controlled intersections. The major-road signals remain green until a call for service is placed by the minor-street detectors.

3.3 Field Diagnosis and Verification

TranSync-M demonstrates in both standard double-ring format and graphical illustration the real-time signal timing information on the mobile device, as shown in Figure 3.4-a. After coding the signal timings in TranSync, each signal runs in real-time the same signal timing plans as that run in the field controllers, if the inputs are correct and no failure of controllers in the field. To verify the timing in the field, a coordinated phase was first selected to make synchronization when the selected phase was about to reach the beginning of all-red time. The timing in TranSync was then synchronized with the controller by tapping on the phase in the TSD(traffic speed deflectometer). Once one coordinated intersection was synchronized, the other coordinated intersections should be running the

same timing plans as shown in TranSync. If not, either the input or the controller in the field is not set correctly.

To verify the corridor progression, the vehicle trajectory was automatically mapped to a TSD for performance analysis. The speed, travel time, GPS coordinates, queue length, and number of stops were recorded. Using vehicle trajectory instead of traffic counts to evaluate the performance of the signal timing can greatly reduce the workload and budget.

- (a) Intersection Diagnosis
- (b) Corridor Verification with TSD

Figure 3.2 Field Diagnosis and Verification Using TranSync

Chapter 4: Data Collection

4.1 Site Description

The Atlanta Highway, as shown in Figure 3.1, is a major arterial that is parallel to I-85 in the City of Montgomery, AL. It has 26 intersections in total. The 26 signals were previously grouped into 5 subsystems. This project focuses on the busiest segment of 3.7 miles, which contains 14 intersections. Table 3.1 summarizes the 14 intersections and their subsystems, as well as the cycle lengths for PM peak hours. Signals within the same subsystem were coordinated; however, signals from different subsystems were not. Having the excessive number of subsystems on a relatively short corridor was the original cause of unnecessary stops for through traffic. Congestion and queuing problems have been reported on this corridor, especially during the PM peak hours on weekdays.

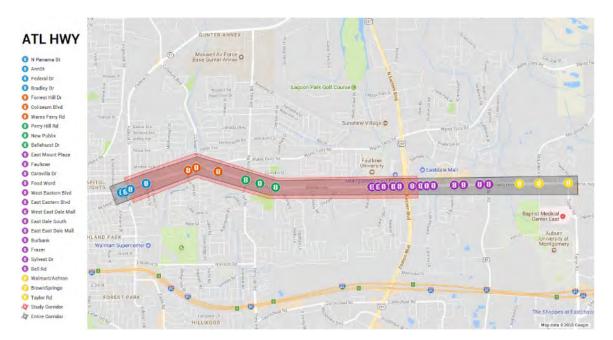


Figure 4.1 Atlanta Highway Corridor Map

Table 4.1 Intersections and Subsystems on the Study Segment

	Intersection	PM-Peak Cycle Length (s)	
Subsystem	mersection	(Before Condition)	
1	Federal Dr	150	
,	Bradley Dr	100	
	Forest Hills Dr		
2	Coliseum Blvd	150	
	Wares Ferry Rd		
	Perry Hill/Dalraida Rd		
3	New Publix	235	
	Bellehurst Dr		
	East Mount Plaza		
	Faulkner		
4	Carol Villa Dr	200	
'1	Food World	200	
	West Eastern Blvd		
	East Eastern Blvd		

4.2 Data Collection

Data collection includes four parts: turning movement counts, signal timing plans, geometric data, and video data.

Two-hour turning movement counts were conducted at those 14 intersections on Atlanta Highway from 4:00 PM to 6:00 PM on typical weekdays. The turning movement counts consist of traffic volumes from each direction and the number of heavy vehicles during each 15-min interval. Figure 4.2 lists four types of equipment that were used for recording traffic volumes. The digital turning movement counter (Jamar TDC-12) was used at four large intersections. It was operated by one person and recorded all turning movements at an interval of 15 min. The mechanical counters were used at intersections with low volumes. Numbers were recorded on the data sheet every 15 min. Mobile apps were also utilized for counting traffic volumes due to the budget. They worked similarly to the mechanical counters. Video cameras were installed at large intersections for help collecting the turning movement counts and monitoring congestion situations. The typical installation locations are traffic sign supports near the intersections. A total of 28 hours of turning movement counts and 160 hours of video data were collected in the field.

(a) digital counter

(b) mechanical counter

(c) mobile phone app

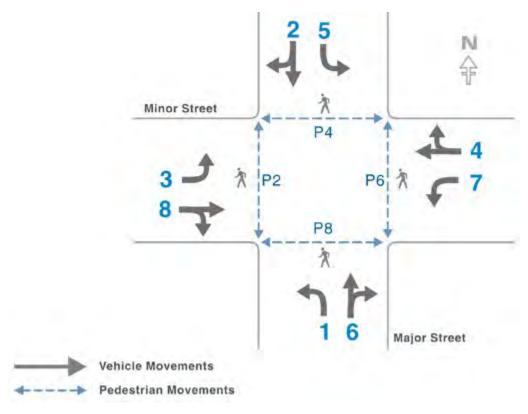

(d) traffic camera

Figure 4.2 Equipment for Counting Traffic Volumes

Table 4.2 Data Collection of Turning Movement Counts

Direction	Number	Minor Road	Equipment	Date
West 1		Federal Dr	Digital counter	
2		Bradley Dr	APP	
3		Forest Hills Dr	APP	
4		Coliseum Blvd	Camera	
	5	Wares Ferry Rd	Digital counter	1/31/2018
	6	Perry Hill Rd	Camera	
	7	New Publix	Mechanical counter	
	8	Bellehurst Dr	Mechanical counter	
	9	East Mount Plaza	Mechanical counter	
	10	Faulkner	Digital counter	
	11	Carol Villa Dr	APP	
	12	Food World	Digital counter	2/7/2018
	13	West Eastern Blvd	Camera	
East	14	East Eastern Blvd	Camera	

The existing signal timing plans (see Appendix C) were acquired from the Traffic Management Center (TMC). The plans provide detailed timing settings; however, they were not coded following the standard National Electrical Manufacturers Association (NEMA) phasing (Figure 3.2), which is commonly used in the industry. Therefore, the existing signal timing data needs to be translated first based on the phasing diagrams (see Appendix D) as NEMA phasing is commonly accepted by traffic simulation tools.

Source: https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter4.htm

Figure 4.3 NEMA Standard Phasing Diagram

Table 4.3 summarizes the major information collected from the raw timing data. The timing data required by Synchro and TranSync comes from the following parts: phase data, general coordination data, split times and phase modes, dial/split and cycle, traffic plan data, and local TBC data. The phase data and general coordination data list basic timing data and the reference phase for corridor coordination. After reviewing the phase data and general coordination data, it's recommended to refer to the local TBC data first in order to identify the correct timing plans for the specific time of day and day of week. Then, the phase splits, cycle length, and coordination mode can be determined.

Afterwards, TranSync-M was used to verify the input and diagnose potential failures in the field. Researchers synchronized the timing in the mobile app with the field condition first. At each intersection, three cycles were observed to ensure that the field condition was running the same timing plans as the app. In one instance, the field diagnosis found that the initial settings of reference phases were incorrect. Additionally, one cabinet wasn't responding to the call from the TMC, which was fixed by technicians in the field later. The outcome of diagnosis proves that field verification is essential before furthering the analysis. So far, TranSync is the only tool that can efficiently conduct the field diagnosis.

Table 4.3 Information Collected from Raw Timing Data

Table 4.5 information conceded from New Timing Data					
Data	Description				
Phase Data	This part includes basic timings such as minimum green time, maximum green time, passage time, yellow interval, and all-red interval.				
General Coordination Data	The offset mode indicates the reference phase. "0=Beg Grn" means that the offset point is at the start of the coordinated phases (e.g., phases 2 and 6).				
Split Times and Phase Modes	This part provides details of phase splits and the control mode of each phase.				
Dial/Split and Cycle	The general cycle lengths are summarized according to different modes.				
Traffic Plan Data	This part lists detailed cycle lengths associated with timing plans.				
Local TBC Data	This part helps to determine the timing plan executed during a specific time of day and day of week.				

Chapter 5: Analysis of Existing Condition

This chapter discusses the existing condition of Atlanta Highway, including control type, delay, LOS, queue length, and travel time. Findings will be used to develop the optimized signal timing plans for the corridor.

The existing control type on Atlanta Highway is semi-actuated, which means the major-road through phases are coordinated and the minor-road phases are actuated. According to the traffic volume data, most intersections have low v/c ratios on minor streets and the minor-road volumes is much lower than that on the major road. As indicated in the literature, the semi-actuated control type is appropriate for Atlanta Highway.

Table 5.1 summarizes the average delay and LOS at each intersection on the major arterial. Through vehicles have short delay and good LOS at most intersections because of the relatively low traffic volumes from minor roads. As a result, the green time of major-road through movements are greatly extended with the "early-return-to-green" on minor roads. However, "early-return-to-green" may cause congestions at downstream intersections with larger traffic volumes from minor roads. Given the factors of "early-return-to-green" from upstream intersections and existing subsystems being poorly coordinated, intersections of Coliseum Blvd, Perry Hill Rd, New Publix, and Carol Villa have LOS of C or worse. Among them, the intersection of Perry Hill Rd has the worst scenario (LOS F for EB). Besides, other movements at each intersection such as the major-road left-turn movements and the minor-road movements suffer from the extremely long waiting time caused by the long cycle lengths (see Appendix B). Thus, the recommendation for existing conditions in addition to optimizing offsets and phasing sequence is to reduce the cycle length

Table 5.2 lists the average queue length at each intersection. The intersection at Perry Hill Rd is again proved to be the bottleneck. The EB queue length is over 1,400 ft which means that traffic in queue has to wait more than one cycle to pass the intersection. Based on the field observation, the majority of the queue results from the "early-return-to-green" from the upstream intersections. Due to the lower volumes of the minor roads at those intersections, the extended green time on major-road through movements provides extra time for through vehicles, which make them eventually stack up at the intersection of Perry Hill Rd. During the busiest 15-min time period (17:15-17:30), about 70% of the queue can be cleared each cycle while the rest 30% needs to wait for another full cycle.

Table 5.1 Average Delay and LOS on the Major Arterial

Subsystem	Intersection	EB Delay (s/veh)	EB LOS	WB Delay (s/veh)	WB LOS
System 1	Federal Dr	0.6	Α	12.3	В
	Bradley Dr	5.7	Α	0.9	Α
System 2	Forest Hills Dr	14.9	В	1	Α
	Coliseum Blvd	23.9	С	30.9	С
	Wares Ferry Rd	5.8	Α	21.6	С
System 3	Perry Hill Rd	124.4	F	15.8	В
	New Publix	28	С	30.4	С
	Bellehurst Dr	1.7	Α	1.8	Α
System 4	East Mount Plaza	16.1	В	5.7	Α
	Faulkner	9.5	Α	8.7	Α
	Carol Villa Dr	22.4	С	1.7	Α
	Food World	7	Α	7.2	Α
	West Eastern Blvd	9.3	Α	8.5	Α
	East Eastern Blvd	7.6	Α	17.3	В

Table 5.2 Average Queue Length on the Major Arterial

Subsystem	Intersection	EB Queue Length (ft)	WB Queue Length (ft)
System 1	Federal Dr	0	154
	Bradley Dr	582	33
System 2	Forest Hills Dr	525	22
	Coliseum Blvd	832	636
	Wares Ferry Rd	187	303
System 3	Perry Hill Rd	1425	86
	New Publix	506	928
	Bellehurst Dr	47	111
	East Mount Plaza	686	182
	Faulkner	337	253
System 4	Carol Villa Dr	459	22
System 4	Food World	83	219
	West Eastern Blvd	170	241
	East Eastern Blvd	273	665

Subsystems 1 to 3 are closely spaced within 2 miles, which indicates a potential for the two to be coordinated together. Figure 5.1 shows the existing time-space diagram (TSD) of subsystems 1 to 3. The coordination within each subsystem is good. However, subsystems are poorly coordinated with each other. The green band presents the EB band and the blue one is the WB band for through vehicles. From the TSD, through vehicles are not likely to clear all the intersections without having stops. Moreover, they have higher

chance of stopping at intersections of Perry Hill Rd and New Publix. Factors such as different cycle lengths, uncoordinated offsets, and failure of using proper phase sequence contribute to the low efficiency of the progression. Thus, there is a need to develop a common cycle length to coordinate these three subsystems.

The distance between subsystem 3 and 4 is over 1 mile; therefore, subsystem 4 is not suggested to be coordinated with the other subsystems. The TSD of subsystem 4 shows that the coordination within the subsystem is good but still has potential to be improved. Hence, the recommendation is to further optimize existing coordination.

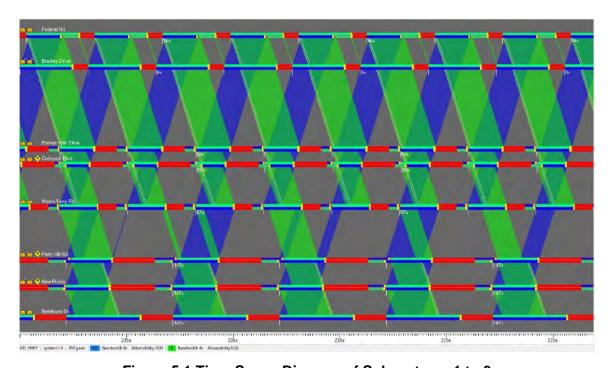


Figure 5.1 Time-Space Diagram of Subsystems 1 to 3

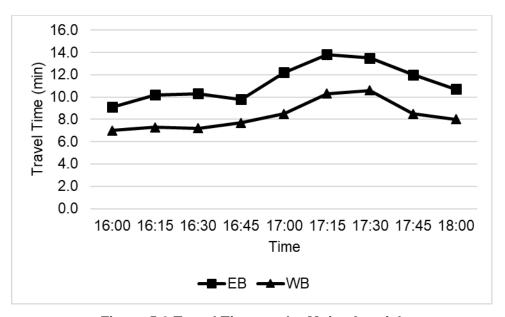


Figure 5.2 Travel Time on the Major Arterial

Figure 5.1 shows the travel time on the corridor under the existing traffic signal timing plans. The travel time significantly increases after 17:00 and is peaked between 17:15 and 17:30 for both directions. According to the field driving tests, roughly 20% of travel time is wasted by waiting in the queue and making unnecessary stops, which shall be reduced by the optimized signal timing plans.

To conclude, the existing coordination is good within subsystems, but subsystems are not well coordinated with each other. The number of subsystems needs to be reduced in order to improve the progression of the corridor. The optimization of existing signal timing plans needs focus on 1) reduced cycle length and 2) optimized offsets and phasing sequences.

Chapter 6: Analysis of Corridor Optimization

6.1 Optimization of Cycle Length

The optimized plans categorized 14 intersections into 2 subsystems to improve the progression on the corridor. 8 intersections from Federal Dr to Bellehurst Dr were grouped in the same subsystem, while the remaining 6 intersections were included in another subsystem. To avoid interrupting the existing progression with the adjacent upstream/downstream intersections, timings of intersections at Federal Dr and East Eastern Blvd remain unchanged.

For the first subsystem (Federal Dr to Bellehurst Dr), a common cycle length needs to be developed to coordinate the intersections. The cycle length for a coordinated group of intersections can be based on the cycle length required at the critical intersection (NASEM 2015). Using this methodology, a cycle length is established that will sufficiently maintain undersaturated conditions at the critical intersection. While there are several critical intersection methods, the traditional method uses Webster's model to determine the optimal cycle length. The formula is as follows:

$$C = \frac{1.5L + 5}{1.0 - Y}$$

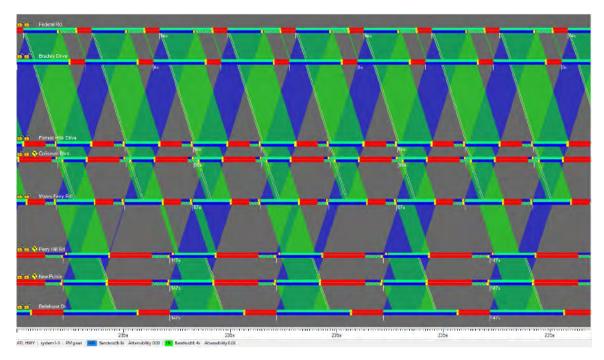
where

C = optimum cycle length (s),

Y = critical lane volume divided by the saturation flow, summed over the phases, and

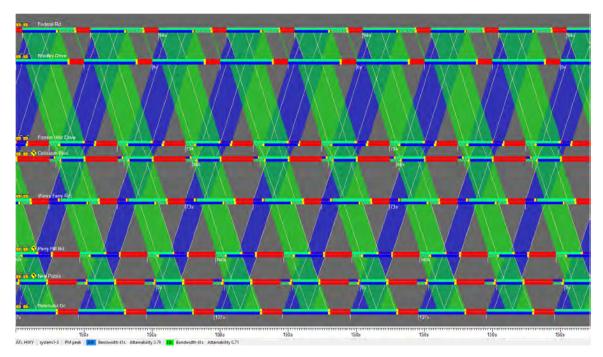
L = lost time per cycle (s).

In this subsystem, the critical intersection is the intersection at Perry Hill/Dalraida Rd. The lost time, which includes the sum of start-up lost time and clearance lost time, is 4 seconds/phase according to HCM. The ratio of critical lane volume to the saturated flow is roughly 0.8. Thus, the optimum cycle length is calculated as 150 seconds. The splits were defined by the traffic volumes in each phase.


6.2 Optimization of Offsets and Phasing Sequences

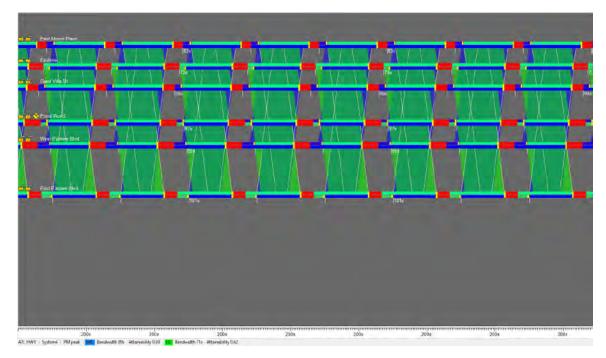
Offsets and phasing sequences were adjusted in order to increase the bandwidth of the corridor. The sequence of phases, particularly left-turn phases, can significantly affect corridor operations. The most common phase sequencing decision - whether to lead or lag left turns - can have a particularly strong impact on bandwidth (in both directions)

along a corridor. Other phase sequence decisions (such as the sequence of left turns on the minor street or the sequence of split phasing on the minor street) often have less impact on bandwidth and delay but should also be considered (NASEM 2015).

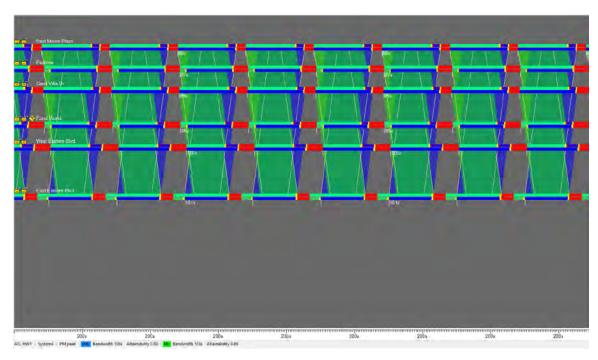

Bandwidth attainability is a measure of the corridor progression. The attainability is the ratio of the total bandwidths to critical phase lengths for each of the directions on the arterial (MnDOT 2017). Attainability is a measure of how much of the maximum available green is used for through progression. The higher ratio represents better progression.

It can be seen from Figure 6.1 that, before optimizing the cycle length, phasing sequence, and offset, there is only one through band for the eastbound through movement with a bandwidth of 4 seconds and the maximum attainability is only 0.06. The westbound movement has no available band, which indicates that it is impossible for through vehicles to pass all the intersections without having a stop. Evidently, the coordination was in poor condition. After optimization (Figure 6.2), the through bands for both directions have been significantly improved as shown on the TSD. The bandwidths are 41 seconds for both directions. Meanwhile, the attainability of both directions has been increased to 0.71 (eastbound) and 0.79 (westbound).

Note: Green = Eastbound Band; Blue = Westbound Band.


Figure 6.1 Before TSD (Federal Dr to Bellehurst Dr)

Note: Green = Eastbound Band; Blue = Westbound Band.


Figure 6.2 After TSD (Federal Dr to Bellehurst Dr)

The second subsystem contains intersections from East Mount Plaza to East Eastern Blvd. Because downstream intersections were coordinated with the same cycle length (200 seconds), the cycle length in this subsystem remained unchanged. Offsets and phasing sequences were adjusted to maximize the bandwidth attainability. As shown in Figure 6.3, the eastbound through movements have a bandwidth of 71 seconds and the attainability is 0.62 before optimization. While the westbound bandwidth is 89 seconds with an attainability of 0.69. The coordination is acceptable, but it can be further improved. After optimizing the offsets and phasing sequences (Figure 6.4), bandwidths of both directions are 103 seconds. The attainability of the eastbound movement is 0.89 and westbound 0.80.

Note: Green = Eastbound Band; Blue = Westbound Band.

Figure 6.3 Before TSD (East Mount Plaza to East Eastern Blvd)

Note: Green = Eastbound Band; Blue = Westbound Band.

Figure 6.4 After TSD (East Mount Plaza to East Eastern Blvd)

The bandwidth shows that through vehicles are more likely to pass all the intersections without having a stop after signal timing optimization, with the increased bandwidth and attainability. On another note, the decrease of delays and queue lengths on major-road through movements is considered as another important measure of progression.

6.3 Improvements on Operation and Progression

Figure 6.5 shows the control delays and queue lengths for the eastbound through vehicles on Atlanta Highway. Most of the intersections have decreased control delays after optimization. Some remain at a similar or slightly increased delay because of the corridor coordination. On average, the delay is reduced by 19% after signal timing optimization. The queue lengths are significantly reduced, especially at the intersection of Perry Hill/Dalraida Rd. The queue length decreases by about 400 ft (27%) after optimization, which is in line with the field observation.

In addition, Figure 6.6 presents the control delays and queue length for the westbound direction. On average, the delay was reduced by 19% and the queue lengths shortened by 26%.

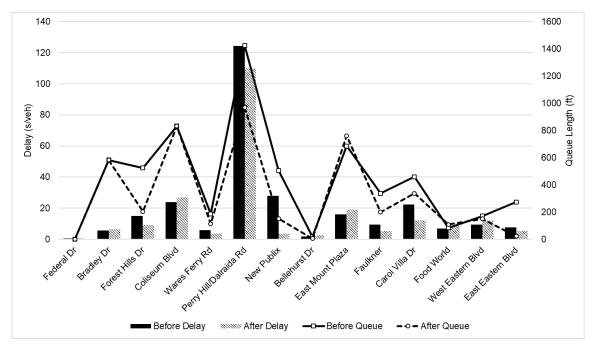


Figure 6.5 Improvements in Major-Road Progression during PM Peaks (Eastbound)

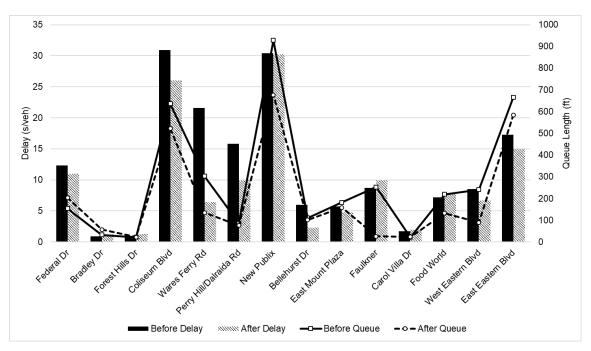


Figure 6.6 Improvements in Major-Road Progression during PM Peaks (Westbound)

Ten test driving runs during PM peaks on typical weekdays were conducted for both directions before and after the optimization.

Figure 6.7 presents the comparison of travel time in the eastbound direction before and after the signal timing optimization. This direction has a large traffic volume during PM peaks because of the commuting from work to home. The major congestion in this direction is caused by the queuing problem on the major-road through lanes at the intersection of Perry Hill/Dalraida Rd. The travel time is about 9 to 10 minutes before 5:00 PM. Typically, the most congested time is between 5:00 PM and 5:30 PM. The travel time peaks at nearly 14 minutes. When approaching 6:00 PM, the travel time starts to decrease. On average, the travel time is reduced by 10% to 15% depending on the time during PM peak hours. The time savings are roughly 1.5 to 2 minutes.

Similarly, the new timing plan also saves travel time for the westbound direction (Figure 6.8). The travel time starts to increase after 5:00 PM because of activities after work such as dining. However, the overall travel time is much shorter than the eastbound direction because of a lower traffic volume. The new timing plan is able to shorten the travel time by roughly 12% to 15%. The major congestion is caused by the insufficient capacity of major-road left-turn storage at the intersection of Perry Hill/Dalraida Rd.

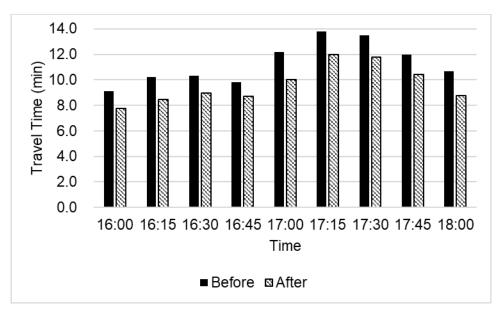


Figure 6.7 Travel Time before and after Optimization (Eastbound)

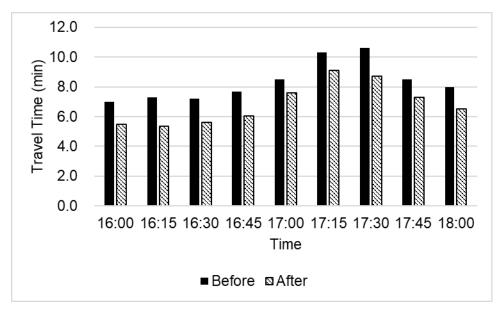


Figure 6.8 Travel Time before and after Optimization (Westbound)

6.4 Corridor Benefits

Signal timing projects typically have one of the highest benefit-cost ratios for transportation projects. The primary benefits include a reduction in travel time, fewer vehicle stops, decreased vehicle emissions (carbon monoxide, nitrogen oxides, and hydrocarbons), decreased fuel consumption, and lower user costs to motorists. The benefits of a signal re-timing project impact individual motorists as well as the greater

community. Secondary benefits, which are more difficult to measure, can also include increased safety, reduced driver frustration, and lower vehicle maintenance costs.

The primary benefits of signal re-timing can be measured through the collection of "before" and "after" travel time/delay data. The collection of travel-time data to verify signal re-timing benefits is a time-tested and well-proven method that is used by transportation agencies throughout the United States. "After" run data were collected by using TranSync's GPS collection application. The performance measure data (travel time, delays, stops, speed, etc.) were recorded from the application.

A measure of fuel consumption was obtained using a model developed by the University of Florida Transportation Research Center which is utilized by the Synchro traffic signal timing modeling software. The model is a linear estimate based on a combination of total travel, delay, and stops. The equation for estimating fuel consumption is:

Fuel Consumed =
$$K_{i1} \times TT_i + K_{i2} \times D_i + K_{i3} \times S_i$$

where,

 K_{ij} = coefficients which are functions of corridor cruising speed on each link,

 TT_i = total travel in vehicle-mile per hour,

 D_i = total delay in vehicle-hour per hour, and

 S_i = total stops in vehicle per hour.

Emissions were calculated from the fuel consumption, based on the passenger car emission rates developed by the Environmental Protection Agency (https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator). The following equations were used to calculate carbon monoxide (CO) (carbon dioxide or CO_2 equivalent), nitrogen oxide (NO_x) and hydrocarbon emissions (HC) [or volatile organic compounds (VOCs)]:

- CO = 8.85 kilograms/gallon of gasoline
- NO_x = 0.03 kilograms/gallon of gasoline
- HC = less than 0.01 kilograms/gallon of gasoline

The before-and-after data were compared to assess the change in performance measures for each corridor and to determine travel time, fuel and emission benefits.

Using the procedures described above, the before and after travel data were measured for the 14 intersections on the corridor. The benefits were subsequently calculated. Traffic performance measures were calculated for the corridor during PM peaks. Table 6.1 shows the percent change for each of these measures from the before

condition to the after condition. They were collected from the simulation results. Additional field test driving was conducted to measure the travel time during AM and PM peaks. On average, the travel time was about 12 minutes during peak hours before. The new timing plans have reduced the travel time by roughly 1.5 minutes for each direction.

Table 6.1 Change in Traffic Performance Measures

Performance Measure	Peak Period
Reduced Vehicle Stops	5.8%
Reduced Vehicle Delays	8.1%
Reduced Travel Time	2.5%
Reduced Fuel Consumption	3.3%
Reduced Emissions	3.3%

Table 6.2 presents the corridor benefits in terms of vehicle travel time reduction, decreased fuel consumption, emissions reductions and overall cost savings. According to the 2019 Urban Mobility Report (Schrank et al. 2019), the value of time per auto commuter is about \$ 20.0/hour per vehicle. Additionally, vehicle occupancy is roughly 1.6 persons per vehicle during peak hours. Therefore, the delay value per person is defined as \$12.5/hour. The fuel costs of \$ 2.01/gallon were based on the average price of unleaded regular gasoline for Lee County, Alabama during the year of 2019, as reported by the American Automobile Association (AAA). Carbon monoxide has the largest reduction among the three pollutants. When CO is released into the atmosphere it combines with oxygen to form carbon dioxide (CO₂). CO₂ is a primary contributor to greenhouse gases. According to the United States Environmental Protection Agency, the carbon offset is \$41.7/metric ton in 2020 (EPA 2013).

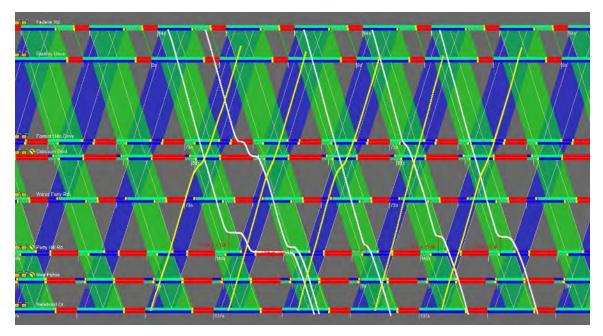
It is to be noted that the savings presented in Table 6.2 only account for the benefits during PM peak hours (2 hours). The initial costs of signal timing optimization include the software license fee and labor costs, which amount to less than \$10,000. The b/c ratio is more than 10:1 based on the 2-hour duration. The city of Montgomery has been using the new timing plans for all the weekdays. The AM peak plan runs from 6 AM to 8 AM and the PM peak plan is from 2 PM to 6 PM. Therefore, the true benefits from signal timing optimization for this corridor could be much higher than the estimation.

Table 6.2 Corridor Benefits during PM Peaks

	Travel Time	Fuel Reduction	Emission Reduction
	Reduction (Hours)	(Gallons)	(kg)
Amount/hour	13	27	1.87
Value	\$12.5/hour	\$2.01/gallon	\$0.0417/kg
PM Peak Savings	\$325.00	\$108.54	\$0.16
Annual Savings	\$84,500	\$28,220	\$42
Total Savings		\$112,762	

Note: Annual savings include 260 weekdays only.

Chapter 7: Implementation and Fine-Tuning


7.1 Schedule and Process

The Auburn team began to design the new signal timing plans in March 2018. The implementation of new signal timing plans of old systems 1-3 was done in September 2018. The old system 4 was replaced with new signal timing plans in September 2019.

The implementation process generally included the following steps:

- 1. Implement new timings at the TMC.
- 2. Verify signal operations at each intersection using TranSync.
- 3. Check individual intersections for any capacity or queuing problems.
- Perform corridor test driving and collect the vehicle's trajectory using TranSync.
- Recommend fine-tuning adjustments based on field observations and public feedback.
- 6. Re-check corridor progression and individual intersection operations.
- 7. Adjust final timings as needed.

Figure 7.1 presents the sample results of field verification using TranSync. These intersections are those from Federal Dr to Bellehurst Dr (from top to bottom). Alongside the TSD, the GPS coordinates of the vehicle were recorded as a format of its trajectories. The green band represents the eastbound green band, while the blue band indicates the westbound green band. To be noted, trajectories may be outside the band due to the "early return to green" on the minor road. A "platform" in the trajectory means a slowdown/queuing condition. The length of the queue is the distance between the "platform" and the downstream intersection. The width of the "platform" indicates the length of the waiting time in seconds. No "platform" exists for the westbound trajectories as all the westbound test driving can pass the eight intersections without having a stop. Four out of five times, the eastbound vehicle was able to clear all the intersections. The vehicle, however, completely stopped one time and waited for a whole cycle at the intersection of Perry Hill/Dalraida Rd. After reviewing the field videos, it was found that the congestion was caused by two semi-trucks. Those trucks needed a longer time to accelerate, which slowed down the nearby vehicles. Typically, vehicles can pass the eight intersections without having a stop if no heavy vehicle was in the queue at the intersection of Perry Hill/Dalraida Rd.

Note: Green = Eastbound Band, Blue = Westbound Band.

Figure 7.1 Real-Time Trajectory-Based Field Verification

7.2 Fine Tuning

Feedback from the public was received about the congestion on the southbound (SB) at the intersection of Atlanta Highway and Perry Hill/Dalraida Rd during morning peaks. According to the field observation and videos collected, the SB queue on the left-through lane contained 23 vehicles on average during the peak 15 minutes. Over 80% of vehicles (18 vehicles) in the queue can pass the intersection during one cycle without heavy vehicles (e.g., school buses, semi-trailer trucks, pickups with trailers) in the queue; with their presence, only half of the queue (11 vehicles) can clear during one cycle. The hypothesis for this problem was that the timing plan was designed for PM peaks initially, though this was a balanced plan for both directions. The AM signal timing plan could be adjusted considering the difference in traffic volumes between AM and PM peaks.

Thus, adjusted timings were calculated based on the AM traffic volumes. The splits of one cycle are determined by the volumes on major and minor roads (Equations 7.1 and 7.2). Since the major-road phases are controlled by two rings as shown in Figure 7.1, the major-road split should be decided by the larger volume as shown in Equation 7.3. While the minor-road split is based on the sum of traffic volumes from the side streets (Equation 7.4). Here, ma = major road, mi = minor road, and V = volume.

$$Split_{ma} = \frac{V_{ma}}{V_{ma} + V_{mi}} \times 150s \tag{7.1}$$

$$Split_{mi} = \frac{V_{mi}}{V_{ma} + V_{mi}} \times 150s \tag{7.2}$$

$$V_{ma} = MAX[(V_{EBL} + V_{WBT}), (V_{EBT} + V_{WBL})]$$
 (7.3)

$$V_{mi} = V_{SBLT} + V_{NBLT} (7.4)$$

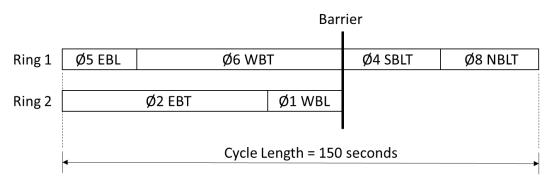


Figure 7.2 Ring-Barrier Diagram of Intersection at Perry Hill/Dalraida Rd

Based on the traffic volumes for three morning peaks, the minor-road split needs at least 62.5 seconds which is 42% of the cycle length. The current plan assigned 57 seconds to the minor road, which is 38% of the cycle length. Considering the lower volumes on EBL and EBT, a 5.5-second reduction can be made for these two phases. Thus, the extra 5.5 seconds can be added to the SB green time, which will be increased by 25%. The existing queue can now be cleared without heavy vehicles in the queue, while 2 more vehicles can pass the intersection with heavy vehicles in the queue.

Table 7.1 Adjustments to the AM Timing Plans

Table 711 Majacunette te the 7th Thining Flane									
Intersection	Variable	Current Plan (s)	Optimized Plan (s)						
	EBL Green	21.0	15.5						
Perry Hill/Dalraida	EBT Green	54.5	49.0						
Rd	SBLT Green	22.5	28.0						
	Offset	140.0	2.0						
New Publix	Offset	9.0	19.0						
Bellehurst Dr	Offset	137.0	141.0						

After adjusting the splits and offsets of this intersection, two WB upstream intersections were also adjusted to optimize the corridor progression. Adjustments are listed in Table 7.1. Field observations and video recordings were conducted to verify the updated timings, which are well accepted by the public.

Chapter 8: Conclusions and Recommendations

Congestions have been reported on Atlanta Highway in the City of Montgomery, indicating an increase in delays and frustration for road users likely caused by poorly coordinated signal timings. Environmental impacts (e.g., air pollution) and economic losses (e.g., decreased fuel efficiency) have also resulted from such poor coordination of signals. Typically, urban signal timings are recommended to be updated every three to five years. The timings used at Atlanta Highway have not been updated for over two decades.

This study developed traffic simulation models in Synchro to optimize the peak-hour signal timings on the corridor. TranSync, the first-ever field diagnosis tool, was also used to optimize and verify the signal timings in the field. Data on traffic volume, signal timing, and geometric variables were collected, and video cameras were installed to monitor the field condition. The new timing plans improve the corridor progression as they reduced the through-movement delay by 20% and queue lengths by 25%. They also helped shorten daily commuting time by 15%. The b/c ratio is estimated to be more than 10:1.

After a comprehensive field observation, a number of operational and capacity improvements that would be beneficial to improving traffic flow along the corridor have been noted.

- Use of Flashing Yellow Arrow Left-Turn Phasing Flashing yellow arrow (FYA) left-turn phasing offers the advantage of reducing delays to left-turning vehicles and can also improve corridor progression and safety. Based on the field review of the corridor timing plans, locations with left-turn demands are recommended as potential candidates for FYA.
- Capacity Improvement at the intersection of Perry Hill/Dalraida Rd This intersection has the failure condition for almost all the turning movements because of insufficient capacity. The v/c ratios are either near or more than 1.0. Simply increasing the cycle length will not fix the capacity problem. According to the Synchro simulation, at least one more through lane is required for the major arterial to relieve the queuing issue. Additionally, increasing the left-turn capacity for the major arterial can be an option during peak hours. The minor road geometric designs need to improve as the existing designs are not efficient for handling the traffic volumes during peak hours.

- Pre-Timed Signal Control during Peak Hours One of the contributions to the queuing problem is the "early-return-to-green" pattern on the minor roads. Among the 14 intersections, about 70% of them have consistently low traffic volume during peak hours. The other 30% have relatively high traffic volume, which puts these intersections under the pre-timed signal control. The varying traffic patterns on the minor roads result in the queuing problem at busy intersections such as the intersection at Perry Hill/Dalraida Rd. Therefore, to further improve the traffic flow on Atlanta Highway, the pre-timed signal control can be considered for peak hours. However, the overall delay for the minor-road vehicles will be increased consequently.
- Access Management Improvements Many access points are directly connected to the major arterial without having any access management strategies such as a frontage road. Vehicles that make right turns into the business areas from Atlanta Highway can slow down the traffic. They can also increase lane-changing maneuvers, which could result in an increased number of traffic conflicts or crashes. On the other hand, a number of median openings on Atlanta Highway are only for providing the left-turn vehicles with access to business areas. Roughly half of them don't have a left-turn pocket/deceleration lane. Removing these median openings would greatly improve the overall traffic flow, especially when they are located close to the intersections.
- School Zone Coordination Several schools are located near the intersections. The school buses that operate during AM peak hours block the traffic on the minor roads. The typical time window is between 07:45 to 08:00 AM according to the field observation. This contributes to congestions on the minor road and intersection blockage. A method of coordinating the arrival and departure of the school buses with the nearby traffic signal would be greatly beneficial. An extra traffic operator could be at the intersection and conduct the coordination with the existing operator at the school zone. The school buses are best to arrive at or depart from school during the green time of major-road through movements. Moreover, school buses should be discouraged to arrive at or depart from schools during that peak 15-min window.

References

- Alabama Department of Transportation (ALDOT). (2015). *Traffic Signal Design Guide and Timing Manual*.

 https://www.dot.state.al.us/dsweb/div_ted/TrafficDesign/pdf/AldotTrafficSign
 alManual.pdf. Accessed Feb 2018.
- American Association of State Highway and Transportation Officials (AASHTO). (2003). "User Benefit Analysis for Highways", Publ. No. AE-UBA -2, Washington, D.C., pp 3-26, pp 3-40.
- AASHTO. (2010). Highway Safety Manual. Washington, D.C.
- Dowling, R., Skabardonis, A., Halkias, J., McHale, G., and Zammit, G. (2004). Guidelines for calibration of microsimulation models: framework and applications. *Transportation Research Record*, 1876(1), 1-9.
- Federal Highway Administration (FHWA). (2006). *ACS Lite*. Retrieved from https://www.fhwa.dot.gov/publications/research/operations/06083/index.cfm.
- FHWA. (2017). *Adaptive Signal Control Technology*. Retrieved from https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/asct.cfm.
- Fambro, D. B., Lopez, C. A., and Sunkari, S. R. (1992). "Benefits of the Texas Traffic Light Synchronization ITLS." *Grant Program I*, 1, 0258-1.
- Fellendorf, M., and Vortisch, P. (2010). Microscopic traffic flow simulator VISSIM. In *Fundamentals of traffic simulation* (pp. 63-93). Springer, New York, NY.
- Gartner, N. H., Tarnoff, P. J., and Andrews, C. M. (1991). Evaluation of optimized policies for adaptive control strategy. *Transportation Research Record*, (1324). Washington, D.C.
- Gordon, R. L., Tighe, W., and Siemens, I. T. S. (2005). *Traffic control systems handbook* (No. FHWA-HOP-06-006). United States. Federal Highway Administration. Office of Transportation Management.
- Jones, S. L., Sullivan, A. J., Cheekoti, N., Anderson, M. D., and Malave, D. (2004). Traffic simulation software comparison study. *UTCA report*, 2217.
- Khasawneh, M. A., & Obadat, M. (2013, July). Incorporating Highway Capacity Software in Undergraduate Teaching of Transportation Courses. In *ASEE North Central Section Conference 2013*.
- Koonce, P., and Rodegerdts, L. (2008). *Traffic signal timing manual* (No. FHWA-HOP-08-024). United States. Federal Highway Administration.

- Minnesota Department of Transportation (MnDOT). (2017). MnDOT Traffic Signal Timing and Coordination Manual.

 http://www.dot.state.mn.us/trafficeng/publ/signaloperations/2013 Signal Opt and Timing_Manual.pdf. Accessed Feb 2018.
- Mirchandani, P., and Head, L. (2001). A real-time traffic signal control system: architecture, algorithms, and analysis. *Transportation Research Part C: Emerging Technologies*, *9*(6), 415-432.
- National Academies of Sciences, Engineering, and Medicine (NASEM). (2015). Signal Timing Manual Second Edition. Washington, DC: The National Academies Press. https://doi.org/10.17226/22097.
- Owen, L. E., Zhang, Y., Rao, L., & McHale, G. (2000, December). Traffic flow simulation using CORSIM. In 2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165) (Vol. 2, pp. 1143-1147). IEEE.
- Roess, R. P., Prassas, E. S., and McShane, W. R. (2004). *Traffic engineering*. Pearson/Prentice Hall.
- Schrank, D., Lomax, T., and Eisele, B. (2012). 2012 urban mobility report. *Texas Transportation Institute*. https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-2019.pdf. Accessed Sep 2019.
- Siemens. (2020). SCOOT Adaptive Control. Retrieved from https://new.siemens.com/us/en/products/mobility/road-solutions/traffic-management/scoot-adaptive-traffic-control.html.
- Sims, A. G., and Dobinson, K. W. (1980). The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits. *IEEE Transactions on vehicular technology*, 29(2), 130-137.
- Sunkari, S. (2004). The benefits of retiming traffic signals. *Institute of Transportation Engineers. ITE Journal*, *74*(4), 26.
- Trafficware. (2014). Synchro 9.0 User Guide, Albany, CA.
- TranSync. (2015). TanSync Suite. Lubbock, Texas. http://trans-intelligence.com/transync.html. Accessed June 2018.
- United States Environmental Protection Agency (EPA). (2013). Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis-Under Executive Order 12866. *Environmental Protection Agency*.
- Urbanik, T. et al. (2015). Signal timing manual (Vol. 1). Washington, DC: Transportation Research Board.

Wu, Xianyu, Hu, P., and Yuan, Z. (2013). Arterial Signal Timing Optimization Considering Speed Variation. In *2013 Fourth International Conference on Digital Manufacturing & Automation* (pp. 311-314). IEEE.

Appendix A: Optimized Signal Timing Plans

Optimized Timings – AM Peak

Intersection:		Federal Rd						
Cycle Length	150	Offset	Offset 14 Reference Phase Phase 2&6; Start of 1st G		Reference Phase		1st Green	
Phase	1	2	3	4	5	6	7	8
Minimum Green		20	7		7	20		7
Maximum Green		120	25		35	74		25
Yellow		0	4		4	4		4
All-Red		0	1		1	2		1

Intersection:		Bradley Dr						
Cycle Length	150	Offset	0	Referen	ce Phase	Phase 2&6; Start of 1st Greer		1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green		12				12		5
Maximum Green		113.5				113.5		25
Yellow		4.5				4.5		4.5
All-Red		2				2		0.5

Intersection:	Fo	orrest Hills [Or					
Cycle Length	150	Offset	73	Referen	ce Phase	Phase 2&6; Start of 1st Green		1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green	7	30		8	7	30		8
Maximum Green	20	73		40	20	73		9
Yellow	4	5		4	4	5		4
All-Red	1	2		1	1	2		1

Intersection:	C	Coliseum Blv	rd					
Cycle Length	150	Offset	88	Referen	ce Phase	Phase 28	6; Start of	1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green	8	20		8	5	20		8
Maximum Green	9	61		50	22	48		9
Yellow	4	4		4	4	4		4
All-Red	1	2		1	1	2		1

Intersection:	W	ares Ferry F	Rd					
Cycle Length	150	Offset	73	Referen	ce Phase	Phase 2&6; Start of 1st Gree		1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green	8	30		7	8	30		7
Maximum Green	20	82		32	20	82		32
Yellow	4	4		4	4	4		4
All-Red	1	2		1	1	2		1

Intersection:		Perry Hill Ro	d					
Cycle Length	150	Offset	2	Referen	ce Phase	Phase 2&6; Start of 1st Gree		1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green	7	20		9	6	20		9
Maximum Green	26	49		28	15.5	61		23.5
Yellow	4.5	4.5		4	4	4		4
All-Red	1.5	2		1.5	1	2		1.5

Intersection:	New Publix							
Cycle Length	150	Offset	19	Referen	Reference Phase		k6; Start of	1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green	7	20		7	7	20		7
Maximum Green	20	57		26	20	57		23
Yellow	4	5		5	4	5		5
All-Red	1	2		1	1	2		1

Intersection:	[Bellehurst D	r					
Cycle Length	235	Offset	141	Referen	Reference Phase		Phase 2&6; Start of 1st Green	
Phase	1	2	3	4	5	6	7	8
Minimum Green		20		7		20		7
Maximum Green		100		38		100		38
Yellow		4.5		4.5		4.5		4.5
All-Red		2		1		2		1

Intersection:	Eas	st Mount Pla	aza					
Cycle Length	200	Offset	Offset 80 Reference Phase Phase 2&6; Start of 1st Gr		Reference Phase		1st Green	
Phase	1	2	3	4	5	6	7	8
Minimum Green		20				20		7
Maximum Green	20	143.5				168.5		20
Yellow	4	4.5				4.5		4
All-Red	1	2				2		1

Intersection:		Faulkner							
Cycle Length	200	Offset	87	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green		20		7	7	20		7	
Maximum Green		153		34	15	133		34	
Yellow		5		5	4	5		5	
All-Red		2		1	1	2		1	

Intersection:	(Carol Villa D	r						
Cycle Length	200	Offset	85	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green	7	20		7		20		7	
Maximum Green	17	141		24		163		24	
Yellow	4	5		5		5		5	
All-Red	1	2		1		2		1	

Intersection:		Food World	k						
Cycle Length	200	Offset	88	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green	7	20	7	7	7	20	7	7	
Maximum Green	17	127	16	16	17	127	16	16	
Yellow	4	5	5	5	4	5	5	5	
All-Red	1	2	1	1	1	2	1	1	

Intersection:	We	st Eastern E	Blvd						
Cycle Length	200	Offset	106	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green	7	20		7		20			
Maximum Green	33	111		38		149			
Yellow	4	5		5		5			
All-Red	1	2		1		2			

Intersection:	Eas	st Eastern B	llvd					
Cycle Length	200	Offset	101	Reference Phase		Phase 2&6; Start of 1st Green		
Phase	1	2	3	4	5	6	7	8
Minimum Green		20			7	20		7
Maximum Green		159			28	125		28
Yellow		5			5	5		5
All-Red		2			1	2		1

Intersection:		Federal Rd							
Cycle Length	150	Offset	14	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green		20	7		7	20		7	
Maximum Green		120	25		35	74		25	
Yellow		0	4		4	4		4	
All-Red		0	1		1	2		1	

Optimized Timings – PM Peak

Intersection:		Bradley Dr							
Cycle Length	150	Offset	0	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green		12				12		5	
Maximum Green		113.5				113.5		25	
Yellow		4.5				4.5		4.5	
All-Red		2				2		0.5	

Intersection:	Fo	orrest Hills [Or						
Cycle Length	150	Offset	73	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green	7	30		8	7	30		8	
Maximum Green	20	73		40	20	73		9	
Yellow	4	5		4	4	5		4	
All-Red	1	2		1	1	2		1	

Intersection:	С	Coliseum Blv	rd						
Cycle Length	150	Offset	88	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green	8	20		8	5	20		8	
Maximum Green	9	61		50	22	48		9	
Yellow	4	4		4	4	4		4	
All-Red	1	2		1	1	2		1	

Intersection:	W	ares Ferry F	Rd						
Cycle Length	150	Offset	73	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green	8	30		7	8	30		7	
Maximum Green	20	82		32	20	82		32	
Yellow	4	4		4	4	4		4	
All-Red	1	2		1	1	2		1	

Intersection:		Perry Hill Ro	k						
Cycle Length	150	Offset	140	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green	7	20		9	6	20		9	
Maximum Green	26	54.5		22.5	21	61		23.5	
Yellow	4.5	4.5		4	4	4		4	
All-Red	1.5	2		1.5	1	2		1.5	

Intersection:		New Publix							
Cycle Length	150	Offset	9	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green	7	20		7	7	20		7	
Maximum Green	20	57		26	20	57		23	
Yellow	4	5		5	4	5		5	
All-Red	1	2		1	1	2		1	

Intersection:	[Bellehurst D	r					
Cycle Length	235	Offset	147	Referen	ce Phase	Phase 28	k6; Start of	1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green		20		7		20		7
Maximum Green		100		38		100		38
Yellow		4.5		4.5		4.5		4.5
All-Red		2		1		2		1

Intersection:	Eas	st Mount Pla	aza					
Cycle Length	200	Offset	80	Referen	ce Phase	Phase 28	6; Start of	1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green		20				20		7
Maximum Green	20	143.5				168.5		20
Yellow	4	4.5				4.5		4
All-Red	1	2				2		1

Intersection:		Faulkner						
Cycle Length	200	Offset	87	Referen	ce Phase	Phase 28	k6; Start of	1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green		20		7	7	20		7
Maximum Green		153		34	15	133		34
Yellow		5		5	4	5		5
All-Red		2		1	1	2		1

Intersection:	(Carol Villa D	r					
Cycle Length	200	Offset	85	Referen	ce Phase	Phase 28	k6; Start of	1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green	7	20		7		20		7
Maximum Green	17	141		24		163		24
Yellow	4	5		5		5		5
All-Red	1	2		1		2		1

Intersection:		Food World	k					
Cycle Length	200	Offset	88	Referen	ce Phase	Phase 28	k6; Start of	1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green	7	20	7	7	7	20	7	7
Maximum Green	17	127	16	16	17	127	16	16
Yellow	4	5	5	5	4	5	5	5
All-Red	1	2	1	1	1	2	1	1

Intersection:	We	st Eastern E	Blvd						
Cycle Length	200	Offset	106	Referen	ce Phase	Phase 2&6; Start of 1st Green			
Phase	1	2	3	4	5	6	7	8	
Minimum Green	7	20		7		20			
Maximum Green	33	111		38		149			
Yellow	4	5		5		5			
All-Red	1	2		1		2			

Intersection:	Eas	st Eastern B	llvd					
Cycle Length	200	Offset	101	Referen	ce Phase	Phase 28	6; Start of	1st Green
Phase	1	2	3	4	5	6	7	8
Minimum Green		20			7	20		7
Maximum Green		159			28	125		28
Yellow		5			5	5		5
All-Red		2			1	2		1

Appendix B: Synchro Outputs

Before Condition

Lanes, Volumes, Timings 2: Atlanta Highway & Federal Rd.

02/05/2020

2. Atlanta i ngniway k	<u>* 1 00</u>	orarre	_	4		J				
		-	•	_	*	*				
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø2	Ø8		
Lane Configurations	ሻሻ	^	↑ ↑↑		ሻ	77				
Traffic V olume (vph)	396	1652	992	144	200	356				
Future V olume (vph)	396	1652	992	144	200	356				
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800				
Lane Width (ft)	11	11	11	11	11	11				
Storage Length (ft)	0			500	0	0				
Storage Lanes	2			0	1	2				
Taper Length (ft)	25				25					
Lane Util. Factor	0.97	0.95	0.91	0.91	1.00	0.88				
Frt			0.981			0.850				
Flt Protected	0.950				0.950					
Satd. Flow (prot)	3144	3241	4569	0	1621	2552				
Flt Permitted	0.950			_	0.950					
Satd. Flow (perm)	3144	3241	4569	0	1621	2552				
Right Turn on Red	5111	5211	1505	Yes	1021	Yes				
Satd. Flow (RTOR)			25	100		132				
Link Speed (mph)		40	40		35	152				
Link Distance (ff)		185	1182		1033					
Travel Time (s)		3.2	20.1		20.1					
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00				
	396	1652	992	144	200	356				
Adj. Flow (vph)	390	1652	992	144	200	300				
Shared Lane Traffic (%)	396	1652	1126	0	200	356				
Lane Group Flow (vph)			1136		200					
Enter Blocked Intersection		No	No	No	No	No				
Lane Alignment	Left	Left	Left	Right	Left	Right				
Median Width(ft)		22	16		11					
Link Offset(ft)		0	5		0					
Crosswalk Width(ft)		16	16		5					
Two way Left Turn Lane										
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12				
Turning Speed (mph)	15			9	15	9				
Number of Detectors	1	2	2		1	1				
Detector Template	Left	Thru	Thru		Left	Right				
Leading Detector (ft)	20	100	100		20	20				
Trailing Detector (ft)	0	0	0		0	0				
Detector 1 Position(ft)	0	0	0		0	0				
Detector 1 Size(ft)	20	6	6		20	20				
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex		C1+Ex	C1+Ex				
Detector 1 Channel										
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	0.0				
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	0.0				
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	0.0				
Detector 2 Position(ft)		94	94							
Detector 2 Size(ft)		6	6							
Detector 2 Type		C1+Ex	C1+Ex							
Detector 2 Channel										
Detector 2 Extend (s)		0.0	0.0							
Turn Type	Prot	NA	NA		Prot	pt+ov				
Protected Phases	5	2 3!	6		3!	58	2	8		

	•	→	←	•	\	4			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø2	Ø8	
Permitted Phases									
Detector Phase	5	23	6		3	58			
Switch Phase	,	2.3				, ,			
	7.0		20.0		7.0		20.0	7.0	
Minimum Initial (s)	12.0		26.0					12.0	
Minimum Split (s)					12.0		26.0		
Total Split(s)	40.0		80.0		30.0		120.0	30.0	
Total Split (%)	26.7%		53.3%		20.0%		80%	20%	
Maximum Green(s)	35.0		74.0		25.0		114.0	25.0	
Yellow Time (s)	4.0		4.0		4.0		4.0	4.0	
All-Red Time (s)	1.0		2.0		1.0		2.0	1.0	
Lost Time Adjust (s)	0.0		0.0		0.0				
Total Lost Time (s)	5.0		6.0		5.0				
Lead/Lag	Lag		Lead						
Lead-Lag Optimize?	Yes		Yes						
V ehicle Extension (s)	3.0		5.0		3.0		5.0	3.0	
Recall Mode	None		C-Max		N one		C-Min	None	
Walk Time (s)			7.0		7.0		7.0	7.0	
Flash Dont Walk (s)			11.0		11.0		11.0	11.0	
Pedestrian Calls (#/hr)			0		0		0	0	
Act Effet Green (s)	24.7	150.0	78.8		30.5	60.2			
Actuated g/C Ratio	0.16	1.00	0.53		0.20	0.40			
v/c Ratio	0.77	0.51	0.47		0.61	0.32			
Control Delay	69.8	0.6	12.3		62.8	18.8			
Queue Delay	0.0	0.0	0.0		0.0	0.0			
Total Delay	69.8	0.6	12.3		62.8	18.8			
LOS	E	A	В		E	В			
Approach Delay		14.0	12.3		34.6				
Approach LOS		В	В		C				
90th %ile Green (s)	30.8		74.0		29.2		109.8	29.2	
90th %ile Term Code			Coord		Max		Coord	Hold	
	Gap		74.0		32.6		106.4	32.6	
70th %ile Green (s)	27.4								
70th %ile Term Code	Gap 351		Coord		Max		Coord	Hold	
50th %ile Green (s)	25.1		74.0		34.9		104.1	34.9	
50th %ile Term Code	Gap		Coord		Max		Coord	Hold	
30th %ile Green (s)	21.8		80.7		31.5		107.5	31.5	
30th %ile Term Code	Gap		Coord		Gap		Coord	Hold	
10th %ile Green (s)	18.3		91.4		24.3		114.7	24.3	
10th %ile Term Code	Gap		Coord		Gap		Coord	Hold	
Stops(vph)	371	0	554		179	146			
Fuel U sed(gal)	10	2	17		5	5			
CO Emissions (g/hr)	683	1 58	1216		377	358			
NOx Emissions (g/hr)	133	31	237		73	70			
VOC Emissions (g/hr)	1.58	37	282		87	83			
Dilemma V ehicles (#)	0	0	21		0	0			
Queue Length 50th (ft)	192	0	130		173	77			
Queue Length 95th (ft)	241	0	154		273	119			
Internal Link Dist (ft)		105	1102		953				
Turn Bay Length (ft)									

Lanes, Volumes, Timings 2: Atlanta Highway & Federal Rd.

Z. Atlanta i ngnivay	or euc	i ai i c	١.						
	۶	→	+	•	/	4			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø2	Ø8	
Starvation Cap Reductn	0	0	0		0	0			
Spillback Cap Reductn	0	0	0		0	0			
Storage Cap Reductn	0	0	0		0	0			
Reduced v/c Ratio	0.54	0.51	0.47		0.60	0.32			
Intersection Summary									
Area Type: C	Other								
Cycle Length: 150									
Actuated Cycle Length: 1.									
Offset: 14 (9%), Referenc	ed to pha	se 2:EB	T and 6:	WBT, St	art of 1st	tGreen			
Natural Cycle: 55									
Control Type: Actuated-C	oordinate	ed							
Maximum v/c Ratio: 0.77									
Intersection Signal Delay:	16.5			Ir	ntersectio	n LOS: I	3		
Intersection Capacity Util:	ization 69	.1%		IC	CU Leve	1 of Servi	ice C		
Analysis Period (min) 15									
! Phase conflict between	ilane gro	ups.							
Splits and Phases: 2: At	ilanta Hig	thway &	: Federal	Rd.					
→ Ø2 (R)									→ _{Ø3}
120 s									30 s
← Ø6 (R)						9 ≱ Ø5			√ Ø8
20 (K)					4	De De			20 e

Synchro 9 Report Page 3 Baseline

	→	•	•	•	•	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	7	ሻ	^	¥	
Traffic V olume (vph)	1880	12	36	1132	8	40
Future V olume (vph)	1880	12	36	1132	8	40
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	11	11	11
Storage Length (ft)	- 11	0	25	- 11	0	0
Storage Lanes		1	1		1	0
Taper Length (ft)		1	25		25	J
Lane Util. Factor	0.95	1.00	1.00	0.91	1.00	1.00
Frt	0.93	0.850	1.00	0.71	0.887	1.00
Fit Protected		0.650	0.950		0.887	
	2946	1318		4233		0
Satd. Flow (prot)	2940	1318	1473	4233	1378	U
F1t Permitted	20.46	1010	0.104	40.00	0.992	
Satd. Flow (perm)	2946	1318	161	4233	1378	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		12			38	
Link Speed (mph)	40			40	25	
Link Distance (ft)	1182			3082	1226	
Travel Time (s)	20.1			52.5	33.4	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	1%	0%	0%
Adj. Flow (vph)	1880	12	36	1132	8	40
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1880	12	36	1132	48	0
Enter Blocked Intersection		No	No	No	Nо	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	16			16	11	B
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	10			10	10	
	1.28	1.28	1.28	1.28	1.28	1.28
Headway Factor	1.28			1.28		
Turning Speed (mph)	_	9	15		15	9
Number of Detectors	2	1	1	2	1	
Detector Template	Thru	Right	Left	Thru	Left	
Leading Detector (ft)	100	20	20	100	20	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	6	20	20	6	20	
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
	C1+Ex			C1+Ex		
Detector 2 Channel	J1.EX			OI. DA		
	0.0			0.0		
Detector 2 Extend (s)		Dane	Perm		Dest	
Turn Type	NΑ	Perm	rerm	NΑ	Prot	

Synchro 9 Report Page 4 Baseline

	→	•	•	•	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Protected Phases	2			6	8	
Permitted Phases		2	6			
Detector Phase	2	2	6	6	8	
Switch Phase	-					
Minimum Initial (s)	12.0	12.0	12.0	12.0	5.0	
Minimum Split(s)	18.5	18.5	18.5	18.5	10.5	
Total Split(s)	120.0	120.0	120.0	120.0	30.0	
Total Split (%)	80.0%	80.0%	80.0%	80.0%	20.0%	
Maximum Green(s)	113.5	113.5	113.5	113.5	25.0	
Yellow Time (s)	4.5	4.5	4.5	4.5	4.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	0.5	
	0.0	0.0	0.0	0.0	0.0	
Lost Time Adjust (s)			6.5	6.5	5.0	
Total Lost Time (s)	6.5	6.5	د.ه	0.5	5.0	
Lead/Lag						
Lead-Lag Optimize?						
V ehicle Extension (s)	5.0	5.0	5.0	5.0	3.0	
Recall Mode			C-Max		None	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0	0	0	
Act Effet Green (s)	134.4	134.4	134.4	134.4	7.5	
Actuated g/C Ratio	0.90	0.90	0.90	0.90	0.05	
v/c Ratio	0.71	0.01	0.25	0.30	0.46	
Control Delay	5.7	0.7	5.1	0.9	39.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.7	0.7	5.1	0.9	39.7	
LOS	Α	Α	Α	Α	D	
Approach Delay	5.7			1.0	39.7	
Approach LOS	Α			Α	D	
90th %ile Green (s)	127.1	127.1	127.1	127.1	11.4	
90th %ile Term Code	Coord	Coord			Gap	
70th %ile Green(s)	130.0	130.0	130.0	130.0	8.5	
70th %ile Term Code	Coord		Coord		Gap	
50th %ile Green(s)	132.0	132.0	132.0	132.0	6.5	
50th %ile Term Code	Coord		Coord		Gap	
30th %ile Green (s)	133.0	133.0	133.0	133.0	5.5	
30th %ile Term Code		Coord				
	Coord				Gap	
10th %ile Green (s)	143.5	143.5	143.5	143.5	0.0	
10th %ile Term Code	Coord	Coord		Coord	Skip	
Stops(vph)	788	1	2	65	17	
Fuel U sed(gal)	25	0	1	25	1	
CO Emissions (g/hr)	1748	8	57	1713	67	
NOx Emissions (g/hr)	340	1	11	333	13	
VOC Emissions (g/hr)	405	2	13	397	15	
Dilemma V ehicles (#)	46	0	0	16	0	
Queue Length 50th (ft)	398	0	2	20	10	
Queue Length 95th (ft)	582	m1	6	33	54	
Internal Link Dist (ft)	1102			3002	1146	
Turn Bay Length (ft)			25			

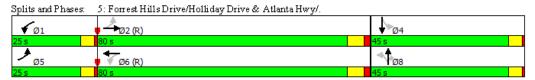
Synchro 9 Report Page 5 Baseline

3: Bradley Drive & Atlanta Highway/Atlanta Hwy

		_	_	_		
	-	*	•	•	7	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Base Capacity (vph)	2640	1182	144	3793	261	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.71	0.01	0.25	0.30	0.18	
Intersection Summary						
Area Type:	CBD					
Cycle Length: 150						
Actuated Cycle Length: 1	1 50					
Offset: 0 (0%), Reference	ed to phas	e 2:EBT	and 6:V	VBTL, Si	tart of 1:	t Green
Natural Cycle: 60						
Control Type: Actuated-0	Coordinate	ed				
Maximum v/c Ratio: 0.71	l					
Intersection Signal Delay	r: 4.4			It	ntersecti	on LOS: A
Intersection Capacity Uti	lization 74	4.7%		I	CU Leve	1 of Servi
A 4 1 D 1 1/2 1 5 4 F						

Analysis Period (min) 15 m. Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Bradley Drive & Atlanta Highway/Atlanta Hwy


	۶	-	•	•	←	•	•	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	ተተ _ጉ			ર્ની	7		44	
Traffic V olume (vph)	48	1656	128	244	652	8	32	12	64	16	12	4
Future V olume (vph)	48	1656	128	244	652	8	32	12	64	16	12	4
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	110		0	220		0	0		0	0		0
Storage Lanes	1		0	1		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.989			0.998				0.850		0.983	
Flt Protected	0.950			0.950				0.965			0.976	
Satd. Flow (prot)	1637	4651	0	1637	4694	0	0	1662	1464	0	1669	0
Flt Permitted	0.390			0.087				0.823			0.831	_
Satd. Flow (perm)	672	4651	0	150	4694	0	0	1418	1464	0	1421	0
Right Turn on Red			Yes			Yes	-		Yes	-		Yes
Satd. Flow (RTOR)		11			2				65		4	- 111
Link Speed (mph)		40			40			30	0,5		30	
Link Distance (ft)		3082			584			661			619	
Travel Time (s)		52.5			10.0			15.0			14.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	0%	0%	0%
Adj. Flow (vph)	48	1656	128	244	652	8	32	12	64	16	12	4
Shared Lane Traffic (%)	40	1050	120	244	0,72	۰	32	12	04	10	12	4
Lane Group Flow (vph)	48	1784	0	244	660	0	0	44	64	0	32	0
Enter Blocked Intersectio		No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	16	Kight	Lan	16	ragin	Lett	Cerr	Kigh	Lett	Delt	Kigim
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			10	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Turning Speed (mph)	1.12	1.12	9	1.12	1.12	9	1.12	1.12	9	1.12	1.12	9
Number of Detectors	1	2	7	1	2	7	1	2	1	1	2	,
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	
Trailing Detector (ft)	0	0		0	0		0	0	20	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
` '	20	6		20	6		20	6	20	20	6	
Detector 1 Size(ft)	C1+Ex	_			C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	
Detector 1 Type Detector 1 Channel	CITEX	CITEX		CITEX	CITEX		CITEX	CITEX	CITEX	CITEX	CITEX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
1,	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s) Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
/	0.0	94		0.0	94		0.0	94	0.0	0.0	94	
Detector 2 Position(ft)												
Detector 2 Size(ft)		6 C11E			6 C11 F			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)		0.0			0.0		_	0.0		_	0.0	
Turn Type	pm+pt	NA		pm+pt	NΑ		Perm	NΑ	Perm	Perm	NA	

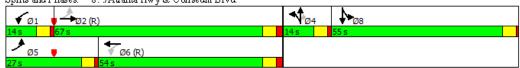
			•	•		_	7	ı		*	+	*
Lane Group E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8		8	4		
Detector Phase	5	2		1	6		8	8	8	4	4	
Switch Phase												
Minimum Initial (s)	7.0	30.0		7.0	30.0		8.0	8.0	8.0	8.0	8.0	
Minimum Split(s) 1	2.0	37.0		12.0	37.0		13.0	13.0	13.0	13.0	13.0	
Total Split(s) 2	5.0	0.08		25.0	80.0		45.0	45.0	45.0	45.0	45.0	
Total Split (%) 16.	7%	53.3%		16.7%	53.3%		30.0%	30.0%	30.0%	30.0%	30.0%	
Maximum Green(s) 2	0.0	73.0		20.0	73.0		40.0	40.0	40.0	40.0	40.0	
Yellow Time (s)	4.0	5.0		4.0	5.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	2.0		1.0	2.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	7.0		5.0	7.0			5.0	5.0		5.0	
Lead/Lag L	ead	Lag		Lead	Lag							
Lead-Lag Optimize?	es	Yes		Yes	Yes							
V ehicle Extension (s)	3.0	6.0		3.0	6.0		6.0	6.0	6.0	6.0	6.0	
Recall Mode N	me	C-Max		None	C-Max		None	None	None	None	None	
Walk Time (s)		7.0			7.0		7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)		0			0		0	0	0	0	0	
Act Effct Green (s) 10	7.3	98.3		129.8	119.5			13.0	13.0		12.6	
Actuated g/C Ratio 0	.72	0.66		0.87	0.80			0.09	0.09		0.08	
	.09	0.58		0.66	0.18			0.36	0.34		0.26	
Control Delay	4.5	14.6		46.1	1.0			71.7	18.2		61.7	
-	0.0	0.3		0.0	0.0			0.0	0.0		0.0	
Total Delay	4.5	14.9		46.1	1.0			71.7	18.2		61.7	
LOS	Α	В		D	Α			Е	В		Е	
Approach Delay		14.6			13.2			40.0			61.7	
Approach LOS		В			В			D			Е	
**	7.1	85.0		30.7	108.6		17.3	17.3	17.3	17.3	17.3	
	ap	Coord		Gap	Coord		Gap	Gap	Gap	Hold	Hold	
	7.0	90.7		27.6	111.3		14.7	14.7	14.7	14.7	14.7	
70th %ile Term Code N	/lin	Coord		Gap	Coord		Gap	Gap	Gap	Hold	H old	
50th %ile Green (s)	7.0	94.8		25.2	113.0		13.0	13.0	13.0	13.0	13.0	
50th %ile Term Code N	/lin	Coord		Gap	Coord		Gap	Gap	Gap	Hold	H old	
30th %ile Green (s)	7.0	99.9		21.9	114.8		11.2	11.2	11.2	0.0	0.0	
30th %ile Term Code N	/lin	Coord		Gap	Coord		Gap	Gap	Gap	Skip	Skip	
10th %ile Green (s)	0.0	121.2		16.8	143.0		0.0	0.0	0.0	0.0	0.0	
10th %ile Term Code S	kip	Coord		Gap	Coord		Skip	Skip	Skip	Skip	Skip	
Stops(vph)	12	1101		330	34		•	40	13	•	27	
Fuel U sed(gal)	1	53		6	3			1	1		1	
CO Emissions (g/hr)	81	3734		454	216			76	45		49	
NOx Emissions (g/hr)	16	726		88	42			15	9		10	
VOC Emissions (g/hr)	19	865		105	50			18	10		11	
Dilemma V ehicles (#)	0	53		0	16			0	0		0	
Queue Length 50th (ft)	9	412		181	12			41	0		26	
	15	525		m 254	22			82	46		61	
Internal Link Dist (ft)		3002			504			581			539	
	10			220								

Synchro 9 Report Page 8 Baseline

	۶	→	•	√	+	•	•	†	/	/		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Base Capacity (vph)	667	3052		378	3741			378	438		381	
Starvation Cap Reductn	0	0		0	0			0	0		0	
Spillback Cap Reductn	0	581		0	0			0	7		0	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.07	0.72		0.65	0.18			0.12	0.15		0.08	
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 1	50											
Offset: 88 (59%), Referer	nced to pl	ase 2:EE	BTL and	6:WBT	L, Start	of 1st Gre	een					
Natural Cycle: 65	_											
Control Type: Actuated-0	oordinat	ed										
Maximum v/c Ratio: 0.66												
Intersection Signal Delay	: 15.6			I	ntersecti	on LOS: :	В					
Intersection Capacity Util	ization 73	3.7%		I	CU Leve	el of Serv	ice D					
Apolyzaia Daviod (min) 15												

Analysis Period (min) 15 m. Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	←	•	4	†	~	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተ _ጉ		ሻ	ተተኈ			ર્ન	7	ሻ	- ↑	
Traffic V olume (vph)	232	1912	36	20	1100	388	4	12	12	428	24	188
Future V olume (vph)	232	1912	36	20	1100	388	4	12	12	428	24	188
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	215		0	200		0	0		0	0		0
Storage Lanes	1		0	1		0	0		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.997			0.961				0.850		0.867	
F1t Protected	0.950			0.950				0.988		0.950		
Satd. Flow (prot)	1637	4689	0	1637	4520	0	0	1719	1479	1637	1494	0
Flt Permitted	0.067			0.067				0.988		0.950		
Satd. Flow (perm)	115	4689	0	115	4520	0	0	1719	1479	1637	1494	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			62				131		188	
Link Speed (mph)		40			40			15			30	
Link Distance (ft)		584			1591			1103			965	
Travel Time (s)		10.0			27.1			50.1			21.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	0%	0%	0%	1%	1%	1%
Adj. Flow (vph)	232	1912	36	20	1100	388	4	12	12	428	24	188
Shared Lane Traffic (%)												
Lane Group Flow (vph)	232	1948	0	20	1488	0	0	16	12	428	212	0
Enter Blocked Intersection	n No	No	Νo	Νo	Νo	No	No	Νo	Νо	Νo	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			0			11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			10			16	
Two way Left Turn Lane												
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	
Detector 1 Type	C1+Ex	C1+Ex		C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		Split	NA	Perm	Split	NA	
	I In			I Ioo			r			<u>I1</u>		

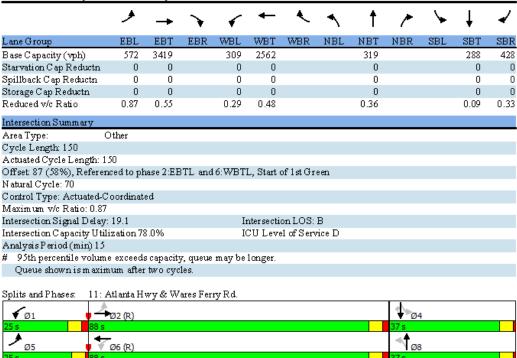

	۶	→	•	•	+	•	•	†	<i>></i>	/	ţ	√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	5	2		1	6		4	4		8	8	
Permitted Phases	2			6					4			
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	20.0		8.0	20.0		8.0	8.0	8.0	3.0	3.0	
Minimum Split(s)	10.0	26.0		13.0	26.0		13.0	13.0	13.0	13.0	13.0	
Total Split(s)	27.0	67.0		14.0	54.0		14.0	14.0	14.0	55.0	55.0	
Total Split (%)	18.0%	44.7%		9.3%	36.0%		9.3%	9.3%	9.3%	36.7%	36.7%	
Maximum Green(s)	22.0	61.0		9.0	48.0		9.0	9.0	9.0	50.0	50.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	2.0		1.0	2.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	6.0		5.0	6.0			5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
V ehicle Extension (s)	4.0	5.0		4.0	5.0		4.0	4.0	4.0	4.0	4.0	
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Walk Time (s)		7.0			7.0		7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)		0			0		0	0	0	0	0	
Act Effet Green (s)	86.9	78.0		70.6	61.4			8.3	8.3	44.9	44.9	
Actuated g/C Ratio	0.58	0.52		0.47	0.41			0.06	0.06	0.30	0.30	
v/c Ratio	0.88	0.80		0.15	0.79			0.17	0.06	0.88	0.37	
Control Delay	83.4	23.8		18.2	30.9			71.5	0.6	68.6	8.6	
Queue Delay	0.0	0.1		0.0	0.0			0.0	0.0	0.0	0.0	
Total Delay	83.4	23.9		18.2	30.9			71.5	0.6	68.6	8.6	
LOS	F	C		В	С			E	Α	E	Α	
Approach Delay		30.2			30.7			41.1			48.7	
Approach LOS		C			С			D			D	
90th %ile Green (s)	22.0	61.3		8.7	48.0		9.0	9.0	9.0	50.0	50.0	
90th %ile Term Code	Max	Coord		Gap	Coord		Max	Max	Max	Max	Max	
70th %ile Green (s)	22.0	62.0		8.0	48.0		8.7	8.7	8.7	50.3	50.3	
70th %ile Term Code	Max	Coord		Min	Coord		Gap	Gap	Gap	Max	Max	
50th %ile Green (s)	23.5	66.1		8.0	50.6		8.0	8.0	8.0	46.9	46.9	
50th %ile Term Code	Gap	Coord		Min	Coord		Min	Min	Min	Gap	Gap	
30th %ile Green (s)	18.1	96.5		0.0	73.4		0.0	0.0	0.0	42.5	42.5	
30th %ile Term Code	Gap	Coord		Skip	Coord		Skip	Skip	Skip	Gap	Gap	
10th %ile Green (s)	12.0	104.1		0.0	87.1		0.0	0.0	0.0	34.9	34.9	
10th %ile Term Code	Gap	Coord		Skip	Coord		Skip	Skip	Skip	Gap	Gap	
Stops(vph)	151	1339		8	986		-	17	Ō	395	30	
Fuel U sed(gal)	6	30		0	35			0	0	11	2	
CO Emissions (g/hr)	443	2118		26	2454			31	10	796	1 49	
NOx Emissions (g/hr)	86	412		5	477			6	2	155	29	
VOC Emissions (g/hr)	103	491		6	569			7	2	184	35	
Dilemma V ehicles (#)	0	57		0	46			0	0	0	0	
Queue Length 50th (ft)	133	670		7	505			15	0	391	16	
Queue Length 95th (ft)	#313	#832		m16	#636			41	0	520	78	
Internal Link Dist (ft)	_	504		_	1511			1023	_	_	885	
Turn Bay Length (ft)	215			200								

Synchro 9 Report Page 11 Baseline

	۶	→	•	•	+	•	•	†	~	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Base Capacity (vph)	292	2439		145	1887			103	211	546	623	
Starvation Cap Reductn	0	46		0	0			0	0	0	0	
Spillback Cap Reductn	0	0		0	0			0	0	0	0	
Storage Cap Reductn	0	0		0	0			0	0	0	0	
Reduced v/c Ratio	0.79	0.81		0.14	0.79			0.16	0.06	0.78	0.34	
Intersection Summary												
Area Type: (Other											
Cycle Length: 150												
Actuated Cycle Length: 1	50											
Offset: 90 (60%), Referer	aced to ph	ase 2:EE	TL and	6:WBT	L, Start	of 1st Gr	een					
Natural Cycle: 110												
Control Type: Actuated-C	coordinate	ed										
Maximum v/c Ratio: 0.88												
Intersection Signal Delay	: 33.2			Iı	ntersecti	on LOS:	C					
Intersection Capacity Util	lization 91	.5%		I	CU Leve	el of Serv	ice F					
Analysis Period (min) 15												
# 95th percentile volum	e exceeds	capacity	y, queue	may be	longer.							
Queue shown is maxin	num after	two cyc	les.									

Splits and Phases: 8: /Atlanta Hwy & Coliseum Blvd.

m Volume for 95th percentile queue is metered by upstream signal.



	۶	→	•	•	+	•	•	†	~	\	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ		ሻ	ተተ			4			4	7
Traffic V olume (vph)	456	1720	8	84	1104	32	44	8	52	12	12	132
Future V olume (vph)	456	1720	8	84	1104	32	44	8	52	12	12	132
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	140		0	200		0	0		0	0		115
Storage Lanes	1		0	1		0	0		0	0		1
Taper L ength (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.996			0.932				0.850
Flt Protected	0.950			0.950				0.979			0.976	
Satd. Flow (prot)	1637	4698	0	1637	4684	0	0	1588	0	0	1698	1479
F1t Permitted	0.161			0.108				0.852			0.778	
Satd. Flow (perm)	277	4698	0	186	4684	0	0	1382	0	0	1354	1479
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			4			31				143
Link Speed (mph)		40			40			35			15	
Link Distance (ft)		1591			1993			1064			874	
Travel Time (s)		27.1			34.0			20.7			39.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	496	1870	9	91	1200	35	48	9	57	13	13	143
Shared Lane Traffic (%)												
Lane Group Flow (vph)	496	1879	0	91	1235	0	0	114	0	0	26	143
Enter Blocked Intersection	ı No	No	Νo	No	Νo	No	No	Νo	Νo	Νo	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			10	
Two way Left Turn Lane												
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100		20	100	20
Trailing Detector (ft)	0	0		0	0		0	0		0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	20
Detector 1 Type	C1+Ex	C1+Ex		C1+Ex	C1+Ex		C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	_
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
	1, , L, p			T I. p.								

Synchro 9 Report Page 13 Baseline

	۶	→	•	•	←	•	4	†	~	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Detector Phase	5	2		1	6		8	8		4	4	4
Switch Phase												
Minimum Initial (s)	3.0	30.0		7.0	30.0		7.0	7.0		7.0	7.0	7.0
Minimum Split(s)	8.0	36.0		13.0	36.0		12.0	12.0		12.0	12.0	12.0
Total Split(s)	25.0	0.88		25.0	88.0		37.0	37.0		37.0	37.0	37.0
Total Split (%)	16.7%	58.7%		16.7%	58.7%		24.7%	24.7%		24.7%	24.7%	24.7%
Maximum Green(s)	20.0	82.0		19.0	82.0		32.0	32.0		32.0	32.0	32.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	2.0		2.0	2.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	6.0		6.0	6.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
V ehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	C-Max		None	C-Max		None	None		N one	None	None
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0			0		0	0		0	0	0
Act Effet Green (s)	125.6	109.2		91.4	82.0			14.4			14.4	14.4
Actuated g/C Ratio	0.84	0.73		0.61	0.55			0.10			0.10	0.10
v/c Ratio	0.87	0.55		0.45	0.48			0.71			0.20	0.53
Control Delay	50.6	5.8		17.6	21.6			70.2			63.4	15.9
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Delay	50.6	5.8		17.6	21.6			70.2			63.4	15.9
LOS	D	Α		В	С			E			E	В
Approach Delay		15.1			21.4			70.2			23.2	
Approach LOS		В			С			Е			C	
90th %ile Green (s)	30.4	97.5		13.9	82.0		21.6	21.6		21.6	21.6	21.6
90th %ile Term Code	Max	Coord		Gap	Coord		Gap	Gap		Hold	Hold	Hold
70th %ile Green (s)	34.7	104.9		10.8	82.0		17.3	17.3		17.3	17.3	17.3
70th %ile Term Code	Max			-	Coord		Gap	Gap		Hold	Hold	Hold
50th %ile Green (s)	37.6	110.1		8.5	82.0		14.4	14.4		14.4	14.4	14.4
50th %ile Term Code	Max	Coord		Gap	Coord		Gap	Gap		Hold	Hold	Hold
30th %ile Green (s)	40.5	114.5		7.0	82.0		11.5	11.5		11.5	11.5	11.5
30th %ile Term Code	Max	Coord		Min			Gap	Gap		Hold	Hold	Hold
10th %ile Green (s)	44.8	118.8		7.0	82.0		7.2	7.2		7.2	7.2	7.2
10th %ile Term Code	Max	Coord			Coord		Gap	Gap		Hold	Hold	Hold
Stops(vph)	311	374		31 2	672 27			75 3			22	18
Fuel U sed(gal)	13	24									1	2
CO Emissions (g/hr)	886	1704		122	1885			201			39	115
NOx Emissions (g/hr)	172	331		24	367			39			8 9	22
VOC Emissions (g/hr)	205 0	395 88		28 0	437 38			46 2			0	27 0
Dilemma V ehicles (#)	366	88 98		19	263			80			24	0
Queue Length 50th (ft)	#574	187		33	303			144			53	65
Queue Length 95th (ft)	#374	1511		33	1913			984			794	60
Internal Link Dist (ft)	140	1311		200	1913			984			794	115
Turn Bay Length (ft)	140			200								115

Synchro 9 Report Page 14 Baseline

	۶	→	•	•	-	•	•	†	~	/	ţ	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	^	7	7	↑ ↑₽		¥	ની	7	¥	ર્સ	7
Traffic V olum e (vph)	48	1376	328	308	920	60	416	176	344	308	344	24
Future V olume (vph)	48	1376	328	308	920	60	416	176	344	308	344	24
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ff)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	312		0	285		90	0		0	0		0
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.95	0.95	1.00	0.95	0.95	1.00
Frt			0.850		0.991				0.850			0.850
Flt Protected	0.950			0.950			0.950	0.980		0.950	0.996	
Satd. Flow (prot)	1621	3241	1450	1637	4661	0	1496	1543	1409	1555	1630	1464
Flt Permitted	0.280			0.041		_	0.950	0.980		0.950	0.996	
Satd. Flow (perm)	478	3241	1450	71	4661	0	1496	1543	1409	1555	1630	1464
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			122		5				231			93
Link Speed (mph)		40	122		40			30	221		30	
Link Distance (ft)		1993			1037			1030			1056	
Travel Time (s)		34.0			17.7			23.4			24.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	1%	1%	1%	5%	5%	5%	1%	1%	1%
Adj. Flow (vph)	48	1376	328	308	920	60	416	176	344	308	344	24
Shared Lane Traffic (%)	70	15/0	520	500	720	00	30%	1,0	244	10%	244	27
Lane Group Flow (vph)	48	1376	328	308	980	0	291	301	344	277	375	24
Enter Blocked Intersection		No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Doro	11	1010111	Dar	11	106111	Lon	11		Dorr	20	rerem
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			5	
Two way Left Turn Lane		10			10			10				
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Turning Speed (mph)	1.12	1.12	9	1.12	1.12	9	15	1.12	9	1.12	1.12	9
Number of Detectors	1	2	1	1	2	- 1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6		20	6	20	20	6	20
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex
Detector 1 Channel	OI.DX	OI.DX	OILDX	OI. DX	OI.DX		OI.DX	OI.DX	OI. DX	OI.DX	OI.DX	OIIL
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	0.0	0.0	94		0.0	94	0.0	0.0	94	0.0
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Type Detector 2 Channel		OLTEX			OFFEX			OFFEX			OLUEX	
		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	40.400 ± 11.1	NA	D	anan dan d	N.O		Q134		custom	Q134		custom
Turn Type	pm+pt	API	reim	pm+pt	Аи		Split	ΑИ	custom	Split	Аи	custom

	۶	→	•	•	+	•	4	†	~	/	ţ	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	5	2		1	6		8	8		4	4	
Permitted Phases	2		2	6					4			8
Detector Phase	5	2	2	1	6		8	8	4	4	4	8
Switch Phase												
Minimum Initial (s)	6.0	20.0	20.0	7.0	20.0		9.0	9.0	9.0	9.0	9.0	9.0
Minimum Split(s)	11.5	26.5	26.5	13.0	26.5		14.5	14.5	14.5	14.5	14.5	14.5
Total Split(s)	40.0	95.0	95.0	50.0	105.0		45.0	45.0	45.0	45.0	45.0	45.0
Total Split (%)	17.0%	40.4%	40.4%	21.3%	44.7%		19.1%	19.1%	19.1%	19.1%	19.1%	19.1%
Maximum Green(s)	35.0	88.5	88.5	44.0	99.0		39.5	39.5	39.5	39.5	39.5	39.5
Yellow Time (s)	4.0	4.5	4.5	4.5	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	2.0	2.0	1.5	2.0		1.5	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	6.5	6.5	6.0	6.0		5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag	Lead	Lag	Lag	Lead	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
V ehicle Extension (s)	4.0	7.0	7.0	4.0	7.0		5.0	5.0	5.0	5.0	5.0	5.0
Recall Mode	None	C-Max	C-Max	None	C-Max		None	None	None	N one	None	None
Walk Time (s)		7.0	7.0		7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		0	0		0		0	0	0	0	0	0
Act Effet Green (s)	100.8	90.0	90.0	139.0	124.6		39.5	39.5	39.5	39.5	39.5	39.5
Actuated g/C Ratio	0.43	0.38	0.38	0.59	0.53		0.17	0.17	0.17	0.17	0.17	0.17
v/c Ratio	0.19	1.11	0.52	0.95	0.40		1.16	1.16	0.80	1.06	1.37	0.07
Control Delay	25.4	124.4	37.3	116.2	15.8		185.1	185.1	45.0	159.8	253.3	0.5
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	25.4	124.4	37.3	116.2	15.8		185.1	185.1	45.0	159.8	253.3	0.5
LOS	C	F	D	F	В		F	F	D	F	F	A
Approach Delay		105.4			39.8			133.6			206.0	
Approach LOS		F			D			F			F	
90th %ile Green (s)	11.6	88.5	88.5	44.0	122.4		39.5	39.5	39.5	39.5	39.5	39.5
90th %ile Term Code	Gap	Coord	Coord	Max	Coord		Max	Max	Max	Max	Max	Max
70th %ile Green (s)	10.2	88.5	88.5	44.0	123.8		39.5	39.5	39.5	39.5	39.5	39.5
70th %ile Term Code	Gap	Coord	Coord	Max	Coord		Max	Max	Max	Max	Max	Max
50th %ile Green (s)	9.3	88.5	88.5	44.0	124.7		39.5	39.5	39.5	39.5	39.5	39.5
50th %ile Term Code	Gap	Coord	Coord	Max	Coord		Max	Max	Max	Max	Max	Max
30th %ile Green (s)	8.5	88.6	88.6	43.9	125.5		39.5	39.5	39.5	39.5	39.5	39.5
30th %ile Term Code	Gap	Coord	Coord	Gap	Coord		Max	Max	Max	Max	Max	Max
10th %ile Green (s)	7.2	95.8	95.8	36.7	126.8		39.5	39.5	39.5	39.5	39.5	39.5
10th %ile Term Code	Gap	Coord	Coord	Gap	Coord		Max	Max	Max	Max	Max	Max
Stops(vph)	26	1190	163	242	359		242	251	123	240	284	0
Fuel U sed(gal)	1	65	9	12	14		15	15	7	13	24	0
CO Emissions (g/hr)	81	4553	596	827	949		1023	1059	461	882	1677	14
NOx Emissions (g/hr)	16	886	116	161	185		199	206	90	172	326	3
VOC Emissions (g/hr)	19	1055	138	192	220		237	245	107	204	389	3
Dilemma V ehicles (#)	0	26	0	0	19		0	0	0	0	0	0
Queue Length 50th (ft)	31	~1293	253	379	201		~557	~578	184	~494	~804	0
Queue Length 95th (ft)	55	#1425	369	#622	86		#794	#818	334	#727	#1056	0
Internal Link Dist (ft)		1913			957			950			976	
Turn Bay Length (ft)	312			285								

Synchro 9 Report Page 17 Baseline

13: Perry Hill Rd. & Atlanta Hwy

	۶	-	\rightarrow	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Base Capacity (vph)	427	1240	630	335	2474		251	259	429	261	273	323
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.11	1.11	0.52	0.92	0.40		1.16	1.16	0.80	1.06	1.37	0.07

Intersection Summary

Area Type: Other

Cycle Length: 235

Actuated Cycle Length: 235

Offset: 147 (63%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.37 Intersection Signal Delay: 107.5 Intersection Capacity Utilization 113.9%

Intersection LOS: F

ICU Level of Service H

Analysis Period (min) 15

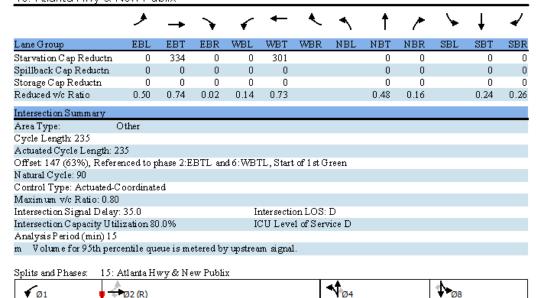
Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 13: Perry Hill Rd. & Atlanta Hwy



Lane Configurations		۶	→	•	•	+	•	1	†	~	/	↓	-√
Traffic V olume (vph)		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic V olume (vph)	Lane Configurations	ሻ	^	7	ሻ	↑ ↑↑			4	7		4	7
Ideal Flow (vphpl)		148			56		28	144		52	52		80
Lane Width (ft)	Future V olume (vph)	148	1380	16	56	1908	28	1 44	0	52	52	12	80
Storage Length (ft)		1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Lanes	Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Lanes	` '	470		245	158		0	0		0	0		0
Taper Length (ff)	0 0 1 /	1		1	1		0	0		1	0		1
Lane Util. Factor		25			25			25			25		
Fit Protected		1.00	0.95	1.00	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Satd. Flow (prot) 1621 3241 1450 1621 4648 0 0 1621 1450 0 1639 1450 Flt Permitted 0.065 0.154 0.154 0.950 0.961 0.961 Satd. Flow (perm) 111 3241 1450 263 4648 0 0 1621 1450 0 1639 1450 Right Turn on Red Yes	Frt			0.850		0.998				0.850			0.850
Satd. Flow (prot) 1621 3241 1450 1621 4648 0 0 1621 1450 0 1639 1450 Flt Permitted 0.065 0.154 0.154 0.950 0.961 0.961 Satd. Flow (perm) 111 3241 1450 263 4648 0 0 1621 1450 0 1639 1450 Right Turn on Red Yes	Flt Protected	0.950			0.950				0.950			0.961	
Fit Permitted		1621	3241	1450	1621	4648	0	0	1621	1450	0	1639	1450
Satd. Flow (perm) 111 3241 1450 263 4648 0 0 1621 1450 0 1639 1450 Right Turn on Red Yes Y	\ <u>\</u>	0.065			0.154				0.950			0.961	
Right Turn on Red Yes		111	3241	1450	263	4648	0	0	1621	1450	0	1639	1450
Satd. Flow (RTOR) 74 1 79 80 Link Speed (mph) 40 40 15 15 15 Link Distance (ft) 1037 1112 579 1107 1107 Travel Time (s) 17.7 19.0 26.3 50.3 50.3 Peak Hour Factor 1.00	\ A /			Yes			Yes			Yes			Yes
Link Speed (mph) 40 40 1037 1112 579 1107 Link Distance (ft) 1037 1112 579 1107 Travel Time (s) 17.7 19.0 26.3 50.3 Peak Hour Factor 1.00				74		1				79			80
Link Distance (ft) 1037 1112 579 1107 Travel Time (s) 17.7 19.0 26.3 50.3 Peak Hour Factor 1.00	` /		40			40			15			15	
Travel Time (s) 17.7 19.0 26.3 50.3 Peak Hour Factor 1.00 1	• • • •		1037			1112			579			1107	
Peak Hour Factor 1.00	· · · · · · · · · · · · · · · · · · ·		17.7			19.0			26.3			50.3	
Adj. Flow (vph) 148 1380 16 56 1908 28 144 0 52 52 12 80 Shared Lane Traffic (%) Lane Group Flow (vph) 148 1380 16 56 1936 0 0 144 52 0 64 80 Enter Blocked Intersection No		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Shared Lane Traffic (%) Lane Group Flow (vph) 148 1380 16 56 1936 0 0 144 52 0 64 80						1908	28		0			12	80
Lane Group Flow (vph) 148 1380 16 56 1936 0 0 144 52 0 64 80 Enter Blocked Intersection No No <t< td=""><td>, , ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	, , ,												
Enter Blocked Intersection No No <th< td=""><td></td><td>148</td><td>1380</td><td>16</td><td>56</td><td>1936</td><td>0</td><td>0</td><td>144</td><td>52</td><td>0</td><td>64</td><td>80</td></th<>		148	1380	16	56	1936	0	0	144	52	0	64	80
Lane Alignment Left Left Right Left Left Left Left Right Left							No	No		No	No	No	No
Median Width(ft) 11 11 0 0 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 10 Two way Left Turn Lane Headway Factor 1.12			Left	Right		Left	Right	Left	Left	Right	Left		Right
Crosswalk Width(ft) 16 16 16 10 Two way Left Turn Lane Headway Factor 1.12 1.			11	Ŭ		11	Ŭ		0	Ŭ		0	Ŭ
Crosswalk Width(ft) 16 16 16 10 Two way Left Turn Lane Headway Factor 1.12 1.	Link Offset(ft)		0			0			0			0	
Headway Factor 1.12	Crosswalk Width(ft)		16			16			16			10	
Headway Factor 1.12	Two way Left Turn Lane												
01 \17		1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
	-	15		9	15		9	15		9	15		9
Number of Detectors 1 2 1 1 2 1 1 2 1	Number of Detectors	1	2	1	1	2		1	2	1	1	2	1
Detector Template Left Thru Right Left Thru Left Thru Right	Detector Template	Left	Thru	Right	Left	Thru		Left	Thru	Right	Left	Thru	Right
	Leading Detector (ft)	20	100		20	100		20	100		20	100	20
Trailing Detector (ft) 0 0 0 0 0 0 0 0 0 0 0	Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Position (ft) 0 0 0 0 0 0 0 0 0 0	Detector 1 Position(ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Size(ft) 20 6 20 20 6 20 6 20 20 6 20	Detector 1 Size(ft)	20	6	20	20	6		20	6	20	20	6	20
Detector 1 Type C1+Ex C1	Detector 1 Type	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex
Detector 1 Channel	Detector 1 Channel												
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft) 94 94 94 94	Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft) 6 6 6	Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type C1+Ex C1+Ex C1+Ex C1+Ex	Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel													
Detector 2 Extend(s) 0.0 0.0 0.0	Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type pm+pt NA Perm pm+pt NA Split NA Perm Split NA Perm	Turn Type	pm+pt	NA	Perm	pm+pt	NA		Split	NA	Perm	Split	NA	Perm
Protected Phases 5 2 1 6 4 4 8 8	3.2					6		-	4			8	

Synchro 9 Report Page 19 Baseline

	٠	→	•	•	+	•	1	†	~	/	ţ	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2	6					4			8
Detector Phase	5	2	2	1	6		4	4	4	8	8	8
Switch Phase												
Minimum Initial (s)	7.0	20.0	20.0	7.0	20.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split(s)	14.0	27.0	27.0	14.0	27.0		13.0	13.0	13.0	13.0	13.0	13.0
Total Split(s)	40.0	100.0	100.0	40.0	100.0		50.0	50.0	50.0	45.0	45.0	45.0
Total Split (%)	17.0%	42.6%	42.6%	17.0%	42.6%		21.3%	21.3%	21.3%	19.1%	19.1%	19.1%
Maximum Green(s)	33.0	93.0	93.0	35.0	93.0		44.0	44.0	44.0	39.0	39.0	39.0
Yellow Time (s)	5.0	5.0	5.0	4.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	1.0	2.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	7.0	7.0	7.0	5.0	7.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
V ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	None	C-Max		N one	None	None	N one	None	None
Walk Time (s)		7.0	7.0		7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		0	0		0		0	0	0	0	0	0
Act Effct Green (s)	174.8	160.4	160.4	160.6	148.8			26.2	26.2		14.6	14.6
Actuated g/C Ratio	0.74	0.68	0.68	0.68	0.63			0.11	0.11		0.06	0.06
v/c Ratio	0.71	0.62	0.02	0.24	0.66			0.80	0.23		0.63	0.49
Control Delay	53.6	27.6	0.0	11.9	30.2			130.8	5.2		133.1	26.0
Queue Delay	0.0	0.4	0.0	0.0	0.2			0.0	0.0		0.0	0.0
Total Delay	53.6	28.0	0.0	11.9	30.4			130.8	5.2		133.1	26.0
LOS	D	C	Α	В	С			F	Α		F	С
Approach Delay		30.1			29.9			97.5			73.6	
Approach LOS		С			С			F			E	
90th %ile Green (s)	29.2	141.2	141.2	14.7	124.7		34.8	34.8	34.8	20.3	20.3	20.3
90th %ile Term Code	Gap	Coord	Coord	Gap	Coord		Gap	Gap	Gap	Gap	Gap	Gap
70th %ile Green (s)	23.4	153.0	153.0	11.4	139.0		29.8	29.8	29.8	16.8	16.8	16.8
70th %ile Term Code	Gap	Coord	Coord	Gap	Coord		Gap	Gap	Gap	Gap	Gap	Gap
50th %ile Green (s)	19.4	161.0	161.0	9.2	148.8		26.2	26.2	26.2	14.6	14.6	14.6
50th %ile Term Code	Gap	Coord	Coord	Gap	Coord		Gap	Gap	Gap	Gap	Gap	Gap
30th %ile Green (s)	15.4	169.1	169.1	7.0	158.7		22.6	22.6	22.6	12.3	12.3	12.3
30th %ile Term Code	Gap	Coord	Coord	Min	Coord		Gap	Gap	Gap	Gap	Gap	Gap
10th %ile Green (s)	9.8	177.5	177.5	7.0	172.7		17.6	17.6	17.6	8.9	8.9	8.9
10th %ile Term Code	Gap	Coord	Coord	Min			Gap	Gap	Gap	Gap	Gap	Gap
Stops(vph)	108	589	0	18	1208			139	2		61	12
Fuel U sed(gal)	4	23	0	1	38			5	0		3	1
CO Emissions (g/hr)	260	1625	8	51	2683			342	26		179	95
NOx Emissions (g/hr)	51	316	2	10	522			67	5		35	18
VOC Emissions (g/hr)	60	377	2	12	622			79	6		41	22
Dilemma V ehicles (#)	0	57	0	0	41			0	0		0	0
Queue Length 50th (ft)	180	522	0	21	676			223	0		99	0
Queue Length 95th (ft)	m176	m506	m0	46	928			306	12		161	66
Internal Link Dist (ft)		957			1032			499			1027	
Turn Bay Length (ft)	470		245	158								
Base Capacity (vph)	294	2211	1012	400	2943			303	335		272	307

₩<u>ø</u>6 (R)

	۶	→	•	•	←	•	•	†	~	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7		4			ની	7
Traffic V olum e (vph)	4	1452	76	20	980	Ö	12	0	16	4	Ö	4
Future V olume (vph)	4	1452	76	20	980	0	12	0	16	4	0	4
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	490		120	380		160	0		0	0		50
Storage Lanes	1		1	1		1	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850					0.923				0.850
Flt Protected	0.950			0.950				0.979			0.950	
Satd. Flow (prot)	1637	3273	1464	1637	3273	1723	0	1526	0	0	1653	1479
F1t Permitted	0.289			0.174				0.860			0.769	
Satd. Flow (perm)	498	3273	1464	300	3273	1723	0	1341	0	0	1338	1479
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			28					16				16
Link Speed (mph)		40			40			15			15	
Link Distance (ft)		1112			4770			263			246	
Travel Time (s)		19.0			81.3			12.0			11.2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	3%	3%	3%	0%	0%	0%
Adj. Flow (vph)	4	1452	76	20	980	0	12	0	16	4	0	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	4	1452	76	20	980	0	0	28	0	0	4	4
Enter Blocked Intersection	n No	No	Νo	Νo	Νo	No	No	Νο	Νo	Νo	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		28			28			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	20
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NΑ	Perm	Perm	NΑ		Perm	NA	Perm

	۶	→	•	•	+	•	•	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		4
Detector Phase	2	2	2	6	6	6	8	8		4	4	4
Switch Phase												
Minimum Initial (s)	20.0	20.0	20.0	20.0	20.0	20.0	7.0	7.0		7.0	7.0	7.0
Minimum Split(s)	26.5	26.5	26.5	26.5	26.5	26.5	12.5	12.5		12.5	12.5	12.5
Total Split(s)	168.0	168.0	168.0	168.0	168.0	168.0	67.0	67.0		67.0	67.0	67.0
Total Split (%)	71.5%	71.5%	71.5%	71.5%	71.5%	71.5%	28.5%	28.5%		28.5%	28.5%	28.5%
Maximum Green(s)	161.5	161.5	161.5	161.5	161.5	161.5	62.0	62.0		62.0	62.0	62.0
Yellow Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	0.5	0.5		0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5		5.0			5.0	5.0
Lead/Lag												
Lead-Lag Optimize?												
V ehicle Extension (s)	7.0	7.0	7.0	7.0	7.0	7.0	5.0	5.0		5.0	5.0	5.0
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	Min	Min		Min	Min	Min
Walk Time(s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0	0	0		0	0	0
Act Effet Green (s)	213.6	213.6	213.6	213.6	213.6			9.9			9.9	9.9
Actuated g/C Ratio	0.91	0.91	0.91	0.91	0.91			0.04			0.04	0.04
v/c Ratio	0.01	0.49	0.06	0.07	0.33			0.39			0.07	0.05
Control Delay	0.5	1.5	0.2	1.8	1.8			73.2			108.8	1.2
Queue Delay	0.0	0.2	0.0	0.0	0.0			0.0			0.0	0.0
Total Delay	0.5	1.7	0.2	1.8	1.8			73.2			108.8	1.2
LOS	Α	Α	Α	Α	Α			Е			F	Α
Approach Delay		1.6			1.8			73.3			55.0	
Approach LOS		Α			Α			Е			D	
90th %ile Green (s)	209.7	209.7	209.7	209.7	209.7	209.7	13.8	13.8		13.8	13.8	13.8
90th %ile Term Code	Coord	Coord	Coord	Coord	Coord	Coord	Gap	Gap		Hold	Hold	H old
70th %ile Green (s)	212.3	212.3	212.3	212.3	212.3	212.3	11.2	11.2		11.2	11.2	11.2
70th %ile Term Code	Coord	Coord	Coord	Coord	Coord	Coord	Gap	Gap		Ho1d	Hold	H old
50th %ile Green (s)	214.1	214.1	214.1	214.1	214.1	214.1	9.4	9.4		9.4	9.4	9.4
50th %ile Term Code	Coord	Coord	Coord	Coord	Coord	Coord	Gap	Gap		Ho1d	Hold	H old
30th %ile Green (s)	215.9	215.9	215.9	215.9	215.9	215.9	7.6	7.6		7.6	7.6	7.6
30th %ile Term Code	Coord	Coord	Coord	Coord	Coord	Coord	Gap	Gap		Hold	Hold	H old
10th %ile Green (s)	216.0	216.0	216.0	216.0	216.0	216.0	7.5	7.5		7.5	7.5	7.5
10th %ile Term Code	Coord	Coord	Coord	Coord	Coord	Coord	Gap	Gap		Gap	Gap	Gap
Stops(vph)	0	159	0	2	113		•	14		•	6	Ô
Fuel Used(gal)	0	13	1	1	33			1			0	0
CO Emissions (g/hr)	2	906	40	47	2319			36			7	1
NOx Emissions (g/hr)	0	176	8	9	451			7			1	0
VOC Emissions (g/hr)	0	210	9	11	537			8			2	0
Dilemma V ehicles (#)	0	11	0	0	21			0			0	0
Queue Length 50th (ft)	0	6	0	2	76			18			6	0
Queue Length 95th (ft)	m0	47	2	7	111			62			23	0
Internal Link Dist (ft)		1032			4690			183			166	_
Turn Bay Length (ft)	490		120	380								50

Synchro 9 Report Page 23 Baseline

17: Bellehurst Dr. & Atlanta Hwy

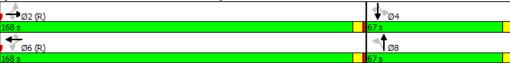
	۶	-	•	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Base Capacity (vph)	452	2974	1333	272	2974			365			353	401
Starvation Cap Reductn	0	615	0	0	0			0			0	0
Spillback Cap Reductn	0	0	0	0	0			0			0	0
Storage Cap Reductn	0	0	0	0	0			0			0	0
Reduced v/c Ratio	0.01	0.62	0.06	0.07	0.33			80.0			0.01	0.01

Intersection Summary

Area Type: Other Cycle Length: 235

Actuated Cycle Length: 235

Offset: 147 (63%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 50

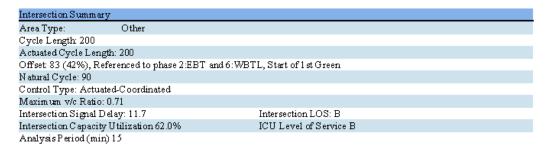

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.49

Intersection Signal Delay: 2.6 Intersection LOS: A ICU Level of Service B Intersection Capacity Utilization 60.4% Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 17: Bellehurst Dr. & Atlanta Hwy



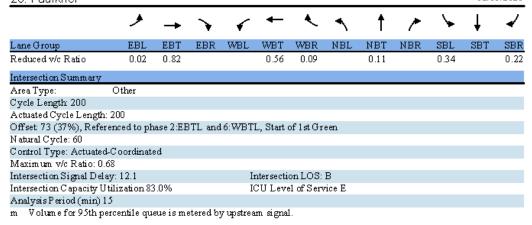
	→	•	F	•	+	4	~
Lane Group	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	^	7		ă	^	ሻ	7
Traffic V olume (vph)	1620	24	28	28	1392	20	28
Future V olume (vph)	1620	24	28	28	1392	20	28
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800
Storage Length (ft)	2000	250	. 500	0	.500	0	0
Storage Lanes		1		1		1	1
Taper Length (ft)				25		25	•
Lane Util. Factor	0.95	1.00	0.95	1.00	0.95	1.00	1.00
Frt	2.22	0.850	0.00	2.00	5.55	2.00	0.850
Flt Protected		0.000		0.950		0.950	0.050
Satd. Flow (prot)	3353	1500	0	1676	3353	1676	1500
Flt Permitted		2500	, ,	0.087	2223	0.950	1500
Satd. Flow (perm)	3353	1500	0	154	3353	1676	1500
Right Turn on Red	2000	Yes	,	154	2272	10,0	Yes
Satd. Flow (RTOR)		20					30
Link Speed (mph)	25	20			40	30	50
Link Speed (mpn) Link Distance (ff)	917				400	521	
Travel Time (s)	25.0				6.8	11.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1761	26	30	30	1513	22	30
Shared Lane Traffic (%)	1,01	20	- 50	50	1513	44	- 50
Lane Group Flow (vph)	1761	26	0	60	1513	22	30
Enter Blocked Intersection		No.	No	No	No	No	No
Lane Alignment	Left		RNA	Left	Left	Left	Right
Median Width(ft)	40	Kigur	MMA	Leri	40	12	Kigin
Link Offset(ft)	40				40	0	
Crosswalk Width(ft)	16				16	16	
	10				10	10	
Two way Left Turn Lane Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Number of Detectors	2	1	1	1	2	1	1
	Thru	Right	Left	Left	Thru	Left	Right
Detector Template	100	20	20	20	100	20	right 20
Leading Detector (ft)	100	20	20	20	100	20	20
Trailing Detector (ft)	0	0	0	0	0	0	0
Detector 1 Position(ft)	6	20	20	20	6	20	20
Detector 1 Size(ft)	C1+Ex		C1+Ex	C1+Ex	C1+Ex		C1+Ex
Detector 1 Type	CITEX	C1+Ex	CITEX	CI+EX	CITEX	C1+Ex	CITEX
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)			0.0	0.0	0.0		
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	94				94		
Detector 2 Size(ft)	6				6		
Detector 2 Type	C1+Ex				C1+Ex		
Detector 2 Channel					0.0		
Detector 2 Extend (s)	0.0	_			0.0	_	_
Turn Type	NA	Perm	pm+pt		NA	Prot	Perm
Protected Phases	2		1	1	6	8	
Permitted Phases		2	6	6			8

Synchro 9 Report Page 1 Baseline

	→	•	F	•	←	4	/
Lane Group	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Detector Phase	2	2	1	1	6	8	8
Switch Phase	_	_	_	_			_
Minimum Initial (s)	15.0	15.0	15.0	15.0	15.0	3.5	3.5
Minimum Split(s)	21.5	21.5	21.5	21.5	21.5	10.0	10.0
Total Split(s)	150.0	150.0	25.0	25.0	175.0	25.0	25.0
Total Split (%)	75.0%	75.0%	12.5%	12.5%	87.5%	12.5%	12.5%
Maximum Green(s)	143.5	143.5	20.0	20.0	168.5	20.0	20.0
Yellow Time (s)	4.5	4.5	4.0	4.0	4.5	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	1.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.5	6.5		5.0	6.5	5.0	5.0
Lead/Lag	Lag	Lag	Lead	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			
V ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	C-Max		None		C-Max	Max	Max
Act Effct Green (s)	148.5	148.5	2.2230	170.0	168.5	20.0	20.0
Actuated g/C Ratio	0.74	0.74		0.85	0.84	0.10	0.10
v/c Ratio	0.71	0.02		0.24	0.54	0.13	0.17
Control Delay	15.9	3.0		5.9	5.4	84.3	25.1
Queue Delay	0.2	0.0		0.0	0.3	0.0	0.0
Total Delay	16.1	3.0		6.0	5.7	84.3	25.1
LOS	В	A		A	A	F	C
Approach Delay	15.9				5.7	50.2	
Approach LOS	В				A	D	
90th %ile Green(s)	148.5	148.5	15.0	15.0	168.5	20.0	20.0
90th %ile Term Code	Coord		Min	Min			MaxR
70th %ile Green(s)	148.5	148.5	15.0	15.0	168.5	20.0	20.0
70th %ile Term Code	Coord		Min	Min		MaxR	MaxR
50th %ile Green(s)	148.5	148.5	15.0	15.0	168.5	20.0	20.0
50th %ile Term Code	Coord		Min		Coord		Max R
30th %ile Green (s)	148.5	148.5	15.0	15.0	168.5	20.0	20.0
30th %ile Term Code	Coord		Min				Max R
10th %ile Green (s)	148.5	148.5	15.0	15.0	168.5	20.0	20.0
10th %ile Term Code	Coord		Min	Min		MaxR	Max R
Stops (vph)	844	3	101111	10	303	19	7
Stops (vpn) Fuel U sed(gal)	21	0		0	303	19	0
CO Emissions (g/hr)	1478	15		22	579	37	21
, ,	288	3		4	113	31 7	4
NOx Emissions (g/hr)	343	3		5	134	9	5
VOC Emissions (g/hr)	343	0		0	134 42	0	0
Dilemma Vehicles (#)		2		5	42 84		0
Queue Length 50th (ft)	616	_				27	=
Queue Length 95th (ft)	686	12		22	182	62	38
Internal Link Dist (ft)	837	0.50			320	441	
Turn Bay Length (ft)	0.400	250		000	202.4	1.00	4.00
Base Capacity (vph)	2489	1118		283	2824	167	177
Starvation Cap Reductn	0	0		0	618	0	0
Spillback Cap Reductn	1.57	0		6	0	0	1
Storage Cap Reductn	0	0		0	0	0	0
Reduced v/c Ratio	0.76	0.02		0.22	0.69	0.13	0.17

Synchro 9 Report Page 2 Baseline

Splits and Phases: 18: East Mount Plaza & Atlanta Hwy



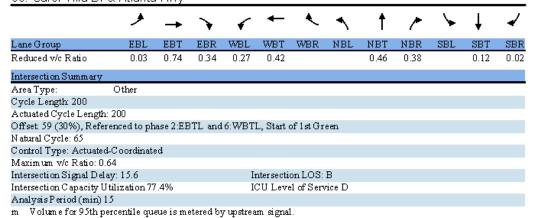
•	•	→	•	•	+	•	•	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7		414	7		4		7		7
Traffic V olume (vph)	10	1416	Ö	20	1128	116	8	Ö	24	84	0	68
Future V olume (vph)	10	1416	0	20	1128	116	8	0	24	84	0	68
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (ft)	300		0	0		0	0		0	0		0
Storage Lanes	1		1	0		1	0		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850		0.899				0.850
Flt Protected	0.950				0.999			0.988		0.950		
Satd. Flow (prot)	1693	3386	1782	0	3383	1515	0	1599	0	1710	0	1530
Flt Permitted	0.222				0.886			0.988		0.803		
Satd. Flow (perm)	396	3386	1782	0	3000	1515	0	1599	0	1445	0	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						114		49				68
Link Speed (mph)		40			40			15			15	
Link Distance (ft)		400			399			214			223	
Travel Time (s)		6.8			6.8			9.7			10.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles(%)	1%	1%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	10	1416	0	20	1128	116	8	0	24	84	0	68
Shared Lane Traffic (%)												
Lane Group Flow (vph)	10	1416	0	0	1148	116	0	32	0	84	0	68
Enter Blocked Intersection		No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		45			45			25	0		40	
Link Offset(ft)		10			0			0			0	
Crosswalk Width(ft)		16			16			5			16	
Two way Left Turn Lane								-				
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	15		9	15	2.07	9	15	2.07	9	15	2.07	9
Number of Detectors	1	2	1	1	2	1	1	2		1		1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left		Right
Leading Detector (ft)	20	100	20	20	100	20	20	100		20		20
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0		0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0		0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20		20
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex		C1+Ex		C1+Ex
Detector 1 Channel												
Detector 1 Extend(s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0
Detector 2 Position(ft)		94			94			94				
Detector 2 Size(ft)		6			6			6				
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex				
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0				
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA		Perm		Perm
Protected Phases	5	2			6			8				

Synchro 9 Report Page 4 Baseline

	۶	→	•	•	←	•	•	†	~	/	+	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2	6		6	8			4		4
Detector Phase	5	2	2	6	6	6	8	8		4		4
Switch Phase												
Minimum Initial (s)	5.0	20.0	20.0	20.0	20.0	20.0	10.0	10.0		7.0		7.0
Minimum Split(s)	10.0	27.0	27.0	27.0	27.0	27.0	16.0	16.0		13.0		13.0
Total Split(s)	20.0	160.0	160.0	140.0	140.0	140.0	40.0	40.0		40.0		40.0
Total Split (%)	10.0%	80.0%	80.0%	70.0%	70.0%	70.0%	20.0%	20.0%		20.0%		20.0%
Maximum Green(s)	15.0	153.0	153.0	133.0	133.0	133.0	34.0	34.0		34.0		34.0
Yellow Time (s)	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0
All-Red Time (s)	1.0	2.0	2.0	2.0	2.0	2.0	1.0	1.0		1.0		1.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0		0.0		0.0		0.0
Total Lost Time (s)	5.0	7.0	7.0		7.0	7.0		6.0		6.0		6.0
Lead/Lag	Lead			Lag	Lag	Lag						
Lead-Lag Optimize?	Yes			Yes	Yes	Yes						
V ehicle Extension (s)	3.0	6.0	6.0	6.0	6.0	6.0	3.0	3.0		3.0		3.0
Recall Mode	None	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None		None
Act Effct Green (s)	171.7	169.7			165.4	165.4		17.3		17.3		17.3
Actuated g/C Ratio	0.86	0.85			0.83	0.83		0.09		0.09		0.09
v/c Ratio	0.03	0.49			0.46	0.09		0.17		0.68		0.35
Control Delay	3.7	8.3			8.5	2.0		8.9		113.3		19.8
Queue Delay	0.0	1.2			0.1	0.0		0.0		0.0		0.0
Total Delay	3.7	9.5			8.7	2.0		8.9		113.3		19.8
LOS	Α	Α			Α	Α		Α		F		В
Approach Delay		9.5			8.1			8.9			71.5	
Approach LOS		Α			Α			Α			Е	
90th %ile Green (s)	6.0	162.7	162.7	151.7	151.7	151.7	24.3	24.3		24.3		24.3
90th %ile Term Code	Gap	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap		Gap
70th %ile Green (s)	5.8	166.9	166.9	156.1	156.1	156.1	20.1	20.1		20.1		20.1
70th %ile Term Code	Gap	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap		Gap
50th %ile Green (s)	0.0	169.7	169.7	169.7	169.7	169.7	17.3	17.3		17.3		17.3
50th %ile Term Code	Skip	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap		Gap
30th %ile Green (s)	0.0	172.5	172.5	172.5	172.5	172.5	14.5	14.5		14.5		14.5
30th %ile Term Code	Skip	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap		Gap
10th %ile Green (s)	0.0	176.8	176.8	176.8	176.8	176.8	10.2	10.2		10.2		10.2
10th %ile Term Code	Skip	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap		Gap
Stops(vph)	2	546			411	8		2		81		11
Fuel Used(gal)	0	12			9	0		0		2		0
CO Emissions (g/hr)	4	811			639	31		9		157		31
NOx Emissions (g/hr)	1	158			124	6		2		31		6
VOC Emissions (g/hr)	1	188			148	7		2		36		7
Dilemm a V ehicles (#)	0	66			44	0		0		0		0
Queue Length 50th (ft)	3	402			238	10		0		109		0
Queue Length 95th (ft)	m3	337			253	21		18		173		55
Internal Link Dist (ft)		320			319			134			1 43	
Turn Bay Length (ft)	300											
Base Capacity (vph)	437	2873			2480	1272		312		245		316
Starvation Cap Reductn	0	1146			429	0		0		0		0
Spillback Cap Reductn	0	593			0	0		8		0		0
Storage Cap Reductn	0	0			0	0		0		0		0

Synchro 9 Report Page 5 Baseline

Splits and Phases: 20: Faulkner

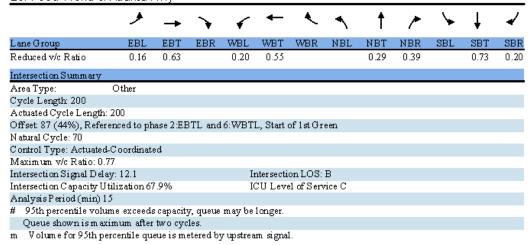


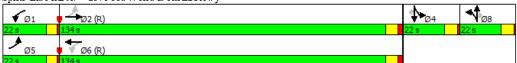
•	۶	→	•	•	+	•	•	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	ተተ _ጉ			ર્ન	7			7
Traffic V olume (vph)	8	1480	140	88	1188	4	64	8	104	16	4	4
Future V olume (vph)	8	1480	140	88	1188	4	64	8	104	16	4	4
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (ft)	270		0	235		0	0		0	0		0
Storage Lanes	1		1	1		0	0		1	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.999				0.850			0.850
Flt Protected	0.950			0.950				0.957			0.962	
Satd. Flow (prot)	1676	3353	1500	1710	4909	0	0	1723	1530	0	1732	1530
Flt Permitted	0.224			0.133				0.735			0.748	
Satd. Flow (perm)	395	3353	1500	239	4909	0	0	1323	1530	0	1346	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			121		1				104			49
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		390			654			278			210	
Travel Time (s)		6.6			11.1			6.3			4.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles(%)	2%	2%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	8	1480	140	88	1188	4	64	8	104	16	4	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	8	1480	140	88	1192	0	0	72	104	0	20	4
Enter Blocked Intersection	ı No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		45	Ŭ		40	Ŭ		8	Ŭ		0	Ŭ
Link Offset(ft)		0			0			0			15	
Crosswalk Width(ft)		25			25			16			10	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6		20	6	20	20	6	20
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	0.0	0.0	94		0.0	94	0.0	0.0	94	0.0
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel		JI.DA			JI.DX			JI.DA			J1.DX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1 61111	2	1 61111	1	6		1 61111	8	1 CIIII	1 61111	4	1 61111
1 Total Cited Filases				1	U			۰			4	

Synchro 9 Report Page 16 Baseline

	۶	→	•	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2	6			8		8	4		4
Detector Phase	2	2	2	1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	20.0	20.0	20.0	10.0	20.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split(s)	27.0	27.0	27.0	15.0	27.0		13.0	13.0	13.0	13.0	13.0	13.0
Total Split(s)	1 48 .0	148.0	148.0	22.0	170.0		30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	74.0%	74.0%	74.0%	11.0%	85.0%		15.0%	15.0%	15.0%	15.0%	15.0%	15.0%
Maximum Green(s)	1 41 .0	141.0	141.0	17.0	163.0		24.0	24.0	24.0	24.0	24.0	24.0
Yellow Time (s)	5.0	5.0	5.0	4.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	1.0	2.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	7.0	7.0	7.0	5.0	7.0			6.0	6.0		6.0	6.0
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
V ehicle Extension (s)	6.0	6.0	6.0	3.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode		C-Min		Max	C-Min		Min	Min	Min	Min	Min	Min
Act Effct Green (s)	1 47 .9	147.9	147.9	171.9	169.9			17.1	17.1		17.1	17.1
Actuated g/C Ratio	0.74	0.74	0.74	0.86	0.85			0.09	0.09		0.09	0.09
v/c Ratio	0.03	0.60	0.12	0.27	0.29			0.64	0.46		0.17	0.02
Control Delay	13.9	22.0	7.1	4.0	1.6			111.8	18.8		85.8	0.2
Queue Delay	0.0	0.4	0.6	0.0	0.1			0.0	0.0		0.0	0.0
Total Delay	13.9	22.4	7.7	4.0	1.7			111.8	18.8		85.8	0.2
LOS	В	С	Α	Α	Α			F	В		F	Α
Approach Delay		21.1			1.8			56.8			71.5	
Approach LOS		C			Α			E			Ε	
90th %ile Green (s)	1 41 .1	141.1	141.1	17.0	163.1		23.9	23.9	23.9	23.9	23.9	23.9
90th %ile Term Code	Coord	Coord	Coord	MaxR	Coord		Gap	Gap	Gap	Hold	Hold	Hold
70th %ile Green (s)	1 45.0	145.0	145.0	17.0	167.0		20.0	20.0	20.0	20.0	20.0	20.0
70th %ile Term Code	Coord		Coord		Coord		Gap	Gap	Gap	Hold	Hold	Hold
50th %ile Green (s)	147.9	147.9	147.9	17.0	169.9		17.1	17.1	17.1	17.1	17.1	17.1
50th %ile Term Code	Coord	Coord	Coord	MaxR	Coord		Gap	Gap	Gap	Hold	Hold	Hold
30th %ile Green (s)	150.7	150.7	150.7	17.0	172.7		14.3	14.3	14.3	14.3	14.3	14.3
30th %ile Term Code	Coord		Coord	MaxR	Coord		Gap	Gap	Gap	Hold	Hold	Hold
10th %ile Green (s)	154.7	154.7	154.7	17.0	176.7		10.3	10.3	10.3	10.3	10.3	10.3
10th %ile Term Code	Coord	Coord	Coord	MaxR	Coord		Gap	Gap	Gap	Hold	Hold	Hold
Stops(vph)	4	774	27	11	93			68	14		19 N	0
Fuel Used(gal)	0 6	18 1268	1	1 40	7			2 152	1 49		34	0
CO Emissions (g/hr)	1	247	59 11	40 8	461 90			30	10		34 7	0
NOx Emissions (g/hr)	1	294	14	9	107			35	11		8	0
VOC Emissions (g/hr)	0	39	0	0	29			0	11		0	0
Dilemma V ehicles (#)	5	635	42	12	29 68			94	0		25	0
Queue Length 50th (ft)	m9	459	67	19	22			153	66		25 56	0
Queue Length 95th (ft)	my	310	07	19	574			198	00		130	U
Internal Link Dist (ft)	270	210		235	5/4			198			130	
Turn Bay Length (ft)	270	2479	1140	330	4170			158	275		161	226
Base Capacity (vph) Starvation Cap Reductn	292	468	723	0.00	1311			0	273		101	220
•	0	468 0	723	0	1311			0	0		0	0
Spillback Cap Reductn	0	0	0	0	0			0	0		0	0
Storage Cap Reductn	U	U	U	U	U			U	U		U	U

Synchro 9 Report Page 17 Baseline




	۶	→	•	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		ሻ	ተተ _ጉ			4	7		ર્ની	7
Traffic V olum e (vph)	64	1648	40	56	1076	122	24	16	76	92	8	40
Future V olume (vph)	64	1648	40	56	1076	122	24	16	76	92	8	40
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (ft)	340		0	290		0	0		0	0		0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.996			0.985				0.850			0.850
Flt Protected	0.950			0.950				0.971			0.956	
Satd. Flow (prot)	1693	4846	0	1693	4792	0	0	1748	1530	0	1721	1530
Flt Permitted	0.205			0.111				0.971			0.956	
Satd. Flow (perm)	365	4846	0	198	4792	0	0	1748	1530	0	1721	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3			19				82			82
Link Speed (mph)		40			40			15			15	
Link Distance (ft)		675			424			273			200	
Travel Time (s)		11.5			7.2			12.4			9.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	64	1648	40	56	1076	122	24	16	76	92	8	40
Shared Lane Traffic (%)												
Lane Group Flow (vph)	64	1688	0	56	1198	0	0	40	76	0	100	40
Enter Blocked Intersection	n No	No	No	No	No	No	No	Νo	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		40	, i		40	, i		0	Ĭ		0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			5			5	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	20
Detector 1 Type	C1+Ex	C1+Ex		C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NΑ		Split	NΑ	Perm	Split	NA	Perm
Protected Phases	5	2		1	6		8	8		4	4	

Synchro 9 Report Page 7 Baseline

	۶	→	•	€	←	•	•	†	/	/	ţ	-√
Lane Group	EBL	EBT	EBR W	/BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2			6					8			4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	7.0	20.0		7.0	20.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split(s)	12.0	27.0	1	12.0	27.0		13.0	13.0	13.0	13.0	13.0	13.0
Total Split(s)	22.0	134.0	2	22.0	134.0		22.0	22.0	22.0	22.0	22.0	22.0
Total Split (%)	11.0%	67.0%	11	.0%	67.0%		11.0%	11.0%	11.0%	11.0%	11.0%	11.0%
Maximum Green(s)	17.0	127.0	1	17.0	127.0		16.0	16.0	16.0	16.0	16.0	16.0
Yellow Time (s)	4.0	5.0		4.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	2.0		1.0	2.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	7.0		5.0	7.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag		.ead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
V ehicle Extension (s)	3.0	6.0		3.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode		C-Min			C-Min		None	None	None	None	None	None
Act Effct Green (s)	152.0	142.5		51.7	142.3			10.9	10.9		15.2	15.2
Actuated g/C Ratio	0.76	0.71		0.76	0.71			0.05	0.05		0.08	0.08
v/c Ratio	0.20	0.49	(0.27	0.35			0.42	0.47		0.77	0.21
Control Delay	4.1	6.8		6.4	7.0			103.7	22.2		124.2	2.5
Queue Delay	0.0	0.2		0.0	0.2			0.0	0.0		0.0	0.0
Total Delay	4.1	7.0		6.4	7.2			103.7	22.2		124.2	2.5
LOS	Α	Α		Α	A			F	С		F	Α
Approach Delay		6.9			7.2			50.3			89.4	
Approach LOS		Α			Α			D			F	
90th %ile Green (s)	8.7	136.8		8.4	136.5		14.8	14.8	14.8	16.0	16.0	16.0
90th %ile Term Code	Gap	Coord	(Gap	Coord		Gap	Gap	Gap	Max	Max	Max
70th %ile Green (s)	7.8	140.0		7.5	139.7		12.5	12.5	12.5	16.0	16.0	16.0
70th %ile Term Code	Gap	Coord	(Gap	Coord		Gap	Gap	Gap	Max	Max	Max
50th %ile Green (s)	7.2	142.1		7.0	141.9		10.9	10.9	10.9	16.0	16.0	16.0
50th %ile Term Code	Gap	Coord		Min	Coord		Gap	Gap	Gap	Max	Max	Max
30th %ile Green (s)	7.0	143.8		7.0	143.8		9.4	9.4	9.4	15.8	15.8	15.8
30th %ile Term Code		Coord		Min			Gap	Gap	Gap	Gap	Gap	Gap
10th %ile Green (s)	7.0	149.7 Coord	,	7.0	149.7		7.1	7.1	7.1	12.2	12.2	12.2
10th %ile Term Code	IVIII 7	405		Min 8	Coord 307		Gap	Gap 38	Gap 10	Gap	Gap 95	Gap
Stops (vph) Fuel Used(gal)	0	403		0	307			1	10		3	0
10 /	29	982		22	571			71	40		200	7
CO Emissions (g/hr)	29 6	191		4	111			14	40 8		39	1
NOx Emissions (g/hr) VOC Emissions (g/hr)	7	228		5	132			16	9		39 46	2
Dilemma V ehicles (#)	0	36		0	19			0	0		40	0
, ,	8	489		8	200			52	0		131	0
Queue Length 50th (ft) Queue Length 95th (ft)	m11	83		m15	219			99	52		#229	0
- • • • • • • • • • • • • • • • • • • •	11111	595	1	1111	344			193	34		120	U
Internal Link Dist (ft) Turn Bay Length (ft)	340	292		290	244			193			120	
Base Capacity (vph)	398	3453		282	3415			139	197		137	197
Starvation Cap Reductn	0	759		202	1218			139	197		137	197
Spillback Cap Reductn	0	7.79		0	1210			0	0		0	0
Spinioack Cap Reductin	0	0		0	0			0	0		0	0
prorage c ab vectorin	U	U		U	U			U	U		U	- 0

Splits and Phases: 25: Food World & Atlanta Hwy

Lane Corigurations		۶	→	*	•	←	•	4	†	/	/	ţ	-√
Traffic Volume (γγph) 0 1400 216 420 1200 0 0 0 544 8 236 Induar Volume (γph) 1800	Lane Group	EBL	EBT	EBR		WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (γγph) 0 1400 216 420 1200 0 0 0 544 8 236 Induar Volume (γph) 1800	Lane Configurations		ተተ _ጉ		ሻሻ	44					ሻ	4	7
Ideal Flow (ryphpl)	Traffic V olum e (vph)	0		216			0	0	0	0	544		
Lane Ufil Factor	Future V olume (vph)	0	1400	216	420	1200	0	0	0	0	544	8	236
Lane Ufil Factor	Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Fit Protocted	Lane Util. Factor	1.00	0.91	0.91	0.97	0.95	1.00	1.00	1.00	1.00	0.95	0.95	1.00
Satis Flow (prot) 0 4768 0 3285 3386 0 0 0 0 1608 1615 151	Frt		0.980										0.850
Pit Permitted	Flt Protected				0.950						0.950	0.954	
Satisf Flow (perm) 0	Satd. Flow (prot)	0	4768	0	3285	3386	0	0	0	0	1608	1615	1515
Right Turn on Red	Flt Permitted				0.106						0.950	0.954	
Satis Flow (RTOR)	Satd. Flow (perm)	0	4768	0	366	3386	0	0	0	0	1608	1615	1515
Satis Flow (RTOR)	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (mph)			23										130
Link Distance (ff)	, ,		40			40			30			55	
Travel Time (s)			430			927			317			734	
Peak Hour Factor			7.3			15.8						9.1	
Heavy Vehicles (%)	```	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Acj. Flow (vph)				1%	1%		1%			1%	1%	1%	1%
Shared Lane Traffic (%)		0	1400	216	420	1200					544	8	236
Lane Group Flow (vph)	, , ,	_					_	-	_	_		_	
Enter Blocked Irtersection	, ,	0	1616	0	420	1200	0	0	0	0		275	236
Lane Alignment		Nο		Νo	No	Νo	No		Nο	Νo			No
Median Width(ff)													
Link Offset(ft)	-			0						0			0
Crosswalk Width(fft) 30	` '		0			0			0			0	
Headway Factor	` '		30			40			16			16	
Turning Speed (mph) 15 9 15 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Two way Left Turn Lane												
Number of Detectors 2 1 2 1 2 1 Detector Template Thru Left Thru Left Thru Right Leading Detector (ft) 100 20 100 20 100 20 Trailing Detector (ft) 0	Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Number of Detectors 2 1 2 1 2 1 Detector Template Thru Left Thru Left Thru Right Leading Detector (ft) 100 20 100 20 100 20 Trailing Detector (ft) 0	Turning Speed (mph)	15		9	15		9	15		9	15		9
Leading Detector (ft) 100 20 100 20 100 20 Trailing Detector (ft) 0 <			2		1	2					1	2	1
Trailing Detector (ft) 0 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 0 Detector 1 Size(ft) 6 20 6 20 6 20 Detector 1 Type C1+Ex C1+Ex <t< td=""><td>Detector Template</td><td></td><td>Thru</td><td></td><td>Left</td><td>Thru</td><td></td><td></td><td></td><td></td><td>Left</td><td>Thru</td><td>Right</td></t<>	Detector Template		Thru		Left	Thru					Left	Thru	Right
Trailing Detector (ft) 0 0 0 0 0 0 0 Detector 1 Position(ft) 0 <td>Leading Detector (ft)</td> <td></td> <td>100</td> <td></td> <td>20</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td>20</td> <td>100</td> <td>20</td>	Leading Detector (ft)		100		20	100					20	100	20
Detector 1 Size(ft)	Trailing Detector (ft)		0		0	0					0	0	0
Detector 1 Type C1+Ex			0		0	0					0	0	0
Detector 1 Channel Detector 1 Extend (s) 0.0 0	Detector 1 Size(ft)		6		20	6					20	6	20
Detector 1 Extend (s) 0.0	Detector 1 Type		C1+Ex		C1+Ex	C1+Ex					C1+Ex	C1+Ex	C1+Ex
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Delay (\$) 0.0	Detector 1 Extend (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Delay (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type C1+Ex C1+Ex C1+Ex Detector 2 Channel	Detector 1 Queue (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 2 Size(ft) 6 6 6 Detector 2 Type C1+Ex C1+Ex C1+Ex Detector 2 Channel Detector 2 Extend(s) 0.0 0.0 0.0 Turn Type NA pm+pt NA Perm NA Perm Protected Phases 2 1 6 4 4 Permitted Phases 6 4 4 4 Detector Phase 2 1 6 4 4 4	- 17		0.0		0.0	0.0					0.0	0.0	0.0
Detector 2 Type C1+Ex C1-Ex	Detector 2 Position(ft)		94			94						94	
Detector 2 Channel Detector 2 Extend (s) 0.0 <td>Detector 2 Size(ft)</td> <td></td> <td>6</td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td>	Detector 2 Size(ft)		6			6						6	
Detector 2 Extend (s) 0.0	Detector 2 Type		C1+Ex			C1+Ex						C1+Ex	
Turn Type NA pm+pt NA Perm NA Perm Protected Phases 2 1 6 4 4 Permitted Phases 6 4 4 4 Detector Phase 2 1 6 4 4 4	Detector 2 Channel												
Protected Phases 2 1 6 4 4 Permitted Phases 6 4 4 4 Detector Phase 2 1 6 4 4 4	Detector 2 Extend (s)		0.0			0.0						0.0	
Permitted Phases 6 4 4 Detector Phase 2 1 6 4 4 4	Turn Type		NA		pm+pt	NΑ					Perm	NA	Perm
Detector Phase 2 1 6 4 4 4	Protected Phases		2			6						4	
	Permitted Phases				6						4		4
Switch Phase	Detector Phase		2		1	6					4	4	4
	Switch Phase												

Synchro 9 Report Page 10 Baseline

	۶	→	•	•	←	•	•	†	~	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)		20.0		15.0	20.0					10.0	10.0	10.0
Minimum Split(s)		27.0		20.0	27.0					16.0	16.0	16.0
Total Split(s)		118.0		38.0	156.0					44.0	44.0	44.0
Total Split (%)		59.0%		19.0%	78.0%					22.0%	22.0%	22.0%
Maximum Green(s)		111.0		33.0	149.0					38.0	38.0	38.0
Yellow Time (s)		5.0		4.0	5.0					5.0	5.0	5.0
All-Red Time (s)		2.0		1.0	2.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		7.0		5.0	7.0					6.0	6.0	6.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
V ehicle Extension (s)		6.0		3.0	6.0					3.0	3.0	3.0
Recall Mode		C-Min		None	Min					None	None	None
Act Effet Green (s)		126.5		152.3	150.3					36.7	36.7	36.7
Actuated g/C Ratio		0.63		0.76	0.75					0.18	0.18	0.18
v/c Ratio		0.53		0.76	0.47					0.94	0.93	0.61
Control Delay		9.2		50.7	8.4					118.2	116.2	40.1
Queue Delay		0.1		0.0	0.1					0.0	0.0	0.0
Total Delay		9.3		50.7	8.5					118.2	116.2	40.1
LOS		Α		D	Α					F	F	D
Approach Delay		9.3			19.4						94.1	
Approach LOS		Α			В						F	
90th %ile Green (s)		119.1		24.9	149.0					38.0	38.0	38.0
90th %ile Term Code		Coord		Gap	Coord					Max	Max	Max
70th %ile Green (s)		123.4		20.6	149.0					38.0	38.0	38.0
70th %ile Term Code		Coord		Gap	Coord					Max	Max	Max
50th %ile Green (s)		126.4		17.6	149.0					38.0	38.0	38.0
50th %ile Term Code		Coord		Gap	Coord					Max	Max	Max
30th %ile Green (s)		128.0		16.0	149.0					38.0	38.0	38.0
30th %ile Term Code		Coord		Gap						Max	Max	Max
10th %ile Green(s)		135.7		15.0	155.7					31.3	31.3	31.3
10th %ile Term Code		Coord			Coord					Gap	Gap	Gap
Stops(vph)		656		262	328					255	254	102
Fuel Used(gal)		14		10	13					13	13	5
CO Emissions (g/hr)		993		668	896					887	874	344
NOx Emissions (g/hr)		193		130	174					173	170	67
VOC Emissions (g/hr)		230		155	208					206	203	80
Dilemma V ehicles (#)		19		0	27					0	7	0
Queue Length 50th (ft)		100		147	276					382	377	130
Queue Length 95th (ft)		170		228	241					#576	#569	237
Internal Link Dist (ft)		350		220	847			237		11570	654	237
Turn Bay Length (ft)		330			047			25,			054	
Base Capacity (vph)		3024		760	2545					305	306	393
Starvation Cap Reductn		254		0	381					0	0	0
Spillback Cap Reductn		2,74		0	201					0	0	0
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.58		0.55	0.55					0.91	0.90	0.60
Intersection Summary												

Synchro 9 Report Page 11 Baseline

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 200

Offset: 95 (48%), Referenced to phase 2:EBT, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94

Intersection Signal Delay: 30.0 Intersection LOS: C

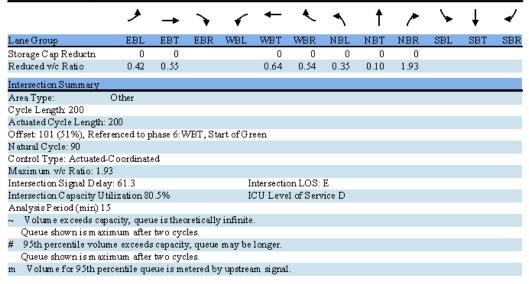
Intersection Capacity Utilization 80.5% ICU Level of Service D

Analysis Period (min) 15

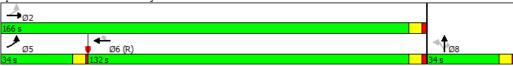
95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 28: West Eastern Blvd & Atlanta Hwy



•	•	→	*	•	+	•	•	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			^	7	ሻሻ		7			
Traffic V olum e (vph)	156	1812	0	0	1528	640	160	24	500	0	0	0
Future V olume (vph)	156	1812	0	0	1528	640	160	24	500	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	12	12	12	16	12	12	12	12	12	12	12	12
Storage Length (ft)	700		0	140		0	0		0	0		0
Storage Lanes	1		0	0		1	2		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.91	1.00	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt						0.850			0.850			
F1t Protected	0.950						0.950					
Satd. Flow (prot)	1693	4865	0	0	3386	1515	3285	1782	1515	0	0	0
F1t Permitted	0.116						0.950					
Satd. Flow (perm)	207	4865	0	0	3386	1515	3285	1782	1515	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						420			55			
Link Speed (mph)		40			40			55			30	
Link Distance (ft)		920			828			779			322	
Travel Time (s)		15.7			14.1			9.7			7.3	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles(%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	0%	0%	0%
Adj. Flow (vph)	156	1812	0	0	1528	640	160	24	500	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	156	1812	0	0	1528	640	160	24	500	0	0	0
Enter Blocked Intersection	ı No	No	No	No	Νo	No	No	Νo	Νo	Νo	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			40	6		24			24	6
Link Offset(ft)		0			10			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	0.91	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	-	=-=-	2	1	1	2	1			-
Detector Template	Left	Thru			Thru	Right	Left	Thru	Right			
Leading Detector (ft)	20	100			100	20	20	100	20			
Trailing Detector (ft)	0	0			0	0	0	0	0			
Detector 1 Position(ft)	0	0			n	0	0	0	0			
Detector 1 Size(ft)	20	6			6	20	20	6	20			
Detector 1 Type	C1+Ex	C1+Ex			C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex			
Detector 1 Channel	01.2%	01.2%			OI.DX	OI.DX	OI-DK	01.2%	01.2%			
Detector 1 Extend (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Detector 2 Position(ft)	0.0	94			94	0.0	0.0	94	0.0			
Detector 2 Size(ft)		6			6			6				
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex				
Detector 2 Channel		J1.DX			J1. DA			J1. DA				
Detector 2 Extend (s)		0.0			0.0			0.0				
Turn Type	pm+pt	NA			NA	Perm	Perm	NA	Perm			
1 dill 1 ype	bm . br	INT			nn	1 criff	1 21111	NΩ	1 6110			


Synchro 9 Report Page 13 Baseline

	۶	→	•	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	5	2			6			8				
Permitted Phases	2					6	8		8			
Detector Phase	5	2			6	6	8	8	8			
Switch Phase												
Minimum Initial (s)	7.0	20.0			20.0	20.0	7.0	7.0	7.0			
Minimum Split(s)	13.0	27.0			27.0	27.0	13.0	13.0	13.0			
Total Split(s)	34.0	166.0			132.0	132.0	34.0	34.0	34.0			
Total Split (%)	17.0%	83.0%			66.0%	66.0%	17.0%	17.0%	17.0%			
Maximum Green(s)	28.0	159.0			125.0	125.0	28.0	28.0	28.0			
Yellow Time (s)	5.0	5.0			5.0	5.0	5.0	5.0	5.0			
All-Red Time (s)	1.0	2.0			2.0	2.0	1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.0	7.0			7.0	7.0	6.0	6.0	6.0			
Lead/Lag	Lead				Lag	Lag						
Lead-Lag Optimize?	Yes				Yes	Yes						
V ehicle Extension (s)	3.0	6.0			6.0	6.0	3.0	3.0	3.0			
Recall Mode	None	Min			C-Min	C-Min	None	None	None			
Act Effet Green (s)	160.0	159.0			141.9	141.9	28.0	28.0	28.0			
Actuated g/C Ratio	0.80	0.80			0.71	0.71	0.14	0.14	0.14			
v/c Ratio	0.63	0.47			0.64	0.54	0.35	0.10	1.93			
Control Delay	26.7	7.5			17.3	5.8	80.2	76.3	465.8			
Queue Delay	0.0	0.1			0.0	0.0	0.0	0.0	0.0			
Total Delay	26.7	7.6			17.3	5.8	80.2	76.3	465.8			
LOS	С	Α			В	Α	F	E	F			
Approach Delay		9.1			13.9			361.9				
Approach LOS		Α			В			F				
90th %ile Green (s)	17.5	159.0			135.5	135.5	28.0	28.0	28.0			
90th %ile Term Code	Gap	Coord			Coord	Coord	Max	Max	Max			
70th %ile Green (s)	12.3	159.0			140.7	140.7	28.0	28.0	28.0			
70th %ile Term Code	Gap	Coord			Coord	Coord	Max	Max	Max			
50th %ile Green (s)	9.5	159.0			143.5	143.5	28.0	28.0	28.0			
50th %ile Term Code	Gap	Coord			Coord	Coord	Max	Max	Max			
30th %ile Green (s)	8.7	159.0			144.3	144.3	28.0	28.0	28.0			
30th %ile Term Code	Gap	Coord			Coord	Coord	Max	Max	Max			
10th %ile Green (s)	7.6	159.0			145.4	145.4	28.0	28.0	28.0			
10th %ile Term Code	Gap	Coord			Coord	Coord	Max	Max	Max			
Stops(vph)	67	483			787	105	143	21	259			
Fuel U sed(gal)	2	19			22	5	6	1	55			
CO Emissions (g/hr)	173	1316			1516	376	423	62	3823			
NOx Emissions (g/hr)	34	256			295	73	82	12	744			
VOC Emissions (g/hr)	40	305			351	87	98	14	886			
Dilemm a V ehicles (#)	0	33			38	0	0	1	0			
Queue Length 50th (ft)	43	170			514	103	100	28	~949			
Queue Length 95th (ft)	m109	273			665	215	1 42	62	#1197			
Internal Link Dist (ft)		840			748			699			242	
Turn Bay Length (ft)	700											
Base Capacity (vph)	373	3867			2402	1196	459	249	259			
Starvation Cap Reductn	0	598			0	0	0	0	0			
Spillback Cap Reductn	0	0			0	0	0	0	0			

Synchro 9 Report Page 14 Baseline

Splits and Phases: 31: Atlanta Hwy & East Eastern Blvd

After Condition

Lanes, Volumes, Timings 2: Atlanta Highway & Federal Rd.

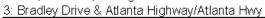
02/05/2020

	•	_	←	•	<u> </u>	4				
Long Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø2	Ø8		
Lane Group				NON			904	100		
Lane Configurations	77	1653	444	1.44	200	77.77				
Traffic V olume (vph)	396	1652	992	144	200	356				
Future V olume (vph)	396	1652	992	144	200	356				
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800				
Lane Width (ft)	11	11	11	11	11	11				
Storage Length (ft)	0			500	0	0				
Storage Lanes	2			0	1	2				
Taper Length (ft)	25				25					
Lane Util. Factor	0.97	0.95	0.91	0.91	1.00	0.88				
Frt			0.981			0.850				
Flt Protected	0.950				0.950					
Satd. Flow (prot)	3144	3241	4569	0	1621	2552				
Flt Permitted	0.950				0.950					
Satd. Flow (perm)	3144	3241	4569	0	1621	2552				
Right Turn on Red				Yes		Yes				
Satd. Flow (RTOR)			25			132				
Link Speed (mph)		40	40		35					
Link Distance (ft)		185	1182		1033					
Travel Time (s)		3.2	20.1		20.1					
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00				
Adj. Flow (vph)	396	1652	992	144	200	356				
Shared Lane Traffic (%)										
Lane Group Flow (vph)	396	1652	1136	0	200	356				
Enter Blocked Intersection	ı No	No	No	No	No	No				
Lane Alignment	Left	Left	Left	Right	Left	Right				
Median Width(ft)		22	16	_	11	_				
Link Offset(ft)		0	5		0					
Crosswalk Width(ft)		16	16		5					
Two way Left Turn Lane										
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12				
Turning Speed (mph)	15			9	15	9				
Number of Detectors	1	2	2		1	1				
Detector Template	Left	Thru	Thru		Left	Right				
Leading Detector (ft)	20	100	100		20	20				
Trailing Detector (ft)	0	0	0		0	0				
Detector 1 Position(ft)	0	0	0		0	0				
Detector 1 Size(ft)	20	6	6		20	20				
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex		C1+Ex	C1+Ex				
Detector 1 Channel										
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	0.0				
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	0.0				
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	0.0				
Detector 2 Position(ft)		94	94							
Detector 2 Size(ft)		6	6							
Detector 2 Type		C1+Ex	C1+Ex							
Detector 2 Channel										
Detector 2 Extend (s)		0.0	0.0							
Turn Type	Prot	NA	NA		Prot	pt+ov				
Protected Phases	5	2 3!	6		3!	58	2	8		
1100000001110303		4 3!	0		؛ د	, ,	4	۰		

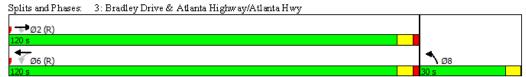
Synchro 9 Report Page 1 Baseline

	•	-	←	•	-	4			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø2	Ø8	
Permitted Phases									
Detector Phase	5	23	6		3	58			
Switch Phase									
Minimum Initial (s)	7.0		20.0		7.0		20.0	5.0	
Minimum Split(s)	12.0		26.0		12.0		26.0	22.5	
Total Split(s)	40.0		80.0		30.0		120.0	30.0	
Total Split (%)	26.7%		53.3%		20.0%		80%	20%	
Maximum Green(s)	35.0		74.0		25.0		114.0	25.5	
Yellow Time (s)	4.0		4.0		4.0		4.0	3.5	
All-Red Time (s)	1.0		2.0		1.0		2.0	1.0	
Lost Time Adjust (s)	0.0		0.0		0.0		2.0	1.0	
Total Lost Time (s)	5.0		6.0		5.0				
Lead/Lag	Lag		Lead		5.0				
Lead-Lag Optimize?	Yes		Yes						
V ehicle Extension (s)	3.0		5.0		3.0		5.0	3.0	
Recall Mode	None		C-Min		None		C-Min	None	
Walk Time (s)	11 0110		7.0		11 0110		7.0	7.0	
Flash Dont Walk (s)			11.0				11.0	11.0	
Pedestrian Calls (#/hr)			0				0	0	
Act Effet Green (s)	28.1	150.0	71.2		34.7	67.8	U	U	
Actuated g/C Ratio	0.19	1.00	0.47		0.23	0.45			
v/c Ratio	0.19	0.51	0.52		0.53	0.49			
	62.8	0.51	24.3		55.1	15.5			
Control Delay	02.8	0.0	0.0		0.0	0.0			
Queue Delay	62.8		24.3		55.1	15.5			
Total Delay LOS	62.8 E	0.6 A	24.3 C		33.1 E	15.5 B			
	E	12.6	24.3		29.7	ь			
Approach Delay			24.3 C		29.7 C				
Approach LOS	30.8	В	64.4		38.8		100.2	39.3	
90th %ile Green (s)									
90th %ile Term Code	Gap		Coord		Max		Coord	Hold	
70th %ile Green (s)	27.4		64.4		42.2		96.8	42.7	
70th %ile Term Code	Gap		Coord		Gap		Coord	Hold	
50th %ile Green (s)	26.0		71.1		36.9		102.1	37.4	
50th %ile Term Code	Hold		Coord		Gap		Coord	Hold	
30th %ile Green (s)	34.3		68.2		31.5		107.5	32.0	
30th %ile Term Code	H old		Coord		Gap		Coord	Hold	
10th %ile Green (s)	22.0		87.7		24.3		114.7	24.8	
10th %ile Term Code	H old		Coord		Gap		Coord	Hold	
Stops (vph)	361	0	726		172	132			
Fuel U sed(gal)	9	2	22		5	5			
CO Emissions (g/hr)	637	158	1528		351	333			
NOx Emissions (g/hr)	124	31	297		68	65			
VOC Emissions (g/hr)	1 48	37	354		81	77			
Dilemm a V ehicles (#)	0	0	60		0	0			
Queue Length 50th (ft)	191	0	244		170	74			
Queue Length 95th (ft)	241	0	204		250	104			
Internal Link Dist (ft)		105	1102		953				
Turn Bay Length (ft)									
Base Capacity (vph)	733	3218	2349		377	1212			

Z. Atlanta mynway i	xreue	an Ru	١.						02/05/2020
	۶	→	←	•	>	4			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø2	Ø8	
Starvation Cap Reductn	0	0	0		0	0			
Spillback Cap Reductn	0	0	0		0	0			
Storage Cap Reductn	0	0	0		0	0			
Reduced v/c Ratio	0.54	0.51	0.48		0.53	0.29			
Intersection Summary									
Area Type: C	ther)								
Cycle Length: 150									
Actuated Cycle Length: 13									
Offset: 14 (9%), Reference	ed to pha	se 2:EB	T and 6:	WBT, St	art of 1st	Green			
Natural Cycle: 65									
Control Type: Actuated-C	oordinate	ed.							
Maximum v/c Ratio: 0.67									
Intersection Signal Delay:	18.7			It	ntersectio	n LOS: I	3		
Intersection Capacity Utili	zation 69	0.1%		I	CU Leve	1 of Servi	ice C		
Analysis Period (min) 15									
! Phase conflict between	lane gro	ups.							
Splits and Phases: 2: At	lanta Hig	jhway &	: Federal	Rd.					
→ø2 (R)									→ _{Ø3}
120 s									30 s
← (n)						95 Ø5			₽ Ø8
Ø6 (R)						<u> 2</u> 25			20 -


Synchro 9 Report Page 3 Baseline

	→	•	•	+	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	7	ኘ	^	¥	
Traffic V olum e (vph)	1880	12	36	1132	8	40
Future V olume (vph)	1880	12	36	1132	8	40
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	11	11	11
Storage Length (ft)	- 11	0	25		0	0
Storage Lanes		1	1		1	0
Taper Length (ft)		1	25		25	
Lane Util. Factor	0.95	1.00	1.00	0.91	1.00	1.00
Frt	0.75	0.850	1.00	5.51	0.887	1.00
Flt Protected		0.050	0.950		0.992	
Satd. Flow (prot)	2946	1318	1473	4233	1378	0
F1t Permitted	2740	1313	0.104	7433	0.992	U
Satd. Flow (perm)	2946	1318	161	4233	1378	0
3 4 /	2740		101	4433	1378	Yes
Right Turn on Red		Yes			20	res
Satd. Flow (RTOR)	40	12		40	38	
Link Speed (mph)	40			2022	25	
Link Distance (ft)	1182			3082	1226	
Travel Time (s)	20.1	1.00	1.00	52.5	33.4	1.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	1%	0%	0%
Adj. Flow (vph)	1880	12	36	1132	8	40
Shared Lane Traffic (%)					4.7	-
Lane Group Flow (vph)	1880	12	36	1132	48	0
Enter Blocked Intersection		No	Νо	No	Νо	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	16			16	11	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.28	1.28	1.28	1.28	1.28	1.28
Turning Speed (mph)		9	15		15	9
Number of Detectors	2	1	1	2	1	
Detector Template	Thru	Right	Left	Thru	Left	
Leading Detector (ft)	100	20	20	100	20	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	6	20	20	6	20	
		C1+Ex	C1+Ex	C1+Ex		
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)	94	0.0	0.0	94	0.0	
Detector 2 Fosition(1)	6			6		
` '	C1+Ex			C1+Ex		
Detector 2 Type Detector 2 Channel	OFEX			OFFEX		
	0.0			0.0		
Detector 2 Extend (s)		Dane	Perm		Prot	
Turn Type	NA	Perm	rerm	NΑ	rrot	


Synchro 9 Report Page 4 Baseline

	→	•	•	←	4	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Protected Phases	2			6	8	
Permitted Phases		2	6			
Detector Phase	2	2	6	6	8	
Switch Phase				-		
Minimum Initial (s)	12.0	12.0	12.0	12.0	5.0	
Minimum Split(s)	18.5	18.5	18.5	18.5	10.5	
Total Split(s)	120.0	120.0	120.0	120.0	30.0	
Total Split(%)	80.0%	80.0%	80.0%	80.0%	20.0%	
Maximum Green(s)	113.5	113.5	113.5	113.5	25.0	
	4.5	4.5	4.5	4.5	4.5	
Yellow Time (s)	2.0	2.0	2.0	2.0	0.5	
All-Red Time (s)						
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	6.5	6.5	5.0	
Lead/Lag						
Lead-Lag Optimize?						
V ehicle Extension (s)	5.0	5.0	5.0	5.0	3.0	
Recall Mode			C-Min		N one	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0	0	0	
Act Effct Green (s)	134.4	134.4	134.4	134.4	7.5	
Actuated g/C Ratio	0.90	0.90	0.90	0.90	0.05	
v/c Ratio	0.71	0.01	0.25	0.30	0.46	
Control Delay	6.4	0.7	5.7	1.2	39.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	6.4	0.7	5.7	1.2	39.7	
LOS	Α	Α	Α	Α	D	
Approach Delay	6.4			1.4	39.7	
Approach LOS	Α			Α	D	
90th %ile Green(s)	127.1	127.1	127.1	127.1	11.4	
90th %ile Term Code	Coord	Coord	Coord		Gap	
70th %ile Green (s)	130.0	130.0	130.0	130.0	8.5	
70th %ile Term Code	Coord		Coord		Gap	
50th %ile Green (s)	132.0	132.0	132.0	132.0	6.5	
50th %ile Term Code	Coord		Coord		Gap	
30th %ile Green (s)	133.0	133.0	133.0	133.0	5.5	
30th %ile Term Code		Coord				
	Coord				Gap	
10th %ile Green (s)	143.5	143.5	143.5	143.5	0.0	
10th %ile Term Code	Coord	Coord		Coord	Skip	
Stops(vph)	749	1	4	86	17	
Fuel U sed(gal)	25	0	1	25	1	
CO Emissions (g/hr)	1740	8	58	1733	67	
NOx Emissions (g/hr)	338	1	11	337	13	
VOC Emissions (g/hr)	403	2	14	402	15	
Dilemm a V ehicles (#)	46	0	0	28	0	
Queue Length 50th (ft)	415	0	1	16	10	
Queue Length 95th (ft)	582	m1	10	57	54	
Internal Link Dist (ft)	1102			3002	1146	
Turn Bay Length (ft)			25			

Synchro 9 Report Page 5 Baseline

	→	\rightarrow	•	←	1	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Base Capacity (vph)	2640	1182	144	3793	261	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.71	0.01	0.25	0.30	0.18	
Intersection Summary						
Area Type:	CBD					
Cycle Length: 150						
Actuated Cycle Length:	150					
Offset: 0 (0%), Reference	ced to phase	2:EBT	and 6:V	ØBTL, St	art of 1s	t Green
Natural Cycle: 60						
Control Type: Actuated-	-Coordinate	d				
Maximum v/c Ratio: 0.7	1					
Intersection Signal Dela	y: 5.0			Ir	ntersectio	n LOS: A
Intersection Capacity Ut	tilization 74	.7%		IC	U Leve	1 of Service
Analysis Period (min) 1:	5					
m Volume for 95th pe	rcentile que	eue is m	etered by	yupstrea	m signal	

Lane Group		ၨ	→	•	•	+	•	•	†	~	\	+	-√
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	*	ቀ ቀኄ		ች	ተ ቀኄ			্ব	7		43-	
Future Volume (vph)				128			8	32			16		4
Ideal Flow (rophapi)	Future V olume (vph)	48	1656	128	244	652	8	32	12	64	16	12	4
Storage Length (ft)		1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Lames	Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Lenesh	Storage Length (ft)	110		0	220		0	0		0	0		0
Taper Length (Ff)		1		0	1		0	0		1	0		0
Lane Usi. Factor 1.00 0.91 0.91 0.90 0.91 0.90	_	25			25			25			25		
Fit Protected 0.950 0.950 0.950 0.965 0.96		1.00	0.91	0.91	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Satis Flow (prot) 1637 4651 0 1637 4694 0 0 1662 1464 0 1669 0 Fit Permitted 0.370 0.110 0.823 0.823 0.831 Satis Flow (perm) 637 4651 0 190 4694 0 0 1418 1464 0 1421 0 Right Turn on Red 78 78 78 78 78 78 78 7	Frt		0.989			0.998				0.850		0.983	
Fit Permitted	F1t Protected	0.950			0.950				0.965			0.976	
Satisfy Sati	Satd. Flow (prot)	1637	4651	0	1637	4694	0	0	1662	1464	0	1669	0
Right Turn on Red	F1t Permitted	0.370			0.110				0.823			0.831	
Satd. Flow (RTOR)	Satd. Flow (perm)	637	4651	0	190	4694	0	0	1418	1464	0	1421	0
Said Flow (RTOR)	Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)	_		11			2				116		4	
Link Distance (ff)	, ,		30			30			30			30	
Travel Time (\$)			3082			584			661			619	
Heavy Vehicles (%)			70.0			13.3			15.0			14.1	
Heavy Vehicles (%)	Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adg. Flow (vph) 48 1656 128 244 652 8 32 12 64 16 12 4 Shared L ane Traffic (%) Lane Group Flow (vph) 48 1784 0 244 660 0 0 44 64 0 32 0 Enter Blocked Intersection No No <td></td> <td>1%</td> <td>1%</td> <td>1%</td> <td>1%</td> <td>1%</td> <td>1%</td> <td>1%</td> <td>1%</td> <td>1%</td> <td>0%</td> <td>0%</td> <td>0%</td>		1%	1%	1%	1%	1%	1%	1%	1%	1%	0%	0%	0%
Shared Lane Traffic (%)		48	1656	128	244	652	8	32	12	64	16	12	4
Lane Group Flow (wph)													
Lane Alignment		48	1784	0	244	660	0	0	44	64	0	32	0
Median Width(fft) 16 16 16 0 0 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 10 Two way Left Turn Lane Headway Factor 1.12	Enter Blocked Intersection	n No	No	Νo	Νo	Νo	No	No	Νo	Νo	Νo	No	No
Link Offset(ft) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 11	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(ft) 0	Median Width(ft)		16			16			0			0	
Two way Left Turn Lane Headway Factor 1.12<			0			0			0			0	
Headway Factor 1.12	Crosswalk Width(ft)		16			16			16			10	
Headway Factor 1.12	Two way Left Turn Lane												
Number of Detectors 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 Detector Template Left Thru Left Thru Left Thru Right Left Thru Leading Detector (ft) 20 100 20 100 20 100 20 100 20 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 00		1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Detector Template	Turning Speed (mph)	15		9	15		9	15		9	15		9
Leading Detector (ft) 20 100 20 100 20 100 20 20 100 Trailing Detector (ft) 0	Number of Detectors	1	2		1	2		1	2	1	1	2	
Trailing Detector (ft) 0	Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Detector 1 Position(ft) 0	Leading Detector (ft)	20	100		20	100		20	100	20	20	100	
Detector 1 Size(ft) 20 6 20 6 20 6 20 6 20 20 6 20 6		0	0		0	0		0	0	0	0	0	
Detector 1 Type C1+Ex	Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Channel Detector 1 Extend (s) 0.0 <td></td> <td>20</td> <td>6</td> <td></td> <td>20</td> <td>6</td> <td></td> <td>20</td> <td>6</td> <td>20</td> <td>20</td> <td>6</td> <td></td>		20	6		20	6		20	6	20	20	6	
Detector 1 Extend (s) 0.0	Detector 1 Type	C1+Ex	C1+Ex		C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Delay (\$) 0.0	Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s) 0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Size(ft) 6 6 6 6 Detector 2 Type C1+Ex C1+Ex C1+Ex	- 11	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Size(ft) 6 6 6 6 Detector 2 Type C1+Ex C1+Ex C1+Ex	Detector 2 Position(ft)		94			94			94			94	
Detector 2 Type C1+Ex C1+Ex C1+Ex C1+Ex	, ,		6			6			6			6	
71			C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Extend (s) 0.0 0.0 0.0 0.0			0.0			0.0			0.0			0.0	
Turn Type pm+pt NA pm+pt NA Perm NA Perm NA	* * * * * * * * * * * * * * * * * * * *	pm+pt			pm+pt			Perm		Perm	Perm		

Synchro 9 Report Page 7 Baseline

	۶	→	•	•	+	•	•	†	<i>></i>	/	ţ	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8		8	4		
Detector Phase	5	2		1	6		8	8	8	4	4	
Switch Phase												
Minimum Initial (s)	7.0	30.0		7.0	30.0		8.0	8.0	8.0	8.0	8.0	
Minimum Split(s)	12.0	37.0		12.0	37.0		13.0	13.0	13.0	13.0	13.0	
Total Split(s)	25.0	80.0		25.0	80.0		45.0	45.0	45.0	45.0	45.0	
Total Split (%)	16.7%	53.3%		16.7%	53.3%		30.0%	30.0%	30.0%	30.0%	30.0%	
Maximum Green(s)	20.0	73.0		20.0	73.0		40.0	40.0	40.0	40.0	40.0	
Yellow Time (s)	4.0	5.0		4.0	5.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	2.0		1.0	2.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	7.0		5.0	7.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
V ehicle Extension (s)	3.0	6.0		3.0	6.0		6.0	6.0	6.0	6.0	6.0	
Recall Mode	None	C-Min		None	C-Min		None	None	None	None	None	
Walk Time(s)		7.0			7.0		7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)		0			0		0	0	0	0	0	
Act Effct Green (s)	108.1	106.1		119.7	119.1			13.0	13.0		12.6	
Actuated g/C Ratio	0.72	0.71		0.80	0.79			0.09	0.09		0.08	
v/c Ratio	0.09	0.54		0.78	0.18			0.36	0.28		0.26	
Control Delay	6.6	8.8		33.3	1.3			71.7	2.9		61.7	
Queue Delay	0.0	0.3		0.0	0.0			0.0	0.0		0.0	
Total Delay	6.6	9.1		33.3	1.3			71.7	2.9		61.7	
LOS	Α	Α		C	Α			Е	Α		Ε	
Approach Delay		9.1			9.9			31.0			61.7	
Approach LOS		Α			Α			C			Ε	
90th %ile Green (s)	8.6	95.7		20.0	107.1		17.3	17.3	17.3	17.3	17.3	
90th %ile Term Code	Gap	Coord		Max	Coord		Gap	Gap	Gap	Hold	H old	
70th %ile Green (s)	7.5	98.3		20.0	110.8		14.7	14.7	14.7	14.7	14.7	
70th %ile Term Code	Gap	Coord		Max	Coord		Gap	Gap	Gap	Hold	H old	
50th %ile Green (s)	7.0	100.2		19.8	113.0		13.0	13.0	13.0	13.0	13.0	
50th %ile Term Code	Min	Coord		Gap	Coord		Gap	Gap	Gap	Hold	H old	
30th %ile Green (s)	7.0	106.3		15.5	114.8		11.2	11.2	11.2	0.0	0.0	
30th %ile Term Code	Min	Coord		Gap	Coord		Gap	Gap	Gap	Skip	Skip	
10th %ile Green (s)	0.0	130.1		7.9	143.0		0.0	0.0	0.0	0.0	0.0	
10th %ile Term Code	Skip	Coord		Gap	Coord		Skip	Skip	Skip	Skip	Skip	
Stops (vph)	10	713		171	36			40	0		27	
Fuel U sed(gal)	1	50		4	3			1	0		1	
CO Emissions (g/hr)	89	3496		259	236			76	26		49	
NOx Emissions (g/hr)	17	680		50	46			15	5		10	
VOC Emissions (g/hr)	21	810		60	55			18	6		11	
Dilemma V ehicles (#)	0	0		0	0			0	0		0	
Queue Length 50th (ft)	9	312		165	12			41	0		26	
Queue Length 95th (ft)	m16	204		m230	23			82	0		61	
Internal Link Dist (ft)		3002			504			581			539	
Turn Bay Length (ft)	110			220								

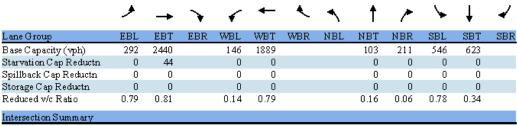
Synchro 9 Report Page 8 Baseline

	•	-	•	•	←	•	4	†	~	\	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Base Capacity (vph)	592	3293		346	3728			378	475		381	
Starvation Cap Reductn	0	0		0	0			0	0		0	
Spillback Cap Reductn	0	7.52		0	0			0	18		0	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.08	0.70		0.71	0.18			0.12	0.14		0.08	
Intersection Summary												
Area Type: (Other											
Cycle Length: 150												
Actuated Cycle Length: 1	50											
Offset: 73 (49%), Referen	nced to ph	ase 2:EE	TL and	6:WBT	L, Start	of 1st Gr	een					
Natural Cycle: 65												
Control Type: Actuated-C	oordinat	ed.										
Maximum v/c Ratio: 0.78												
Intersection Signal Delay:	: 10.7			I	ntersecti	on LOS:	В					
Intersection Capacity Util	ization 73	3.7%		I	CU Leve	of Serv	rice D					
Analysis Period (min) 15												
m Volume for 95th perc	entile qu	eue is m	etered by	y upstrea	ım signai	l.						

Splits and Phases: 5: Forrest Hills Drive/Holliday Drive & Atlanta Hwy/.

Synchro 9 Report Page 9 Baseline

	•	→	•	•	←	•	4	†	~	\	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተጉ		ሻ	ተ ተ ጮ			ર્ન	7	ሻ	4Î	
Traffic V olum e (vph)	232	1912	36	20	1100	388	4	12	12	428	24	188
Future V olume (vph)	232	1912	36	20	1100	388	4	12	12	428	24	188
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	215		0	200		0	0		0	0		0
Storage Lanes	1		0	1		0	0		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.997			0.961				0.850		0.867	
Flt Protected	0.950			0.950				0.988		0.950		
Satd. Flow (prot)	1637	4689	0	1637	4520	0	0	1719	1479	1637	1494	0
Flt Permitted	0.067			0.067				0.988		0.950		
Satd. Flow (perm)	115	4689	0	115	4520	0	0	1719	1479	1637	1494	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			62				131		188	
Link Speed (mph)		40			40			15			30	
Link Distance (ff)		584			1591			1103			965	
Travel Time (s)		10.0			27.1			50.1			21.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	0%	0%	0%	1%	1%	1%
Adj. Flow (vph)	232	1912	36	20	1100	388	4	12	12	428	24	188
Shared Lane Traffic (%)												
Lane Group Flow (vph)	232	1948	0	20	1488	0	0	16	12	428	212	0
Enter Blocked Intersection	n No	No	Νo	No	Νo	No	No	Νo	Νo	Νo	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16	_		16	_		0	_		11	_
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			10			16	
Two way Left Turn Lane												
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	
Detector 1 Type	C1+Ex	C1+Ex		C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NΑ		Split	NΑ	Perm	Split	NA	


Baseline Synchro 9 Report Page 10

- -6- --

	۶	→	>	-	•	4	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR WBI	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	5	2		. 6		4	4		8	8	
Permitted Phases	2		6	i				4			
Detector Phase	5	2	:	. 6		4	4	4	8	8	
Switch Phase											
Minimum Initial (s)	5.0	20.0	8.0	20.0		3.0	3.0	3.0	3.0	3.0	
Minimum Split(s)	10.0	26.0	13.0	26.0		13.0	13.0	13.0	13.0	13.0	
Total Split(s)	27.0	67.0	14.0	54.0		14.0	14.0	14.0	55.0	55.0	
Total Split (%)	18.0%	44.7%	9.3%	36.0%		9.3%	9.3%	9.3%	36.7%	36.7%	
Maximum Green(s)	22.0	61.0	9.0	48.0		9.0	9.0	9.0	50.0	50.0	
Yellow Time (s)	4.0	4.0	4.0			4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	2.0	1.0	2.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0				0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	6.0	5.0	6.0			5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag	Lea								
Lead-Lag Optimize?	Yes	Yes	Ye								
V ehicle Extension (s)	4.0	5.0	4.0			4.0	4.0	4.0	4.0	4.0	
Recall Mode	N one	C-Min	Non	e C-Min		None	None	None	N one	None	
Walk Time (s)		7.0		7.0		7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)		11.0		11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)		0		0		0	0	0	0	0	
Act Effct Green (s)	87.0	78.0	70.6				7.8	7.8	44.9	44.9	
Actuated g/C Ratio	0.58	0.52	0.47				0.05	0.05	0.30	0.30	
v/c Ratio	0.88	0.80	0.1:				0.18	0.06	0.88	0.37	
Control Delay	64.2	26.8	22.6				72.2	0.6	68.6	8.6	
Queue Delay	0.0	0.1	0.0				0.0	0.0	0.0	0.0	
Total Delay	64.2	26.9	22.6				72.2	0.6	68.6	8.6	
LOS	Е	С	C	_			E	Α	E	Α	
Approach Delay		30.9		35.7			41.5			48.7	
Approach LOS		C	_	D			D			D	
90th %ile Green (s)	22.0	61.3	8.7			9.0	9.0	9.0	50.0	50.0	
90th %ile Term Code	Max	Coord	Gag			Max	Max	Max	Max	Max	
70th %ile Green (s)	22.0	62.0	8.0			8.7	8.7	8.7	50.3	50.3	
70th %ile Term Code		Coord	Min			Gap	Gap	Gap	Max	Max	
50th %ile Green (s)	23.4	66.3	8.0			7.8	7.8	7.8	46.9	46.9	
50th %ile Term Code	Gap		Min			Gap	Gap	Gap	Gap	Gap	
30th %ile Green (s)	18.1	96.5	0.0			0.0	0.0	0.0	42.5	42.5	
30th %ile Term Code	Gap	Coord	Skij			Skip	Skip	Skip	Gap	Gap	
10th %ile Green (s)	12.0	104.1	0.0			0.0	0.0	0.0	34.9	34.9	
10th %ile Term Code	Gap	Coord	Skij			Skip	Skip	Skip	Gap	Gap	
Stops (vph)	151	1500	11				17	0	395	30	
Fuel U sed(gal)	5	33	(0	0	11	2	
CO Emissions (g/hr)	380	2314	29				31	10	796	1 49	
NOx Emissions (g/hr)	74	450		511			6	2	155	29	
VOC Emissions (g/hr)	88	536	:				7	2	184	35	
Dilemma V ehicles (#)	0	57		87			0	0	0	0	
Queue Length 50th (ft)	140	669	(15	0	391	16	
Queue Length 95th (ft)	#319	#832	1:				41	0	520	78	
Internal Link Dist (ft)	045	504		1511			1023			885	
Turn Bay Length (ft)	215		200	J							

Synchro 9 Report Page 11 Baseline

8: /Atlanta Hwy & Coliseum Blvd.

Area Type: Other

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 88 (59%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88 Intersection Signal Delay: 35.2 Intersection Capacity Utilization 91.5%

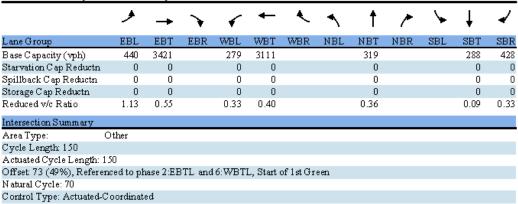
Intersection LOS: D ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: /Atlanta Hwy & Coliseum Blvd.

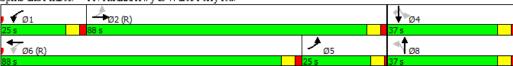


	ၨ	→	•	•	←	•	4	†	~	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ		ሻ	ተተ _ጉ			4			4	7
Traffic V olum e (vph)	456	1720	8	84	1104	32	44	8	52	12	12	132
Future V olume (vph)	456	1720	8	84	1104	32	44	8	52	12	12	132
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	140		0	200		0	0		0	0		115
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.996			0.932				0.850
Flt Protected	0.950			0.950				0.979			0.976	
Satd. Flow (prot)	1637	4698	0	1637	4684	0	0	1588	0	0	1698	1479
F1t Permitted	0.215			0.078				0.852			0.778	
Satd. Flow (perm)	370	4698	0	134	4684	0	0	1382	0	0	1354	1479
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			4			31				1 43
Link Speed (mph)		40			40			35			15	
Link Distance (ft)		1591			1993			1064			874	
Travel Time (s)		27.1			34.0			20.7			39.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles(%)	1%	1%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	496	1870	9	91	1200	35	48	9	57	13	13	1 43
Shared Lane Traffic (%)												
Lane Group Flow (vph)	496	1879	0	91	1235	0	0	114	0	0	26	1 43
Enter Blocked Intersection	n No	No	Νo	No	No	No	No	Νo	Νo	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			0	0		0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			10	
Two way Left Turn Lane												
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100		20	100	20
Trailing Detector (ft)	0	0		0	0		0	0		0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	20
Detector 1 Type	C1+Ex	C1+Ex		C1+Ex	C1+Ex		C1+Ex	C1+Ex		C1+Ex	_	C1+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94		0.0	94		0.0	94		0.0	94	0.0
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel		OI.DX			OI.DA			OI. DX			OI.DX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
1 om 1 ype	հա _± հլ	MU		հաւ _{-հւ}	MM		1 cittl	NU		1 ellit	MM	1 elm

Synchro 9 Report Page 13 Baseline

	۶	→	•	•	←	•	4	†	~	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Detector Phase	5	2		1	6		8	8		4	4	4
Switch Phase												
Minimum Initial (s)	3.0	30.0		7.0	30.0		7.0	7.0		7.0	7.0	7.0
Minimum Split(s)	8.0	36.0		13.0	36.0		12.0	12.0		12.0	12.0	12.0
Total Split(s)	25.0	0.88		25.0	88.0		37.0	37.0		37.0	37.0	37.0
Total Split (%)	16.7%	58.7%		16.7%	58.7%		24.7%	24.7%		24.7%	24.7%	24.7%
Maximum Green(s)	20.0	82.0		19.0	82.0		32.0	32.0		32.0	32.0	32.0
Y ellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	2.0		2.0	2.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	6.0		6.0	6.0			5.0			5.0	5.0
Lead/Lag	Lag	Lag		Lead	Lead							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
V ehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	C-Max		None	C-Max		None	None		N one	None	None
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0			0		0	0		0	0	0
Act Effet Green (s)	110.2	109.2		99.6	99.6			14.4			14.4	14.4
Actuated g/C Ratio	0.73	0.73		0.66	0.66			0.10			0.10	0.10
v/c Ratio	1.13	0.55		0.50	0.40			0.71			0.20	0.53
Control Delay	100.7	3.5		19.3	6.4			70.2			63.4	15.9
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Delay	100.7	3.5		19.3	6.4			70.2			63.4	15.9
LOS	F	Α		В	Α			E			E	В
Approach Delay		23.8			7.3			70.2			23.2	
Approach LOS		C			Α			Е			C	
90th %ile Green (s)	20.0	97.8		13.6	92.4		21.6	21.6		21.6	21.6	21.6
90th %ile Term Code	Max	Coord		Gap	Coord		Gap	Gap		Hold	Hold	Hold
70th %ile Green (s)	20.0	105.2		10.5	96.7		17.3	17.3		17.3	17.3	17.3
70th %ile Term Code	Max			-	Coord		Gap	Gap		Hold	Hold	Hold
50th %ile Green (s)	20.0	110.2		8.4	99.6		14.4	14.4		14.4	14.4	14.4
50th %ile Term Code	Max	Coord		Gap	Coord		Gap	Gap		Hold	Hold	Hold
30th %ile Green (s)	20.0	114.1		7.4	102.5		11.5	11.5		11.5	11.5	11.5
30th %ile Term Code	Max	Coord		Gap	Coord		Gap	Gap		Hold	Hold	Hold
10th %ile Green (s)	20.0	118.8		7.0	106.8		7.2	7.2		7.2	7.2	7.2
10th %ile Term Code	Max			Min			Gap	Gap		Hold	Hold	Hold
Stops (vph)	268 17	286 23		45 2	473 21			75 3			22	18 2
Fuel U sed(gal)		1586		_	1502			201			1	
CO Emissions (g/hr)	1182 230	309		133 26	292			39			39 8	115 22
NOx Emissions (g/hr)											9	
VOC Emissions (g/hr)	274 0	368 4		31 0	348 1			46 2			0	27 0
Dilemma Vehicles (#)	~337	90		24	176			2 80			24	0
Queue Length 50th (ft) Queue Length 95th (ft)	~337 #635	113		m40	m135			144			53	65
Queue Lengin 93 in (π) Internal Link Dist (ft)	#033	1511		II(4U	m133			984			794	0.0
, ,	140	1311		200	1913			704			794	115
Turn Bay Length (ft)	140			200								113

Synchro 9 Report Page 14 Baseline


Maximum v/c Ratio: 1.13

Intersection Signal Delay: 19.6 Intersection LOS: B ICU Level of Service D Intersection Capacity Utilization 78.0%

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 11: Atlanta Hwy & Wares Ferry Rd.

	ၨ	→	•	•	—	•	•	†	~	\	 	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	ተ ተ ው		*	ની	7	ሻ	ર્ની	7
Traffic V olum e (vph)	48	1376	328	308	920	60	416	176	344	308	344	24
Future V olume (vph)	48	1376	328	308	920	60	416	176	344	308	344	24
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	312		0	285		90	0		0	0		0
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.95	0.95	1.00	0.95	0.95	1.00
Frt			0.850		0.991				0.850			0.850
Flt Protected	0.950			0.950			0.950	0.980		0.950	0.996	
Satd. Flow (prot)	1621	3241	1450	1637	4661	0	1496	1543	1409	1555	1630	1464
F1t Permitted	0.167			0.086			0.950	0.980		0.950	0.996	
Satd. Flow (perm)	285	3241	1450	148	4661	0	1496	1543	1409	1555	1630	1464
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			187		8				308			145
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		1993			1037			1030			1056	
Travel Time (s)		34.0			17.7			23.4			24.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles(%)	2%	2%	2%	1%	1%	1%	5%	5%	5%	1%	1%	1%
Adj. Flow (vph)	48	1376	328	308	920	60	416	176	344	308	344	24
Shared Lane Traffic (%)							30%			10%		
Lane Group Flow (vph)	48	1376	328	308	980	0	291	301	344	277	375	24
Enter Blocked Intersection	ı No	No	Νo	Νo	Νo	No	No	Νo	Νo	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			11			20	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			5	
Two way Left Turn Lane												
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6		20	6	20	20	6	20
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NΑ		Split	NΑ	Perm	Split	NA	Perm

Synchro 9 Report Page 16 Baseline

	۶	→	•	•	+	•	•	†	~	\	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	5	2		1	6		4	4		8	8	
Permitted Phases	2		2	6					4			8
Detector Phase	5	2	2	1	6		4	4	4	8	8	8
Switch Phase												
Minimum Initial (s)	6.0	20.0	20.0	7.0	20.0		9.0	9.0	9.0	9.0	9.0	9.0
Minimum Split(s)	11.5	26.5	26.5	13.0	26.5		14.5	14.5	14.5	14.5	14.5	14.5
Total Split(s)	25.5	60.7	60.7	31.9	67.1		28.7	28.7	28.7	28.7	28.7	28.7
Total Split (%)	17.0%	40.5%	40.5%	21.3%	44.7%		19.1%	19.1%	19.1%	19.1%	19.1%	19.1%
Maximum Green(s)	20.5	54.2	54.2	25.9	61.1		23.2	23.2	23.2	23.2	23.2	23.2
Yellow Time (s)	4.0	4.5	4.5	4.5	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	2.0	2.0	1.5	2.0		1.5	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	6.5	6.5	6.0	6.0		5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag	Lead	Lead	Lead	Lag	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
V ehicle Extension (s)	4.0	7.0	7.0	4.0	7.0		5.0	5.0	5.0	5.0	5.0	5.0
Recall Mode	None	C-Min	C-Min	None	C-Min		None	None	None	None	None	None
Walk Time (s)		7.0	7.0		7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		0	0		0		0	0	0	0	0	0
Act Effct Green (s)	55.7	54.2	54.2	73.5	73.5		24.3	24.3	24.3	23.2	23.2	23.2
Actuated g/C Ratio	0.37	0.36	0.36	0.49	0.49		0.16	0.16	0.16	0.15	0.15	0.15
v/c Ratio	0.25	1.18	0.51	0.97	0.43		1.20	1.21	0.71	1.15	1.49	0.07
Control Delay	24.2	119.8	11.6	70.4	9.9		175.3	176.0	17.9	160.1	281.4	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	24.2	119.8	11.6	70.4	9.9		175.3	176.0	17.9	160.1	281.4	0.4
LOS	C	F	В	Ε	Α		F	F	В	F	F	A
Approach Delay		96.9			24.4			117.7			221.7	
Approach LOS		F			C			F			F	
90th %ile Green (s)	12.1	54.2	54.2	25.9	69.5		23.2	23.2	23.2	23.2	23.2	23.2
90th %ile Term Code	Gap	Coord	Coord	Max	Coord		Max	Max	Max	Max	Max	Max
70th %ile Green (s)	10.5	54.2	54.2	25.9	71.1		23.2	23.2	23.2	23.2	23.2	23.2
70th %ile Term Code	Gap	Coord	Coord	Max	Coord		Max	Max	Max	Max	Max	Max
50th %ile Green (s)	9.3	54.2	54.2	25.9	72.3		23.2	23.2	23.2	23.2	23.2	23.2
50th %ile Term Code	Gap	Coord	Coord	Max	Coord		Max	Max	Max	Max	Max	Max
30th %ile Green (s)	8.2	54.2	54.2	25.9	73.4		23.2	23.2	23.2	23.2	23.2	23.2
30th %ile Term Code	Gap	Coord	Coord	Max	Coord		Max	Max	Max	Max	Max	Max
10th %ile Green (s)	0.0	54.2	54.2	20.5	81.2		28.6	28.6	28.6	23.2	23.2	23.2
10th %ile Term Code	Skip	Coord	Coord	Gap	Coord		Max	Max	Max	Max	Max	Max
Stops(vph)	20	1108	120	245	232		224	234	62	227	273	0
Fuel U sed(gal)	1	63	6	9	11		14	14	4	13	26	0
CO Emissions (g/hr)	76	4408	447	628	780		976	1013	305	878	1823	14
NOx Emissions (g/hr)	15	858	87	122	152		190	197	59	171	355	3
VOC Emissions (g/hr)	18	1022	103	146	181		226	235	71	203	423	3
Dilemma V ehicles (#)	0	57	0	0	39		0	0	0	0	0	0
Queue Length 50th (ft)	17	~828	40	254	54		~374	~388	31	~334	~531	0
Queue Length 95th (ft)	m36	#970	73	#434	76		#574	#592	148	#533	#751	0
Internal Link Dist (ft)		1913			957			950			976	
Turn Bay Length (ft)	312			285								

Synchro 9 Report Page 17 Baseline

	۶	→	•	•	←	•	4	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Base Capacity (vph)	288	1171	643	330	2287		242	249	486	240	252	349
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.17	1.18	0.51	0.93	0.43		1.20	1.21	0.71	1.15	1.49	0.07
The second second												

Intersection Summary

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 140 (93%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

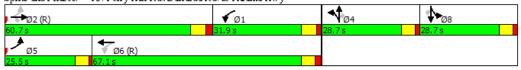
Maximum v/c Ratio: 1.49 Intersection Signal Delay: 99.2 Intersection Capacity Utilization 113.9%

Intersection LOS: F

ICU Level of Service H

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

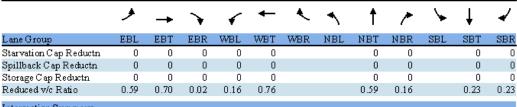

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 13: Perry Hill Rd./Dalraida Rd. & Atlanta Hwy


Synchro 9 Report Baseline Page 18

	۶	→	•	•	+	•	4	†	~	\	 	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	ተ ተ ጮ			ર્ન	7		ર્ન	7
Traffic V olum e (vph)	148	1380	16	56	1908	28	144	0	52	52	12	80
Future V olume (vph)	148	1380	16	56	1908	28	1 44	0	52	52	12	80
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	470		245	158		0	0		0	0		0
Storage Lanes	1		1	1		0	0		1	0		1
Taper Length (ft)	25			25		Ů	25		•	25		•
Lane Util. Factor	1.00	0.95	1.00	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.55	0.850	1.00	0.998	0.51	1.00	1.00	0.850	1.00	1.00	0.850
F1t Protected	0.950		0.850	0.950	0.550			0.950	0.000		0.961	0.850
Satd. Flow (prot)	1621	3241	1450	1621	4648	0	0	1621	1450	0	1639	1450
Flt Permitted	0.051	3241	1450	0.136	4040	U	U	0.950	1450	U	0.961	1450
	87	3241	1450	232	4648	0	0	1621	1450	0	1639	1450
Satd. Flow (perm)	87	3241		232	4048	Yes	U	1021	Yes	U	1039	Yes
Right Turn on Red			Yes		_	Y es						
Satd. Flow (RTOR)		40	116		2				124			124
Link Speed (mph)		40			40			15			14	
Link Distance (ft)		1037			1112			579			1107	
Travel Time (s)		17.7			19.0			26.3			53.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	1 48	1380	16	56	1908	28	1 44	0	52	52	12	80
Shared Lane Traffic (%)												
Lane Group Flow (vph)	1 48	1380	16	56	1936	0	0	144	52	0	64	80
Enter Blocked Intersection		No	Νo	No	No	No	No	Νo	Νo	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			10	
Two way Left Turn Lane												
Headway Factor	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6		20	6	20	20	6	20
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex
Detector 1 Channel	01.24	01.24	01.24	01.24	01.24		01.24	01.21	01.2%	01.24	01.24	01.2%
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	0.0	0.0	94		0.0	94	0.0	0.0	94	0.0
` '		6			6			6			6	
Detector 2 Size(ft)		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Type		CITEX			OITEX			OFFEX			OITEX	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)		0.0	n		0.0		0.40	0.0	D.	or to	0.0	D.
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Split	NA	Perm	Split	NA	Perm
Protected Phases	5	2		1	6		4	4		8	8	

Synchro 9 Report Page 19 Baseline

	٠	→	•	•	+	•	•	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2	6					4			8
Detector Phase	5	2	2	1	6		4	4	4	8	8	8
Switch Phase												
Minimum Initial (s)	7.0	20.0	20.0	7.0	20.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split(s)	14.0	27.0	27.0	14.0	27.0		13.0	13.0	13.0	13.0	13.0	13.0
Total Split(s)	25.5	63.9	63.9	25.5	63.9		28.7	28.7	28.7	31.9	31.9	31.9
Total Split (%)	17.0%	42.6%	42.6%	17.0%	42.6%		19.1%	19.1%	19.1%	21.3%	21.3%	21.3%
Maximum Green(s)	18.5	56.9	56.9	20.5	56.9		22.7	22.7	22.7	25.9	25.9	25.9
Yellow Time (s)	5.0	5.0	5.0	4.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	1.0	2.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	7.0	7.0	7.0	5.0	7.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
V ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	None
Walk Time(s)		7.0	7.0		7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		0	0		0		0	0	0	0	0	0
Act Effet Green (s)	101.1	91.2	91.2	91.9	82.0			18.0	18.0		11.3	11.3
Actuated g/C Ratio	0.67	0.61	0.61	0.61	0.55			0.12	0.12		0.08	0.08
v/c Ratio	0.78	0.70	0.02	0.26	0.76			0.74	0.18		0.52	0.36
Control Delay	56.2	3.7	0.0	13.5	30.2			85.5	1.4		81.0	6.3
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	56.2	3.7	0.0	13.5	30.2			85.5	1.4		81.0	6.3
LOS	E	A	Α	В	C			F	Α		F	Α
Approach Delay		8.7			29.7			63.2			39.5	
Approach LOS	20.4	A		10.5	C		00.7	E	00.7	4.5.7	D	4.5.77
90th %ile Green (s)	20.1	77.1	77.1	10.5	65.5		22.7	22.7	22.7	15.7	15.7	15.7
90th %ile Term Code	Gap			Gap	Coord		Max	Max	Max	Gap	Gap	Gap
70th %ile Green (s)	15.5	83.7	83.7	7.9	74.1		21.3	21.3	21.3	13.1	13.1	13.1
70th %ile Term Code	Gap	Coord	Coord	Gap	Coord		Gap	Gap	Gap	Gap	Gap	Gap
50th %ile Green (s)	12.1	89.1	89.1	7.1	82.1		18.6	18.6	18.6	11.2	11.2	11.2
50th %ile Term Code	Gap 9.0	Coord 94.0	Coord 94.0	Gap	Coord 90.0		Gap 15.7	Gap	Gap	Gap 9.3	Մագր 9.3	Gap 9.3
30th %ile Green (s)				7.0				15.7	15.7			
30th %ile Term Code 10th %ile Green (s)	Gap 7.2	Coord 112.3	Coord 112.3	Min 0.0	Coord 98.1		Gap 11.7	Gap 11.7	Gap 11.7	Gap 7.0	Մագր 7.0	Gap 7.0
10th %ile Term Code		Coord	Coord		Coord					Min	Min	Min
Stops (vph)	Gap 186	255	0	Skip 24	1444		Gap	Gap 137	Gap O	IVIIII	60	2
Fuel U sed(gal)	5	13	0	1	41			4	0		2	1
CO Emissions (g/hr)	319	927	8	57	2844			249	23		131	73
NOx Emissions (g/hr)	62	180	2	11	553			48	4		26	14
VOC Emissions (g/hr)	74	215	2	13	659			58	5		30	17
Dilemma V chicles (#)	,4	7	0	13	58			0	0		0	0
Queue Length 50th (ft)	100	59	0	16	521			138	0		61	0
Queue Length 95th (ft)	m86	m152	m0	33	#777			211	0		110	12
Internal Link Dist (ft)	1000	m152	mo	دد	1032			499	U		1027	12
Turn Bay Length (ft)	470	701	245	158	1032			477			102/	
Base Capacity (vph)	251	1971	927	347	2540			245	324		283	352
Dase Capacity (shii)	231	17/1	741	34/	4740			247	324		400	332

Synchro 9 Report Page 20 Baseline

Intersection Summary

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

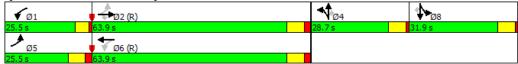
Offset: 9 (6%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1 st Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.78

Intersection Signal Delay: 23.4 Intersection LOS: C
Intersection Capacity Utilization 80.0% ICU Level of Service D


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Atlanta Hwy & New Publix

_	-	*	•	•	_	1	T		-	¥	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
*	44	7	ሻ	44	7		4			ર્ય	7
4	1452	76	20	980	0	12	0	16	4	Ö	4
4	1452	76	20	980	0	12	0	16	4	0	4
1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
11	11	11	11	11	11	11	11	11	11	11	11
490						0					50
1		1	1		1	0		0	0		1
25			25			25			25		
1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		0.850					0.923				0.850
0.950			0.950							0.950	
1637	3273	1464	1637	3273	1723	0	1526	0	0	1653	1479
1.289			0.170			_	0.860	_	_	0.902	
498	3273	1464	293	3273	1723	0	1341	0	0	1569	1479
		Yes			Yes	_		Yes	_		Yes
		42					25				25
	40			40			15			15	
	1112			4770			263			246	
	19.0			81.3			12.0			11.2	
1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00
1%	1%	1%	1%	1%	1%	3%	3%	3%	0%	0%	0%
4											4
4	1452	76	20	980	0	0	28	0	0	4	4
No	No	No	No	No	No	No	No	No	No	No	No
Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
					6		0			0	6
	0			0			0			0	
	16			16			16			16	
1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
15		9	15					9	15		9
1	2	1	1	2	1	1	2		1	2	1
Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	Right
20	100	20	20	100	20	20	100		20	100	20
0	0	0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	0		0	0	0
20	6	20	20	6	20	20	6		20	6	20
1+E x	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
0.0		0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
	94			94			94			94	
	6			6			6			6	
	C1+Ex			C1+Ex			C1+Ex			C1+Ex	
	0.0			0.0			0.0			0.0	
Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	Perm
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1 1452 1800 1800 11 11 490 1 1 25 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.00 0.0	1452 76 1400 1200 11 11 11 11 11 11								

	۶	→	•	•	←	•	4	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		4
Detector Phase	2	2	2	6	6	6	8	8		4	4	4
Switch Phase												
Minimum Initial (s)	20.0	20.0	20.0	20.0	20.0	20.0	7.0	7.0		7.0	7.0	7.0
Minimum Split(s)	26.5	26.5	26.5	26.5	26.5	26.5	12.5	12.5		12.5	12.5	12.5
Total Split(s)	107.0	107.0	107.0	107.0	107.0	107.0	43.0	43.0		43.0	43.0	43.0
Total Split (%)	71.3%	71.3%	71.3%	71.3%	71.3%	71.3%	28.7%	28.7%		28.7%	28.7%	28.7%
Maximum Green(s)	100.5	100.5	100.5	100.5	100.5	100.5	38.0	38.0		38.0	38.0	38.0
Yellow Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	0.5	0.5		0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5		5.0			5.0	5.0
Lead/Lag												
Lead-Lag Optimize?												
V ehicle Extension (s)	7.0	7.0	7.0	7.0	7.0	7.0	5.0	5.0		5.0	5.0	5.0
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	Min	Min		Min	Min	Min
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0	0	0		0	0	0
Act Effet Green (s)	129.8	129.8	129.8	129.8	129.8			8.7			8.7	8.7
Actuated g/C Ratio	0.87	0.87	0.87	0.87	0.87			0.06			0.06	0.06
v/c Ratio	0.01	0.51	0.06	0.08	0.35			0.28			0.04	0.04
Control Delay	0.2	2.6	0.3	2.4	2.3			32.4			66.8	8.0
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0			0.0	0.0
Total Delay	0.2	2.6	0.3	2.4	2.3			32.4			66.8	8.0
LOS	Α	Α	Α	Α	Α			С			E	A
Approach Delay		2.5			2.3			32.4			33.8	
Approach LOS		Α			Α			C			C	
90th %ile Green (s)	127.3	127.3	127.3	127.3	127.3	127.3	11.2	11.2		11.2	11.2	11.2
90th %ile Term Code	Coord	Coord	Coord	Coord	Coord	Coord	Gap	Gap		Hold	Hold	H old
70th %ile Green (s)	129.3	129.3	129.3	129.3	129.3	129.3	9.2	9.2		9.2	9.2	9.2
70th %ile Term Code	Coord	Coord	Coord	Coord	Coord	Coord	Gap	Gap		Hold	Hold	H old
50th %ile Green (s)	130.6	130.6	130.6	130.6	130.6	130.6	7.9	7.9		7.9	7.9	7.9
50th %ile Term Code	Coord	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap	Gap	Gap
30th %ile Green (s)	131.0	131.0	131.0	131.0	131.0	131.0	7.5	7.5		7.5	7.5	7.5
30th %ile Term Code	Coord	Coord	Coord	Coord	Coord	Coord	Gap	Gap		Gap	Gap	Gap
10th %ile Green (s)	131.0	131.0	131.0	131.0	131.0	131.0	7.5	7.5		7.5	7.5	7.5
10th %ile Term Code	Coord	Coord	Coord	Coord	Coord	Coord	Gap	Gap		Gap	Gap	Gap
Stops(vph)	0	209	1	3	165		_	11		_	6	0
Fuel U sed(gal)	0	14	1	1	34			0			0	0
CO Emissions (g/hr)	2	963	41	48	2363			19			5	1
NOx Emissions (g/hr)	0	187	8	9	460			4			1	0
VOC Emissions (g/hr)	0	223	10	11	548			4			1	0
Dilemma V ehicles (#)	0	35	0	0	33			0			0	0
Queue Length 50th (ft)	0	4	0	2	68			3			4	0
Queue Length 95th (ft)	m0	6	m0	7	102			37			17	0
Internal Link Dist (ft)		1032			4690			183			166	
Turn Bay Length (ft)	490		120	380								50

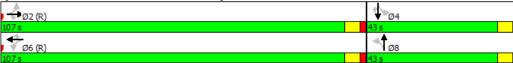
Synchro 9 Report Page 23 Baseline

17: Bellehurst Dr. & Atlanta Hwy

	۶	→	•	•	←	•	•	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Base Capacity (vph)	430	2833	1272	253	2833			358			397	393
Starvation Cap Reductn	0	0	0	0	0			0			0	0
Spillback Cap Reductn	0	0	0	0	0			0			0	0
Storage Cap Reductn	0	0	0	0	0			0			0	0
Reduced v/c Ratio	0.01	0.51	0.06	80.0	0.35			80.0			0.01	0.01
Intersection Summary												
Area Type:	Other											

Cycle Length: 150

Actuated Cycle Length: 150

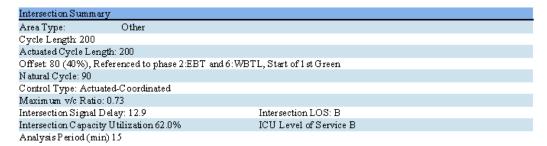

Offset: 137 (91%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 50
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.51

Intersection Signal Delay: 2.9 Intersection LOS: A Intersection Capacity Utilization 60.4% ICU Level of Service B

Analysis Period (min) 15
m. Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 17: Bellehurst Dr. & Atlanta Hwy

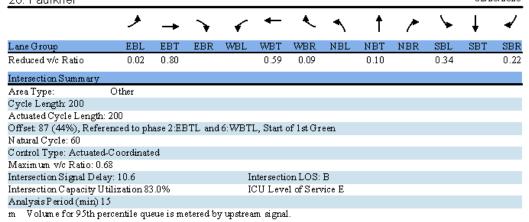


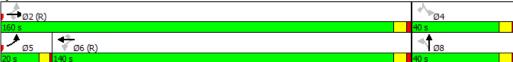
	→	•	F	•	+	4	~
Lane Group	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	^	7		ă	^	ሻ	7
Traffic V olume (vph)	1620	24	28	28	1392	20	28
Future V olume (vph)	1620	24	28	28	1392	20	28
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800
Storage Length (ft)	2000	250	2000	0	.500	0	0
Storage Lanes		1		1		1	1
Taper Length (ft)				25		25	•
Lane Util. Factor	0.95	1.00	0.95	1.00	0.95	1.00	1.00
Frt	2.22	0.850	0.00	2.00	5.55	2.00	0.850
F1t Protected				0.950		0.950	
Satd. Flow (prot)	3353	1500	0	1676	3353	1676	1500
Flt Permitted		-300		0.085		0.950	
Satd. Flow (perm)	3353	1500	0	150	3353	1676	1500
Right Turn on Red		Yes	, i	150		20,0	Yes
Satd. Flow (RTOR)		20					30
Link Speed (mph)	25	20			40	30	50
Link Distance (ft)	917				400	521	
Travel Time (s)	25.0				6.8	11.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1761	26	30	30	1513	22	30
Shared Lane Traffic (%)	1,01	20	- 50	50	1713	22	- 50
Lane Group Flow (vph)	1761	26	0	60	1513	22	30
Enter Blocked Intersection		No.	No	No	No	No	No
Lane Alignment	Left		RNA	Left	Left	Left	Right
Median Width(ft)	40	regin	10 1417	Par	40	12	TOTELLE
Link Offset(ft)	-0				0	0	
Crosswalk Width(ft)	16				16	16	
Two way Left Turn Lane	10				10	10	
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	1.07	9	9	1.07	1.07	1.07	9
Number of Detectors	2	1	1	1	2	1	1
Detector Template	2	1	Left	Left	Thru	Left	Right
Leading Detector (ft)	100	20	20	20	100	20	20
Trailing Detector (ft)	100	20	0	20	100	20	20
Detector 1 Position(ft)	0	0	0	0	0	0	0
Detector 1 Fosition (ft) Detector 1 Size(ft)	6	20	20	20	6	20	20
` '	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex
Detector 1 Type	CITEX	CITEX	CITEX	CITEX	CITEX	CITEX	CITEX
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)							
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	94				94		
Detector 2 Size(ft)	6				6		
Detector 2 Type	C1+Ex				C1+Ex		
Detector 2 Channel					0.0		
Detector 2 Extend (s)	0.0	_			0.0	_	_
Turn Type	NA	Perm	pm+pt		NA	Prot	Perm
Protected Phases	2		1	1	6	8	
Permitted Phases		2	6	6			8

Synchro 9 Report Page 1 Baseline

	→	•	F	•	←	4	/
Lane Group	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Detector Phase	2	2	1	1	6	8	8
Switch Phase	_						
Minimum Initial (s)	15.0	15.0	15.0	15.0	15.0	3.5	3.5
Minimum Split(s)	21.5	21.5	21.5	21.5	21.5	10.0	10.0
Total Split(s)	150.0	150.0	25.0	25.0	175.0	25.0	25.0
Total Split (%)	75.0%	75.0%	12.5%	12.5%	87.5%	12.5%	12.5%
Maximum Green(s)	143.5	143.5	20.0	20.0	168.5	20.0	20.0
Yellow Time (s)	4.5	4.5	4.0	4.0	4.5	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	1.0	2.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.5	6.5		5.0	6.5	5.0	5.0
Lead/Lag	Lead	Lead	Lag	Lag			
Lead-Lag Optimize?			6				
V ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	C-Max		None		C-Max	Max	Max
Act Effct Green (s)	143.5	143.5	2.0220	170.0	168.5	20.0	20.0
Actuated g/C Ratio	0.72	0.72		0.85	0.84	0.10	0.10
v/c Ratio	0.72	0.02		0.21	0.54	0.13	0.17
Control Delay	19.1	3.5		7.3	4.5	84.3	25.1
Queue Delay	0.0	0.0		0.0	0.3	0.0	0.0
Total Delay	19.1	3.5		7.3	4.8	84.3	25.1
LOS	В	A		A	Α.	F	C
Approach Delay	18.9				4.9	50.2	Ŭ
Approach LOS	В				Α.	D .2	
90th %ile Green (s)	143.5	143.5	20.0	20.0	168.5	20.0	20.0
90th %ile Term Code	Coord		Hold	Hold	Coord		Max R
70th %ile Green (s)	143.5	143.5	20.0	20.0	168.5	20.0	20.0
70th %ile Term Code	Coord		Hold	Hold		MaxR	Max R
50th %ile Green (s)	143.5	143.5	20.0	20.0	168.5	20.0	20.0
50th %ile Term Code	Coord		Hold	Hold			Max R
30th %ile Green (s)	143.5	143.5	20.0	20.0	168.5	20.0	20.0
30th %ile Term Code	Coord		Hold	Hold	Coord		Max R
10th %ile Green (s)	143.5	143.5	20.0	20.0	168.5	20.0	20.0
10th %ile Green (s) 10th %ile Term Code	Coord		Hold	Hold	Coord	Z0.0 MaxR	Z0.0 Max R
	932	Coord 3	noid	Hola 10	283	MaxR 19	Max R
Stops (vph)	23						0
Fuel U sed(gaf)	1575	0 15		0 23	8 547	1 37	21
CO Emissions (g/hr)							
NOx Emissions (g/hr)	306	3		4	106	7	4
VOC Emissions (g/hr)	365	4		5	127	9	5
Dilemma V ehicles (#)	0	0		0	44	0	0
Queue Length 50th (ft)	684	2		6	112	27	0
Queue Length 95th (ft)	761	13		29	359	62	38
Internal Link Dist (ft)	837				320	441	
Turn Bay Length (ft)		250					
Base Capacity (vph)	2405	1081		280	2824	167	177
Starvation Cap Reductn	0	0		0	616	0	0
Spillback Cap Reductn	0	0		0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0
Reduced v/c Ratio	0.73	0.02		0.21	0.69	0.13	0.17

Synchro 9 Report Page 2 Baseline

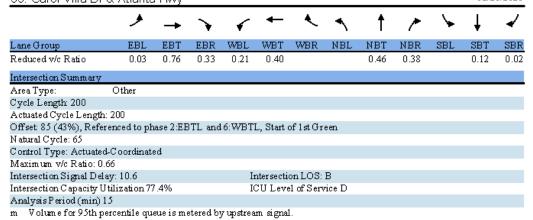

Splits and Phases: 18: East Mount Plaza & Atlanta Hwy


	۶	→	•	•	←	•	•	†	~	/	↓	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7		414	7		4		ሻ		7
Traffic V olum e (vph)	10	1416	Ö	20	1128	116	8	Ö	24	84	0	68
Future V olume (vph)	10	1416	0	20	1128	116	8	0	24	84	0	68
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (ft)	300		0	0		0	0		0	0		0
Storage Lanes	1		1	0		1	0		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850		0.899				0.850
F1t Protected	0.950				0.999			0.988		0.950		
Satd. Flow (prot)	1693	3386	1782	0	3383	1515	0	1599	0	1710	0	1530
F1t Permitted	0.222				0.886			0.988		0.803		
Satd. Flow (perm)	396	3386	1782	0	3000	1515	0	1599	0	1445	0	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						114		49				68
Link Speed (mph)		40			40			15			15	
Link Distance (ft)		400			399			214			223	
Travel Time (s)		6.8			6.8			9.7			10.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles(%)	1%	1%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	10	1416	0	20	1128	116	8	0	24	84	0	68
Shared Lane Traffic (%)												
Lane Group Flow (vph)	10	1416	0	0	1148	116	0	32	0	84	0	68
Enter Blocked Intersection	n No	No	Νo	No	No	No	No	Νo	Νo	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		45			45			25			40	
Link Offset(ft)		10			0			0			0	
Crosswalk Width(ft)		16			16			5			16	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2		1		1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left		Right
Leading Detector (ft)	20	100	20	20	100	20	20	100		20		20
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0		0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0		0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20		20
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex		C1+Ex		C1+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0
Detector 2 Position(ft)		94			94			94				
Detector 2 Size(ft)		6			6			6				
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex				
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0				
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA		Perm		Perm
Protected Phases	5	2			6			8				

Synchro 9 Report Page 4 Baseline

	۶	→	•	•	+	•	•	†	<i>></i>	/	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2	6		6	8			4		4
Detector Phase	5	2	2	6	6	6	8	8		4		4
Switch Phase												
Minimum Initial (s)	5.0	20.0	20.0	20.0	20.0	20.0	10.0	10.0		7.0		7.0
Minimum Split(s)	10.0	27.0	27.0	27.0	27.0	27.0	16.0	16.0		13.0		13.0
Total Split(s)	20.0	160.0	160.0	140.0	140.0	140.0	40.0	40.0		40.0		40.0
Total Split (%)	10.0%	80.0%	80.0%	70.0%	70.0%	70.0%	20.0%	20.0%		20.0%		20.0%
Maximum Green(s)	15.0	153.0	153.0	133.0	133.0	133.0	34.0	34.0		34.0		34.0
Yellow Time (s)	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0
All-Red Time (s)	1.0	2.0	2.0	2.0	2.0	2.0	1.0	1.0		1.0		1.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0		0.0		0.0		0.0
Total Lost Time (s)	5.0	7.0	7.0		7.0	7.0		6.0		6.0		6.0
Lead/Lag	Lead			Lag	Lag	Lag						
Lead-Lag Optimize?	Yes			Yes	Yes	Yes						
V ehicle Extension (s)	3.0	6.0	6.0	6.0	6.0	6.0	3.0	3.0		3.0		3.0
Recall Mode	None	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None		None
Act Effct Green (s)	171.7	169.7			165.4	165.4		17.3		17.3		17.3
Actuated g/C Ratio	0.86	0.85			0.83	0.83		0.09		0.09		0.09
v/c Ratio	0.03	0.49			0.46	0.09		0.17		0.68		0.35
Control Delay	2.9	4.3			9.7	2.4		8.9		113.3		19.8
Queue Delay	0.0	1.0			0.2	0.0		0.0		0.0		0.0
Total Delay	2.9	5.3			9.9	2.4		8.9		113.3		19.8
LOS	Α	Α			Α	Α		Α		F		В
Approach Delay		5.3			9.3			8.9			71.5	
Approach LOS		Α			Α			Α			Е	
90th %ile Green (s)	6.0	162.7	162.7	151.7	151.7	151.7	24.3	24.3		24.3		24.3
90th %ile Term Code	Gap	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap		Gap
70th %ile Green (s)	5.8	166.9	166.9	156.1	156.1	156.1	20.1	20.1		20.1		20.1
70th %ile Term Code	Gap	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap		Gap
50th %ile Green (s)	0.0	169.7	169.7	169.7	169.7	169.7	17.3	17.3		17.3		17.3
50th %ile Term Code	Skip	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap		Gap
30th %ile Green (s)	0.0	172.5	172.5	172.5	172.5	172.5	14.5	14.5		14.5		14.5
30th %ile Term Code	Skip	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap		Gap
10th %ile Green (s)	0.0	176.8	176.8	176.8	176.8	176.8	10.2	10.2		10.2		10.2
10th %ile Term Code	Skip	Coord	Coord	Coord	Coord	Coord	H old	Hold		Gap		Gap
Stops(vph)	1	296			483	10		2		81		11
Fuel Used(gal)	0	8			10	0		0		2		0
CO Emissions (g/hr)	3	5 59			708	33		9		157		31
NOx Emissions (g/hr)	1	109			138	6		2		31		6
VOC Emissions (g/hr)	1	130			164	8		2		36		7
Dilemm a V ehicles (#)	0	35			44	0		0		0		0
Queue Length 50th (ft)	2	213			290	11		0		109		0
Queue Length 95th (ft)	m3	200			262	26		18		173		55
Internal Link Dist (ft)		320			319			134			143	
Turn Bay Length (ft)	300											
Base Capacity (vph)	437	2873			2480	1272		312		245		316
Starvation Cap Reductn	0	1100			548	0		0		0		0
Spillback Cap Reductn	0	34			77	0		0		0		1
Storage Cap Reductn	0	0			0	0		0		0		0

Splits and Phases: 20: Faulkner

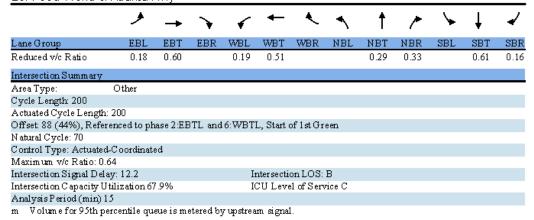


•	۶	→	•	•	+	•	•	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	ተተው			ર્ન	7			7
Traffic V olum e (vph)	8	1480	140	88	1188	4	64	8	104	16	4	4
Future V olume (vph)	8	1480	140	88	1188	4	64	8	104	16	4	4
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (ft)	270		0	235		0	0		0	0		0
Storage Lanes	1		1	1		0	0		1	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.999				0.850			0.850
Flt Protected	0.950			0.950				0.957			0.962	
Satd. Flow (prot)	1676	3353	1500	1710	4909	0	0	1723	1530	0	1732	1530
Flt Permitted	0.220			0.123				0.735			0.748	
Satd. Flow (perm)	388	3353	1500	221	4909	0	0	1323	1530	0	1346	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			121		1				104			60
Link Speed (mph)		40			40			30			30	
Link Distance (ft)		390			654			278			210	
Travel Time (s)		6.6			11.1			6.3			4.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	8	1480	140	88	1188	4	64	8	104	16	4	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	8	1480	140	88	1192	0	0	72	104	0	20	4
Enter Blocked Intersection	ı No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		45	Ŭ		40	Ŭ		8	Ŭ		0	Ŭ
Link Offset(ft)		0			0			0			15	
Crosswalk Width(ft)		25			25			16			10	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	Ō	0	Ō	Ō		Ō	Ō	Ō	0	0	Ō
Detector 1 Size(ft)	20	6	20	20	6		20	6	20	20	6	20
Detector 1 Type	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex
Detector 1 Channel	01.21	01.21	01.24	01.24	01.24		01.24	01.24	01.24	01.24	01.24	01.2%
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	0.0	0.0	94		0.0	94	0.0	0.0	94	0.0
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Type Detector 2 Channel		OLIEK			OLIEA			OLIEK			OITEX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
	Perm	NA	Darm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Turn Type Protected Phases	rerm	NA 2	reim	pm+pt 1	NA 6		reim	NA 8	rem	rem	NA 4	reim
riotected rhases		2		1	b			ŏ			4	

Synchro 9 Report Page 16 Baseline

	٠	→	•	•	+	•	1	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2	6			8		8	4		4
Detector Phase	2	2	2	1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	20.0	20.0	20.0	10.0	20.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split(s)	27.0	27.0	27.0	15.0	27.0		13.0	13.0	13.0	13.0	13.0	13.0
Total Split(s)	1 48 .0	148.0	148.0	22.0	170.0		30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	74.0%	74.0%	74.0%	11.0%	85.0%		15.0%	15.0%	15.0%	15.0%	15.0%	15.0%
Maximum Green(s)	1 41 .0	141.0	141.0	17.0	163.0		24.0	24.0	24.0	24.0	24.0	24.0
Yellow Time (s)	5.0	5.0	5.0	4.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	1.0	2.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	7.0	7.0	7.0	5.0	7.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lead	Lead	Lag								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
V ehicle Extension (s)	6.0	6.0	6.0	3.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode	C-Min	C-Min	C-Min	Max	C-Min		Min	Min	Min	Min	Min	Min
Act Effct Green (s)	134.2	134.2	134.2	171.9	169.9			17.1	17.1		17.1	17.1
Actuated g/C Ratio	0.67	0.67	0.67	0.86	0.85			0.09	0.09		0.09	0.09
v/c Ratio	0.03	0.66	0.13	0.21	0.29			0.64	0.46		0.17	0.02
Control Delay	7.8	11.6	1.7	4.3	2.0			111.8	18.8		85.8	0.2
Queue Delay	0.0	0.5	0.5	0.0	0.1			0.0	0.0		0.0	0.0
Total Delay	7.8	12.1	2.2	4.3	2.0			111.8	18.8		85.8	0.2
LOS	Α	В	Α	Α	Α			F	В		F	A
Approach Delay		11.2			2.2			56.8			71.5	
Approach LOS		В			Α			Ε			Ε	
90th %ile Green (s)	1 41 .1	141.1	141.1	17.0	163.1		23.9	23.9	23.9	23.9	23.9	23.9
90th %ile Term Code	Coord	Coord	Coord	MaxR	Coord		Gap	Gap	Gap	Hold	Hold	H old
70th %ile Green (s)	145.0	145.0	145.0	17.0	167.0		20.0	20.0	20.0	20.0	20.0	20.0
70th %ile Term Code	Coord	Coord	Coord	MaxR	Coord		Gap	Gap	Gap	Hold	Hold	H old
50th %ile Green (s)	135.5	135.5	135.5	29.4	169.9		17.1	17.1	17.1	17.1	17.1	17.1
50th %ile Term Code	Coord	Coord		MaxR	Coord		Gap	Gap	Gap	Hold	Hold	H old
30th %ile Green (s)	129.5	129.5	129.5	38.2	172.7		14.3	14.3	14.3	14.3	14.3	14.3
30th %ile Term Code	Coord		Coord	MaxR	Coord		Gap	Gap	Gap	Hold	H old	H old
10th %ile Green (s)	119.7	119.7	119.7	52.0	176.7		10.3	10.3	10.3	10.3	10.3	10.3
10th %ile Term Code	Coord	Coord	Coord	MaxR	Coord		Gap	Gap	Gap	Hold	H old	H old
Stops (vph)	1	369	7	13	143			68	14		19	0
Fuel U sed(gal)	0	11	0	1	7			2	1		0	0
CO Emissions (g/hr)	3	772	34	42	501			152	49		34	0
NOx Emissions (g/hr)	1	150	7	8	98			30	10		7	0
VOC Emissions (g/hr)	1	179	8	10	116			35	11		8	0
Dilemm a V ehicles (#)	0	45	0	0	5			0	0		0	0
Queue Length 50th (ft)	2	160	4	4	23			94	0		25	0
Queue Length 95th (ft)	m4	338	25	9	24			153	66		56	0
Internal Link Dist (ft)		310			574			198			130	
Turn Bay Length (ft)	270			235								
Base Capacity (vph)	275	2377	1098	418	4170			158	275		161	236
Starvation Cap Reductn	0	417	669	0	1201			0	0		0	0
Spillback Cap Reductn	0	0	0	0	0			0	0		0	0
Storage Cap Reductn	0	0	0	0	0			0	0		0	0

Synchro 9 Report Page 17 Baseline

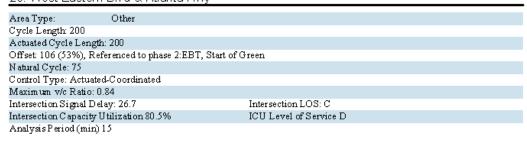


Splits and Phases: 59: Carol Villa Dr & Atlanta Hwy

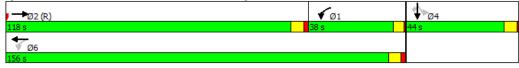
	۶	→	•	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- ነ	↑ ↑		- ነ	↑ ↑↑			4	7		ની	7
Traffic V olum e (vph)	64	1648	40	56	1076	122	24	16	76	92	8	40
Future V olume (vph)	64	1648	40	56	1076	122	24	16	76	92	8	40
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (ft)	340		0	290		0	0		0	0		0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.996			0.985				0.850			0.850
Flt Protected	0.950			0.950				0.971			0.956	
Satd. Flow (prot)	1693	4846	0	1693	4792	0	0	1748	1530	0	1721	1530
Flt Permitted	0.193			0.121				0.971			0.956	
Satd. Flow (perm)	344	4846	0	216	4792	0	0	1748	1530	0	1721	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3			19				120			120
Link Speed (mph)		40			40			15			15	
Link Distance (ft)		675			424			273			200	
Travel Time (s)		11.5			7.2			12.4			9.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	64	1648	40	56	1076	122	24	16	76	92	8	40
Shared Lane Traffic (%)												
Lane Group Flow (vph)	64	1688	0	56	1198	0	0	40	76	0	100	40
Enter Blocked Intersection	n No	No	No	No	No	No	No	Νo	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		40	, i		40	, i		0	Ĭ		0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			5			5	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	20
Detector 1 Type	C1+Ex	C1+Ex		C1+Ex	C1+Ex		C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex			C1+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NΑ		Split	NΑ	Perm	Split	NA	Perm
Protected Phases	5	2		1	6		8	8		4	4	

	۶	→	,	•	←	•	•	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBR W	BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2			6					8			4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	7.0	20.0		7.0	20.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split(s)	12.0	27.0	1:	2.0	27.0		13.0	13.0	13.0	13.0	13.0	13.0
Total Split(s)	22.0	134.0	2:	2.0	134.0		22.0	22.0	22.0	22.0	22.0	22.0
Total Split (%)	11.0%	67.0%	11.0	0%	67.0%		11.0%	11.0%	11.0%	11.0%	11.0%	11.0%
Maximum Green(s)	17.0	127.0	1	7.0	127.0		16.0	16.0	16.0	16.0	16.0	16.0
Yellow Time (s)	4.0	5.0		4.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	2.0		1.0	2.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	7.0		5.0	7.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lead	I	ag	Lag							
Lead-Lag Optimize?	Yes	Yes		es	Yes							
V ehicle Extension (s)	3.0	6.0		3.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode		C-Min		ne	C-Min		None	None	None	N one	None	None
Act Effct Green (s)	141.9	139.9		0.8	138.8			10.9	10.9		18.2	18.2
Actuated g/C Ratio	0.71	0.70		.70	0.69			0.05	0.05		0.09	0.09
v/c Ratio	0.21	0.50	_	.28	0.36			0.42	0.39		0.64	0.16
Control Delay	7.4	8.3		0.8	7.6			103.7	6.3		105.6	1.4
Queue Delay	0.0	0.1		0.0	0.2			0.0	0.0		0.0	0.0
Total Delay	7.4	8.5	11	0.8	7.8			103.7	6.3		105.6	1.4
LOS	Α	Α		В	Α			F	Α		F	Α
Approach Delay		8.4			7.9			39.9			75.8	
Approach LOS		Α			A			D			Е	
90th %ile Green (s)	10.1	130.3		7.0	127.2		14.8	14.8	14.8	23.9	23.9	23.9
90th %ile Term Code	Gap	Coord		lin			Gap	Gap	Gap	Gap	Gap	Gap
70th %ile Green (s)	8.6	135.7		7.0	134.1		12.5	12.5	12.5	20.8	20.8	20.8
70th %ile Term Code	Gap	Coord		lin.			Gap	Gap	Gap	Gap	Gap	Gap
50th %ile Green (s)	7.7	139.8		7.0	139.1		10.9	10.9	10.9	18.3	18.3	18.3
50th %ile Term Code	Gap	Coord		Ain	Coord		Gap	Gap	Gap	Gap	Gap	Gap
30th %ile Green (s)	7.0	143.8		7.0	143.8		9.4	9.4	9.4	15.8	15.8	15.8
30th %ile Term Code		Coord		Ain			Gap	Gap	Gap	Gap	Gap	Gap
10th %ile Green (s)	7.0	149.7		7.0	149.7		7.1	7.1	7.1	12.2	12.2	12.2
10th %ile Term Code	IVIII 11	Coord 333		lin 10	Coord 228		Gap	Gap 38	Gap 1	Gap	Gap 95	Gap
Stops (vph) Fuel Used(gal)	0	14		0	228			1	0		2	0
10 /	35	969		27	528			71	22		174	7
CO Emissions (g/hr)	7	189		5	103			14	4		34	1
NOx Emissions (g/hr) VOC Emissions (g/hr)	8	225		6	122			16	5		34 40	2
Dilemma V ehicles (#)	0	32		0	26			0	0		40	0
, ,	10	121		9	76			52	0		130	0
Queue Length 50th (ft) Queue Length 95th (ft)	m16	109		26	132			99	4		198	0
- • • • • • • • • • • • • • • • • • • •	milo	595		20	344			193	4		120	U
Internal Link Dist (ft) Turn Bay Length (ft)	340	292	2	90	244			173			120	
Base Capacity (vph)	358	3389	_	88	3330			139	232		163	253
Starvation Cap Reductn	0	586		0	1001			139	232		103	223
Spillback Cap Reductn	0	63		0	1001			0	1		0	0
Spinioack Cap Reductin	0	0.0		0	0			0	0		0	0
prorage c ab vectorin	U	U		U	U			U	U		U	- 0

Splits and Phases: 25: Food World & Atlanta Hwy

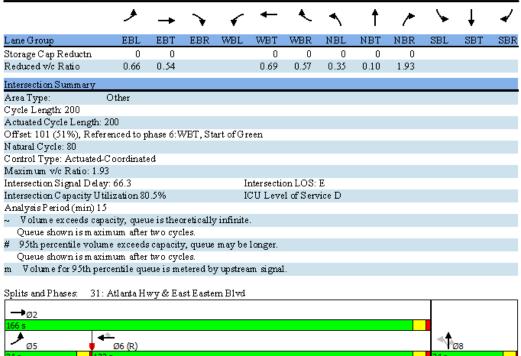


Lane Configurations	0 0 0 544 8 236 0 0 0 544 8 236 800 1800 1800 1800 1800 1800 1.00 1.00 1.00 0.95 0.95 1.00 0.850 0 0 0 1608 1615 1515 0.950 0.954 0 0 0 0 1608 1615 1515 Yes Yes 130
Traffic V olume (vph) 0 1400 216 420 1200 0 0 0 544 8 Future V olume (vph) 0 1400 216 420 1200 0 0 0 544 8 Ideal Flow (vphpl) 1800 1905 1955 1800 1800	0 0 0 544 8 236 0 0 0 544 8 236 800 1800 1800 1800 1800 1800 1.00 1.00 1.00 0.95 0.95 1.00 0.850 0.950 0.954 0 0 0 1608 1615 1515 0.950 0.954 0 0 0 0 1608 1615 1515 Yes Yes 130
Traffic V olume (vph) 0 1400 216 420 1200 0 0 0 544 8 Future V olume (vph) 0 1400 216 420 1200 0 0 0 544 8 Ideal Flow (vphpl) 1800 1905 1955 1800 1800	0 0 0 544 8 236 0 0 0 544 8 236 800 1800 1800 1800 1800 1800 1.00 1.00 1.00 0.95 0.95 1.00 0.850 0.950 0.954 0 0 0 1608 1615 1515 0.950 0.954 0 0 0 0 1608 1615 1515 Yes Yes 130
Ideal Flow (vphpl)	800 1800 1800 1800 1800 1800 1800 1.00 1.
Lane Util. Factor 1.00 0.91 0.91 0.97 0.95 1.00 1.00 1.00 1.00 0.95 0.95 Frt 0.980 0.950 0.950 0.950 0.950 0.950 0.954 Statd. Flow (prof) 0.4768 0.3285 3386 0.00 0.0109 0.950 0.954 Statd. Flow (perm) 0.4768 0.377 3386 0.00 0.01608 1615 1615 1615 Right Turn on Red Yes	1.00 1.00 1.00 0.95 0.95 1.00 0.850 0.954 0.955 0.954 0.955 0.954 0.950 0.954 0.950 0.954 0.950 0.954 0.950 0.954 0.950 0.954 0.950 0.954 0.950 0.954 0.950 0.954 0.950 0.954 0.950 0.954 0.950 0.955
Frt 0.980 0.950 0.950 0.950 0.950 0.954 Statd. Flow (prot) 0 4768 0 3285 3386 0 0 0 0 1608 1615 1 Fit Permitted 0.109 0.950 0.954 0.950 0.954 Satd. Flow (perm) 0 4768 0 377 3386 0 0 0 0 1608 1615 1 Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 23 Link Speed (mph) 40 40 30 55 Link Distance (ft) 430 927 317 734 Travel Time (s) 7.3 15.8 7.2 9.1 Peak Hour Factor 1.00	0.850 0.950 0.954 0 0 0 1608 1615 1515 0.950 0.954 0 0 0 1608 1615 1515 Yes Yes 130
Fit Protected 0.950 0.950 0.954 Satd, Flow (prot) 0.4768 0.3285 3386 0.00 0.01608 1615 Fit Permitted 0.109 0.950 0.954 Satd, Flow (perm) 0.4768 0.377 3386 0.00 0.00 1608 1615	0.950 0.954 0 0 0 1608 1615 1515 0.950 0.954 0 0 0 1608 1615 1515 Yes Yes 130
Satd. Flow (prot) 0 4768 0 3285 3386 0 0 0 1608 1615 1	0 0 0 1608 1615 1515 0.950 0.954 0 0 0 1608 1615 1515 Yes Yes 130
Fit Permitted 0.109 0.950 0.954 Satd. Flow (perm) 0 4768 0 377 3386 0 0 0 0 0 1608 1615 1 Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 23 23 23 23 23 24 24 30 55 55 55 24	0.950 0.954 0 0 0 1608 1615 1515 Yes Yes 130
Satd. Flow (perm) 0 4768 0 377 3386 0 0 0 1608 1615 16	0 0 0 1608 1615 1515 Yes Yes 130
Right Turn on Red Yes	Yes Yes 130
Satd. Flow (RTOR) 23 Link Speed (mph) 40 40 30 55 Link Distance (ft) 430 927 317 734 Travel Time (s) 7.3 15.8 7.2 9.1 Peak Hour Factor 1.00	130 30 55
Link Speed (mph) 40 40 30 55 Link Distance (ft) 430 927 317 734 Travel Time (s) 7.3 15.8 7.2 9.1 Peak Hour Factor 1.00	30 55
Link Distance (ft) 430 927 317 734 Travel Time (s) 7.3 15.8 7.2 9.1 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
Travel Time (s) 7.3 15.8 7.2 9.1 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	317 734
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	2-7
	7.2 9.1
	1.00 1.00 1.00 1.00 1.00 1.00
Heavy Vehicles (%) 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%	1% 1% 1% 1% 1% 1%
Adj. Flow (vph) 0 1400 216 420 1200 0 0 0 544 8	0 0 0 544 8 236
Shared Lane Traffic (%) 49%	49%
Lane Group Flow (vph) 0 1616 0 420 1200 0 0 0 277 275	0 0 0 277 275 236
Enter Blocked Intersection No	No No No No No
Lane Alignment Left Left Right Left Right Left Reght Left F	Left Left Right Left Left Right
Median Width(ft) 40 36 12 12	12 12
Link Offset(ft) 0 0 0 0	0 0
Crosswalk Width(ft) 30 40 16 16	16 16
Two way Left Turn Lane	
Headway Factor 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07	1.07 1.07 1.07 1.07 1.07 1.07
Turning Speed (mph) 15 9 15 9 15 9 15	15 9 15 9
Number of Detectors 2 1 2 1 2	
Detector Template Thru Left Thru Left Thru F	Left Thru Right
Leading Detector (ft) 100 20 100 20 100	
Trailing Detector (ft) 0 0 0 0	0 0 0
Detector 1 Position (ft) 0 0 0 0	0 0 0
Detector 1 Size(ft) 6 20 6 20 6	20 6 20
Detector 1 Type C1+Ex C1	C1+Ex C1+Ex C1+Ex
Detector 1 Channel	
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0
Detector 2 Position (ft) 94 94 94	94
Detector 2 Size(ft) 6 6 6	6
Detector 2 Type C1+Ex C1+Ex C1+Ex	C1+Ex
Detector 2 Channel	
Detector 2 Extend (s) 0.0 0.0 0.0	0.0
Turn Type NA pm +pt NA Perm NA I	Perm NA Perm
Protected Phases 2 1 6 4	4
Permitted Phases 6 4	4 4
Detector Phase 2 1 6 4 4	
Switch Phase	


Synchro 9 Report Page 10 Baseline

	۶	→	•	•	—	•	•	†	<i>></i>	\	↓	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)		20.0		15.0	20.0					10.0	10.0	10.0
Minimum Split(s)		27.0		20.0	27.0					16.0	16.0	16.0
Total Split(s)		118.0		38.0	156.0					44.0	44.0	44.0
Total Split (%)		59.0%		19.0%	78.0%					22.0%	22.0%	22.0%
Maximum Green(s)		111.0		33.0	149.0					38.0	38.0	38.0
Yellow Time (s)		5.0		4.0	5.0					5.0	5.0	5.0
All-Red Time (s)		2.0		1.0	2.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		7.0		5.0	7.0					6.0	6.0	6.0
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?		Yes		Yes								
V ehicle Extension (s)		6.0		3.0	6.0					3.0	3.0	3.0
Recall Mode		C-Min		None	Min					None	None	None
Act Effct Green(s)		122.2		147.8	145.8					41.2	41.2	41.2
Actuated g/C Ratio		0.61		0.74	0.73					0.21	0.21	0.21
v/c Ratio		0.55		0.77	0.49					0.84	0.83	0.57
Control Delay		11.8		43.0	6.6					97.6	96.4	35.9
Queue Delay		0.1		0.0	0.1					0.0	0.0	0.0
Total Delay		11.9		43.0	6.7					97.6	96.4	35.9
LOS		В		D	A					F	F	D
Approach Delay		11.9			16.1					•	78.7	
Approach LOS		В			В						70.7 E	
90th %ile Green (s)		111.0		25.1	141.1					45.9	45.9	45.9
90th %ile Term Code		Coord		Gap						Max	Max	Max
70th %ile Green (s)		114.2		20.9	140.1					46.9	46.9	46.9
70th %ile Term Code		Coord		Gap	Coord					Gap	Gap	Gap
50th %ile Green (s)		121.9		17.1	144.0					43.0	43.0	43.0
50th %ile Term Code		Coord		Gap						Gap	Gap	Gap
30th %ile Green(s)		128.3		15.0	148.3					38.7	38.7	38.7
30th %ile Term Code		Coord			Coord					Gap	Gap	Gap
10th %ile Green (s)		135.7		15.0	155.7					31.3	31.3	31.3
10th %ile Term Code		Coord			Coord					Gap	Gap	Gap
Stops (vph)		717		243	201					264	260	97
Fuel U sed(gal)		16		243	11					12	12	5
CO Emissions (g/hr)		1093		609	778					817	804	323
NOx Emissions (g/hr)		213		118	151					159	156	63
VOC Emissions (g/hr)		253		141	180					189	186	75
Dilemma V chicles (#)		17		0	180					0	6	0
Queue Length 50th (ft)		249		107	141					369	366	125
Queue Length 95th (ft)		350		190	90					491	487	224
Internal Link Dist (ft)		350		170	847			237		471	654	444
Turn Bay Length (ft)		330			04)			23)			0.74	
Base Capacity (vph)		2922		785	2545					341	343	424
Starvation Cap Reductn		2922		0	373					0	343 0	424
Spillback Cap Reductn		212		0	3/3					0	0	0
-		0		0	0					0	0	0
Storage Cap Reductn Reduced v/c Ratio		0.60		0.54	0.55					0.81	0.80	0.56
		0.00		0.54	0.33					16.0	0.80	טכ.ט
Intersection Summary												

Synchro 9 Report Page 11 Baseline


Splits and Phases: 28: West Eastern Blvd & Atlanta Hwy

	۶	→	•	•	←	•	•	†	/	/	ļ.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			^	7	ሻሻ	^	7			
Traffic V olum e (vph)	156	1812	0	0	1528	640	160	24	500	0	0	0
Future V olume (vph)	156	1812	0	0	1528	640	160	24	500	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ff)	12	12	12	16	12	12	12	12	12	12	12	12
Storage Length (ft)	700		0	140		0	0		0	0		0
Storage Lanes	1		0	0		1	2		1	0		0
Taper L ength (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.91	1.00	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt						0.850			0.850			
Flt Protected	0.950						0.950					
Satd. Flow (prot)	1693	4865	0	0	3386	1515	3285	1782	1515	0	0	0
Flt Permitted	0.950						0.950					
Satd. Flow (perm)	1693	4865	0	0	3386	1515	3285	1782	1515	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						420			55			
Link Speed (mph)		40			40			55			10	
Link Distance (ft)		920			828			779			322	
Travel Time (s)		15.7			14.1			9.7			22.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	0%	0%	0%
Adj. Flow (vph)	156	1812	0	0	1528	640	160	24	500	0	0	0
Shared Lane Traffic (%)												_
Lane Group Flow (vph)	156	1812	0	0	1528	640	160	24	500	0	0	0
Enter Blocked Intersection	ı No	No	Νo	No	Νo	No	No	Νo	Νο	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			40			24			24	
Link Offset(ft)		0			10			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	0.91	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2			2	1	1	2	1			
Detector Template	Left	Thru			Thru	Right	Left	Thru	Right			
Leading Detector (ft)	20	100			100	20	20	100	20			
Trailing Detector (ft)	0	0			0	0	0	0	0			
Detector 1 Position(ft)	0	0			0	0	0	0	0			
Detector 1 Size(ft)	20	6			6	20	20	6	20			
Detector 1 Type	C1+Ex	C1+Ex			C1+Ex	C1+Ex	C1+Ex	C1+Ex	C1+Ex			
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Detector 2 Position(ft)		94			94			94				
Detector 2 Size(ft)		6			6			6				
Detector 2 Type		C1+Ex			C1+Ex			C1+Ex				
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0				
Turn Type	Prot	NA			NΑ	Perm	Perm	NΑ	Perm			

	۶	→	•	•	←	•	•	†	~	\	 	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	5	2			6			8				
Permitted Phases						6	8		8			
Detector Phase	5	2			6	6	8	8	8			
Switch Phase												
Minimum Initial (s)	7.0	20.0			20.0	20.0	7.0	7.0	7.0			
Minimum Split(s)	13.0	27.0			27.0	27.0	13.0	13.0	13.0			
Total Split(s)	34.0	166.0			132.0	132.0	34.0	34.0	34.0			
Total Split (%)	17.0%	83.0%			66.0%	66.0%	17.0%	17.0%	17.0%			
Maximum Green(s)	28.0	159.0			125.0	125.0	28.0	28.0	28.0			
Yellow Time (s)	5.0	5.0			5.0	5.0	5.0	5.0	5.0			
All-Red Time (s)	1.0	2.0			2.0	2.0	1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.0	7.0			7.0	7.0	6.0	6.0	6.0			
Lead/Lag	Lead				Lag	Lag						
Lead-Lag Optimize?	Yes				Yes	Yes						
V ehicle Extension (s)	3.0	6.0			6.0	6.0	3.0	3.0	3.0			
Recall Mode	None	Min			C-Min	C-Min	None	None	None			
Act Effet Green (s)	22.9	159.0			130.1	130.1	28.0	28.0	28.0			
Actuated g/C Ratio	0.11	0.80			0.65	0.65	0.14	0.14	0.14			
v/c Ratio	0.81	0.47			0.69	0.57	0.35	0.10	1.93			
Control Delay	121.4	5.2			25.0	8.0	80.2	76.3	465.8			
Queue Delay	0.0	0.1			0.0	0.0	0.0	0.0	0.0			
Total Delay	121.4	5.3			25.0	8.0	80.2	76.3	465.8			
LOS	F	Α			C	Α	F	Е	F			
Approach Delay		14.5			20.0			361.9				
Approach LOS		В			В			F				
90th %ile Green (s)	28.0	159.0			125.0	125.0	28.0	28.0	28.0			
90th %ile Term Code	Max	Coord			Coord	Coord	Max	Max	Max			
70th %ile Green (s)	26.9	159.0			126.1	126.1	28.0	28.0	28.0			
70th %ile Term Code	Gap	Coord			Coord	Coord	Max	Max	Max			
50th %ile Green (s)	23.6	159.0			129.4	129.4	28.0	28.0	28.0			
50th %ile Term Code	Gap				Coord		Max	Max	Max			
30th %ile Green(s)	20.4	159.0			132.6	132.6	28.0	28.0	28.0			
30th %ile Term Code	Gap	Coord				Coord	Max	Max	Max			
10th %ile Green(s)	15.7	159.0			137.3	137.3	28.0	28.0	28.0			
10th %ile Term Code	Gap	Coord			Coord	Coord	Max	Max	Max			
Stops(vph)	149	427			957	130	143	21	259			
Fuel Used(gal)	6	17			26	6	6	1	55			
CO Emissions (g/hr)	440	1218			1800	413	423	62	3823			
NOx Emissions (g/hr)	86	237			350	80	82	12	744			
VOC Emissions (g/hr)	102	282			417	96	98	14	886			
Dilemma V ehicles (#)	0	32			38	0	0	1	0			
Queue Length 50th (ft)	208	220			657	141	100	28	~949			
Queue Length 95th (ft)	m276	23			784	259	142	62	#1197			
Internal Link Dist (ft)		840			748		2	699			242	
Turn Bay Length (ft)	700	3-10			, 40			377			272	
Base Capacity (vph)	237	3867			2202	1132	459	249	259			
Starvation Cap Reductn	23,	513			0	0	409	249	239			
Spillback Cap Reductn	0	0			0	0	0	0	0			
phinoack cap reducin	U	J			U	U	U	U	0			

Synchro 9 Report Page 14 Baseline

Baseline Synchro 9 Report Page 15

Appendix C: Raw Signal Timing Data

SEPAC ECOM All Data

1/23/2018 3:12:36PM

Address: 3

IP Address

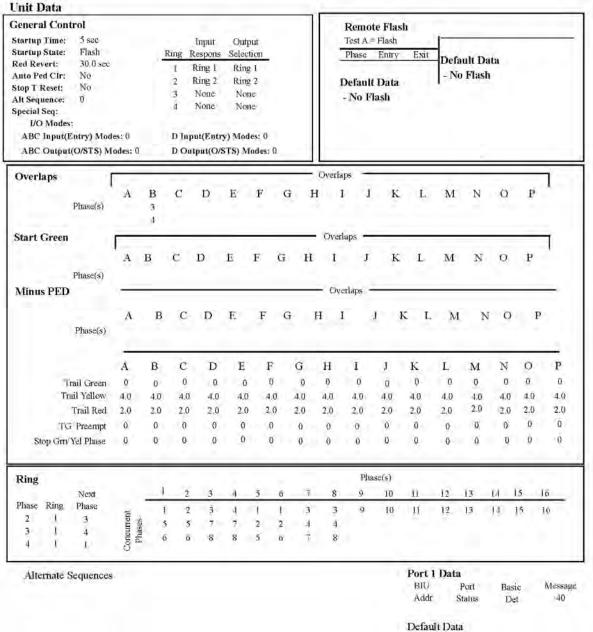
Intersection Name: Atlanta Hwy. & Federal Dr. #31 Intersection Alias: 31AtlFed

Access Data 1:1200 Baud Access Code: 9999 Channel: 9

3 :1200 Baud Revision: 3.30

Phase Initialization Data

 Phase
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16


 Initial
 0-None
 4-Gm
 1-Inact
 1-Inact
 0-None
 0-None

Vehic	al Basic	Timings					Mise 7	imings	Walk	Walk		= (Pedest	rian Ti	mings	Alt			Achuated
	Min					All	Green	Yellow	Offset	Offset	Bike	Bike		Ped	Alt	Ped	Flash	Ext	Rest in
hase	Green	Passage	Maxl	Max2	Yellow	Red	Delay	Delay	Time	Mode	Green	Psg	Walk	Cir	Walk	Clr	Walk	Ped Clr	Walk
1	0	0.0	0	0	3.0	0.0			0	0-Advance	0	0	0	0			No	0	No
2	20	5.0	50	50	4.0	2,0			0	0-Advance	0	0	0	0			No	0	Yes
3	7	3.0	30	30	4.0	1.0			0	0-Advance	0	0	0	0			No	0	No
4	7	3.0	20	45	4.0	1.0			0	0-Advance	0	0	0	0			No	0	No
5	0	0.0	0	0	3.0	0.0			0	0-Advance	0	0	0	0			No	0	No
6	0	0.0	0	0	3.0	0.0			0	0-Advance	0	0	0	0			No	0	No
7	0	0.0	0	0	3.0	0.0			0	0-Advance	0	0	0	0			No	0	No
8	0	0.0	0	0	3.0	0.0			0	0-Advance	0	0	0	0			No	0	No
9	0	0.0	0	0	4.0	2.0			0	0-Advance	0	0	0	0			No	0	No
10	0	0.0	0	0	4.0	2.0			0	0-Advance	0	0	0	0			No	0	No
41	0	0.0	0	0	4.0	2.0			0	0-Advance	0	0	0	0			No	0	No
12	0	0.0	0	0	4.0	2.0			0	0-Advance	0	0	0	0			No	0	No
13	O	0.0	0	0	4.0	2.0			0	0-Advance	0	0	0	0			No	O	No
14	0	0.0	0	0	4.0	2.0			0	0-Advance	0	0	0	0			No	0	No
15	0	0.0	0	0	4.0	2.0			0	0-Advance	0	0	0	0			No	D	No
16	0	0.0	0	0	4.0	2.0			0	0-Advance	0	0	0	0			No	0	No

Vehic	le Densit	v Timin	gs				General Co	ntrol			Miscell	ancous			No	Special :	Sequence	ē.
Ph.	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	-0-	0	0
2	1.0	25	10	10	30	3.0	NonActl	Min	None	0	No	No	Yes	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
6	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	Ü
9	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	Ω
10	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	()
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	Ü	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 17

16	0.0	0	0 0	0	0.0	Notic X	one	None	0	No	No	No	No	No	0	0	0
7	/ehical Detect	r Phase.	\ssignme	ııt		Pedestrian De	tector					Spec	ial Detec	tor Phas	e Assignm	ent	
	Ass Ph	_	Switel e Phase	n Extend	Delay	1	asign hase	Moda	Switch Phase	Extend	Delay		Assi Pha	_	Switch c Phase		Delay
	Default Da	la				Default D	ata					Defa	ault Da	ta			

No Alternate Sequences Programmed

Page 3 of 17

Channel	Control	Hardware Pins	
1	1 - Veh Phase 1	1 - Phase 1 RYG	
2	2 - Veh Phase 2	2 - Phase 2 RYG	
3	3 - Veh Phase 3	3 - Phase 3 RYG	
4	4 - Veh Phase 4	4 - Phase 4 RYG	
5	5 - Veh Phase 5	5 - Phase 5 RYG	
6	6 - Veh Phase 6	6 - Phase 6 RYG	
7	7 - Veh Phase 7	7 - Phase 7 RYG	
8	8 - Veh Phase 8	8 - Phase 8 RYG	
9	18 - Ped Phase 2	10 - Phase 2 DPW	
10	20 - Ped Phase 4	12 - Phase 4 DPW	
11	22 - Ped Phase 6	14 - Phase 6 DPW	
12	24 - Ped Phase 8	16 - Phase 8 DPW	
13	33 - Overlap A	17 - Overlap A RYG	
14	34 - Overlap B	18 - Overlap B RYG	
15	35 - Overlap C	19 - Overlap C RYG	
16	36 - Overlap D	20 - Overlap D RYG	
17	17 - Ped Phase 1	9 - Phase 1 DPW	
18	19 - Ped Phase 3	11 - Phase 3 DPW	
19	21 - Ped Phase 5	13 - Phase 5 DPW	
20	23 - Ped Phase 7	15 - Phase 7 DPW	

Coordination Data			Dial/Split	Cycle
General Coordination Data			1/1	100
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 3	1/2	100
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	1/3	100
Maximun Mode: 0=Inhibit	Max Dwell Time: 20	Manual Offset: 1	1/4	100
Correction Mode: 2=Short Way	Yield Period: 5		2/1	120
•			2/2	120
			2/3	120
			2/4	120
			3/1	140
			3/2	140
			3/3	140
			3/4	140
			4/1	150
			4/2	150
			4/3	150
			4/4	150

Page 4 of 17

a .	. 700	1707									
ı ^	t Time 1/ Spli	s and Phase Mo	odes								
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	50	1=Coordinate	3	25	0=Actuated	4	25	0=Actuated			
Dial	1 / Spli	1 2									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 Dial	50 1 / Spli	1=Coordinate	3	25	0=Actuated	4	25	0=Actuated			
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	50	1=Coordinate	3	25	0=Actuated	4	25	0=Actuated			
ı	1 / Spli		701	a 11:	m1 1 4 1	774	a 11.	D1 16 1			
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode		Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 Dial	50 2 / Spli	1=Coordinate t 1	3	25	0=Actuated	4	25	0=Actuated			
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	60	1=Coordinate	3	32	0=Actuated	4	28	0=Actuated			
Ι.	2 / Spli		DI-	Colit-	Dh. Mada	D1-	Culi+-	Dh. Mods	D)	0114	Di- 14-4-
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode		Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 Dial	70 2 / Spli	1=Coordinate t 3	3	27	0=Actuated	4	23	0=Actuated			
Ph.	Splits		Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	70	1=Coordinate	3	27	0=Actuated	4	23	0=Actuated			
Dial Ph.	2 / Spli Splits	t 4 Ph. Mode	Ph.	Splits	Ph. Mode	Dh	Splits	Ph. Mode	Ph.	Culita	Ph. Mode
2	70	1=Coordinate	3	27	0=Actuated	4	23	0=Actuated	PII.	Splits	FII. Wiode
	3 / Spli		3	21	0-Actuated	4	23	0-Actuated			
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	76	1=Coordinate	3	37	0=Actuated	4	27	0=Actuated			
Dial Ph.	3 / Spli Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	76	1=Coordinate	3	37	0=Actuated	4	27	0=Actuated	111.	Spiris	TH. WIOGC
	3/ Spli		3	57	0 Methated	4	27	0 Retuated			
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	45	1=Coordinate	3	50	0=Actuated	4	45	0=Actuated			
Dial Ph.	3 / Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	76	1=Coordinate	3	37	0=Actuated	4	27	0=Actuated	111.	Spiris	TH. WIOGC
_	4/ Spli		,	21	- 11	4					
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2		1=Coordinate	3	40	0=Actuated	4	30	0=Actuated			
Dial Ph.	4 / Spli Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	80	1=Coordinate	3	40	0=Actuated	4	30	0=Actuated	111.	Брию	III mode
	4/ Spli		,			7	20				
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	80	1=Coordinate	3	40	0=Actuated	4	30	0=Actuated			
Dial Ph.	4 / Spli Splits		Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	80	1=Coordinate	3	40	0=Actuated	4	30	0=Actuated	1 11.	~PHW	
<u> </u>											

Page 5 of 17

raffic Plan				
	- 22			
Plan: 1/1/1	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/1/2	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/1/3	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/1	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
1. 2. 1	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	5 5
Plan: 1/2/2	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
riait 1/2/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	Ng 4 Dag Tittle, V
n 1/2/2	Offset Time: 91	Alternat Sequence: 0		Da 4 Los Timos A
Plan: 1/2/3	Mode: 0=Normal	Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Wode. 0-Normal	Special Pulction, 0	Consection works. 0-No	
Plan: 1/3/1	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/3/2	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/3/3	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/4/1	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
AME I TI	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	0 0
Dlon: 1/4/2	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 1/4/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	Ag 7 Dag Tittle, V
nt 1 (1/2				De 41 or Time 0
Plan: 1/4/3	Offset Time: 91	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	

Page 6 of 17

de: 0=Normal set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Correction Mode:	Rg 3 Lag Time: 0 0=No Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Correction Mode:	Rg 3 Lag Time: 0 0=No	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Alternat Sequence: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0	O=No Rg 3 Lag Time: 0 0=No	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Alternat Sequence: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0	O=No Rg 3 Lag Time: 0 0=No	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Alternat Sequence: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0	O=No Rg 3 Lag Time: 0 0=No	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Special Function: 0	Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode:	Rg 3 Lag Time: 0 0=No	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Alternat Sequence: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode:	0=No Rg 3 Lag Time: 0 0=No	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Correction Mode:	0=No Rg 3 Lag Time: 0	Rg 4 Lag Time: 0 Rg 4 Lag Time: 0 Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal set Time: 108	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0	0=No Rg 3 Lag Time: 0 0=No Rg 3 Lag Time: 0 0=No Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal set Time: 108	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0	0=No Rg 3 Lag Time: 0 0=No Rg 3 Lag Time: 0 0=No Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal set Time: 108 de: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0 Correction Mode:	0=No Rg 3 Lag Time: 0 0=No Rg 3 Lag Time: 0 0=No	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal set Time: 108	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Correction Mode: Rg 2 Lag Time: 0	0=No Rg 3 Lag Time: 0 0=No Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
set Time: 108 de: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Correction Mode:	0=No Rg 3 Lag Time: 0 0=No	Rg 4 Lag Time: 0
set Time: 108	Alternat Sequence: 0	Rg 2 Lag Time: 0	0=No Rg 3 Lag Time: 0	
de: 0=Normal	Special Function: 0	Correction Mode:		Rg 4 Lag Time: 0
de: 0=Normal	Special Function: 0	Correction Mode:		Rg 4 Lag Time: 0
				Rg 4 Lag Time: 0
set Time: 108	Alternat Sequence: 0	Rg 2 Lag Time: 0		
de: 0=Normal	Special Function: 0	Correction Mode:	0=No	
set Time: 108	Alternat Sequence: 0	Rg 2 Lag Time: 0	Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
de: 0=Normal	Special Function: 0			5 5 0
set Time: 108	Alternat Sequence: 0	Rg 2 Lag Time: 0	Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
GC, V-IVOLITRII	opoeiai Paneuoit V	Confection Mode:	0-100	
	-			Rg 4 Lag Time: 0
de: 0=Normal	-			T) 41 m² "
set Time: 108	Alternat Sequence: 0	Rg 2 Lag Time: 0	Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
set Time: 108 de: 0≕Normal	Alternat Sequence: 0 Special Function: 0			Rg 4 Lag Time: 0
	set Time: 108 de: 0=Normal	de: 0=Normal Special Function: 0 set Time: 108 Alternat Sequence: 0 set Time: 108 Alternat Sequence: 0 set Time: 108 Alternat Sequence: 0 set Time: 108 Special Function: 0 set Time: 108 Alternat Sequence: 0 set Time: 108 Alternat Sequence: 0 set Time: 108 Alternat Sequence: 0 set Time: 108 Alternat Sequence: 0	de: 0=Normal Special Function: 0 Correction Mode: set Time: 108 Alternat Sequence: 0 Rg 2 Lag Time: 0 de: 0=Normal Special Function: 0 Correction Mode: set Time: 108 Alternat Sequence: 0 Rg 2 Lag Time: 0 de: 0=Normal Special Function: 0 Correction Mode: set Time: 108 Alternat Sequence: 0 Rg 2 Lag Time: 0 Correction Mode: set Time: 108 Alternat Sequence: 0 Rg 2 Lag Time: 0 Correction Mode: set Time: 108 Alternat Sequence: 0 Rg 2 Lag Time: 0	de: 0=Normal Special Function: 0 Correction Mode: 0=No set Time: 108 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 de: 0=Normal Special Function: 0 Correction Mode: 0=No set Time: 108 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 de: 0=Normal Special Function: 0 Correction Mode: 0=No set Time: 108 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No set Time: 108 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0

Page 7 of 17

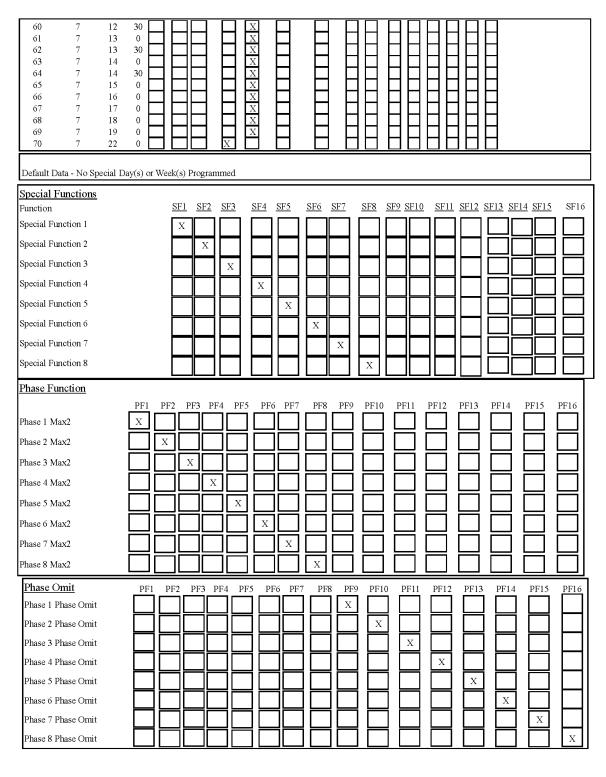
Plan: 3/1/3	Offset Time: I	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
lan: 3/2/1	Offset Time: 1 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/2/2	Offset Time: 10 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
lan: 3/2/3	Offset Time: 1 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/3/1	Offset Time: 1 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/3/2	Offset Time: 1 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/3/3	Offset Time: 1 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	000 477	the same		D 41 T' 0
Plan: 3/4/1	Offset Time: 1 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/4/2	Offset Time: 1 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/4/3	Offset Time: 1 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 4/1/1	Offset Time: 14 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
		*		Rg 4 Lag Time: 0 Rg 4 Lag Time: 0
Plan: 4/1/1 Plan: 4/1/2 Plan: 4/1/3	Mode: 0=Normal Offset Time: 14	Special Function: 0 Alternat Sequence: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	

Page 8 of 17

Plan: 4/2/2	Offset Time: 14	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/2/3	Offset Time: 14	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/3/1	Offset Time: 14	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/3/2	Offset Time: 14	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/3/3	Offset Time: 14	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/4/1	Offset Time: 14	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/4/2	Offset Time: 14	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/4/3	Offset Time: 14	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	

Local TBC Data

Start of Daylight Saving Month: 3 Week: 2 Cycle Zero Reference Hours: 24 Min: 0 End of Daylight Saving Month: 11 Week: 1


Source			Equ	ate I	Day	5		
Day	1	2	3	4	5	6	7	
1	11	0	0	0	0	0	0	
2	3	4	5	6	0	0	0	
7	17	0	0	0	0	0	0	

Traffi	c Data			PHASE FUNCTION	
Event	Day	Time	D/S/O		15
1	<u>Day</u> 1	7:0	1/1/1	ئ الله الله الله الله الله الله الله الل	٦
2	1	20:30	0/0/4		╡
3	2	6:0	1/1/1		Ħ
4	2	6:45	3/2/2		╡
5	2	7:15	3/2/2		╡
6	2	8:10	2/1/1		ī
7	2	9:0	1/1/1		Ħ
8	2	10:30	2/2/2		╗
9	2	11:45	3/1/1		f
10	2	13:30	2/1/1		╗
11	2	15:0	2/1/1		╗
12	2	15:45	3/3/3		Ħ
13	2	17:5	4/4/1		ī
14	2	18:0	2/1/1		╗
15	2	19:0	1/1/1		╗
16	2	22:0	0/0/4		Ī
17	7	9:0	1/1/1		Ī
18	7	23:0	0/0/4		╗

Page 10 of 17

AUX.	Events			Det. Det. Det.
	Program		Aux Ouputs	Diag. Rpt. Mult100 Special Function Outputs
Event	Day		Min. 1 2 3	D1 D2 D3 Dimming 1 2 3 4 5 6 7 8
1 2	1 1	0 9		
3	1	10	HHH	
4	1	11		
5	1	12		
6 7	1 1	13 22		┨╠┩┡┩ ┡┩┡┩┞┩ ┩ ┩┼┩┞┩┞┩┞┩
8	2	0		
9	2	6		
10 11	2 2	6 7	30 0	┫ ┋ ┩┩┩
12	2	7		
13	2	7	30	
14	2	7	45	┩┡┩╠╣┡┩ <u>┡┩┠┦</u> ┞┦┞┦┞┦┞┦┞┦
15 16	2 2	8	0	┨╒┩╠╣╒┩ <u>╒</u> ┩╒┩╒┩╒┩╒┩
17	2	8	30	
18	2	9		
19 20	2 2	9 10	30 0	$H dash \exists H dash H d$
21	2	10	30	
22	2	11		
23 24	2 2	11 11	15	┫ ╒┩╒ ┩╒┩╒┩╒┩╒┩╒┩╒┩╒┩╒┩╒
25	2	11	45	▎┡┥╠╣┡┥ ┝ ┩┝┦┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼
26	2	12	$\circ \square \square \square$	
27	2	12	15	
28 29	2 2	12 12	30	┨ ╒ ┩
30	2	13		
31	2	13	15	
32 33	2 2	13 14	30 0	┫┩╬┪╒┩╒┩╒┩ ╒ ┩╒┩
34	2	14	30	
35	2	15		
36 37	2 2	15 16	30 0	┨ ╒
38	2	16	15	
39	2	16	30	
40 41	2 2	16 17	45 0	┨╒┩╠╣╞┩┈┡┥╞┩╞┦╞┦╞┦╞┦╞┦
42	2	17		
43	2	17	30	
44 45	2 2	17 18	45 0	┥ ╒ ┪ ┇ ┥ ╒ ┩ ┇
45 46	2	18	30	
47	2	19	0 🔲 🔲 🗆	
48	2	19	30	
49 50	2 2	20 20	0	$H \bowtie \bowtie H \bowtie H$
51	2	21	0 🔲 🔲 🖂	
52	2	21	30	
53 54	2 7	22 0		
55	7	9		
56	7	10	0 🔲 🔲 🗀	
57	7	11		
58 59	7 7	11 12	30 0	$H \hspace{0.2em} 0.2$
	,	12	<u> </u>	<u>, </u>

Page 11 of 17

Page 12 of 17

Ped Omit	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Coord ReSvc	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	.6
Function Phase Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	
Phase Min Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Ped Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Bike Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	.6
Vehicle Function Veh Det Switch Omit	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	.6
Veh Det Switch Now	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Switch Also	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Overlap Function	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Dimming Data Default Data - No Dim	nming Programmed	
Lanes Name	Green Yellow Red Green Yellow bound Inbound Inbound Outbound	
	gram hour program minute LanePhFun	

Preemption Data

Page 13 of 17

General Preemption Data Flash > Preempt Preempt 2 = Preempt 3 Preempt 4 = Preempt 5 Preempt 1 = Preempt 2 Preempt 3 = Preempt 4 Preempt 5 = Preempt 6

Preempt	Non-	pt Time		Ext	Dura	Max	Lock-	Min	Min	Debo		Ped	elect			Track			Dwell	Ped	turn	
Ā	Locking	Preempt	Delay	end	tion	Call	Out	Green	Walk	unce	end	Clear	Yel	Red	Grn	Ped	Yel	Red	Green	Clear	Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
2	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
3	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
4	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
5	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
6	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0

1	Preempt	1]	Preemp	2]	Preempt	3	1	Preempt	t 4	1	Preempt	t 5]	Preemp	16
Phase	Exit Phase	Exit Calls															
			1	No	Yes												
			2	No	Yes												
			3	No	Yes												
			4	No	Yes												
			5	No	Yes												
			6	No	Yes												
			7	No	Yes												
			8	No	Yes												

Priority Timers						
Prio Non- Del Ext rity Locking ay end	Free Free Min Lock Dial SplitGreen out	Lock Lock out out A B Green	Pre- Green Recall	Excl-co Phase Svc.	Transit C Signal Type	Overlap Blankout

Priority Detector Channels

Priority

Detector

Priority Fixed Phases

Priority

Legend: 0 1 CO-PHASE FALSE TRUE QJ-PHASE

Page 14 of 17

Alt Seq	artial Priority Enabled lk		Ped Ford Fred	Ful 1. Overric skip se full Pri quency 1. Level		ity		Meti Retu Ped Ped	ırn Wa	d	overy							
Codes:		0 FALSE		X .UE														
Duianite				Dul - vita						Dulaul								
Priority			_ _	Priority Priority					-	Priorit								
	Phase Detect	or Tim	e G	ueue P			or T	ime		Queue			ctor	Гіте				
Def	ault data			Defa	ault da	ta				De	fault da	ata						
			ΪĒ					〓	Ī						Ì			
Priority	/ :			Priority	·:					Priorit	ty:							
Priority	Bank:		$\dashv \vdash$	Priority	Bank	:			ŀ	Priorit	y Bank	:						
Queue F	Phase Detect	or Tim		Queue P	hase	Detect	or T	ime		Queue	Phase	Dete	ector	Time				
Def	ault data		∐ L	Defa	ault da	ta				De	fault d	ata						
Priority :								Pi	rio	rity :								
Bank								E	3ar	nk								
Detector	PE 1A	2A	ЗА	4A	5A	6A	В	Dete	ect	or	PE	1A	2A	ЗА	4A	5A	6A	В
	Defa	ault Data										Defa	ult Data	1				
Priority :								Р	rio	rity :								
Bank										nk								
Detector	PE 1A	2A	ЗА	4A	5A	6A	В	Dete			PE	1A	2A	ЗА	4A	5A	6A	В
	Dof	ault Data										Dofo	ult Data					
	Del	aun Dala										Dela	un Dale					
Priority :								l		rity :								
Bank Detector	PE 1A	2A	ЗА	4A	5A	6A	В	Dete	3ar ecte		PE	1A	2A	зА	4A	5A	6A	В
I	Defa	ault Data						1				Defa	ult Data					

Page 15 of 17

Priority Priority Bank :

Level

Preempt 1 Vehi Ph. Track	cal Phases Dwell	Cycle	Ph Track	Pedestrian Phas	es Cycle	Ovlp	Track	Overla Dwell	i ps Cycle	Trail Gm
Default Data			Default Da	ta		Defau	lt Data			
Preem pt 2 Vehi Ph. Track	cal Phases Dwell	Cycle	Pede Ph. Track	strian Phases Dwell	Cycle	Ovlp.		erlaps Dwell	Cycle	Trail Grn
Default Data			Default Da	ta		Defau	lt Data			
Preempt 3 Vehi Ph. Track	cal Phases Dwell	Cycle	Pede Ph. Track	strian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Grn
Default Data			Default Da	ta		Defau	lt Data			
Preempt 4 Vehi Ph. Track	cal Phases Dwell	Cycle	Pede Ph. Track	strian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Grn
Default Data			Default Da	ta		Defau	lt Data			
Preempt 5 Vehi Ph. Track	cal Phases Dwell	Cycle	Pede Ph. Track	strian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Grn
Default Data			Default Da	ta		Defau	lt Data			
Preempt 6 Vehi Ph. Track	cal Phases Dwell	Cycle	Pede Ph. Track	strian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Gm
Default Data System/Det	ectors Da	nta	Default Da	ta		Defau	ılt Data			
Local Critical Local Free: No Local Fash: No		ure: No	Coord Failure: Coord Fault: N		lash: No R	Backup: 15 emote Flash: oltage Monit	: No	1st Phons 2nd Phon		
Special Status 1:	No Spec	ial Status 2:	No Special	1 Status 3: No	Special Status 4	: No Sp	pecial Stat	tus 5: No	Special Sta	tus 6: No
Traffic Responsive System Detector Characteristics	ctor		_	1	fin Queue me % Detecto	-	-		eue 2 Syst ectors Detec	-
Default Data					Default l	Data		Defa	ult Data	
Sample Interval			Queue: 1 Queue: 2	Input Selection: Detector Failed Input Selection: Detector Failed	Level : 0 0=Average		Enter Enter	Leave	Dial / Sp	lit / Offset

Vehical D	etector			Vehical Di	etector			Special De	etector		
	Diag	nosti e Valu	c 0		Diag	nostie Valu	c l		Diag	nostic Valu	e 0
Defector	Max Prosonce	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratio Count
1	10	0	75	1	30	0	75		10	0	75
2	10	0	75	2	30	0	75	2	10	0	75
3	10	0	75	3	30	0	75	3	10	Û	75
1	10	0	75	4	30	0	75	4	10	0	75
5	10	0	75	5	30	Ü	75	5	10	0	75
6	10	0	75	ű	30	0	75	ń	10	0	75
7	10	0	75	7	30	0	75	7	10	()	75
8	10	0	75	8	30	0	75	ĸ	10	0	75
								Default l	Data - No	Diag 0 V	/alu
edestria:	Detector			Pedestria	n Detector			Special De	etector		
	Diag	nosti e Valu	c 0		Diag	nosti e Valu	c 1		Diag	nostie Valu	c 1
Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratio Count
1	10	0	75	$-{1}$	30	0	75	- - 1	30	0	75
2	10	0	75	2	30	0	75	2	30	0	75
3	10	0	75	3	30	0	75	3	30	0	75
4	10	0	75	4	30	0	75	4	30	0	75
5	10	0	75	5	30	0	75	5	30	0	75
Ġ.	10	0	75	6	30	0	75	6	30	0	75
7	10	0	75	7	30	0	75	7	30	0	75
8	10	0	75	8	30	0	75	8	30	0	75
Default :	Data - No	Diag 0 V	/alues	Default !	Data - No	Diag 1 V	/alues	Default l	Data - No	Diag 1 V	/alues
peed Tr Speed Tr	ap Data						lit/Offset	Speed Trap Low Treshol		ed Trap Treshold	
-	М	easureme	nt:			#					
						Defau					

Default Data

Volume Detector Data

Report Interval 0
Volume Controller
Detector Detector
Number Channel

Default Data

SEPAC ECOM All Data

1/23/2018 3:16:17PM

Intersection Name: Atlanta Hwy. & Bradley Dr. #24 Intersection Alias: 24AtlBradley

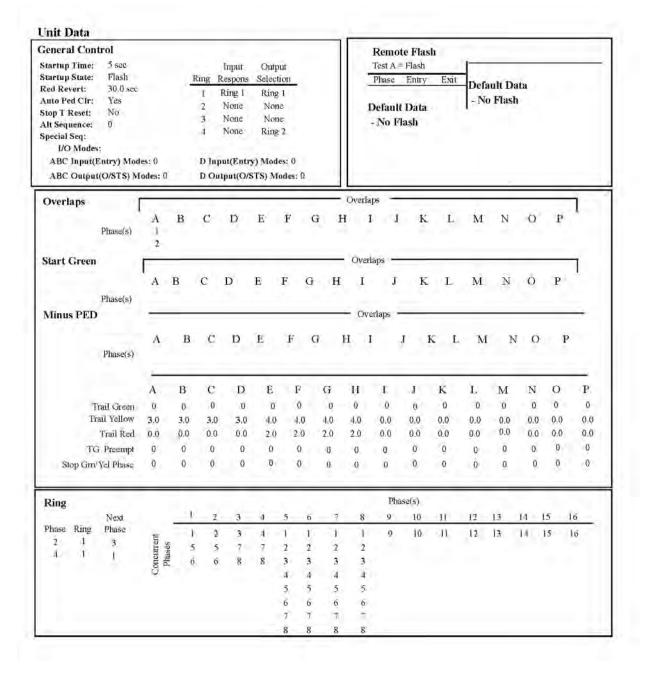
Access Data | Access Code: 9999 | Channel: 9

Access Data

1:1200 Baud
Access Code: 9999
Channel: 9
Address: 5
Revision: 3.30
IP Address:

Phase Initialization Data

 Phase
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16


 Initial
 0-None
 3-Yel
 0-None
 1-Inact
 0-None
 0-None

Vehic	al Basic	Timings					Mise I	imings	Walk	Walk		= (Pedes	rian Ti	mings	Alt			Actuated
hase	Min Green	Passage	Maxl	Max2	Yellow	All Red	Green Delay	Yellow Delay	Offset Time	Offset	Bike Green	Bike Psg	Walk	Ped Ch	Alt Walk	Ped Clr	Flash Walk	Ext Ped Clr	Rest in Walk
1	0	0.0	0	0	4.0	0.0			0	0-Advance	0	0	0	0			No	0	No
2	12	5.0	56	56	4.5	2,0			0	0-Advance	0	0	0	0			No	0	Yes
3	0	0.0	0	0	4.0	0.0			0	0-Advance	0	0	0	0			No	0	No
4	5	3.0	32	45	4.5	0.5			0	0-Advance	0	0	7	15			No	0	No
5	0	0.0	0	0	3.0	0.0			0	0-Advance	0	0	0	0			No	0	No
6	0	0.0	0	0	3.0	0.0			0	0-Advance	0	0	0	0			No	0	No
7	0	0.0	0	0	3.0	0.0			0	0-Advance	0	0	0	0			No	0	No
8	0	0.0	0	0	3.0	0.0			0	0-Advance	0	0	0	0			No	0	No
9	0	0.0	0	0	0.0	0.0			0	0-Advance	0	0	0	0			No	0	No
10	0	0.0	0	0	0.0	0.0			0	0-Advance	0	0	0	0			No	0	No
41	0	0.0	0	0	0.0	0.0			0	0-Advance	0	0	0	0			No	0	No
12	O	0.0	0	0	0.0	0.0			0	0-Advance	0	0	0	0			No	0	No
13	0	0.0	0	0	0.0	0.0			0	0-Advance	0	0	0	0			No	D	No
14	Ô	0.0	0	0	0.0	0.0			0	0-Advance	0	0	0	0			No	0	No
15	0	0.0	0	0	0.0	0.0			0	0-Advance	0	0	0	0			No	D	No
16	0	0.0	0	0	0.0	0.0			0	0-Advance	0	0	0	0			No	0	No

Vehic	ele Densit	v Timin	gs				General Co	ntrol			Miscell	ancous			No	Special :	Sequence	e
Ph.	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
2	0.0	0	0	0	0	0.0	NonActl	Min	None	0	No	No	No	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
6	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	U
9	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	Ω
10	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	D
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω.	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	D
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 15

16	0.0	0	0	0	0	0.0	Notic	None	None	0	No	No	No	No	No	0	0	0
Vehic	cal Da	etector F	hase As	signmen	ıt		Pedestria	n Detector					Spec	ial Detec	tor Phase	Assigno	nenl	
		Assign Phase		Switch Phase		Delay		Assign Phase	Mode	Switch Phase	Ext∌nd	Delay		Assi Pha	gn se Modo	Switch 2 Phase		. Delay
Veh Det	t: 1	1	Veh	0	0.0	0	Defau	ilt Data					Def	ault Da	fa			
Ve h Det	t:2	2	Veh	0	0.0	0							.,,		-			
Veh Det	:3	3	Veh	0	0.0	0												
Veh Det	t: 1	4	Veh	0	0.0	5												
Veh Det	:5	.5	Veh	0	0.0	0												
Veh Det	ιó	6	Veh	0	0.0	0												
Veh Det	t:7	7	Veh	0	0.0	0												
Veh Det	:8	8	V∉h	Ü	0.0	0												

Page 3 of 15

Alternate Sequences Port

Port 1 Data

BIU Port Basic Message Addr Status Det 40

Default Data

No Alternate Sequences

Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW
21	37 - Overlap E	21 - Phase 1 ONC
22	38 - Overlap F	22 - Phase 2 ONC
23	39 - Overlap G	23 - Phase 3 ONC
24	40 - Overlap H	24 - Phase 4 ONC

Coordination Data			Dial/Split	Cycle
General Coordination Data			1/1	100
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 3	1/2	100
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	1/3	100
Maximun Mode: 0=Inhibit	Max Dwell Time: 20	Manual Offset: 1	1/4	100
Correction Mode: 2=Short Way	Yield Period: 5		2/1	120
•			2/2	120
			2/3	120
			2/4	120
			3/1	140
			3/2	140
			3/3	140
			3/4	140
			4/1	150
			4/2	150
			4/3	150
			4/4	150

Split Times and Phase Mode	6								
Dial 1 / Split 1	3								
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 72 1=Coordinate	4	28	0=Actuated						
Dial 1 / Split 2		- 40							
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 72 1=Coordinate Dial 1 / Split 3	4	28	0=Actuated						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 72 1=Coordinate	4	28	0=Actuated		-F			орию	11. 11.000
Dial 1 / Split 4	7	20	o iletaatoa						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 72 1=Coordinate	4	28	0=Actuated						
Dial 2 / Split 1	TM.	G. 17	DI 16 1	TNI.	G TV	D1 14 1	721	G 11.	71.16.1
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 92 1=Coordinate Dial 2 / Split 2	4	28	0=Actuated						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 92 1=Coordinate	4	28	0=Actuated						
Dial 2 / Split 3									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 92 1=Coordinate	4	28	0=Actuated						
Dial 2 / Split 4 Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 92 1=Coordinate	4	28	0=Actuated	111.	Бриз	TH. WIOGC	FII.	Spiris	FII. WIOGE
Dial 3 / Split 1	4	20	0-Actuated						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 107 1=Coordinate	4	33	0=Actuated						
Dial 3 / Split 2									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 107 1=Coordinate Dial 3 / Split 3	4	33	0=Actuated						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 107 1=Coordinate	4	33	0=Actuated		-F			орию	THE PROGE
Dial 3 / Split 4	7		o iretaatoa						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 107 1=Coordinate	4	33	0=Actuated						
Dial 4/ Split 1	D.I	G 111	D1 16 1	7.1	G 411	D1 16 1			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 120 1=Coordinate Dial 4 / Split 2	4	30	0=Actuated						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 120 1=Coordinate	4	30	0=Actuated					1	
Dial 4/ Split 3									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 120 1=Coordinate	4	30	0=Actuated						
Dial 4 / Split 4	Dh	Splite	Dh Mada	Dh	Splita	Dh Mada	DI.	Centido	Dh Mada
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Pn.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 120 1=Coordinate	4	30	0=Actuated						

Page 6 of 15

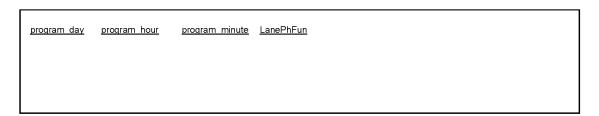
	Offset Time: 46	414 C O	B-21Time 0 B-21Time 0	D - 41 T' 0
Plan: 1/1/1	Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
		1		D 41 W. A
Plan: 1/1/2	Offset Time: 46	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/1/3	Offset Time: 46	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/1	Offset Time: 46	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/2	Offset Time: 46	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/3	Offset Time: 46	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/3/1	Offset Time: 46	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
1101	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/3/2	Offset Time: 46	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
. mil. 1/0/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/3/3	Offset Time: 46	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
rial 1/3/3	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	-ig - Lug IIIIv. V
	moo. v 10mm	operar raiseach v	Constant field. V 110	
Dlon: 1/4/1	Offset Time: 46	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 1/4/1	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	F - Lug IIIIu. V
n 1/4/0		-		Da 4 Los Timas O
Plan: 1/4/2	Offset Time: 46 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
				D 41 77' -
Plan: 1/4/3	Offset Time: 46	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	

Page 7 of 15

	Offset Time: 128	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
lan: 3/1/1	Offset Time: 128 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
IME 2: 113	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/4/3	Offset Time: 50	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 2/4/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	VR 4 Pag 1111s; 0
Non. 2/4/2	Offset Time: 50	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 2/4/1	Offset Time: 50 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
1 IIII 1 2 3 3	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	D B
Plan: 2/3/3	Offset Time: 50	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 2/3/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	VR 4 PuB 1 IIIIE: 0
nt 2/2/2	Offset Time: 50	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 2/3/1	Offset Time: 50 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	0 0
Plan: 2/2/3	Offset Time: 50	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
:1alt 2/2/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	Ag . Dag IIIIe. V
Plan: 2/2/2	Offset Time: 50	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 2/2/1	Offset Time: 50 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/1/3	Offset Time: 50	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
mii. 2/1/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	р р
Plan: 2/1/2	Offset Time: 50	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 2/1/1	Offset Time: 50 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0

Page 8 of 15

Plan: 3/1/3	Offset Time: 128	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	99
Plan: 3/2/1	Offset Time: 128	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/2/2	Offset Time: 128	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/2/3	Offset Time: 128	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/3/1	Offset Time: 128	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/3/2	Offset Time: 128	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/3/3	Offset Time: 128	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/4/1	Offset Time: 128	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Mode: 0=Normal			
Plan: 3/4/2	Offset Time: 128	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal Offset Time: 128	Special Function: 0	Correction Mode: 0=No	
	Otte at Tuma: 179			TO 1 T 1991 0
Plan: 3/4/3	Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0


Page 9 of 15

Local TBC Data Equate Days Source Start of Daylight Saving Cycle Zero Reference Hours: 24 Min: 0 3 4 5 6 7 Month: 3 Week: 2 Day End of Daylight Saving Month: 11 Week: 1 0 0 0 0 11 0 0 1 4 5 6 0 0 0 17 0 0 0 0 0 0 Traffic Data PHASE FUNCTION $\underline{D/S/O} \quad \underline{flash}$ Event Day <u>Time</u> 1 1 7:0 1/1/1 2 0/0/4 1 20:30 3 2 6:0 1/1/1 6:15 3/2/2 4 2 5 2 7:15 0/0/4 6 2 8:10 2/1/1 7 2 9:0 1/1/1 8 2 10:30 2/2/2 9 11:45 2 3/1/1 10 13:30 2/1/1 11 2 15:0 0/0/0 Х 12 2 15:45 3/3/3 13 2 17:5 4/4/1 2 18:0 2/1/1 14 15 2 19:0 1/1/1 22:0 0/0/4 2 16 17 9:0 1/1/1 18 23:0 0/0/4 AUX. Events Det. Det. Det. Special Function Outputs Aux Ouputs Diag. Rpt. Mult100 Program Event Hour Min. 1 Dimming 1 D1 Day D2D30 1 X 9 0 2 3 10 0 4 22 0 5 0 1 6 7 X X X X 6 0 15 8 8 10 9 2 15 0 10 15 45 11 2 22 0 12 0 1 13 9 0 10 0 14 Default Data - No Special Day(s) or Week(s) Programmed Special Functions <u>SF1</u> <u>SF2</u> <u>SF3</u> <u>SF4</u> <u>SF5</u> <u>SF6</u> <u>SF7</u> $\underline{SF8} \quad \underline{SF9} \ \underline{SF10} \quad \underline{SF11} \ \underline{SF12} \ \underline{SF13} \ \underline{SF14} \ \underline{SF15}$ SF16 Function

Page 10 of 15

Phase Function	DEL DES DEL DES DEC DES DEC DES DELS DELS DELS DELS DELS DELS DELS
	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Phase Omit	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Ped Omit	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Veh Det Coord ReSvc	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Function Phase Recall	
	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Phase Min Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Veh Det Ped Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Veh Det Bike Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Vehicle Function	
Veh Det Switch Omit	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Veh Det Switch Now	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Veh Det Switch Also	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Overlap Function	
	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Dimming Data	
Default Data - No Din	aming Programmed
Lanes Name	Green Yellow Red Green Yellow nbound Inbound Inbound Outbound
Default Data - Lane D	Defination

Page 11 of 15

Preemption Data

General Preemption Data													
Flash > Preempt Preempt 1 = Preempt 2	Preempt 2 = Preempt 3 Preempt 3 = Preempt 4	Preempt 4 = Preempt 5 Preempt 5 = Preempt 6											

Preempt	Preem Non- Locking	pt Time Link to Preempt		Ext end	Dura tion	Max Call		Min Green		Debo unce		Ped	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Re Ped Clear	turn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
2	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
3	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
4	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
5	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
6	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0

1	Preempt	empt 1 Preempt 2			t 2	1	Preempt	3	1	Preempt	t 4	1	Preempt	5	1	reempt	6
Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls
1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes
2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes
3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes
4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes
5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes
6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes
7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes
8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes

Priority Timers				
Prio Non- Del Ext rity Locking ay end	Free Free Min Lock Dial SplitGreen out	Lock Lock Max Pre cout out Green Gree	Dhace	Blankout

Priority Detector Channels

Priority

Detector

Priority Fixed l	Phases	
Priority		
Legend:	0 1	
CO-PHASE		
QJ-PHASE		
Priority		
Priority Bank :	Level	
Partial Priority	Full Priority	Recovery
Alt Seq	Freq. Override	Method
Alt Seq Enabled	Ped skip	Return
Min Walk	Force full Priority	PedWait
	Frequency	PedOverride
	Freq. Level	
(1 -d	V	
Codes: 0 FALSE	X TRUE	
PALISIA	TROB	
Priority :	Priority :	Priority:
Priority Bank :	Priority Bank :	Priority Bank :
Queue Phase Detector Time	1 1 -	11 -
Default data	Default data	Default data
	1	
Priority :	Priority :	Priority:
Priority Bank :	Priority Bank :	Priority Bank :
Queue Phase Detector Time	Queue Phase Detector	r Time Queue Phase Detector Time
Default data	Default data	Default data
Priority:		Priority:
•		
Bank	24 44 54 24	Bank
Detector PE 1A 2A	3A 4A 5A 6 A	B Detector PE 1A 2A 3A 4A 5A 6A B

Page 13 of 15

Default Data

Default Data

Priority : Bank Detector	PE	1A	2A	ЗА	4 A	5A	6A	В	Priority : Bank Detector	PE	1A	2A	ЗА	4A	5A	6A	В
		Defa	ult Dat	a							Defau	ilt Data	ì				
Priority : Bank Detector	PE	1A Defai	2A ult Dat	3A a	4A	5A	6A	В	Priority : Bank Detector	PE	1A Defau	2A I It Da ta	ЗА	4A	5A	6A	В
Preempt 1	_								•								
•	/ehical	Phases well	Cycle	:	Ph Track	Pe	destriar Dw	ı Phases ell	Cycle	Ovlp	Track		Overla vell	ps Cyc	ele	Trail	Grn
Default Da	ıta				Default l	Data				Defa	ult Dat	a					
Ph. Track	Vehical Phases Pedestrian Ph					an Phas Dwel		Cycle	Ovlp.	C Track	Overlap Dw		Cycle	Tı	rail Grn	_	
Demait Data				Default l	Data				Defa	ult Data	a					_	
Ph. Track		Phases well	Cy	ele	Pe Ph. Track		an Phas Dwel		Cycle	Ovlp.	C Track	Overlap Dv	s vell	Cycle	,	Trail Gr	n
Default Da	ıta				Default l	Data				Defa	ult Data	a					
Ph. Track		Phases Dwell	Cy	ole	Pe Ph. Track	destria	n Phase		Cycle	Ovlp.	C Track	Overlap Dv	s vell	Cycle	Tì	rail Grn	
Default Da	ıta				Default I)ata				Defa	ult Data	a					
Ph. Track		Phases well	Cy	ole	Pe Ph. Track	destria	n Phase Dwell		Cycle	Ovlp.		Overlap Dv	s vell	Cycle	Tı	rail Grn	
Default Da	ıta				Default I	Data				Defa	ult Data	a					
Preempt 6	/ehical	Phases			Pe	destria	n Phase	es				Overlap	«				
Ph. Track		Dwell	C	ycle	Ph. Track		Dwell	l	Cycle	Ovlp.	Track		vell	Cycle	Tı	rail Grn	
Default Da System/l		tors D	ata		Default I	Oata				Defa	ult Data	a					
Local Criti									Revert to E	Rackum 1	5	1st	Phone): ::			
Local Free: N Local Fash: N		Cycle Fai Cycle Fai		0	Coord Failu Coord Fault			flict Fla	sh: No Rer	note Flasl tage Mon	n: No		Phon				
Special Status	s 1: No	Spe	cial Sta	tus 2:	No Spec	rial Sta	itus 3: N	Jo Su	ecial Status 4:	No s	Special St	atus 5:	No	Special	Status	6: No	

Page 14 of 15

Traffic R System Detector				Average me(mins)	Occupan Correction	-	ш. ,	eue I ectors	System Detector	-	Queue Defect		
Default Da	ıta						Defa	ult Dats	1		Default	Data	
Sample Int				Quene:	1 Input	Selection:	0 Averag	șe .	Queue:	:			
					Dete	ctor Failed I	Level: 0		Level	Enter :	Leave	Dial / Sp	olit / Offset
				Queue:	2 Input	Selection:	0=Averag	ge				17	
					Dete	ctor Failed I	Level: 0		Defaul	t Dat a			
Vehical D	etector				Vehical De	etector				Special De	tector		
	Diag	nostie Valu	ie 0			Diag	nostie Valu	ic 1			Diag	nostie Valu	ie 0
	Max	No	Erratic		_	Max	No	Erratio		_	Max	No	Erratic
Detector	Presence	Activity	Count		Detector	Presence	Activity	Count	<u> </u>	Detector	Presence	Activity	Count
1	10	0	75		1	30	0	75 76		1	10	0	75
2	10	0	75		2	30	0	75 75		2	10	0	75
3	10	0	75 75		3	30	0	75		3	10	0	75 75
4	10	0	75 76		. 1 5	30	0	75		4	10	0	75 75
5	10	0	75 75		6	30 30	0	75		5 6	10 10	0	75 75
6 7	10	0	75		7	30	0	75		7	10	0	75
8	10 10	0	75 75		8	30	0	75		K	10	0	75
Ü	10	-									oata - No	Diag 0.3	
										izeladit i	7414 - I WI	inag o	*aiu
Pedestria	n Detector				Pedestriai					Special De			
	Diag	nosti e Valu	ic 0			Diag	nostie Valu	ic 1			Diag	nostio Valu	ic 1
Defector	Max Presence	No Activity	Erratio Count		Detector	Max Presence	No Activity	Erratio Count		Datector	Max Presence	No Activity	Erratic Count
1	10	0	75		1	30	0	75		1	30	0	75
2	10	0	75		2	30	0	75		2	30	0	75
3	10	0	75		3	30	0	75		3	30	0	75
4	10	Û	75		4	30	0	75		4	30	Û	75
5	10	0	75		5	30	0	75		5	30	0	75
Ú	10	0	75		ű	30	0	75		6	30	0	75
7	10	0	75		7	30	0	75		7	30	0	75
N N	10	0	75		8	30	0	75		K TO A N. T	30	0	75
Default	Data - No	Diag 0 V	Values		Default :	Data - No	Diag 1 V	/alues		Default 1	Data - No	Diag 1	Values
Speed Tr Speed Tr	-						lit/Offse		Speed Trap ow Treshol		ed Trap Treshold		
-	•	easureme	nt:				И						
Detector	1 Delect	эт 2 — 1)	islatice :				Defau	lt Data	1				
Default	Data												
Volume I	Detector I	Data											
	Report		15										
17-1	Controller		10										
vonume													
Detector	Detector												

Default Data

Page 15 of 15

SEPAC ECOM All Data

Intersection Name: Atlanta Hwy @ Forrest Hills

Intersection Alias: ForrestHill

Access Data

I :1200 Baud 3 :19200 Baud Access Code: 9999 Channel:

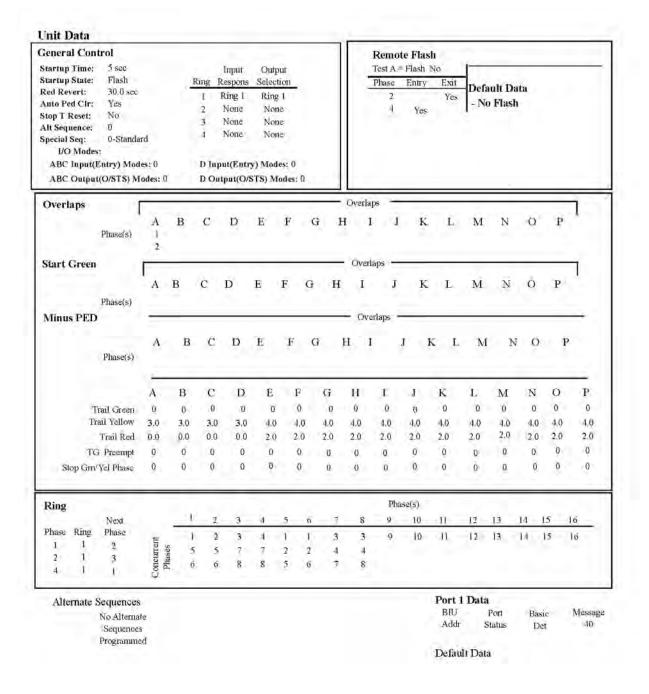
Address: 1

Revision: 3.34g

IP Address: 172.31.24.140

Phase Initialization Data

 Phase
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16


 Initial
 1-Inact
 3-Yel
 0-None
 1-Inact
 0-None
 0-None

Vehical Basic Timings								Mise Timings		Walk		= (Pedes	rian Ti	mings	Alt			Actuated
Phase	Min Green	Passage	Maxl	Max2	Yellow	All Red	Green Delay	Yellow Delay	Walk Offset Time	Offset	Bike Green	Bike Psg	Walk	Ped Cir	Alt Walk	Ped Clr	Flash Walk	Ext Ped Clr	Rest in Walk
1	7	3.0	16	16	4.0	1.0	0.0	0.0	0	0-Advance	0	0.	0	0			No	0	No
2	30	6.0	52	52	5.0	2,0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	Yes
3	0	0.0	0	0	3.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
4	8	6.0	40	40	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
5	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
6	0	0.0	0	0	3.0	0.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
7	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
8	0	0.0	0	0	3.0	0,0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
12	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
14	Ô	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No

Vehicle Density Timings					General Co	Miscell	laneous			No	Special Sequence							
Ph.	Added Ph. Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
2	0.0	0	0	0	0	0.0	NonActl	Min	None	0	No	No	No	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
6	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	U
9	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	Ω
10	0.0	0	0	0	0	0,0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	D
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	D
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 16

16	0.0	0	0	0	0	0.0	Notic	None	None	0	No	No	No	No	No	0	0	0
Vel	Vehical Detector Phase Assignment							Detector					Speci	ial Detec	tor Phase	Assign	nent	
		Assign Phase	Mede	Switch Phase	Extend	Delay		Assign Phase	Moda	Switch Phase	Extend	Delay		Assi Pha	gn se Modo	Switch Phase		. Delay
D	efault I	Data					Defaul	t Data					Defa	ult Da	ta			

Page 3 of 16

Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW

l .					
Coordination Data			Dial/Split	Cycle	Τ
General Coordination Data			1/1	100	
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 3	1/2	100	
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	1/3	100	
Maximun Mode: 0=Inhibit	Max Dwell Time: 20	Manual Offset: 1	1/4	100	
Correction Mode: 2=Short Way	Yield Period: 5		2/1	120	
			2/2	120	
			2/3	120	
			2/4	120	
			3/1	140	
			3/2	140	
			3/3	140	
			3/4	140	
			4/1	150	
			4/2	150	
			4/3	150	
			4/4	150	

Page 4 of 16

Split Times and Phase Mod	les								
Dial 1 / Split 1	7.1	a 10	D1 16 1	731	a 11.	D1 14 1			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode		Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 20 0=Actuated Dial 1 / Split 2	2	56	1=Coordinate	4	24	0=Actuated			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 20 0=Actuated	2	56	1=Coordinate	4	24	0=Actuated		Брико	111 111000
Dial 1 / Split 3	2	50	1 Coordinate	4	2-7	o riotation			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 20 0=Actuated	2	56	1=Coordinate	4	24	0=Actuated			
Dial 1 / Split 4	7.1	a 10	T1 16 1	7.1	a 11.	T1 16 1			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode		Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 20 0=Actuated Dial 2 / Split 1	2	56	1=Coordinate	4	24	0=Actuated			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 20 0=Actuated	2	77	1=Coordinate	4	23	0=Actuated	1.11.	~PIIW	
Dial 2 / Split 2	2		. condition	-	23	. Treatment			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 20 0=Actuated	2	77	1=Coordinate	4	23	0=Actuated			
Dial 2 / Split 3									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 20 0=Actuated Dial 2 / Split 4	2	77	1=Coordinate	4	23	0=Actuated			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 20 0=Actuated	2	77	1=Coordinate	4	23	0=Actuated	111.	орию	TH WOOD
Dial 3 / Split 1	2	, ,	1 Coordinate	4	23	o ricidated			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 25 0=Actuated	2	70	1=Coordinate	4	45	0=Actuated			
Dial 3 / Split 2									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 25 0=Actuated	2	70	1=Coordinate	4	45	0=Actuated			
Dial 3 / Split 3 Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 25 0=Actuated	2	85	1=Coordinate	4	30	0=Actuated	rii.	Бриб	FII. Widde
Dial 3 / Split 4	2	63	1—Coordinate	4	50	0-Actuated			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 25 0=Actuated	2	70	1=Coordinate	4	45	0=Actuated			
Dial 4/ Split 1									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 25 0=Actuated	2	80	1=Coordinate	4	45	0=Actuated			
Dial 4 / Split 2 Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Dh	Splits	Ph. Mode	DΙ-	Splita	Dh. Mode
		-					Ph.	Splits	Ph. Mode
1 25 0=Actuated Dial 4 / Split 3	2	80	1=Coordinate	4	45	0=Actuated			
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 25 0=Actuated	2	80	1=Coordinate	4	45	0=Actuated		-	
Dial 4/ Split 4									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 25 0=Actuated	2	80	1=Coordinate	4	45	0=Actuated			

Page 5 of 16

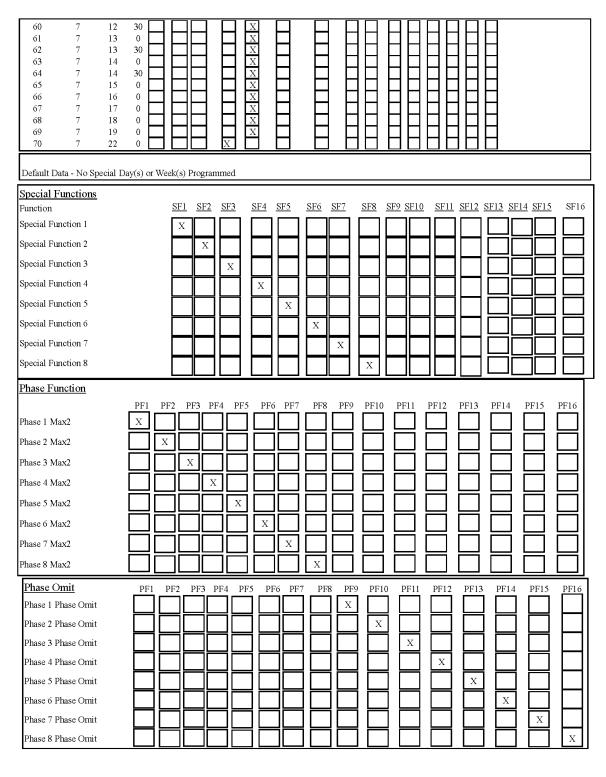
Plan: 1/1/1	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
riait 1/1/1	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	reg v Dag Tame. v
Plan: 1/1/2	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
riait 1/1/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/1/3	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
. mil 1/1/3	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/1	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/2	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/3	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/3/1	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/3/2	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/3/3	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/4/1	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/4/2	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/4/3	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	

Page 6 of 16

an: 2/1/1	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: (Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/1/2	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/1/3	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0–No	Rg 4 Lag Time: 0
Plan: 2/2/1	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/2/2	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/2/3	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/3/1	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/3/2	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/3/3	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/4/1	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/4/2	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/4/3	Offset Time: 4 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/1/1	Offset Time: 92 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/1/2	Offset Time: 92	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: (Rg 4 Lag Time: 0

Page 7 of 16

	Offset Time: 92	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
lan: 3/2/1	Offset Time: 92	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/2/2	Offset Time: 92 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/2/3	Offset Time: 92 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/3/1	Offset Time: 92	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
тап: 5/5/1	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	Rg 4 Dag Time. V
Plan: 3/3/2	Offset Time: 92 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/3/3	Offset Time: 77 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/4/1	Offset Time: 92 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Offset Time: 92	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/4/2	Mode: 0=Normal	Special Function: 0	Confection Mode, 0-No	
Plan: 3/4/2 Plan: 3/4/3	Mode: 0=Normal Offset Time: 92 Mode: 0=Normal	Special Function: 0 Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Offset Time: 92	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Offset Time: 92	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
elan: 3/4/3	Offset Time: 92 Mode: 0-Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	
Plan: 3/4/3	Offset Time: 92 Mode: 0=Normal Offset Time: 88 Mode: 0=Normal Offset Time: 88	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 3/4/3	Offset Time: 92 Mode: 0=Normal Offset Time: 88 Mode: 0=Normal Offset Time: 88 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0


Page 8 of 16

Plan: 4/2/2	Offset Time: 88	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag T	ime: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/2/3	Offset Time: 88	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag T	ime: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/3/1	Offset Time: 88	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag T	ime: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/3/2	Offset Time: 88	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag T	ime: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/3/3	Offset Time: 88	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag T	ime: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/4/1 Plan: 4/4/2 Plan: 4/4/3	Offset Time: 88 Mode: 0=Normal Offset Time: 88 Mode: 0=Normal Offset Time: 88	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag T Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag T Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag T	ime: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Local TBC 1	Data		Source Equate Da	ys
Start of Dayligh	at Saving Month: 3	Week: 2 Cycle Zero Refere	ence Hours: 24 Min: 0 Day 1 2 3 4 5	6 7
End of Daylight	Saving Month: 11	Week: I	1 11 0 0 0 0 2 3 4 5 6 0	0 0
			2 3 4 5 6 0 7 17 0 0 0 0	0 0
Fraffic Data			7 17 0 0 0 0	
	Time D/S/O fl		l l	
	Time D/S/O fl 9:0 2/1/1	ash 1 2 3 4	7 17 0 0 0 0	
Event Day		ash 1 2 3 4	7 17 0 0 0 0	
Event <u>Day</u> 1 1	9:0 2/1/1	ash 1 2 3 4	7 17 0 0 0 0	
Event Day 1 1 2 1	9:0 2/1/1 20:30 0/0/4	ash 1 2 3 4	7 17 0 0 0 0	
Event Day 1 1 2 1 3 2	9:0 2/1/1 20:30 0/0/4 6:15 3/2/2 11:0 3/1/1	ash 1 2 3 4	7 17 0 0 0 0	
Event Day 1 1 2 1 3 2 4 2	9:0 2/1/1 20:30 0/0/4 6:15 3/2/2 11:0 3/1/1	ash 1 2 3 4	7 17 0 0 0 0	
Event Day 1 1 2 1 3 2 4 2 5 2	9:0 2/1/1 20:30 0/0/4 6:15 3/2/2 11:0 3/1/1 14:0 3/3/3 16:0 4/4/1	ash	7 17 0 0 0 0	
Event 1 1 1 2 1 3 2 4 2 5 2 6 2 7 2	9:0 2/1/1 20:30 0/0/4 6:15 3/2/2 11:0 3/1/1 14:0 3/3/3 16:0 4/4/1 18:0 2/1/1	ash	7 17 0 0 0 0	
1 1 2 1 3 2 4 2 5 2 6 2 7 2	9:0 2/1/1 20:30 0/0/4 6:15 3/2/2 11:0 3/1/1 14:0 3/3/3 16:0 4/4/1	ash 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 17 0 0 0 0	

Page 9 of 16

Aux Det Det Det Det Det Det Det Det Det Dings Rpt Mait 100 Special Function Outputs Det Dings Rpt Mait 100 Det Det Dings Rpt Mait 100 Det Det Dings Rpt Mait 100 Det Det Det Det Dings Rpt Mait 100 Det De	
Program Aux Ouputs Diag. Rpt. Mult100 Special Function Outputs Event Day Hour Min. 1 2 3 D1 D2 D3 Dimming 1 2 3 4 5 6 7 8 3 1 10 0	
Event Day Hour Min. 1 2 3 D1 D2 D3 Dimming 1 2 3 4 5 6 7 8 1 1 0 1 1 0 1 0 </th <th></th>	
2 1 9 0	
$egin{bmatrix} 7 & 1 & 22 & 0 \\ 8 & 2 & 0 & 1 \\ \hline \end{bmatrix}$	
$egin{bmatrix} 7 & 1 & 22 & 0 \\ 8 & 2 & 0 & 1 \\ \hline \end{bmatrix}$	
$egin{bmatrix} 7 & 1 & 22 & 0 \\ 8 & 2 & 0 & 1 \\ \hline \end{bmatrix}$	
$egin{bmatrix} 7 & 1 & 22 & 0 \\ 8 & 2 & 0 & 1 \\ \hline \end{bmatrix}$	
$egin{bmatrix} 7 & 1 & 22 & 0 \\ 8 & 2 & 0 & 1 \\ \hline \end{bmatrix}$	
9 2 6 0 10 2 6 30 11 2 7 0 12 2 7 15 13 2 7 30 14 2 7 45 15 2 8 0 16 2 8 15 17 2 8 30	
10 2 0 30 1 1 1 2 7 0 1 1 1 1 2 1 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
11 2 7 15 X X X X X X X X X X X X X X X X X X	
13 2 7 30 XX	
14 2 7 45 15 2 8 0 1	
$\begin{bmatrix} 15 & 2 & 8 & 0 \\ 16 & 2 & 8 & 15 \\ 17 & 2 & 8 & 30 \end{bmatrix}$	
$\begin{bmatrix} 21 & 2 & 10 & 30 \\ 22 & 2 & 11 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} X \\ X \end{bmatrix} \longrightarrow$	
25 2 11 45	
$\begin{bmatrix} 27 & 2 & 12 & 15 \\ 28 & 2 & 12 & 30 \end{bmatrix} \longrightarrow \begin{bmatrix} X \\ X \end{bmatrix} $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
33 2 14 0 X X X X X X X X X X X X X X X X X X	
37 2 16 0 X X X X X	
$\begin{bmatrix} 38 & 2 & 16 & 15 \\ 20 & 2 & 16 & 20 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 15 \\ 20 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix}$	
$\begin{bmatrix} 39 & 2 & 16 & 30 \\ 40 & 2 & 16 & 45 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 $	
42 2 17 15	
$\begin{bmatrix} 44 & 2 & 17 & 45 \\ 45 & 2 & 18 & 0 \end{bmatrix} \begin{array}{c} 17 & 45 \\ 18 & 0 \end{array} \begin{array}{c} 17 & 17 \\ 18 & 17 \end{array} \begin{array}{c} 17 & 17 \end{array} \begin{array}{c} 17 & 17 \\ 18 & 17 \end{array} \begin{array}{c} 17 & 17 \end{array} \begin{array}{c} 17 & 17 \\ 18 & 17 \end{array} \begin{array}{c} 17 \\ 17 \end{array} \begin{array}{c} 17 & 17 \end{array} \begin{array}{c} 17 & 17 \end{array} \begin{array}{c} 17 \\ 17 \end{array} \begin{array}{c} 17 \end{array} \begin{array}{c} 17 & 17 \end{array} \begin{array}{c} 17 \end{array} \begin{array}$	
47 2 19 0 X X X X X X X X X X X X X X X X X X	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{bmatrix} 31 & 2 & 21 & 0 \\ 52 & 2 & 21 & 30 \end{bmatrix} \begin{array}{c cccc} & & & & & & & & & & & & \\ \hline \end{array}$	
53 2 22 0	
$\begin{bmatrix} 56 & 7 & 10 & 0 \\ 57 & 7 & 11 & 0 \end{bmatrix} \begin{array}{c} 10 & 0 \\ 11 & 0 \end{array} \begin{array}{c} $	
55 7 9 0	
59 7 12 0	

Page 10 of 16

Page 11 of 16

Ped Omit	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Coord ReSvc	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	.6
Function Phase Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	
Phase Min Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Ped Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Bike Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	.6
Vehicle Function Veh Det Switch Omit	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	.6
Veh Det Switch Now	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Switch Also	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Overlap Function	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Dimming Data Default Data - No Dim	nming Programmed	
Lanes Name	Green Yellow Red Green Yellow bound Inbound Inbound Outbound	
	gram hour program minute LanePhFun	

Preemption Data

Page 12 of 16

General Preemption Data Flash > Preempt Preempt 2 = Preempt 3 Preempt 4 = Preempt 5 Preempt 1 = Preempt 2 Preempt 3 = Preempt 4 Preempt 5 Preempt 5 Preempt 6

Preempt	Non-	pt Time		Ext	Dura	Max	Lock-	Min	Min	Debo		Ped	elect			Track			Dwell	Ped	turn	
Ā	Locking	Preempt	Delay	end	tion	Call	Out	Green	Walk	unce	end	Clear	Yel	Red	Grn	Ped	Yel	Red	Green	Clear	Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
2	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
3	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
4	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
5	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
6	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0

	Preempt	1]	Preemp	1 2]	Preempt	t 3]	Preempt	t 4]	Preempt	5]	Preempt	: 6
Phase	Exit Phase	Exit Calls															
1	No	Yes															
2	No	Yes															
3	No	Yes															
4	No	Yes															
5	No	Yes															
6	No	Yes															
7	No	Yes															
8	No	Yes															

Priority Timers						
Prio Non- Del Ext rity Locking ay end	Free Free Min Locl	Lock Lock Max out out Green A B	Pre- Green Recall	Excl-co Phase Svc.	Transit (Signal Type	Overlap Blankout

Priority Detector Channels

Priority

Detector

Priority Fixed Phases

Priority

Legend: 0 1 CO-PHASE FALSE TRUE QJ-PHASE

Page 13 of 16

Priority Priority Bank: Partial Priority Alt Seq Alt Seq Enabled Min Walk	Level Full Priority Freq. Override Ped skip Force full Priority Frequency Freq. Level	Recovery Method Return Ped/Wait PedOverride	
Codes: 0 FALSE	X TRUE		
Priority : Priority Bank : Queue Phase Detector Tir Default data	Default data	Priority : Priority Bank : Queue Phase Detector Time Default data	
Priority: Priority Bank: Queue Phase Detector Tir Default data	Priority: Priority Bank: Queue Phase Detector T Default data	Priority: Priority Bank: Queue Phase Detector Time Default data	
Priority: Bank Detector PE 1A 2A Default Dat	3A 4A 5A 6A B	Priority: Bank Detector PE 1A 2A 3A Default Data	4A 5A 6A B
Priority: Bank Detector PE 1A 2A Default Dat	3A 4A 5A 6A B	Priority: Bank Detector PE 1A 2A 3A Default Data	4A 5A 6A B
Priority: Bank Detector PE 1A 2A	3A 4A 5A 6A B	Priority: Bank Detector PE 1A 2A 3A	4A 5A 6A B

Page 14 of 16

Default Data

Preempt 1 Ph. Track	/ehical Phases Dwell	Cycle	Ph Track	Pedestrian Phas Dwell	es Cycle	Ovlp	Track	Overla Dwell	i ps Cycle	Trail Gn
Default Da	ta		Default Dat	a		Defau	lt Data			
Preempt 2 V Ph. Track	ehical Phases Dwell	Cycle	Pedes Ph. Track	trian Phases Dwell	Cycle	Ovlp.		erlaps Dwell	Cycle	Trail Grn
Default Da	ta		Default Dat	a		Defau	lt Data			
Preempt 3 V Ph. Track	ehical Phases Dwell	Cycle	Pedes	trian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Gm
Default Da	ta		Default Dat	a			lt Data		-2.55	
Preempt 4	ehical Phases Dwell	Cycle	Pedes Ph. Track	trian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Grn
Default Da	ta		Default Dat	a		Defau	lt Data			
Preempt 5 V Ph. Track	ehical Phases Dwell	Cycle	Pedes Ph. Track	trian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Grn
Default Da	ta		Default Dat	a		Defau	lt Data			
Preempt 6 V Ph. Track	ehical Phases Dwell	Cycle	Pedes Ph. Track	trian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Grn
Default Da	ta Detectors D	ata	Default Dat	a		Defau	lt Data			
•	ical Alarms To Cycle Fail To Cycle Fau To Speces	ure: No lt: No pial Status 2:		o Premption Status 3: No :	: No Volt Special Status 4: I tin Queue 1	note Flash: age Monit No Sp System	No or: No oecial Stat u Weig	tht Qu	e: Special Sta	em Weight
Detector C	hannel Name	Hr Ti	me(mins) Con	ection/10 Volu	me % Detectors		rs Fact		ectors Detec	tors Factor
Default Data Sample Inter		15	Queue: 1 Queue: 2	Input Selection: Detector Failed Input Selection: Detector Failed	Level : 0 0=Average	Queue Level	e: Enter It Data	Defa Leave	ult Data Dial / Sp / /	lit / Offset

Vehical D	etector			Vehical Di	etector			Special De	etector		
	Diag	nosti e Valu	ic 0		Diag	nosti e Valu	ic 1		Diag	nostic Valu	e 0
Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratic Count
1	10	0	75	1	30	0	75	1	10	0	75
2	10	0	75	2	30	0	75	2	10	0	75
3	10	0	75	3	30	0	75	3	10	Û	75
1	10	0	75	4	30	0	75	4	10	0	75
5	10	0	75	5	30	Ü	75	5	10	0	75
6	10	0	75	ű	30	0	75	ń	10	0	75
7	10	0	75	7	30	0	75	7	10	0	75
8	10	0	75	8	30	0	75	к	10	0	75
								Default !	Data - No	Diag 0 V	Valu
Pedestriar	Detector			Pedestria	n Detector			Special De	etector		
	Diag	nosti e Valu	ic 0		Diag	nosti e Valu	ic 1		Diag	nostie Valu	ല 1
Defector	Max Presence	No Activity	Erratic Count	Detactor	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratic Count
1	10	0	75		30	0	75	- - 1	30	0	75
2	10	0	75	2	30	0	75	2	30	0	75
3	10	0	75	3	30	0	75	3	30	0	75
4	10	0	75	-1	30	0	7.5	4	30	0	75
5	10	0	75	5	30	0	7.5	5	30	0	75
6	10	0	75	6	30	0	75	G	30	0	75
7	10	0	75	7	30	0	75	7	30	0	75
8	10	0	75	8	30	0	75	8	30	0	75
Default :	Data - No	Diag 0 V	/alues	Default :	Data - No	Diag 1 V	Values	Default :	Data - No	Diag 1 V	Values
speed Tr Speed Tr	•					Dial/Sp //	dit/Offset	Speed Trap Low Treshol	-	ed Trap Treshold	
	М	easureme	nt:				lt IXata				
Detector	l Detecto	or 2 Di	istance:			Detau	lt Data				

Default Data

Volume Detector Data

Report Interval ()
Volume Controller
Detector Detector
Number Channel

1/24/2018 10:47:50AM

Intersection Name: Atlanta Hwy @ Coliseum

Intersection Alias: AtlHwyColis

Access Data

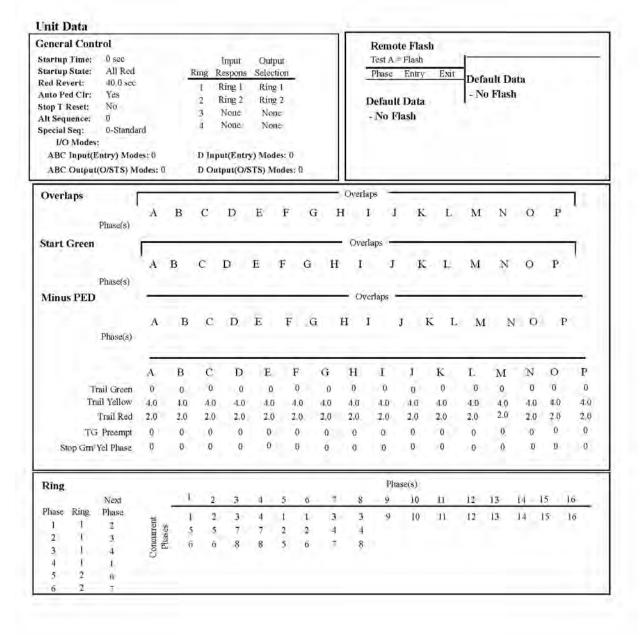
I :1200 Baud 3 :19200 Baud Access Code: 9999 Channel:

Address: 1

Revision: 3.34g IP Address: 172.31.24.139

Phase Initialization Data

 Phase
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16


 Initial
 1-Inact
 4-Gm
 1-Inact
 1-Inact
 1-Inact
 4-Gm
 0-None
 0-None

Vehic	al Basic	c Timings					Mise T	imings	Walk	Walk			Pedest	rian Ti	mings	Alt			Achuate
hase	Min Green	Passage	Maxl	Max2	Yellow	All Red	Green Delay	Yellow Delay	Offset Time	Offset	Bike Green	Bike Psg	Walk	Ped Clr	Alt Walk	Ped Clr	Flash Walk	Ext Ped Clr	Rest in Walk
1	8	4.0	30	30	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
2	20	5.0	40	40	4.0	2,0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
3	8	3.0	15	15	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
4	8	4.0	35	35	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
5	5	3.0	15	15	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
6	20	5.0	40	40	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
7	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
8	0	0.0	0	0	3.0	0.0	0,0	0.0	0	0-Advance	0	0	0	0	0.	0	No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
12	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	D	No
14	O	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	D	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No

Vehic	le Densit	v Timin	gs				General Co	ntrol			Miscell	ancous			No	Special :	Sequence	ē.
Ph.	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
2	0.0	0	0	0	0	0.0	NonActl	Min	None	0	No	No	No	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
6	0.0	0	0	0	0	0.0	NonActl	Min	None	0	No	No	No	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	U
9	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	Ω
10	0.0	0	0	0	0	0,0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	D
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 15

16	0.0	0	0	0	0	0.0	Notic	None	None	0	No	No	No	No	No	0	0	0
Vel	hical Deta	ector P	hase As	signmen	ıt		Pedestrian	Detector					Speci	al Detec	tor Phase	Assignin	nent	
		Assign Phase	Mede	Switch Phase	Extend	Delay		Assign Phase	Moda	Switch Phase	Extend	Delay		Assi Pha	ign ise Modo	Switch Phase		. Delay
D	efault I	Data					Default	. Data					Defa	ult Da	ta			

Page 3 of 15

A.I	ternate	Charm		
441	termate	OCC	пет	ICES.

	Ph. Pair 1	Ph. Pair 2	Ph. Pair 3	Ph. Pair 4
Alt, Seq. 1	1/2			
Alt. Seq. 2	3/4			
Alt. Seq. 3	1/2	3/4		
Alt Seq. 4	5/6			
Alt. Seq. 5	1/2	5/6		
Alt. Seq. 6	3/4	5/6		
Alt. Seq. 7	1/2	3/4	5/6	
Alt. Seq. 8	7/8			
Alt. Seq. 9	1/2	7/8		
Alt. Seq. 10	3/4	7/8		
Alt, Seq. 11	1/2	3/4	7/8	
Alt, Seq. 12	5/6	7/8		
Alt. Seq. 13	1/2	5/6	7/8	
Alt. Seq. 14	3/4	5/6	7/8	
Alt. Seq. 15	1/2	3/4	5/6	7/8

Port 1 Data
BIU Port Basic Message Addr 40 Status Det

Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW

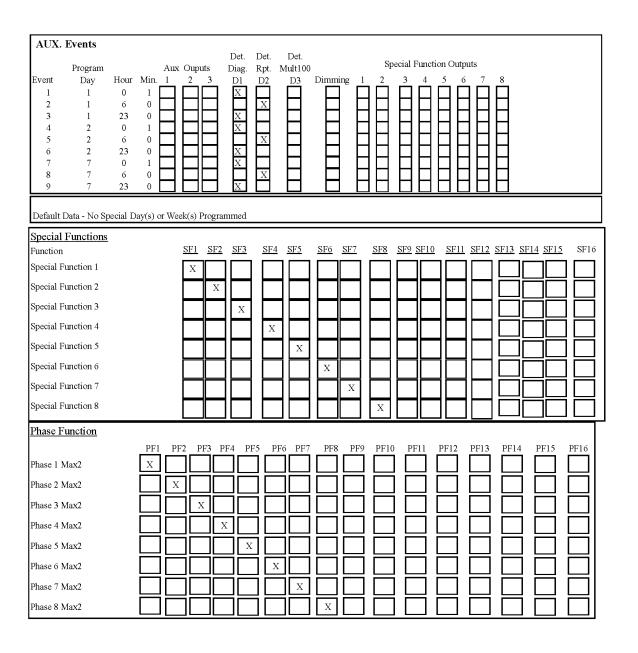
Coordination Data			Dial/Split	Cycle
General Coordination Data			1/3	95
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 3	2/1	120
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	2/3	125
Maximun Mode: 0=Inhibit	Max Dwell Time: 20	Manual Offset: 1	3/1	140
Correction Mode: 2=Short Way	Yield Period: 5		3/2	140
-			3/3	140
			4/1	150
			4/4	150

Page 5 of 15

Spli	t Time:	s and Phase V	lodes								
Dial	17 Split	13									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode
I	15	0=Actuated	2	48	1=Coordinate	3	ló	0=Actuated	- 4	ló	0=Actuated
5	16	0=Aetuated	ó	47	1=Coordinate						
Dial	2 / Split	1 1									
Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Pli, Mode
1	20	0=Aetuated	2	.52	1=Coordinate	3	14	0=Actuated	4	34	0=Actuated
5	14	0=Actuated	6	58	1=Coordinate						
Dial	27 Split	1.3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	14	0-Actuated	2	77	1-Coordinate	3	18	0-Actuated	4	16	0—Actuated
5	18	0-Actuated	б	73	1-Coordinate						
Dial	3 / Split	11									
Ph.	Splits	Ph Mode	\mathbf{P} la.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Pli, Mode
1	25	0 Actuated	2	53	1 Coordinate	3	14	0 Actuated	4	48	0 Actuated
5	14	0=Actuated	ΰ	61	1=Coordinate						
Dial	3 / Split	12									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1	2.5	0-Actuated	2	53	l-Coordinate	3	14	0-Actuated	4	48	0-Actuated
5	14	0=Actuated	o o	61	1=Coordinate						
Dial	37 Split	1.3									
ľħ.	Splits	Ph. Mode	Ph.	Splits	Ph. Moda	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	25	0 Actuated	2	53	1 Coordinate	3	14	0 Actuated	4	48	0 Actuated
5	1.5	0=Aemated	ń	63	1=Coordinate						
Dial	4 / Split	. 1									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Plı.	Splits	Ph. Mode	1개.	Splits	Ph. Mode
1	27	0=Actuated	2	51	1=Coordinate	3	11	0=Actuated	- 4	55	0=Actuated
5	14	0−Actuated	6	67	1=Coordinate						
Dial	47 Split	. 4									
Plı.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Pli. Mode
1	27	()=Actuated	2	54	1=Coordinate	3	1.4	0=Actuated	4	55	0=Actuated
5	14	0=Actuated	ń	67	1=Coordinate						

Page 6 of 15

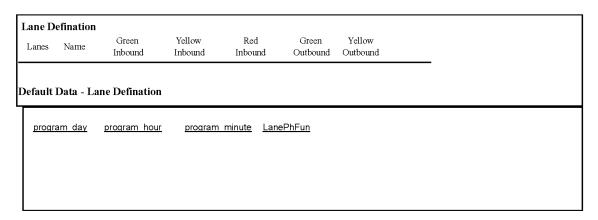
Traffic Plan	Data			
	0.00 + 00			D 47 W 4
Plan: 2/1/1	Offset Time: 19 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
DI 2/1/2	Offset Time: 19	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 2/1/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	Ng 4 Lag Time. 0
Plan: 2/1/3	Offset Time: 19	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plail. 2/1/3	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	ng roug root.
Plan: 2/2/1	Offset Time: 2	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/2/2	Offset Time: 2	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/2/3	Offset Time: 2	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/3/1	Offset Time: 2	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/3/2	Offset Time: 2	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	


Page 7 of 15

Offset Time: 2	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Offset Time: 2	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Offset Time: 2 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Offset Time: 2 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Offset Time: 90 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Offset Time: 90 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Offset Time: 90 Mode: 0≕Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Offset Time: 90 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Offset Time: 90 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Offset Time: 90 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Offset Time: 90 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	-		Rg 4 Lag Time: 0
	Mode: 0=Normal Offset Time: 2 Mode: 0=Normal Offset Time: 2 Mode: 0=Normal Offset Time: 90 Mode: 0=Normal	Offset Time: 2 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0 Offset Time: 2 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0 Offset Time: 2 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0 Offset Time: 90 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0 Offset Time: 90 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0 Offset Time: 90 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0 Offset Time: 90 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0 Offset Time: 90 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0 Offset Time: 90 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0 Offset Time: 90 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0 Offset Time: 90 Alternat Sequence: 0 Mode: 0=Normal Special Function: 0	Offset Time: 2 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 2 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 2 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 2 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Mode: 0=Normal Special Function: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Offset Time: 90 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0

Page 8 of 15

Plan: 4/1/1	Offset Time: 90 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Correction Mode: 0=No
Plan: 4/1/2	Offset Time: 90	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No
Plan: 4/1/3	Offset Time: 90	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No
Plan: 4/4/1	Offset Time: 90	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0
21am: 4/4/1	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No
Plan: 4/4/2	Offset Time: 90 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Correction Mode: 0=No
41472			
Plan: 4/4/3	Offset Time: 90 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Correction Mode: 0=No
	Mode: 0=Normal Data pht Saving Month: 3	Special Function: 0	
Local TBC Start of Daylig	Mode: 0=Normal Data pht Saving Month: 3	Special Function: 0 Week: 2 Cycle Zero Refer	Correction Mode: 0=No Source Equate Days
	Mode: 0=Normal Data tht Saving Month: 3 ht Saving Month: 11	Special Function: 0 Week: 2 Cycle Zero Refer	Correction Mode: 0=No Source Equate Days


Page 9 of 15

Page 10 of 15

Phase Omit	DEI	DEO	DES	DE 4	DES	DE/	DE7	DEO	PF9	DE10	DE11	DELA	DE12	DE1.4	DELE	PF16
Phase 1 Phase Omit	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	X	PF10	PF11	PF12	PF13	PF14	PF15	PFIO
Phase 2 Phase Omit	H	H		=		H		H		Х	\forall	\forall	\blacksquare	H	H	H
Phase 3 Phase Omit	П	H		=					Ħ	Ħ	X	Ħ	Ħ	Ħ	Ħ	\square
Phase 4 Phase Omit		П								П	П	Х	同	同	Ħ	
Phase 5 Phase Omit													X			
Phase 6 Phase Omit														X		
Phase 7 Phase Omit															X	Ш
Phase 8 Phase Omit																Χ
Ped Omit	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
	Ш															
Veh Det Coord ReSvc	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Function Phase Recall																
	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
																Ш
Phase Min Recall	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
	Ш						Ш		Ш				Ш			Ш
Veh Det Ped Recall	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
	Ш						Ш		Ш			Ш				
Veh Det Bike Recall	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Vehicle Function																
Veh Det Switch Omit	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
774 70 + 0 - 1: 4 37	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>Ш</u>										
Veh Det Switch Now	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
								Ш	<u> </u>					Ш		<u> </u>
Veh Det Switch Also	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Overlap Function																
	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
						Ш	Ш	Ш	Ш			<u> </u>				
Dimming Data																
Default Data - No Dim	ming	Progr	amme	ed												

Page 11 of 15

Preemption Data

General Preemption Data											
Preempt > Flash	Preempt 2 > Preempt 3	Preempt 4 > Preempt 5									
Preempt 1 > Preempt 2	Preempt 3 > Preempt 4	Preempt 5 > Preempt 6									

Preempt	Preem Non- Locking	pt Time Link to Preempt		Ext end	Dura tion	Max Call		Min Green		Debo unce		Ped	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Re Ped Clear	turn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20

]	Preempt	1]	Preemp	t 2]	Preempt	3		Preempt	t 4]	Preempt	5	:	Preempt	6
Phase	Exit Phase	Exit Calls															
1	No	Yes															
2	Yes	Yes															
3	No	Yes															
4	No	Yes															
5	No	Yes															
6	Yes	Yes															
7	No	Yes															
8	No	Yes															

Priority Timers				
Prio Non- Del Ext rity Locking ay end	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pre- Excl- Phase Green Recall Svo	se Signal Type	ap Blankout

Priority Detector Channels

Priority

Detector

Page 12 of 15

Priority Fixed F	Phases		
Legend: CO-PHASE QJ-PHASE	0 1 FALSE TRUE		
Priority Priority Bank :	Level		
Partial Priority Alt Seq Alt Seq Enabled Min Walk	Full Priority Freq. Override Ped skip Force full Priority Frequency Freq. Level	Recovery Method Return PedWait PedOverride	
Priority: Priority Bank: Queue Phase Detector Time Default data	Priority: Priority Bank: Queue Phase Detector Ti	Priority: Priority Bank: Queue Phase Detector Time Default data	
Priority : Priority Bank : Queue Phase Detector Time Default data	Priority : Priority Bank : Queue Phase Detector Ti Default data	Priority : Priority Bank : Queue Phase Detector Time Default data	
Priority : Bank Detector PE 1A 2A Default Data	3A 4A 5A 6A B	Priority : Bank Detector PE 1A 2A 3A Default Data	4A 5A 6A B

Page 13 of 15

Priority : Bank Detector	PE	1A Defa	2A ult Dat	3A	4A	5A	6A	В	Priority : Bank Detector	PE	1A Defau	2A ilt Data	ЗА	4A	5A	6A	В
Priority : Bank Detector	PE	1A Defa	2A ult Dat	3A a	4A	5 A	6A	В	Priority: Bank Detector	PE	1A Defau	2A It Data	3A	4A	5A	6A	В
Preempt 1 Ph. Track Default Da	Vehical Di	Phases well	Cycle	e	Ph Trace	k	destriar Dw	n Phases	Cycle	Ovlp	Track	Dw	Overla vell	ps Cy	cle	Trail	Grn
Preempt 2	/ehical	Phases well	C	ycle		'edestri	an Phas Dwel		Cycle	Ovlp.	C	Overlaps Dwe		Cycle	Ti	rail Gm	_
Preempt 3	/ehical	Phases well	Су	cle	Ph. Trac	k	an Phas Dwel		Cycle	Ovlp.	C Track	Overlap: Dv	s vell	Cycle	,	Trail Gr	n
Preempt 4 Ph. Track	/ehical	Phases Owell	Су	cle	Default Ph. Traci	edestria	n Phase Dwell		Cycle	Ovlp.	alt Data C Track)verlap:	s vell	Cycle	Ti	rail Grn	_
Default Da Preempt 5 Ph. Track	/ehical	Phases well	Cy	cle	Ph. Track	edestria	ın Phase Dwell		Cycle	Defau	ult Data C Track	a Overlaps Dv		Cycle	Ti	rail Grn	_
Default Da Preempt 6 Ph. Track	/ehical	Phases Owell	C	'ycle	Default Ph. Track	edestria	n Phase Dwell		Cycle	Defau	ult Data C Track)verlap:	s vell	Cycle	Ti	rail Grn	_
Default Da System/I Local Criti Local Free: N Local Fash: N	Detec ical Al		lure: No	o	Default Coord Fail Coord Fau	ure: No		iflict Fla			: No	1st	Phone Phone				
Special Status	s 1: No	Sne	cial Sta	ıtııs 2-	No Sn	ecial Sta	dus 3: N	Jo Sn	ecial Status 4:	No s	pecial St	atus 5:	No	Special	Status	6: No	

Page 14 of 15

System Detector		Name	Veh/ Hr	Average Time(mins)	Occupan Correction	•		eue I ectors	System Detectors	Weight Factor	-		
Default Da	ta						Defa	ult Dat	а		Default	Data	
Sample Inte	erval:			Quene:	1 Input	Selection: (0 Averaç	<u>s</u> e	Queue:				
					Dete	ctor Failed I	evel: 0		Level	Enter	Leave	Dial / Sp	olit / Offset
				Queue:	2 Imput	Selection: (0=Averag	20				17	
						ctor Failed I	•		Default	Data			
Vehical De	etector				Vehical De	etector			:	Special De	etector		
	Diag	nostie Valu	ic 0			Diagr	nostie Valu	ie 1		-	Diag	nostie Valu	ie 0
Detector	Max Presence	No Activity	Erra: Cou		Detector	Max Presence	No Activity	Erratio Count		Detector	Max Presence	No Activity	Erratic Count
	10	0	60		1	1.5	0	60					
1			60		2	1.5	0	60					
1 2	10	0	nu		_						lloto No	I han n	Valu
1 2 3	10 10	0	60		3	1.5	0	60	ı	Detault	Data - No	Diag 0 1	Valu

5	10	0	ن0 0ن	5	15	0	60					
Ú	10	0	60	ø	15	0	ÓÜ					
7	10	0	60	7	15	0	60					
8	10	0	60	8	1.5	0	60					
Pedestrian	Detector			Pedestriai	1 Detector			Special De	tector			
	Diag	nostie Valu	c 0		Diag	nosti e Valu	c l		Diag	nostie Valu	ic 1	
	Max	No	Erratic		Max	No	Erratic		Max	No	Erratic	
Detector	Presence	Activity	Count	Detector	Presence	Activity	Count	Detector	Presence	Activity	Count	
								_				

Speed Trap

High Treshold

Default Data - No Diag 0 Values Default Data - No Diag 1 Values Default Data - No Diag 1 Values Speed Trap Data Speed Trap Dial/Split/Offset Low Treshold Speed Trap:

Measurement: Default Data Defector 1 Defector 2 Distance:

Default Data

Volume Detector Data

Report Interval 0

Volume Controller Detector Detector Number Channel

SEPAC ECOM All Data

Intersection Name: Atlanta Hwy @ Waresferry

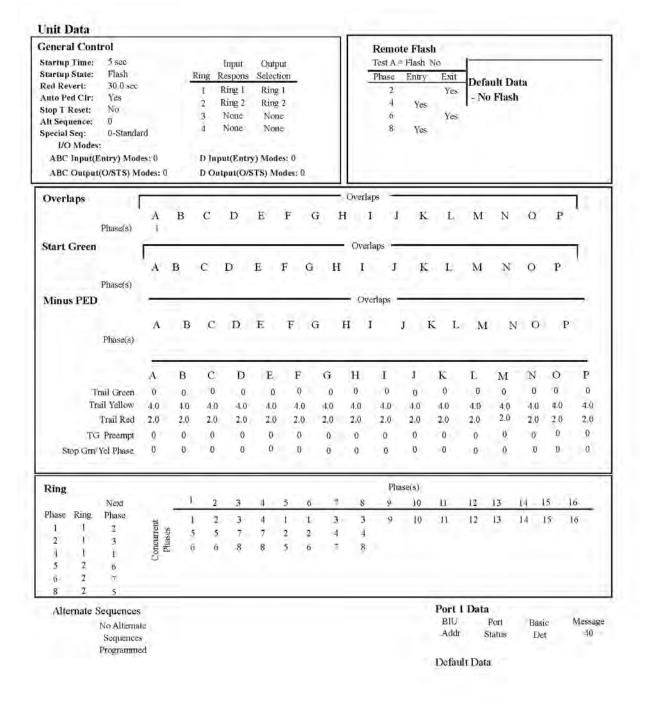
Intersection Alias: AtlWareferr

Access Data

I :1200 Baud 3 :19200 Baud Access Code: 9999 Revision: 3.34g Channel: Address: 1
IP Address: 172.31.24.142

Phase Initialization Data

 Phase
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16


 Initial
 1-Inact
 3-Yel
 0-None
 1-Inact
 0-None
 0-None

Vehic	al Basic	e Timings					Mise T	imings	Walk	Walk		= (Pedest	rian Ti	mings	Alt			Actuated
hase	Min Green	Passage	Maxl	Max2	Yellow	All Red	Green Delay	Yellow Delay	Offset Time	Offset	Bike Green	Bike Psg	Walk	Ped Clr	Alt Walk	Ped Clr	Flash Walk	Ext Ped Clr	Rest in Walk
1	7	3.0	20	20	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
2	30	6.0	55	55	4.0	2,0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	Yes
3	0	0.0	0	0	4.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
4	7	3.0	30	30	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
5	3	4.0	20	20	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
6	30	6.0	55	55	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	Yes
7	0	0.0	0	0	4.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
8	7	4.0	30	30	4.0	1.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
12	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
14	Ô	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No

Vehic	le Densit	v Timin	gs				General Con	ntrol			Miscell	ancous			No	Special :	Sequence	à
Ph.	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
2	1.0	25	20	10	30	3.0	NonActl	Min	None	0	No	Yes	Yes	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
6	1,0	25	20	10	30	3.0	NonActi	Min	None	0	No	Yes	Yes	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	Ü
9	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	Ω
10	0.0	0	0	0	0	0,0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	()
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ο.	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 17

16	0.0	0	0 0	0	0.0	Notic X	one	None	0	No	No	No	No	No	0	0	0
7	/ehical Detect	r Phase.	\ssignme	ııt		Pedestrian De	tector					Spec	ial Detec	tor Phas	e Assignm	ent	
	Ass Ph	_	Switel e Phase	n Extend	Delay	1	asign hase	Moda	Switch Phase	Extend	Delay		Assi Pha	_	Switch c Phase		Delay
	Default Da	la				Default D	ata					Defa	ault Da	ta			

Page 3 of 17

Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW

Coordination Data			Dial/Split	Cycle
General Coordination Data			1/1	100
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 3	1/2	100
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	1/3	100
Maximun Mode: 0=Inhibit	Max Dwell Time: 20	Manual Offset: 1	1/4	100
Correction Mode: 3=Short Way Plus	Yield Period: 5		2/1	120
•			2/2	120
			2/3	120
			2/4	120
			3/1	140
			3/2	140
			3/3	140
			3/4	140
			4/1	150
			4/2	150
			4/3	150
			4/4	150

Page 4 of 17

-	/ Split	s and Phase Mu 11									
h.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode
1	20	0=Actuated	2	52	1=Coordinate	4	28	0=Actuated	5	20	0=Actuated
6 	52	1=Coordinate	8	28	0=Actualed						
ital I Th.	/ Split Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Pli. Mode
1	20	0=Actuated	2	52	1=Coordinate	-4	28	0=Actuated	.5	20	0=Actuated
6	52	1=Coordinate	ĸ	28	0=Actuated	.,	2	v . Ivialiida		2	7
Dial I	/ Split	1.3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Płı.	Splits	Ph. Mode
1	20	0-Actuated	2	52	1-Coordinate	4	28	0-Actuated	.5	20	0-Actuated
−6 Na Li	52 [// Split	1–Coordinate	8	28	0-Actuated						
Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph Mode	Plı.	Splits	Pli. Mode
	20	0 Actuated	2	52	1 Coordinate	4	28	0 Actuated	5	20	0 Achiated
1 6	52	1=Coordinate		28	0=Actuated	4	20	o arcinified	3	20	o rremated
	2/ Split		-								
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1	2.5	0-Actuated	2	57	l-Coordinate	4	38	0-Actuated	.5	25	0-Actuated
6	57	1=Coordinate	8	38	0=Actualed						
	/ Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Moda		Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	25	0 Actuated	2	57	1 Coordinate	4	38	0 Actuated	5	25	0 Actuated
6 Diel 3	. 57 27 Split	1=Coordinate	К	38	0=Actuated						
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Meda	Plı.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	25	0=Actuated	2	57	1=Coordinate	- 4	38	0=Actuated	5	25	0=Actuated
6	57	l-Coordinate	ĸ	38	0=Actualed	,			-		
Dial 2	/ Split	4									
Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Ph. Mode
l	2.5	()=Aetuated	2	57	1=Coordinate	4	38	0=Actuated	5	2.5	0=Actuated
6	57	1=Coordinate	К	38	0=Actuated						
	Split		pt.	Quality.	Db. Marks	ni.	Quality.	Dh. Marta	DI.	Clatte.	Di. 3.61.
Ph.	Sphts	Ph Mode	Ph.	Splits	Ph. Mode		Splits	Ph. Mode	Ph	Splits	Ph. Mode
l tó	2.5 83	0-Actuated 1-Coordinate	2 8	83 32	1-Coordinate 0-Actuated	4	32	0-Actuated	.5	25	0—Actuated
	Split		n	2.	o -rectanton						
Ph.	Splits	Ph. Mode	₽h.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Plı.	Splits	Pli. Mode
1	25	0-Actuated	2	83	1-Coordinate	4	32	0-Actuated		25	0-Actuated
6	83	I Coordinate	8	32	0 Actuated	_			•		
Dial 3	3/ Split										
Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1	25	0=Actuated	2	83	I=Coordinate	4	32	0=Actuated	5	25	0=Actuated
6	83	1=Coordinate	8	32	0=Actuated						
	Solite Solite		nk.	Quilito.	Dh. Mayla	111.	Quitin	Dk. Marela	nL.	Quillin.	Die Maria
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode		Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	25 83	0 Actuated 1=Coordinate	2	83	1 Coordinate	4	32	0 Actuated	5	25	0 Actuated
- 6 Dial 4	oo / Split	1=Coordinate	В	32	0=Actualed						
Ph.	Splits	Ph. Mede	Ph.	Splits	Ph. Meda	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
	25	0=Actuated	2	88	1=Coordinate	4	37	0=Actuated	5	25	0=Actuated

Page 5 of 17

6	88	1=Coordinate	8	37	0=Actuated							
Dial 4	/ Split	2										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	
1	25	0=Actuated	2	88	1=Coordinate	4	37	0=Actuated	5	25	0=Actuated	
6	88	I=Coordinate	К	37	0=Actuated							
Dial 4	🕡 Split	. 3										
Ph.	Splits	Ph Mode	${f P}{f h}.$	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	
1	2.5	0=Aetuated	2	88	1=Coordinate	4	37	0=Actuated	5	2.5	0=Actuated	
6	88	1=Coordinate	8	37	0=Actuated							
Dial 4	// Split	. 4										
Ph.	Sphts	Ph Mode	Ph.	Splits	Ph. Mede	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	
1	25	0=Actuated	2	88	1=Coordinate	4	37	0=Actuated	.5	25	0=Actuated	
ó	88	I-Coordinate	К	37	0-Actuated							

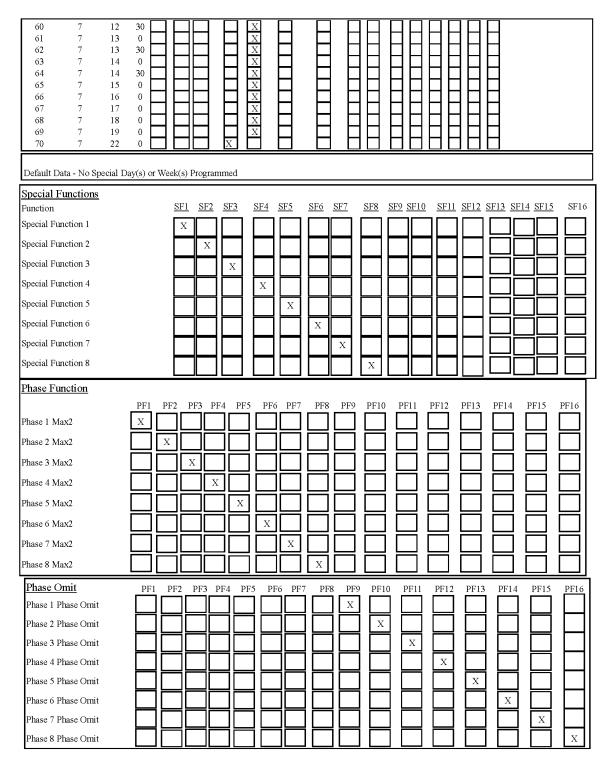
raffic Plan				
	Offset Time: 98	A16	De 21 ou Times 0 De 21 ou Times 0	D = 4 I == Ti 0
Plan: 1/1/1	Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Offset Time: 98			D - 41 Ti 0
Plan: 1/1/2		Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0		
Plan: 1/1/3	Offset Time: 98	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
n 1 (2/2	Officet Time: 00	Alternat Commence O	Po 2 Log Time: 0 Po 2 Log Time: 0	Do 4 Los Timos O
Plan: 1/2/1	Offset Time: 98	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0		
Plan: 1/2/2	Offset Time: 98 Mode: 0=Normal	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
		Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/3	Offset Time: 98	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
ni 1/0/1	Offset Time: 98	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 1/3/1	Mode: 0=Normal	Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Kg 4 Lag Time. 0
1/2/2		-		Do 4 Lee Time: 0
Plan: 1/3/2	Offset Time: 98 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
		·		Do 4 Loo Time O
Plan: 1/3/3	Offset Time: 98 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Confection Mode: 0=No	
Plan: 1/4/1	Offset Time: 98	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
THE E THE	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	0 0
Plan: 1/4/2	Offset Time: 98	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
1016 1/ T/ Z	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
	Offset Time: 98	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 1/4/3	Carre and co	and a second sec		1.5 . 2.5 11110. 0

Page 7 of 17

arı: 2/1/1	Offset Time: 11	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time:	0 Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/1/2	Offset Time: 11	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time:	0 Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/1/3	Offset Time: 11	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time:	0 Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/2/1	Offset Time: 11	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time:	0 Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/2/2	Offset Time: 11 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: Correction Mode: 0=No	0 Rg 4 Lag Time: 0
0/2/2				O De 41 Ti O
Plan: 2/2/3	Offset Time: 11 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: Correction Mode: 0=No	0 Rg 4 Lag Time: 0
Plan: 2/3/1 Plan: 2/3/2	Offset Time: 11 Mode: 0=Normal Offset Time: 11 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: Correction Mode: 0=No	
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/3/3	Offset Time: 11 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: Correction Mode: 0=No	0 Rg 4 Lag Time: 0
o 2/4/1	Offset Time: 11	Alternat Sequence: 0	Par 2 Log Time: 0 Par 3 Log Time:	0 Rg 4 Lag Time: 0
Plan: 2/4/1	Mode: 0=Normal	Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: Correction Mode: 0=No	0 Kg 4 Lag IIIIe. 0
Plan: 2/4/2	Offset Time: 11 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: Correction Mode: 0=No	0 Rg 4 Lag Time: 0
Plan: 2/4/3	Offset Time: 11	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time:	0 Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/1/1	Offset Time: 84	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time:	0 Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/1/2	Offset Time: 84	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time:	0 Rg 4 Lag Time:

Page 8 of 17

Plan: 3/1/3	Offset Time: 84	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
lan: 3/2/1	Offset Time: 59	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
lan: 3/2/2	Offset Time: 69 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/2/3	Offset Time: 59	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/3/1	Offset Time: 84	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/3/2	Offset Time: 84	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/3/3	Offset Time: 84	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/4/1	Offset Time: 84	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal Offset Time: 84	Special Function: 0 Alternat Sequence: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 3/4/2				Rg 4 Lag Time: 0
	Offset Time: 84	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 3/4/2	Offset Time: 84 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	
Plan: 3/4/2	Offset Time: 84 Mode: 0=Normal Offset Time: 84	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	
Plan: 3/4/2	Offset Time: 84 Mode: 0=Normal Offset Time: 84 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/4/2	Offset Time: 84 Mode: 0=Normal Offset Time: 84	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	
Plan: 3/4/2 Plan: 3/4/3	Offset Time: 84 Mode: 0=Normal Offset Time: 84 Mode: 0=Normal Offset Time: 87	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 3/4/2 Plan: 3/4/3 Plan: 4/1/1	Offset Time: 84 Mode: 0=Normal Offset Time: 84 Mode: 0=Normal Offset Time: 87 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
lan: 3/4/2 lan: 3/4/3 lan: 4/1/1 lan: 4/1/2	Offset Time: 84 Mode: 0=Normal Offset Time: 84 Mode: 0=Normal Offset Time: 87 Mode: 0=Normal Offset Time: 87	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/4/2 Plan: 3/4/3 Plan: 4/1/1 Plan: 4/1/2	Offset Time: 84 Mode: 0=Normal Offset Time: 84 Mode: 0=Normal Offset Time: 87 Mode: 0=Normal Offset Time: 87 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0 Rg 4 Lag Time: 0 Rg 4 Lag Time: 0
Plan: 3/4/2 Plan: 3/4/3 Plan: 4/1/1 Plan: 4/1/2	Offset Time: 84 Mode: 0=Normal Offset Time: 84 Mode: 0=Normal Offset Time: 87 Mode: 0=Normal Offset Time: 87 Mode: 0=Normal Offset Time: 87	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0 Rg 4 Lag Time: 0 Rg 4 Lag Time: 0
Plan: 3/4/2	Offset Time: 84 Mode: 0=Normal Offset Time: 84 Mode: 0=Normal Offset Time: 87 Mode: 0=Normal Offset Time: 87 Mode: 0=Normal Offset Time: 87	Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0 Rg 4 Lag Time: 0 Rg 4 Lag Time: 0


Page 9 of 17

	Offset Time: 87 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 4/2/3	Offset Time: 87	Alternat Sequence: 0		Rg 4 Lag Time: 0
Plan: 4/2/3	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	tg 4 Dag Time. 0
Plan: 4/3/1	Offset Time: 87 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No	Rg 4 Lag Time: 0
4/2/2	Offset Time: 87	Alternat Sequence: 0		Rg 4 Lag Time: 0
Plan: 4/3/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	kg 4 Lag Time: 0
1/2/2	Offset Time: 87) - 4 I Ti 0
Plan: 4/3/3	Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 4/4/1	Offset Time: 87	Alternat Sequence: 0		Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/4/2	Offset Time: 87	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0		
	Wede: 0 1vermin	Special Pulcuon, 0	Correction Mode: 0=No	
Plan: 4/4/3	Offset Time: 87	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F	Rg 4 Lag Time: 0
Plan: 4/4/3				Rg 4 Lag Time: 0
	Offset Time: 87 Mode: 0=Normal Data ht Saving Month: 3	Alternat Sequence: 0 Special Function: 0 Week: 2 Cycle Zero Referen	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No	Equate Days 3 4 5 6 7 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0
Local TBC Start of Daylig	Offset Time: 87 Mode: 0=Normal Data ht Saving Month: 3	Alternat Sequence: 0 Special Function: 0 Week: 2 Cycle Zero Referen	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No Source Day 1 2 1 11 0 2 3 4	Equate Days 3 4 5 6 7 0 0 0 0 0 0 5 6 0 0 0
Start of Dayligh End of Dayligh Traffic Data Event Day 1 1 2 1 3 2	Offset Time: 87 Mode: 0=Normal Data Int Saving Month: 3 at Saving Month: 1 Time D/S/O 9:0 2/1/1 20:30 0/0/4 6:15 3/2/2	Alternat Sequence: 0 Special Function: 0 Week: 2 Cycle Zero Referen	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No Source Day 1 2 1 11 0 2 3 4 7 17 0	Equate Days 3 4 5 6 7 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0
Start of Dayligh End of Dayligh Traffic Data Event 1 1 1 1 2 1 1 3 2 4 2	Offset Time: 87 Mode: 0=Normal Data ht Saving Month: 3 at Saving Month: 1 Time D/S/O 9:0 2/1/1 20:30 0/0/4 6:15 3/2/2 11:0 3/1/1	Alternat Sequence: 0 Special Function: 0 Week: 2 Cycle Zero Referen 1 Week: 1	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No Source Day 1 2 1 11 0 2 3 4 7 17 0	Equate Days 3 4 5 6 7 0 0 0 0 0 0 5 6 0 0 0
Cocal TBC	Offset Time: 87 Mode: 0=Normal Data ht Saving Month: 3 at Saving Month: 1 Time D/S/O 9:0 2/1/1 20:30 0/0/4 6:15 3/2/2 11:0 3/1/1 14:0 3/3/3	Alternat Sequence: 0 Special Function: 0 Week: 2 Cycle Zero Referen 1 Week: 1	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No Source Day 1 2 1 11 0 2 3 4 7 17 0	Equate Days 3 4 5 6 7 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0
Start of Dayligh End of Dayligh Traffic Data Event 1 1 1 1 2 1 1 3 2 4 2	Offset Time: 87 Mode: 0=Normal Data Int Saving Month: 3 Int Saving Month: 1 Time 9:0 2/1/1 20:30 0/0/4 6:15 3/2/2 11:0 3/1/1 14:0 3/3/3 16:0 4/4/1	Alternat Sequence: 0 Special Function: 0 Week: 2 Cycle Zero Referen 1 Week: 1	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No Source Day 1 2 1 11 0 2 3 4 7 17 0	Equate Days 3 4 5 6 7 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0
Cocal TBC	Offset Time: 87 Mode: 0=Normal Data ht Saving Month: 3 nt Saving Month: 1 Time 9:0 2/1/1 20:30 0/0/4 6:15 3/2/2 11:0 3/1/1 14:0 3/3/3 16:0 4/4/1 18:0 2/1/1	Alternat Sequence: 0 Special Function: 0 Week: 2 Cycle Zero Referen 1 Week: 1	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No Source Day 1 2 1 11 0 2 3 4 7 17 0	Equate Days 3 4 5 6 7 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0
Start of Daylight	Offset Time: 87 Mode: 0=Normal Data ht Saving Month: 3 nt Saving Month: 1 Time 9:0 2/1/1 20:30 0/0/4 6:15 3/2/2 11:0 3/1/1 14:0 3/3/3 16:0 4/4/1 18:0 2/1/1	Alternat Sequence: 0 Special Function: 0 Week: 2 Cycle Zero Referen 1 Week: 1	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 F Correction Mode: 0=No Source Day 1 2 1 11 0 2 3 4 7 17 0	Equate Days 3 4 5 6 7 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0

Page 10 of 17

Aux Det Det Det Det Det Det Det Det Det Dings Rpt Mait 100 Special Function Outputs Det Dings Rpt Mait 100 Det Det Dings Rpt Mait 100 Det Det Dings Rpt Mait 100 Det Det Det Det Dings Rpt Mait 100 Det De	
Program Aux Ouputs Diag. Rpt. Mult100 Special Function Outputs Event Day Hour Min. 1 2 3 D1 D2 D3 Dimming 1 2 3 4 5 6 7 8 3 1 10 0	
Event Day Hour Min. 1 2 3 D1 D2 D3 Dimming 1 2 3 4 5 6 7 8 1 1 0 1 1 0 1 0 </th <th></th>	
2 1 9 0	
$egin{bmatrix} 7 & 1 & 22 & 0 \\ 8 & 2 & 0 & 1 \\ \hline \end{bmatrix}$	
$egin{bmatrix} 7 & 1 & 22 & 0 \\ 8 & 2 & 0 & 1 \\ \hline \end{bmatrix}$	
$egin{bmatrix} 7 & 1 & 22 & 0 \\ 8 & 2 & 0 & 1 \\ \hline \end{bmatrix}$	
$egin{bmatrix} 7 & 1 & 22 & 0 \\ 8 & 2 & 0 & 1 \\ \hline \end{bmatrix}$	
$egin{bmatrix} 7 & 1 & 22 & 0 \\ 8 & 2 & 0 & 1 \\ \hline \end{bmatrix}$	
9 2 6 0 10 2 6 30 11 2 7 0 12 2 7 15 13 2 7 30 14 2 7 45 15 2 8 0 16 2 8 15 17 2 8 30	
10 2 0 30 1 1 1 2 7 0 1 1 1 1 2 1 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
11 2 7 15 X X X X X X X X X X X X X X X X X X	
13 2 7 30 XX	
14 2 7 45 15 2 8 0 1	
$\begin{bmatrix} 15 & 2 & 8 & 0 \\ 16 & 2 & 8 & 15 \\ 17 & 2 & 8 & 30 \end{bmatrix}$	
$\begin{bmatrix} 21 & 2 & 10 & 30 \\ 22 & 2 & 11 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} X \\ X \end{bmatrix} \longrightarrow$	
25 2 11 45	
$\begin{bmatrix} 27 & 2 & 12 & 15 \\ 28 & 2 & 12 & 30 \end{bmatrix} \longrightarrow \begin{bmatrix} X \\ X \end{bmatrix} $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
33 2 14 0 X X X X X X X X X X X X X X X X X X	
37 2 16 0 X X X X X	
$\begin{bmatrix} 38 & 2 & 16 & 15 \\ 20 & 2 & 16 & 20 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 15 \\ 20 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix}$	
$\begin{bmatrix} 39 & 2 & 16 & 30 \\ 40 & 2 & 16 & 45 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 & 16 \\ 16 \end{bmatrix} \longrightarrow \begin{bmatrix} 16 $	
42 2 17 15	
$\begin{bmatrix} 44 & 2 & 17 & 45 \\ 45 & 2 & 18 & 0 \end{bmatrix} \begin{array}{c} 17 & 45 \\ 18 & 0 \end{array} \begin{array}{c} 17 & 17 \\ 18 & 17 \end{array} \begin{array}{c} 17 & 17 \end{array} \begin{array}{c} 17 & 17 \\ 18 & 17 \end{array} \begin{array}{c} 17 & 17 \end{array} \begin{array}{c} 17 & 17 \\ 18 & 17 \end{array} \begin{array}{c} 17 \\ 17 \end{array} \begin{array}{c} 17 & 17 \end{array} \begin{array}{c} 17 & 17 \end{array} \begin{array}{c} 17 \\ 17 \end{array} \begin{array}{c} 17 \end{array} \begin{array}{c} 17 & 17 \end{array} \begin{array}{c} 17 \\ 17 \end{array} \begin{array}{c} 1$	
47 2 19 0 X X X X X X X X X X X X X X X X X X	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{bmatrix} 31 & 2 & 21 & 0 \\ 52 & 2 & 21 & 30 \end{bmatrix} \begin{array}{c cccc} & & & & & & & & & & & & \\ \hline \end{array}$	
53 2 22 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
55 7 9 0	
59 7 12 0	

Page 11 of 17

Page 12 of 17

Ped Omit	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Coord ReSvc	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	.6
Function Phase Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	
Phase Min Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Ped Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Bike Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	.6
Vehicle Function Veh Det Switch Omit	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	.6
Veh Det Switch Now	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Veh Det Switch Also	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Overlap Function	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF1	6
Dimming Data Default Data - No Dim	nming Programmed	
Lanes Name	Green Yellow Red Green Yellow bound Inbound Inbound Outbound	
	gram hour program minute LanePhFun	

Preemption Data

Page 13 of 17

General Preemption Data Flash > Preempt Preempt 2 = Preempt 3 Preempt 4 = Preempt 5 Preempt 1 = Preempt 2 Preempt 3 = Preempt 4 Preempt 5 Preempt 5 = Preempt 6

Preempt	Preen Non- Locking	n pt Tim Link to Preempt		Ext	Dura tion	Max Call		Min Green		Debo		Ped Clear	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Red Ped Clear	eturn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
2	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
3	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
4	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
5	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
6	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0

1	Preempt	1]	Preempt	2	J	Preempt	3	1	Preemp	t 4]	Preemp	t 5]	Preempt	6
Phase	Exit Phase	Exit Calls															
			1	No	Yes												
			2	No	Yes												
			3	No	Yes												
			4	No	Yes												
			5	No	Yes												
			6	No	Yes												
			7	No	Yes												
			8	No	Yes												

Priority Timers						
Prio Non- Del Ext Fr rity Locking ay end D	ree Free Min No Dial SplitGreen out	Lock Lock Max out out Green	Pre- Green Recall	Excl-co Phase Svc. Signa	Transit Overlap al Type	Blankout

Priority Detector Channels

Priority

Detector

Priority Fixed Phases

Priority

Legend: 0 1 CO-PHASE FALSE TRUE QJ-PHASE

Page 14 of 17

Partial Pr Alt Seq Alt Seq Enabled Min Walk		 	Ful Freq. Overric Ped skip Force full Pr Frequency Freq. Level		ity		Meth Retu Ped\ Ped\	rn Vait								
Codes:	E	0 ALSE	X TRUE													
Priority: Priority Bank: Queue Phase Default dat Priority: Priority Bank: Queue Phase Default dat	Detector ta Detector		Priority Queue F	Bank Phase ault da	Detect ta : Detect		ime	Q I	Priority: Priority Banl ueue Phase Default d Priority: Priority Banl ueue Phase Default d	Dete		Time				
Priority : Bank Detector PE	1A Defaul		3A 4A	5A	6A	В		anl		1A Defa	2A ult Data	3A 1	4A	5A	6A	В
Priority: Bank Detector PE	1A Defaul	2A 3	3A 4A	5A	6A	В		ani		1A		ЗА	4A	5A	6A	В
Priority: Bank Detector PE		2A 3,	A 4A	5A	6A	В		ank		1A	2A	ЗА	4A	5A	6A	В

Page 15 of 17

Default Data

Priority Priority Bank :

Level

Default Data

Preempt 1 Vehi Ph. Track	cal Phases Dwell	Cycle	Ph Track	Pedestrian Phase Dwell	es Cycle	Ovlp	Track	Overla Dwell	i ps Cycle	Trail Gm
Default Data			Default Dat	a		Defau	ılt Data			
Preempt 2 Vehi- Ph. Track	cal Phases Dwell	Cycle	Pedes Ph. Track	trian Phases Dwell	Cycle	Ovlp.		erlaps Dwell	Cycle	Trail Grn
Default Data			Default Dat	a		Defau	ılt Data			
Preempt 3 Vehic Ph. Track	cal Phases Dwell	Cycle	Pedes Ph. Track	trian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Gm
Default Data			Default Dat	a		Defau	ılt Data			
Preempt 4 Vehic Ph. Track	cal Phases Dwell	Cycle	Pedess Ph. Track	rian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Grn
Default Data			Default Dat	a		Defau	ılt Data			
Preempt 5 Vehic Ph. Track	cal Phases Dwell	Cycle	Pedess Ph. Track	rian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Grn
Default Data			Default Dat	a		Defau	ılt Data			
Preempt 6 Vehic Ph. Track	cal Phases Dwell	Cycle	Pedest Ph. Track	rian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Gm
Default Data System/Det	ectors Da	ıta	Default Dat	a		Defau	ılt Data			
Local Critical Local Free: No Local Fash: No		ıre: No	Coord Failure: Coord Fault: No		ash: No Re	Backup: 15 emote Flash oltage Monit	: No	1st Phone 2nd Phon		
Special Status 1: Traffic Respo System Detection Chan	onsive etor		•	cupancy M		1 Systen	-	ght Qu	Special Sta eue 2 Syste ectors Detec	em Weight
Default Data Sample Interval:			Queue: 1 Queue: 2	Input Selection: (Detector Failed I Input Selection: (Detector Failed I	evel : 0 =Average	Queue Level	e: Enter I lt Data	Defa Leave	ult Data Dial / Sp / /	lit / Offset

Vehical De	etector			Vehical D	etector			Special De	etector		
	Diag	nosti e Valu	ic 0		Diag	nostie Valu	ic 1		Diag	nostie Valu	e 0
Defector	Max Presence	No Activity	Erratic Count	Detector	Max Prasanea	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratic Count
1	10	0	75	1	30	0	75	1	10	0	75
2	10	0	75	2	30	0	75	2	10	0	75
3	10	0	75	3	30	0	75	3	10	Û	75
1	10	0	75	4	30	0	75	4	10	0	75
5	10	0	75	5	30	0	75	5	10	0	75
6	10	0	75	ű	30	0	75	ń	10	0	75
7	10	0	75	7	30	0	75	7	10	0	75
8	10	0	75	8	30	0	75	К	10	0	75
								Default !	Data - No	Diag 0 V	/alu
^l edestriar	Detector			Pedestria	n Detector			Special De	etector		
	Diag	nosti e Valu	ic 0		Diag	nosti e Valu	c 1		Diag	mostic Valu	c 1
Detector	Max	No A attacks	Erratic	Detactor	Max	No Anticidado	Erratic	Detector	Max	No	Erratic
	Presence	Activity	Count		Presence	Activity	Count		Presence	Activity	Count
1	10	0	75	1	30	0	75	1	30	0	75
2	10	0	75	2	30	0	75	2	30	0	75
3	10	0	75	3	30	0	75	3	30	()	75
4	10	0	75	-1	30	0	75	4	30	0	75
5	10	0	75	5	30	0	7.5	5	30	0	75
Ú	10	0	75	6	30	0	75	б	30	0	75
7	10	0	75	7	30	0	75	7	30	0	75
8	10	0	75	8	30	0	75	8	30	0	75
Default :	Data - No	Diag 0 V	/alues	Default	Data - No	Diag 1 V	/alues	Default :	Data - No	Diag 1 V	/alues
peed Tr Speed Tr	ap Data ap:						lit/Offset	Speed Trap Low Treshol	-	ed Trap Treshold	
Detector		easureme or 2 Di	nt: islance :			// Defau	lt Data				

Default Data

Volume Detector Data

Report Interval ()
Volume Controller
Detector Detector
Number Channel

Default Data

SEPAC ECOM All Data

Intersection Name: Atlanta Hwy @ PerryHill

Intersection Alias: AtlHwyPH

Access Data

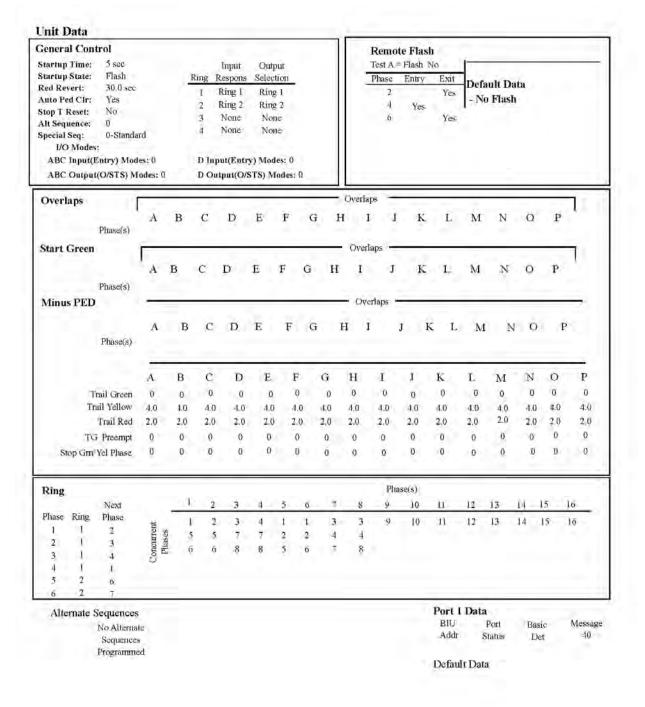
I :1200 Baud 3 :19200 Baud Access Code: 9999

Channel: Address: 1

Revision: 3.34g

IP Address: 172.31.24.238

Phase Initialization Data


Phase	- 1	2	3	4	5	6	7	8:	9	10	11	12	13	14	15	16
Initial	1-Inact	4-Gm	1-Inact	1-Inact	1-Inact	4-Grn	0-None									
PHA	SE DA	TA														

Vehic	al Basic	Timings					Mise 7	imings	Walk	Walk		= (Pedest	rian Tir	mings	Alt			Achiated
	Min					All	Green	Yellow	Offset	Offset	Bike	Bike	7	Ped	Alt	Ped	Flash	Ext	Rest in
Phase	Green	Passage	Maxl	Max2	Yellow	Red	Delay	Delay	Time	Mode	Green	Psg	Walk	Cir	Walk	Clr	Walk	Ped Clr	Walk
1	7	4.0	35	30	4.5	1.5	0.0	0.0	0	0-Advance	0	0	o	0	0	0	No	0	No
2	20	7.0	80	60	4.5	2,0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	Yes
3	10	4.0	50	35	4.0	1.5	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
4	9	5.0	50	40	4.0	1.5	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
5	6	4.0	35	20	4.0	1.5	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
6	20	7.0	80	40	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	Yes
7	0	0.0	0	0	4.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
8	0	0.0	0	0	4.0	0,0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
12	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	D	No
14	Ô	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	O.	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	.D	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No

Vehic	le Densit	v Timin	gs				General Co	ntrol			Miscell	ancous			No	Special :	Sequence	2
Ph.	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
2	1.0	21	30	10	40	5.0	NonActl	Min	None	0	No	Yes	Yes	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
6	1.0	24	30	10	40	3.0	NonActl	Min	None	0	No	Yes	Yes	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
9	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	0
10	0.0	0	0	0	0	0,0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	Ü	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 15

16	0.0	0	0	0	0	0.0	Notic	None	None	0	No	No	No	No	No	0	0	0
Vel	hical Deta	ector P	hase As	signmen	ıt		Pedestrian	Detector					Speci	al Detec	tor Phase	Assignm	nent	
		Assign Phase	Mede	Switch Phase	Extend	Delay		Assign Phase	Moda	Switch Phase	Extend	Delay		Assi Pha	ign ise Modo	Switch Phase		. Delay
D	efault I	Data					Default	. Data					Defa	ult Da	ta			

Page 3 of 15

Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW

Condination Data			Dial/Split	Cycle
Coordination Data			-	•
General Coordination Data			1/1	110
Operation Mode: 1=Auto	Offset Mode: 0-Beg Grn	Manual Dial: 3	1/2	110
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 2	1/3	110
Maximun Mode: 0=Inhibit	Max Dwell Time: 20	Manual Offset: 2	1/4	110
Correction Mode: 2=Short Way	Yield Period: 5		2/1	135
,			2/2	130
			2/3	130
			2/4	130
			3/1	150
			3/2	165
			3/3	150
			3/4	150
			4/1	235
			4/2	170
			4/3	170
			4/4	170
			• • •	

Page 4 of 15

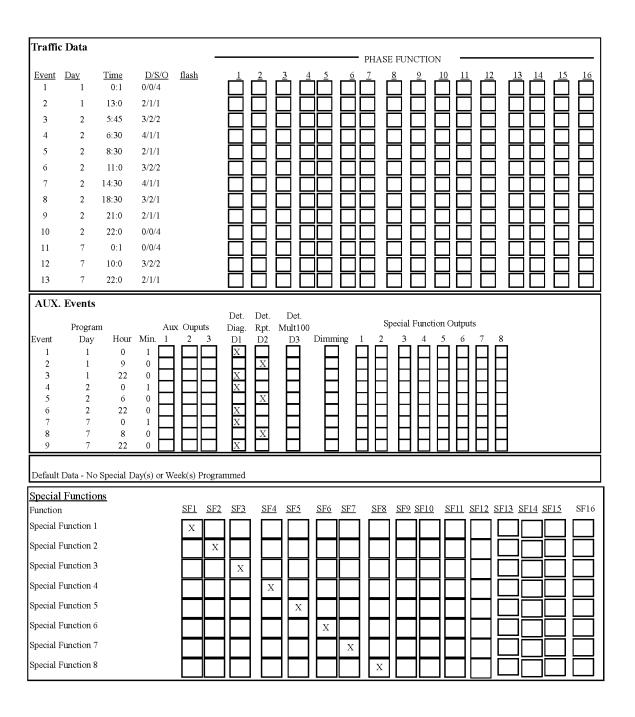
Ph.	-	. 1 Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	25	0=Actuated	2	39	1=Coordinate	3	23	0=Actuated	- 1	23	0=Actuated
5	20	0=Actuated	ė	44	1=Coordinate	-					7 22711411414
Dial I	/ Split	. 2									
Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Plı. Mode
1	2.5	0=Actuated	2	39	1=Coordinate	3	23	0=Actuated	- 4	23	0=Actuated
5	20	0=Actuated	6	44	1=Coordinate						
Dial I	/ Split	. 3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode
1	2.5	0-Actuated	2	39	1-Coordinate	3	23	0-Actuated	4	23	0—Actuated
5	20	0-Actuated	G	44	I—Coordinate						
	/ Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Pli. Mode
1	25	0 Actuated	2	39	1 Coordinate	3	23	0 Actuated	4	23	0 Actuated
5	20	0=Actuated	Ú	41	1=Coordinate						
	2/ Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1	2.5	0-Actuated	2	45	l-Coordinate	3	32	0-Actuated	4	33	0-Actuated
5	20	0=Actuated	o	51	1=Coordinate						
	/ Split										
ľħ.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	25	0 Actuated	2	42	1 Coordinate	3	31	0 Actuated	4	32	0 Actuated
5	20	0=Aetuated	ń	47	1=Coordinate						
Dial 2	/ Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Plı.	Splits	Ph. Mode	Ph.	Splits	Ph. Mede
1	25	0=Actuated	2	42	1=Coordinate	3	31	0=Actuated	4	32	0=Actuated
5	20	0=Actuated	6	47	1=Coordinate						
Dial 2	/ Split	. 4									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Plı.	Splits	Pli. Mode
l	2.5	()=Actuated	2	42	1=Coordinate	3	31	0=Actuated	4	32	0=Actuated
5	20	0=Actuated	ń	47	1=Coordinate						
	3/ Split										
Ph.	Sphts	Ph. Mode	Ph.	Splits	Ph. Mode	Płı.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1	30	0-Actuated	2	50	1-Coordinate	3	35	0-Actuated	4	35	0-Actuated
5	20	0-Actuated	6	60	I-Coordinate						
	3/ Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Plı.	Splits	Plı. Mode
1	34	0-Actuated	2	64	1-Coordinate	3	33	0-Actuated	4	34	0-Actuated
5	34	0 Actuated	Ú	64	1 Coordinate						
	3/ Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1	34	0=Actuated	2	55	1=Coordinate	3	30	0=Actuated	4	31	0=Actuated
5	20	0=Actuated	ö	69	1=Coordinate						
	3/ Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mede	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
l	34	0 Actuated	2	55	1 Coordinate	3	30	0 Actuated	1	31	0 Actuated
5	20	()=Actuated	ø	69	1=Coordinate						
	/ Split										
Ph.	Splits	Ph. Mede	Ph.	Splits	Ph. Meda	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
	50	0=Actuated	2	95	1=Coordinate	3	45	0=Actuated	4	45	0=Actuated

Page 5 of 15

5	40	0=Actuated	ó	105	1=Coordinate							
Dial 4	47 Split	: 2										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	
1	30	0=Actuated	2	70	I=Coordinate	3	35	0=Actuated	4	35	0=Actuated	
5	20	0=Actuated	6	80	1=Coordinate							
Dial 4	t/ Split	. 3										
Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	
1	30	0=Actuated	2	70	1=Coordinate	3	35	0=Actuated	1	35	0=Actuated	
5	20	0=Aemated	ń	80	1=Coordinate							
Dial 4	// Split	. 4										
Ph.	Sphts	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	
1	30	0=Actuated	2	70	1=Ceerdinate	3	35	0=Actuated	4	35	0=Actuated	
.5	20	0-Actuated	6	80	1-Coordinate							

Page 6 of 15

Traffic Plan	Data			
Plan: 2/1/1	Offset Time: 118	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 2/1/2	Mode: 0=Normal Offset Time: 118	Special Function: 0 Alternat Sequence: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Pran: 2/1/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	Ng 4 Dag Timo. 0
Plan: 2/1/3	Offset Time: 118	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	


Page 7 of 15

Plan: 4/1/1 OffSet Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/2 OffSet Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Correction Mode: 0=No Mode: 0=Normal Special Function: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Rg 4 Lag Time: 0 Correction Mode: 0=No Mode: 0=Normal Special Function: 0 Correction Mode: 0=No	Plan: 3/2/1	Offset Time: 131 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 4/1/1 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/2 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Correction Mode: 0=No Plan: 4/1/2 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/3 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Rg 4 Lag Time: 0 Rg 4 Lag Time: 0 Rg 4 Lag Time: 0 Rg 4 Lag Time: 0	Plan: 3/2/2		•		Rg 4 Lag Time: 0
Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/2 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/3 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0	Plan: 3/2/3				Rg 4 Lag Time: 0
Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/2 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/3 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0					
Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/2 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/3 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0					
Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/2 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/3 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0					
Mode: 0=Normal Special Function: 0 Correction Mode: 0=No Plan: 4/1/3 Offset Time: 147 Alternat Sequence: 0 Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0					
Time 4.1.0	Plan: 4/1/1		•		Rg 4 Lag Time: 0
	Plan: 4/1/1 Plan: 4/1/2	Mode: 0=Normal Offset Time: 147	Special Function: 0 Alternat Sequence: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	
	Plan: 4/1/2	Mode: 0=Normal Offset Time: 147 Mode: 0=Normal Offset Time: 147	Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Plan: 4/1/2	Mode: 0=Normal Offset Time: 147 Mode: 0=Normal Offset Time: 147	Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Plan: 4/1/2	Mode: 0=Normal Offset Time: 147 Mode: 0=Normal Offset Time: 147	Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0

Page	8	of	1	5
------	---	----	---	---

End of Daylight Saving Month: 11 Week: 1

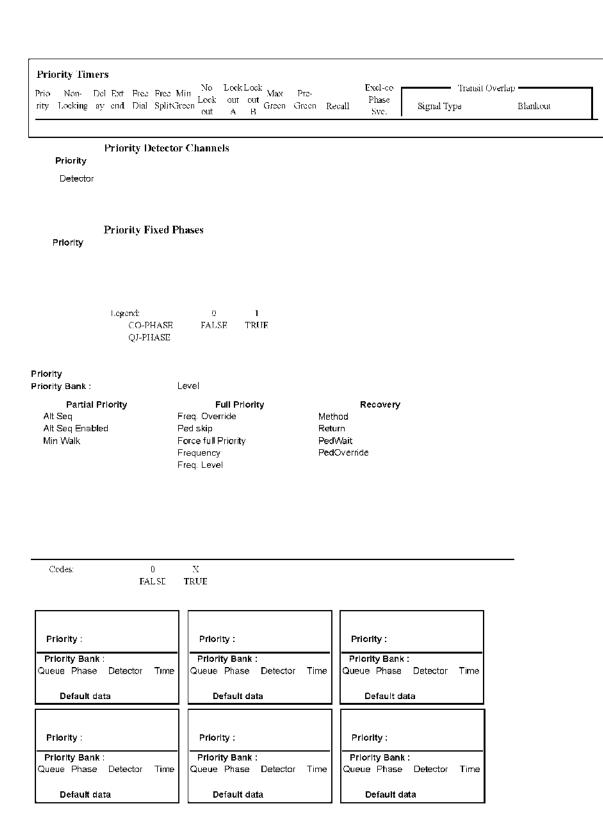
3 4 5 6 0 0 0

Page 9 of 15

Phase Function																
ı	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Max2	X	Ш		\sqsubseteq	Ш	\bigsqcup	Щ	إلِــا		\square	Щ		\square	\square	Ш	닏
Phase 2 Max2		Χ			Ш		Ш	<u> </u>					Ш			
Phase 3 Max2			X													
Phase 4 Max2				X												
Phase 5 Max2					X											
Phase 6 Max2						X										
Phase 7 Max2							X									
Phase 8 Max2								X								
Phase Omit	PF1	PF	2 PF	73 PF	4 PF:	5 PF	6 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Phase Omit									X							
Phase 2 Phase Omit										X						
Phase 3 Phase Omit											X					
Phase 4 Phase Omit												X				
Phase 5 Phase Omit													X			
Phase 6 Phase Omit														X		
Phase 7 Phase Omit															X	
Phase 8 Phase Omit			1		1											X
- I I I I I I I I I I I I I I I I I I I						<u> </u>	<u></u>					<u> </u>				
Ped Omit	PF	PF	² 2 PI	F3 PF	4 PF:	5 PF	6 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
	PF	PF	² 2 PI	F3 PF	4 PF:	5 PF	6 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
	PFI			F3 PF] [PF10	PF11	PF12	PF13 PF13	PF14	PF15	PF16
Ped Omit] [
Ped Omit] [
Ped Omit Veh Det Coord ReSve		PF	F2 P		74 PF	5 PF	6 PF7	7 PF8	PF9							
Ped Omit Veh Det Coord ReSve	PFI	PF	F2 P	F3 PF	74 PF	5 PF	6 PF7	7 PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit Veh Det Coord ReSve	PFI	PF	F2 P.	F3 PF	64 PF	5 PF	6 PF7	7 PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall	PF	PF	F2 P.	F3 PF	4 PF	5 PF	6 PF7	7 PF8	PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15 PF15	PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall	PF	PF	F2 P1	F3 PF	4 PF	5 PF 5 PF 5 PF	6 PF7	7 PF8 PF8	PF9 PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15 PF15	PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall	PF1	PF	F2 P1	F3 PF	4 PF	5 PF 5 PF 5 PF	6 PF7	7 PF8 PF8	PF9 PF9	PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall	PFF PFF	PP	P1 P	F3 PF F3 PF F3 PF	4 PF	5 PF 5 PF 5 PF	6 PF7	PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall	PF1	PP	P1 P	F3 PF	4 PF	5 PF 5 PF 5 PF	6 PF7	PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall	PFF PFF	PP	P1 P	F3 PF F3 PF F3 PF	4 PF	5 PF 5 PF 5 PF	6 PF7	PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall	PFF PFF	PP	F2 P1 P2 P1 P1 P2 P1 P1 P1 P2 P1	F3 PF F3 PF F3 PF	4 PF	5 PF 5 PF 5 PF 5 PF	6 PF7	7 PF8 PF8 PF8 7 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PFT PFT PFT	PP	F2 P1 P2 P1 P1 P2 P1 P1 P1 P2 P1	F3 PF F3 PF F73 PF F73 PF	4 PF.	5 PF 5 PF 5 PF 5 PF	6 PF7 6 PF7 6 PF7	7 PF8 PF8 PF8 7 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PFT PFT PFT	PF	F2 P1 P2 P1 P2 P2 P1 P2 P2 P1 P2	F3 PF F3 PF F73 PF F73 PF	4 PF. 4 PF. 4 PF.	5 PF 5 PF 5 PF 5 PF	6 PF7 6 PF7 6 PF7	7 PF8 PF8 PF8 7 PF8 7 PF8	PF9 PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function Veh Det Switch Omit	PF P	PF	F2 P1 P2 P1 P2 P2 P1 P2 P2 P1 P2	F3 PF F3 PF F3 PF F3 PF	4 PF. 4 PF. 4 PF.	5 PF 5 PF 5 PF 5 PF	6 PF7 6 PF7 6 PF7 6 PF7	7 PF8 PF8 PF8 7 PF8 7 PF8	PF9 PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16

Page 10 of 15

Veh Det	Switch Also	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Overlap	Function	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Dimmir Default l	_	Dimming Pro	grammed									
Lanes	efination Name Data - Lan	Green Inbound	Yellow Inbound	Red Inbound	Green Outbound	Yellow Outbound		_				
progra	am day g	orogram hour	program	minute Land	ePhFun							


Preemption Data

General Preemption	Data	
Flash > Preempt Preempt 1 = Preempt 2	Preempt 2 = Preempt 3 Preempt 3 = Preempt 4	Preempt 4 = Preempt 5 Preempt 5 = Preempt 6

Preempt	Preem Non- Locking	npt Time Link to Preempt		Ext end	Dura tion	Max Call		Min Green			Gate ext end	Ped Clear	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Re Ped Clear	turn Yel	Red
1 2 3 4 5	No No No No No	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	30 30 30 30 30 30	0 0 0 0	0 0 0 0	0 0 0 0	30 30 30 30 30 30	0 0 0 0	0 0 0 0 0	0 0 0 0	30 30 30 30 30 30	0 0 0 0

	Preempt	1]	Preemp	t 2]	Preempt	3]	Preempt	t 4	J	Preemp	t 5]	Preemp	t 6
Phase	Exit Phase	Exit Calls															
1	No	Yes															
2	No	Yes															
3	No	Yes															
4	No	Yes															
5	No	Yes															
6	No	Yes															
7	No	Yes															
8	No	Yes															

Page 11 of 15

Page 12 of 15

									•								
Priority : Bank Detector	PE	1A		ЗА	4 A	5A	6 A	В	Priority : Bank Detector	PE	1A	2A	3A	4A	5A	6A	В
		Defa	ult Data								Defa	ult Dat	а				
Priority : Bank Detector	PE	1A Defai	2A ult Data	ЗА	4A	5A	6A	В	Priority : Bank Detector	PE	1A Defa	2A Jult Dat	3A ta	4A	5A	6A	В
Priority : Bank Detector	PE	1A	2A		4A	5A	6 A	В	Priority : Bank Detector	PE	1A		ЗА	4A	5A	6A	В
		Detai	ult Data								Defa	ult Dat	a				
Preempt Ph. Track	Vehical	Phases well	Cycle		Ph Tracl		destrian Dw		Cycle	Ovlp	Trac		Overla Well	ps Cy	cle	Trail	Gm
Default D	ata			I	Default	Data				Defa	ult ()a	ta					
Preempt 2	Vehical	Phases well	Су	cle <u>I</u>	P h. Tracl		ou Phase Dwell		Cycle	Ov1p.	Track	Overla Dv	ps vell	Cycle	Tı	ra ıl Orn	_
Default D	ata			I)efault	Data				Defa	ult ()a	ta					
Preempt 2 Ph. Track	Vehical	Phases well	Cycl	.e <u>I</u>	P h. Trac		an Phase Dwell		Cycle	Ovlp.	Track	Overla	ps Iwell	Cyela		Trail Gr	1
Default D	ata			I	Default	Data				Defa	ult Da	ta					
Preempt of Ph. Track	Vehical	Phases Dwell	Cycl	.e <u> </u> :	Po h. Track		n Phase Dwell		Cycle	_ Ovlp	Track	Overta D	ps)well	Cycle	Тэ	rail Grn	
Default D				1	Default	Data				Defa	ult Da	ta					
Preempt :	Vehical	Phases well	Cycl	e F	Po h. Track		n Phase Dwell		Cycle	<u>О</u> чђ.	Track	Overla 13	ps Iwoll	Cycle	75	rail Grn	
Default D				1	Default .	Data				Defa	ult Da	ta					
Ph. Track	Vehical	Phases Dwell	Су	ela <u>P</u>	Pe h Track		n Phase Dwell		Cycle	Ovlp.		Overla : D	ps well	Cycle	Tı	rail Grn	
Default D	าสเม			Ι	Default !	Data				Defa	ult Da	ta				_	

Page 13 of 15

System	Detector	rs Data										
Local Cri	itical Aları	ms				Reve	rt to Bac	kup: 15		1st Phone:		
Local Free:	No Cyc	le Failure:	No Coord I	Failure: No	Conflict F			e Flash:	No 2	2nd Phone:		
Local Fash:	No Cyc	le Fault: N	o Coord l	Fault: No	Premption	: No	Voltage	e Monito	or: No			
Special Stat	-			Special Statu	•	Special Stat			ecial Status	5: No	Special Sta	itus 6: No
Traffic R	esponsive			•							1	
System	•		Veh/ Average	Occupa	ncy M	-	eue 1	System		-	-	_
Detector	Channel	Name	Hr Time(min	s) Correctio	n/10 Volu	me % Det	ectors 1	Detector	s Factor	Detect	ors Detec	etors Factor
Default Da	fa					Defa	ult Data			Default	Data	
Sample Int			Queu	e: 1 Inpu	t Selection:	0=Averag	ge (Oueue	:			
				Dete	ctor Failed I	Level: 0		Level	Enter	Leave	Dial / Sp	lit / Offset
			Queu	_	t Selection:		ge				1.1	
				Dete	ctor Failed I	Level: 0		Defaul	t Data			
Vehical D	atactor			Vehical D	atactor				Special De	stactor		
venicai D		nostic Valu	ie 0	venicari		nostic Valu	e 1		Special De		nostic Valu	e 0
	Max	No	Erratic		Max	No	Erratic			Max	No	Erratic
Detector	Presence	Activity	Count	Detector	Presence	Activity	Count		Detector	Presence	Activity	Count
1	10	0	75	1	30	0	75		1	10	0	75
2	10	0	75	2	30	0	75		2	10	0	75
3	10	0	75	3	30	0	75		3	10	0	75
4	10	0	75	4	30	0	75		4	10	0	75
5	10	0	75	5	30	0	75		5	10	0	75
6	10	0	75	6	30	0	75		6	10	0	75
7	10	0	75	7	30	0	75		7	10	0	75
8	10	0	75	8	30	0	75		8	10	0	75
									Default	Data - No	Diag 0 V	Valu
Pedestria	n Detector			Pedestria	n Detector				Special De	etector		
	Diag	nostic Valu	ie 0		Diag	nostie Valu	e 1			Diag	nostic Valu	ie 1
	Max	No	Erratic		Max	No	Erratic			Max	No	Erratic
Detector	Presence	Activity	Count	Detector	Presence	Activity	Count		Detector	Presence	Activity	Count
1	10	0	75	1	30	0	75		1	30	0	75
2	10	0	75	2	30	0	75		2	30	0	75
3	10	0	75	3	30	0	75		3	30	0	75
4	10	0	75	4	30	0	75		4	30	0	75
5	10	0	75	5	30	0	75		5	30	0	75
6	10	0	75	6	30	0	75		6	30	0	75
7	10	0	75	7	30	0	75		7	30	0	75
8	10	0	75	8	30	0	75		8	30	0	75
Default	Data - No	Diag 0	Values	Default	Data - No	Diag 1 V	Values		Default :	Data - No	Diag 1 V	Values
Speed Tr	an Data								Speed Trap	Spe	ed Trap	
Speed Tr						Dial/Sp	lit/Offset		ow Treshol		Treshold	
Speed II						//						
_		easureme				Defeu	lt Data					
Detector	 Detect 	or_2 D:	istance:			Delau	it Data					

Default Data

Page 14 of 15

Volume Detector Data

Report Interval ()

Volume Controller Detector Detector Number Channel

Default Data

Page 15 of 15

1/23/2018 3:39:43PM

Intersection Name: Atlanta Hwy @ New Publix

Intersection Alias: AtlHwyNewPub

Access Data

I :1200 Baud 3 :19200 Baud Access Code: 9999

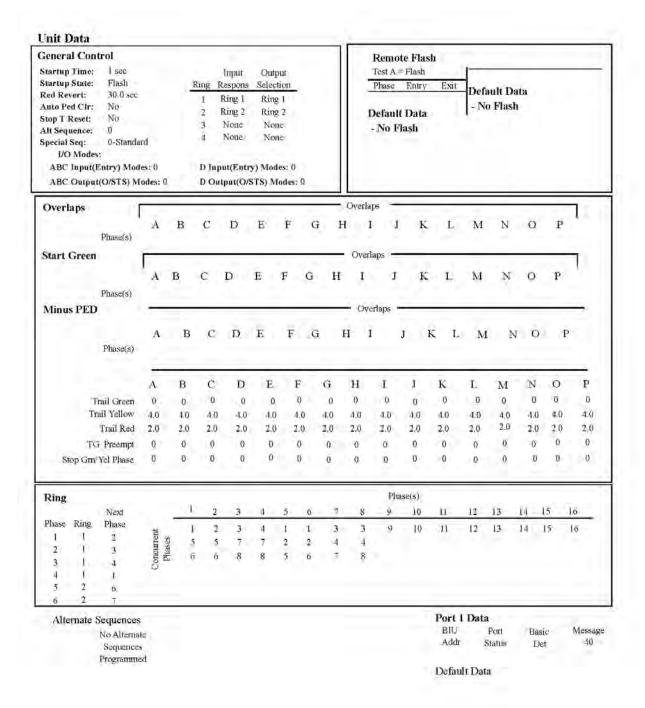
Channel: Address: 1

Revision: 3.34g

IP Address: 172.31.24.239

Phase Initialization Data

Phase	11-	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Initial	1-Inact	4-Gm	1-Inact	1-Inact	1-Inact	4-Grn	0-None									
****	OT .															


Vehic	al Basic	e Timings					Mise 7	imings	Walk	Walk		= (Pedest	rian Ti	mings	Alt			Achuated
alli sa	Min	Marchall.	CHES	O.O.	acall and	All	Green	Yellow	Offset	Offset	Bike	Bike	mail:	Ped	Alt	Ped Clr	Flash	Ext	Rest in
nase	Green	Passage	Maxi	Max2	Yellow	Ken	Delay	Delay	Time	Mode	Green	Psg	Walk	Cir	Walk	Cir	Walk	Ped Clr	Walk
1	7	3.0	25	30	4.0	1.0	0.0	0.0	0	0-Advance	0	0.	0	0	0	0	No	0	No
2	20	6.0	80	70	5.0	2,0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
3	7	5.0	25	35	5.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
4	7	3.0	25	35	5.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
5	7	3.0	20	20	5.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
6	20	6.0	80	70	5.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
7	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
8	0	0.0	0	0	3.0	0,0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
12	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	D	No
14	Ô	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	O.	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	D	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No

Vehic	le Densit	v Timin	gs				General Co	ntrol			Miscell	laneous			No	Special	Sequence	2
Ph.	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Last Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
2	3.0	30	30	0	40	3.0	NonActl	Min	None	0	No	Yes	Yes	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
6	3.0	30	30	0	40	3.0	NonActl	Min	None	0	No	Yes	Yes	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
9	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	0
10	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
13	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	Ü	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 15

16	0.0	0	0	0	0	0.0	Notic	None	None	0	No	No	No	No	No	0	0	0
Veh	ical D	etector F	hase As	signmen	ıt		Pedestria	ı Detector					Spec	ial Detec	tor Phas	e Assignin	nenl	
		Assign Phase	Mode	Switch Phase		Delay		Assign Phase	Mode	Switch Phase	Extend	Delay		Assi Pha	_	Switch le Phase		Delay
Veh Do	et:1	1	Vah	6	0.0	0	Defau	lt Data					Def	ault Da	ta			
Ve h De	et:2	2	Veh	Û	0.0	0												
Veh Do	et:3	3	Veh	0	0.0	0												
Veh De	et: 1	4	Veh	0	0.0	0												
Veh Do	et:5	5	Veh	2	0.0	0												
Veh De	et: ó	6	Veh	0	0.0	0												
Veh De	et:7	7	Veh	0	0.0	0												
Veh De	et:8	8	V∉h	Ü	0.0	0												

Page 2 of 15

Page 3 of 15

Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW

Coordination Data			Dial/Split	Cycle
General Coordination Data			1/1	110
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 1	1/2	110
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	1/3	110
Maximun Mode: 0=Inhibit	Max Dwell Time: 0	Manual Offset: 1	2/1	135
Correction Mode: 2=Short Way	Yield Period: 0		2/2	130
•			2/3	130
			3/1	150
			3/2	165
			3/3	150
			4/1	235
			4/2	170
			4/3	170
			4/4	200

Page 4 of 15

•		and Phase	Modes								
Dial Ph.	17 Split Splits	. 1 Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode
1	16	0=Actuated	2	52	1=Coordinate	3	20	0=Actuated	- 1	22	0=Actuated
5	19	0=Actuated	ó	53	1=Coordinate	-		V III	-1		V I LOTTAGE G
Díal	1 / Split	. 2									
Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Plı. Mode
1	19	0=Aetuated	2	.52	1=Coordinate	3	17	0=Actuated	4	22	0=Actuated
5	19	0=Actuated	6	53	1=Ceordinate						
Dial Ph.	1 / Split Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode
1	19	0-Actuated	2	52	1-Coordinate	3	17	0-Actuated	4	22	0-Actuated
5	19	0-Actuated	6	53	I-Coordinate	.5	17	0-Acmaica	4		0—Actuated
	2 / Split										
Ph.	Splits	Ph Mode	${f P}{f h}$.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Pli. Mode
I	25	0 Actuated	2	60	1 Coordinate	3	25	0 Actuated	4	25	0 Actuated
5	25	0=Actuated	Ú	60	1=Coordinate						
	2 / Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1	2.5	0-Actuated	2	57	l-Coordinate	3	21	0-Actuated	4	27	0-Actuated
5	21 • - 614	0=Actuated	Ó	61	1=Coordinate						
Dial ' Ph.	Split 2 / Split	Ph. Mode	Uh	Carlito	Ph. Moda	nh.	Caslins	Ph. Mode	IN.	eta liira	N. M. J.
	Splits		I ² h.	Splits			Splits		Ph.	Splits	Ph. Mode
5	25 21	Actuated D=Actuated	2 6	57 61	1 Coordinate 1=Coordinate	3	21	0 Actuated	4	27	0 Actuated
	21 3 / Split		n	(1)	i-c.txnamaic						
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Plı.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	20	0=Actuated	2	70	1=Coordinate	3	32	0=Actuated	- 4	28	0=Actuated
5	24	0−Actuated	6	75	1=Coordinate						
)ial :	3/ Split	. 2									
Plì.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Plı. Mode
l	29	()=Aetuated	2	78	1=Coordinate	3	29	0=Actuated	4	29	0=Actuated
5	29	0=Actuated	ń	78	1=Coordinate						
	3 / Split										
Ph.	Sphts	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1	28	0-Actuated	2	70	1-Coordinate	3	24	0-Actuated	4	28	0-Actuated
5	24	0-Actuated	6	75	I-Coordinate						
Dial - Ph.	47 Split Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode	Plı.	Splits	Plu Mode
5	40 40	0-Actuated 0 Actuated	2 0	100 100	1-Coordinate 1-Coordinate	3	45	0-Actuated	4	50	0—Actuated
	4/ Split		U	100	1 Continue						
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph	Splits	Ph. Mode
1	39	0=Actuated	2	81	I=Coordinate	3	21	0=Actuated	4	29	0=Actuated
5	21	0=Actuated	o o	99	1=Coordinate	-			7		
	4 / Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	39	0 Actuated	2	81	1 Coordinate	3	21	0 Actuated	1	29	0 Actuated
5	21	()=Aemated	ó	99	1=Coordinate						
	47 Split		***	a .:	M 16 :	-		TM 34 '			
Ph.	Splits	Ph. Mede	Ph.	Splits	Ph. Meda		Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	32	0=Actuated	2	106	1=Coordinate	3	22	0=Actuated	4	40	0=Actuated

Page 5 of 15

5 28 0=Actuated 6 110 1=Coordinate

raffic Plan	тата			
Plan: 1/1/1	Offset Time: 108	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
1/3/1	Offset Time: 108	Altamat Camanası O	Do 2 Loo Timo: 0 Do 2 Loo Timo: 0	Do 4 Las Timas 0
Plan: 1/2/1	Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
		-p		
Plan: 1/3/1	Offset Time: 108	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/1/1	Offset Time: 118	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/1/2	Offset Time: 118	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/1/3	Offset Time: 118	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/2/1	Offset Time: 118	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
and to see that it	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	<i>y</i>
Plan: 2/2/2	Offset Time: 14	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	

Page 7 of 15

lan: 2/3/1	Offset Time: 118	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/3/2	Offset Time: 14	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
dan: 3/1/1	Offset Time: 131 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/2/1	Offset Time: 131 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/2/2	Offset Time: 131	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	_
Plan: 3/2/3	Offset Time: 131	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/3/1	Offset Time: 131 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 4/1/1	Offset Time: 147 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Dlon: 4/1/2	Offset Time: 147	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 4/1/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/1/3	Offset Time: 147	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	

Page 8 of 15

		0.00	7' 450				D 67 5	T. 0		m: o		m' o
Plan: 4/2	2/1		ime: 159 =Normal		t Sequence: ()	Rg 2 Lag	Time: 0 tion Mode:		g Time: 0	Rg 4 La	g Time: 0
	2/2				Function: 0	<u> </u>				g Time: 0	D ~ 4 I ~	~ Tima. 0
Plan: 4/2	2/3		ime: 115 =Normal		t Sequence: (Function: 0	J	Rg 2 Lag	tion Mode:		g Time. 0	Kg 4 La	g Time: 0
		mode. c	, roma	Брески	r tale dell. o		Conce	uon mode.	0 110			
Plan: 4/3	3/1		ime: 159	Alterna	t Sequence: ()	Rg 2 Lag			g Time: 0	Rg 4 La	g Time: 0
		Mode: 0)=Normal	Special	Function: 0		Correct	tion Mode:	0=No			
Plan: 4/3	3/3		ime: 115 =Normal		t Sequence: (Function: 0)	Rg 2 Lag 7 Correct	Time: 0 tion Mode:		g Time: 0	Rg 4 La	g Time: 0
Plan: 4/4	4/1	Offset T	ime: 131	Alterna	t Sequence: ()	Rg 2 Lag	Time: 0	Rg 3 Lag	g Time: 0	Rg 4 La	g Time: 0
		Mode: 0)=Normal	Special	Function: 0		Correct	tion Mode:	0=No			
Local	TBC	Data							,	Source	Equate	Days
Start of	f Dayligh	t Saving	Month: 3	Week: 2	Cycle Ze	ero Referen	ce Hours: 24	Min: 0		Day 1	2 3 4	5 6 7
End of	Daylight	Saving	Month: 11	Week: 1						2 3	4 5 6	0 0 0
Traffic	Data						PH	HASE FUN	ICTION			
<u>Event</u>	<u>Day</u>	<u>Time</u>		ash	1 2	<u>3</u> <u>4</u>	<u>5</u> <u>6</u> <u>7</u>	8	<u>9 10</u>	11 1	<u>2</u> <u>13</u>	<u>14 15 16</u>
1	1	0:1	0/0/4	Ļ	┙╟╏	┙╚╬	ᆜ닏닏	Į <mark> </mark>	⊣	│	╛╟╏	_
2	1	13:0	2/1/1	Ļ	╛╠╛	ᆜ 닏!	ᆗ닏닏	ᆝ닏┆	ᆜ┝	<u>│</u>	╡┝┩╏	ᆗ닖닏
3	2	5:45	3/2/2	Ļ	┩┝┩╏	┙┝╬	┩┝	┤ ╞ ┩╏	⊣⊢	¦⊨⊣ ⊨	╡┝╡	$\dashv \vdash \vdash \vdash$
4	2	6:30	4/1/1	Ļ	┩┝┩╏	ᆜ - 	ᅴ 닏늗	┥╠┩╏	⊣ ⊨	│ │ ┤ ├	┥┝┩┝	$\dashv \vdash \vdash \vdash$
5	2 2	8:30	2/1/1 3/2/2	F	╡╠┤	⊣ -	러님는	┥╠╣	러는	╏╞┤╞	╡┝╡╞	러뉘片
6 7	2	11:0 14:30	4/1/1	F	╡┝╡╏	╡╠╣	╡⊭⊨	┥╞╣╏	⊣⊢	¦⊨¦⊧	╡╞╡╞	$\dashv \vdash \vdash \vdash$
8	2	18:30	3/2/1	F	╡╞╡╏	╡╞╬	╡⊭⊨	┥╞╡╏	⊣⊢	¦⊨┤╞	╡╞╡╞	$\dashv \vdash \vdash \vdash$
9	2	21:0	2/1/1	F	╡┝╡╏	႕ 片	⊣	┥╞╡╏	$\dashv \vdash$	╏╞┤╏	╡┝╡╞	$\dashv \vdash \vdash \vdash$
10	2	22:0	0/0/4	F	╡∺╒	╡╠╬	╡岸⊨	┥╠┤	러는	╒	╡┝╡╞	$\dashv H H$
11	7	0:1	0/0/4	F	╡┝╡╏	╡╞╬	╡≓⊨	┆╞╡┆	╡┝	┟┼┤┝	╡╞╡╞	$\dashv \vdash \vdash \vdash$
12	7	10:0	3/2/2	F	╡Ħ╏	ㅋ 片	러버는	┧┝┪┟	$\dashv \vdash$	╏╒┩╏	╡┝╡╞	$\dashv \vdash \vdash \vdash$
13	7	22:0	2/1/1	F	╡Ħ▐	╡╒╬	ᅱᇊᆮ	i ⊨i i	╡┝	ĦĦ	┥╒╬	ᅱᅱᅱ
ATIV	Event-									<u> </u>		<u> </u>
AUX.	Events	i		Ι	Det. Det.	Det.						
	Progra		Aux C	Ouputs D	iag. Rpt.	Mult100		-	Function (•	_	
Event	Day				D1 D2	D3 D	imming 1	$\stackrel{2}{\square}$ $\stackrel{3}{\square}$	$\stackrel{4}{\sqcap}\stackrel{5}{\sqcap}$	$\bigcap^{6}\bigcap^{7}$	8	
1		0		$\dashv \vdash \vdash \vdash$	X	H	HH	HH	HH	HF	H	
2	1 1	9				\vdash	\vdash	\vdash	ΠН	\sqcap		
2 3	1 1	22	∘□□		Х	\blacksquare	\vdash	μ	-	\square	I — I	
3 4	1 1 2	22 0			XXXX	Ħ	H H	日日	月日	甘口	H	
3 4 5	1 1 2 2	22 0 6	0 1 0		X X X	Ħ	目目	ĦĦ	H	HE		
3 4	1 1 2	22 0			X X X X X							
3 4 5 6	1 1 2 2 2	22 0 6 22	0 1 0 0		X X X X X X X X X X X X X X X X X X X							

Page 9 of 15

Default Data - No Special Da	y(s) or W	eek(s) I	Progran	nmed														
Special Functions Function		SF1	SF2	SF3	SF	<u> 4 SI</u>	7 5	SF6	SF7	<u>SF8</u>	SF9 S	F10	SF11	<u>SF12</u>	SF13 S	SF14_S	F15	SF10
Special Function 1		X			1 🗀					$\overline{\Box}$								
Special Function 2			Х		┆┝	٦ŀ	┪	H	\dashv	H					一			
Special Function 3			Н	Х	iF	٦ŀ	一	H		Н					ಠ			
Special Function 4			Н		2	x	╡	\Box		H					一			
Special Function 5					╽┝	٦ŀ	Χ	\Box		Н					一			
Special Function 6					╽┝	٦ŀ	┪	Х		Н					一			
Special Function 7					i F	٦ŀ	\exists	H	Х	Н					一	H		
Special Function 8					<u>ו</u>					Х								
Phase Function																		
Phase 1 Max2	PF1 P	F2 P	F3 Pl	F4 P	F5 Т Г	PF6	PF7	PF8	PF9	PF10	PF.	11 I	PF12	PF13	PF14	PF	15 I	PF16
Phase 2 Max2		٦Ħ	٦Ħ	٦Ħ	ήħ	٣ř	Ħ	Ħ	同	F	iΈ	ij	Ħ	亓	H	F	i i	ಠ
Phase 3 Max2	ΠF	╡╞		忙	╡┞	٣ħ	Ħ	Ħ	一	H	i⊨	i i	一	Ħ	H	片	₹ i	号
Phase 4 Max2	一一	٦Ħ	TX	īĖ	ΪĖ	٣ř	Ħ	Ħ	一	F	iΓ	ן וַ	Ħ	Ħ	H	F	Ħ i	
Phase 5 Max2	ΠF	٦F	٦Ħ	╗	7	٣ħ	Ħ	Ħ	Ħ		iΕ	i i		П		F	i i	一
Phase 6 Max2	ΠĦ	۲Ē	٦Ħ	ĭF	ΪĒ	Х	ヿ	Ħ		F	iΈ	ΤĒ		П		F	i i	一
Phase 7 Max2	ΠĦ	٦F	٦Ħ	ĭF	٦Ė	٣Ħ	Х	Ħ			İΈ	īĒ		Ħ		F	i i	Ħ
Phase 8 Max2		Ī		Ī	֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֡֞֞֞֡֞֡	Ī	亅	Х			jΕ	֓֞֞֓֞֓֞֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֡				Ē	֓֞֞֞֓֞֓֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡	
Phase Omit	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF	PF:	10 P	F11	PF12	PF13	PF1	4 P	F15	PF16
Phase 1 Phase Omit									X]] [
Phase 2 Phase Omit					\prod					X] [
Phase 3 Phase Omit												X] [
Phase 4 Phase Omit	\square			<u> </u>						<u> </u>	╛┕	_	Χ		<u> </u>	<u>]</u>	╛	
Phase 5 Phase Omit		_ _	<u> </u>	╝	_]					ļ	<u></u> ↓ L	_	Щ	X	<u> </u> _	ַן וַ	_	
Phase 6 Phase Omit		<u> </u>	<u> </u>	<u></u> ∐∟	_			Щ		ļ∟	╛┕	_	Щ		Х	Ţ <u></u>	_	
Phase 7 Phase Omit		<u> </u>	<u> </u>	⊣ L	_			Щ	<u>_</u>	ļ∟	╡┝	4	Щ	\vdash	<u> </u> _	Į ፟፟፟፟፟፟	Х	
Phase 8 Phase Omit	<u>Ш</u>							Ш								<u> </u>		X
Ped Omit	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF	9 PF	10 P	F11	PF12	PF13	PF1	4 P.	F15	PF16
		<u> </u> L	<u> </u>				Щ				<u> </u>					<u> </u>		<u>L</u>
Veh Det Coord ReSvc	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF	3 PF	9 PF	10 P	F11	PF12	PF13	PF1	4 P	F15	PF16
				<u> L</u>						<u> </u>	<u> </u>					<u> </u>		
Function Phase Recall																		
	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF	9 PF	10 P	F11	PF12	PF13	PF1	4 P	F15	PF16
														L	<u> </u>	<u> </u>		<u></u>

Page 10 of 15

Phase Min Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13	PF14 PF15 PF16							
Veh Det Ped Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13	PF14 PF15 PF16							
Veh Det Bike Recall	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13	PF14 PF15 PF16							
Vehicle Function									
Veh Det Switch Omit	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13	PF14 PF15 PF16							
Veh Det Switch Now	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13	PF14 PF15 PF16							
Veh Det Switch Also	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13	PF14 PF15 PF16							
Overlap Function									
-	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13	PF14 PF15 PF16							
Dimming Data Default Data - No Dim	mming Programmed								
Lane Defination									
Lanes Name	Green Vellow Red Green Vellow								
Default Data - Lane Defination									
program day program hour program minute LanePhFun									
Preemption Data									

General Preemption Data								
Preempt > Flash	Preempt 2 > Preempt 3	Preempt 4 > Preempt 5						
Preempt 1 > Preempt 2	Preempt 3 > Preempt 4	Preempt 5 > Preempt 6						

Preempt	Preem Non- Locking	n pt Tim Link to Preempt		Ext end	Dura tion	Max Call		Min Green		Debo unce		Se Ped Clear	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Re Ped Clear	turn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20

Preempt 1			Preempt 2			Preempt 3			Preempt 4]	Preempt	5]	Preempt 6		
Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	
1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	
2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	
3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	
4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	
5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	
6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	
7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	
8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	

Priority Timers						
Prio Non- Del Ext rity Locking ay end	Free Free Min Local Dial SplitGreen out	Lock Lock Max out out Green A B	Pre- Green Recall	Excl-co Phase Svc.	Transit Signal Type	Overlap Blankout

Priority Detector Channels

Priority

Detector

Priority Fixed Phases

Priority

Legend: 0 1
CO-PHASE FALSE TRUE
QJ-PHASE

Priority Priority Bank: Partial Priority Alt Seq Alt Seq Enabled Min Walk	Full Priority Freq. Override Ped skip Force full Priority Frequency Freq. Level	Recovery Method Return PedWait PedOverride	
Codes: 0 FALSE	X TRUE		
Priority: Priority Bank: Queue Phase Detector Tim Default data Priority: Priority Bank: Queue Phase Detector Tim Default data	Priority: Priority Bank: Queue Phase Detector T Default data Priority: Priority Bank:	Priority: Priority Bank: Queue Phase Detector Time Default data Priority: Priority Bank: Queue Phase Detector Time Default data	
Priority: Bank Detector PE 1A 2A Default Data	3A 4A 5A 6A B	Priority: Bank Detector PE 1A 2A 3A Default Data	4A 5A 6A B
Priority : Bank Detector PE 1A 2A Default Data	3A 4A 5A 6A B	Priority: Bank Detector PE 1A 2A 3A Default Data	4A 5A 6A B
Priority: Bank Detector PE 1A 2A	3A 4A 5A 6A B	Priority : Bank Detector PE 1A 2A 3A	4A 5A 6A B

Page 13 of 15

Default Data

Preempt 1 Vehical Pha Ph. Track Dwell	ses Cycle	Ph Track	Pedestrian Phas	es Cycle	Ovlp	Track	Overlaps Dwell	Cycle	Trail Gm
Default Data		Default Da	ta		Defaul	t Data			
Preempt 2									
Ph. Track Dwel			strian Phases Dwell	Cycle	Ovlp. T	Over	•	Cycle	Trail Grn
Default Data Preempt 3		Default Da	ta		Defaul	t Data			
Vehical Pha Ph. Track Dwell	ses Cycle	Pede Ph. Track	strian Phases Dwell	Cycle	Ovlp.	Over Track	laps Dwell	Cycle	Trail Gm
Default Data		Default Da	ta		Defaul	t Data			
Preempt 4 Vehical Pha Ph. Track Dwe		Pede Ph. Track	strian Phases Dwell	Cycle	Ovlp.	Over Track	laps Dwell	Cycle	Trail Grn
Default Data		Default Da	ta		Defaul	t Data			
Preempt 5 Vehical Pha Ph. Track Dwell	ses Cycle	Pede Ph. Track	strian Phases Dwell	Cycle	Ovlp.	Over Track	laps Dwell	Cycle	Trail Grn
Default Data Preempt 6		Default Da	ta		Defaul	t Data			
Vehical Pha Ph. Track Dwe			strian Phases Dwell	Cycle	Ovlp.	Over Track	laps Dwell	Cycle	Trail Grn
Default Data System/Detector	s Data	Default Da	ta		Defaul	t Data			
Local Critical Alarn	ıs			Revert to B	ackup: 15		1st Phone:		
•	e Failure: No e Fault: No	Coord Failure: Coord Fault: N			note Flash: age Monito	140	2nd Phone:		
Special Status 1: No	Special Status 2	: No Special	Status 3: No	Special Status 4: 1	No Spo	ecial Status	5: No	Special Sta	tus 6: No
Traffic Responsive System Detector Detector Channel	Veh/ Name Hr T	Average O		in Queue 1 me % Detectors	System Detector:		-	-	-
Default Data				Default Da	ıta		Default	t Data	
Sample Interval:		Queue: 1 Queue: 2	Input Selection: Detector Failed I Input Selection:	Level: 0	Queue: Level		Leave	Dial / Sp	lit / Offset
		-	Detector Failed I	_	Default	t Data			
Vehical Detector Diagr	nostic Value 0	Veh	ical Detector Diag	nostie Value 1		Special D		mostic Valu	e 0
Max Detector Presence	No Errat Activity Cour		Max tector Presence	No Errat Activity Cou		Detector	Max Presence	No Activity	Erratic Count
Default Data - Dia	g 0 Values	Det	fault Data - No	Diag 1 Value	s	Default	Data - No	Diag 0 V	⁄alu

Page 14 of 15

Pedestrian Detector Diagnostic Value 0	Pedestrian Detector Diagnostic Value 1	Special Detector Diagnostic Value 1						
Max No Erratic Defector Presence Activity Count	Max No Errulic Detector Presence Activity Count	Max No Erratic Defector Presence Activity Count						
Default Data - No Diag 0 Values	Default Data - No Diag 1 Values	Default Data - No Diag 1 Values						
Speed Trap Data Speed Trap: Measurement: Detector 1 Detector_2 Distance:	Dial/Split/Offset // Default Data	Speed Trap Speed Trap Low Treshold High Treshold						
Default Data Volume Detector Data Report Interval 0 Volume Controller								

Detector Detector Number Channel

SEPAC ECOM All Data

Intersection Name: Atlanta Hwy @ Bellehurst

Intersection Alias: AtlHwyBelle

Access Data

1 :1200 Baud 3 :19200 Baud Access Code: 9999

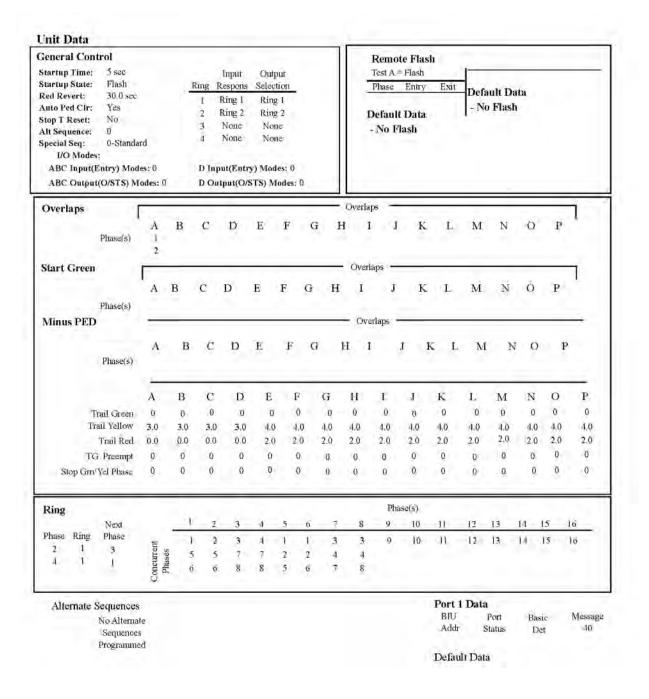
Channel:

Address: 1

Revision: 3.34g IP Address: 172.31.24.240

Phase Initialization Data

 Phase
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16


 Initial
 0-None
 4-Gm
 0-None
 1-Inact
 0-None
 PHASE DATA

Vehic	al Basic	Timings					Mise 7	imings	Walk	Walk		= (Pedest	rian Ti	mings	Alt			Actuate
	Min					All	Green	Yellow		Offset	Bike	Bike		Ped	Alt	Ped	Flash	Ext	Rest in
Phase	Green	Passage	Maxl	Max2	Yellow	Red	Delay	Delay	Time	Mode	Green	Psg	Walk	Cir	Walk	Clr	Walk	Ped Clr	Walk
1	0	0.0	0	0	4.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	.0	No
2	20	7.0	45	45	4.5	2,0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
3	0	0.0	0	0	4.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
4	7	5.0	25	25	4.5	0.5	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
5	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
6	0	0.0	0	0	3.0	0.0	0,0	0.0	0	0-Advance	0	0	Ō	0	0	0	No	0	No
7	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
8	0	0.0	0	0	3.0	0,0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
12	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	D	No
14	Ô	0.0	0	0	4.0	20	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	D.	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No

Vehic	nicle Density Timings				General Co	ntrol			Miscell	laneous			No	Special	Sequence	2		
Ph.	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
2	0.0	0	0	0	0	0.0	NonActl	Min	None	0	No	No	No	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
6	0.0	0	0	0	0	0.0	None	None	None	.0	No	No	No	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	U
9	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	Ω
10	0.0	0	0	0	0	0,0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	O	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	D
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
13	0.0	0	O	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	D
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 15

16	0.0	0	0	0	0	0.0	Notic	None	None	0	No	No	No	No	No	0	0	0
Vel	hical Deta	ector P	hase As	signmen	ıt		Pedestrian	Detector					Speci	al Detec	tor Phase	Assignm	nent	
		Assign Phase	Mede	Switch Phase	Extend	Delay		Assign Phase	Moda	Switch Phase	Extend	Delay		Assi Pha	ign ise Modo	Switch Phase		. Delay
D	efault I	Data					Default	. Data					Defa	ult Da	ta			

Page 3 of 15

Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW

Coordination Data			Dial/Split	Cycle	_
General Coordination Data			1/1	110	
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 3	1/2	110	
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 2	1/3	110	
Maximun Mode: 0=Inhibit	Max Dwell Time: 20	Manual Offset: 2	1/4	110	
Correction Mode: 2=Short Way	Yield Period: 5		2/1	135	
			2/2	130	
			2/3	130	
			2/4	130	
			3/1	150	
			3/2	165	
			3/3	150	
			3/4	150	
			4/1	235	
			4/2	170	
			4/3	170	
			4/4	170	

Page 4 of 15

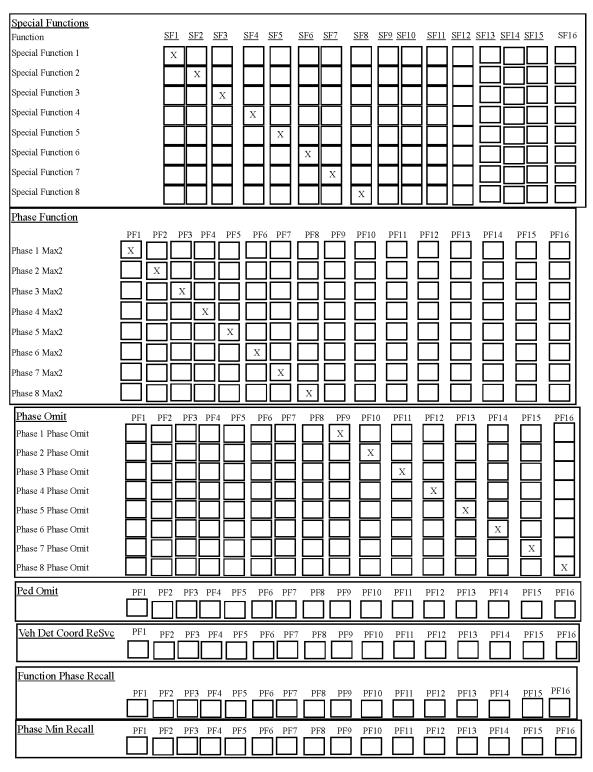
Split Times and Phase Mode	6								
Dial 1 / Split 1	3								
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 72 1=Coordinate	4	38	0=Actuated						
Dial 1 / Split 2		- 40			- 41:				
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 72 1=Coordinate Dial 1 / Split 3	4	38	0=Actuated						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 72 1=Coordinate	4	38	0=Actuated		-r			орию	11. 11000
Dial 1 / Split 4	7	20	o Trettantou						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 72 1=Coordinate	4	38	0=Actuated						
Dial 2 / Split 1	TVI.	G1:4-	Dl. 14-4-	DI-	C-1:4-	DI- 14-1-	701	0.17	D1 16 1
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 90 1=Coordinate Dial 2 / Split 2	4	45	0=Actuated						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 86 1=Coordinate	4	44	0=Actuated						
Dial 2 / Split 3									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 86 1=Coordinate	4	44	0=Actuated						
Dial 2 / Split 4 Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode	Ph.	Splite	Dh. Mada
				rii.	Брить	Til. Wiode	rii.	Splits	Ph. Mode
2 86 1=Coordinate Dial 3 / Split 1	4	44	0=Actuated						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 99 1=Coordinate	4	51	0=Actuated						
Dial 3 / Split 2									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 109 1=Coordinate	4	56	0=Actuated						
Dial 3 / Split 3 Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 105 1=Coordinate	4	45	0=Actuated		орино	111.111000	111.	орию	TH. Mode
Dial 3 / Split 4	4	40	o ricidated						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 105 1=Coordinate	4	45	0=Actuated						
Dial 4/ Split 1									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 168 1=Coordinate Dial 4 / Split 2	4	67	0=Actuated						
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 135 1=Coordinate	4	35	0=Actuated		1				
Dial 4/ Split 3									
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 135 1=Coordinate	4	35	0=Actuated						
Dial 4 / Split 4	D1.	Cm1:4.	Db M-3-	TM.	Cal!+-	Db M-J-	T01	0117	Dl. M. J.
Ph. Splits Ph. Mode	Ph.	Splits	Ph. Mode	Pn.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2 135 1=Coordinate	4	35	0=Actuated						

Page 5 of 15

raffic Plan				
Plan: 1/1/1	Offset Time: 109	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/1/2	Offset Time: 109	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/1/3	Offset Time: 109	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/1	Offset Time: 109	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/2	Offset Time: 109	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
. Rut. 1: 2: 2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/2/3	Offset Time: 109	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
nan: 1/2/3	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	Ng 4 Dag Time. V
		P		
Plan: 1/3/1	Offset Time: 109	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 1/3/1	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	reg 4 Dag Time. 0
1/2/2		-		Do 4 Lee Time 0
Plan: 1/3/2	Offset Time: 109 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
		·		D 41
Plan: 1/3/3	Offset Time: 109	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/4/1	Offset Time: 109	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/4/2	Offset Time: 109	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
man: 1/4/2	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	Ag 7 Dag Tittle, V
	Offset Time: 109			Da 4 Los Timos O
Plan: 1/4/3		Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0

Page 6 of 15

Plan: 2/1/1	Offset Time: 118 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/1/2	Offset Time: 118 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/1/3	Offset Time: 118 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/1/1	Offset Time: 142 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/1/2	Offset Time: 142 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/1/3	Offset Time: 142 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/2/1	Offset Time: 131	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	·
Plan: 3/2/2	Offset Time: 131	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/2/3	Offset Time: 131	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/3/1	Offset Time: 147	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
PIAN' 37.5/ I		-	Correction Mode: 0=No	Ag + Lag Time. 0
	Mode: 0=Normal	Special Function: 0	Conceilon wiede. U-NO	
Plan: 3/3/2	Mode: 0=Normal Offset Time: 147	Special Function: 0 Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0


Page 7 of 15

Plan: 3/3/3	Offset Time: 147	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/4/1	Offset Time: 147	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 3/4/2	Offset Time: 147 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/4/3	Offset Time: 147	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/1/1	Offset Time: 147	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/1/2	Offset Time: 147	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/1/3	Offset Time: 147 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 4/2/1	Offset Time: 147 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 4/2/2	Offset Time: 147 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 4/2/3	Offset Time: 147	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
1 Iail. 4:23	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/3/1	Offset Time: 147 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
		_		Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 4/3/2	Mode: 0=Normal Offset Time: 147	Special Function: 0 Alternat Sequence: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	
Plan: 4/3/2	Mode: 0=Normal Offset Time: 147 Mode: 0=Normal	Special Function: 0 Alternat Sequence: 0 Special Function: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 4/3/1 Plan: 4/3/2 Plan: 4/3/3	Mode: 0=Normal Offset Time: 147 Mode: 0=Normal Offset Time: 147	Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Plan: 4/3/2	Mode: 0=Normal Offset Time: 147 Mode: 0=Normal Offset Time: 147	Special Function: 0 Alternat Sequence: 0 Special Function: 0 Alternat Sequence: 0	Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0

Page 8 of 15

Plan: 4/4/2	Offset T	Cime: 147	Alternat Sequ	ience: 0		Rg 2 Lag Ti	ime: 0 I	Rg 3 Lag Time:	0 F	Rg 4 Lag Time	e: 0
1 Idil. 4/4/2)=Normal	Special Funct				on Mode: 0				
Plan: 4/4/3		ime: 147 =Normal	Alternat Sequ Special Funct			Rg 2 Lag Ti	ime: 0 I on Mode: 0	Rg 3 Lag Time: =No	0 F	Rg 4 Lag Time	:: 0
Local TBC Start of Dayli		Month: 3	Week: 2 C	ycle Zero R	teference	Hours: 24	Min: 0	Source Day	1 2	Equate Days	6 7
End of Dayli	ght Saving	Month: 11	Week: 1					2	3 4	5 6 0	0 0
Traffic Data	ì					DII.	A SE ELINIO	TION			
Event Day 1 1 2 1 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 7 12 7 13 7	13:0 5:45 6:30 8:30 11:0 14:30 18:30 21:0 22:0 0:1 10:0	D/S/O flasi 0/0/4 2/1/1 3/2/2 4/1/1 2/1/1 3/2/2 4/1/1 3/2/1 2/1/1 0/0/4 0/0/4 3/2/2 2/1/1			4 5	6 7	ASE FUNC				
Event D 1 2 3 4 5 6 7 8	gram 1 0 1 9 1 22 2 0 2 6 2 22 7 0 7 8 7 22	Aux Out Min. 1 2 1		Det. De Rpt. Mult D2 D X	100	ning 1	Special Fu	unction Outputs 4 5 6	7 8		
Default Data -	No Special Γ	Day(s) or Week(s)) Programmed								

Page 9 of 15

Page 10 of 15

Veh Det Ped Recall	PF1 PF2 PF3	PF4 PF5 PF6	PF7 PF8 PF9	PF10 PF11	PF12 F	PF13 PF14	PF15	PF16
Veh Det Bike Recall	PF1 PF2 PF3	PF4 PF5 PF6	PF7 PF8 PF9	PF10 PF11	PF12	PF13 PF14	PF15	PF16
Vehicle Function								
Veh Det Switch Omit	PF1 PF2 PF3	PF4 PF5 PF6	PF7 PF8 PF9	PF10 PF11	PF12	PF13 PF14	PF15	PF16
Veh Det Switch Now	PF1 PF2 PF3	PF4 PF5 PF6	PF7 PF8 PF9	PF10 PF11	PF12 F	PF13 PF14	PF15	PF16
Veh Det Switch Also	PF1 PF2 PF3	PF4 PF5 PF6	PF7 PF8 PF9	PF10 PF11	PF12 F	PF13 PF14	PF15	PF16
Overlap Function	PF1 PF2 PF3	PF4 PF5 PF6	PF7 PF8 PF9	PF10 PF11	PF12 F	PF13 PF14	PF15	PF16
Dimming Data Default Data - No Dim	ming Programmo	ed						
Lanes Name	reen Yellow bound Inboun			ellow tbound	_			
Default Data - Lane D	efination							
program day prog	<u>ram hour</u> <u>proc</u>	<u>ıram minute</u> <u>Lar</u>	nePhFun					
Preemption Data								

General Preemption Data										
Flash > Preempt Preempt 1 = Preempt 2	Preempt 2 = Preempt 3 Preempt 3 = Preempt 4	Preempt 4 = Preempt 5 Preempt 5 = Preempt 6								

Preempt	Preem Non- Locking	n pt Tim Link to Preempt		Ext end	Dura tion	Max Call		Min Green		Debo unce	Gate ext end	Ped	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Re Ped Clear	turn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
2	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
3	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
4	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
5	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0
6	No	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	30	0	0	0	30	0

1	Preempt	1]	Preempt	t 2	I	Preempt	3	1	Preempt	t 4]	Preempt	t 5]	Preempt	6
Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls
1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes
2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes
3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes
4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes
5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes
6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes
7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes
8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes

Priority Timers					
Prio Non- Del Ext rity Locking ay end	Free Free Min Lock Dial SplitGreen out	Lock Lock Max out out Green G	Pre- Excl-co Phase Green Recall Svc.	Transit Overlap Signal Type Blankout	

Priority Detector Channels

Priority

Detector

Priority Fixed Phases

Priority

Legend: 0 1
CO-PHASE FALSE TRUE
QJ-PHASE

Partial Prior Alt Seq Alt Seq Enabled Min Walk	rity		Ped Ford Fred	Full q. Overrid skip ce full Pric quency q. Level		ty		Meti Retu Pedi Pedi	ırr W	od n	covery							
Codes:	F	0 FALSE		X EUE														
Priority : Priority Bank : Queue Phase D Default data	etector	Time		Priority Priority Queue Pl Defa	Bank	Detec	tor T	ime			y Ban	e Dete	ctor	Time				
Priority : Priority Bank : Queue Phase D Default data	etector	Time		Priority Priority Queue Pl Defa	Bank	Detec	tor T	ime	•		ty Ban	e Dete	ctor	Time				
Priority : Bank Detector PE	1A Defau	2A It Data	ЗА	4A	5A	6A	В		За	ority : Ink tor	PE	1A Defai	2A ult Data	3A a	4A	5A	6A	В
Priority : Bank Detector PE	1A Defau	2A It Data	ЗА	4A	5A	6A	В		За	ority : ank tor	PE	1A Defai	2A ult Data	3A a	4A	5A	6A	В
Priority : Bank Detector PE	1A Defau	2A 〈	ВА	4A	5A	6A	В		За	ority : .nk tor	PE	1A Defau	2A ult Data	3A 1	4 A	5A	6A	В

Page 13 of 15

Priority Priority Bank :

Level

Preempt 1 Vehi Ph. Track	cal Phases Dwell	Cycle	Ph Track	Pedestrian Phase Dwell	es Cycle	Ovlp	Track	Overla Dwell	i ps Cycle	Trail Gm
Default Data			Default Dat	a		Defau	ılt Data			
Preempt 2 Vehi- Ph. Track	cal Phases Dwell	Cycle	Pedes Ph. Track	trian Phases Dwell	Cycle	Ovlp.		erlaps Dwell	Cycle	Trail Grn
Default Data			Default Dat	a		Defau	ılt Data			
Preempt 3 Vehic Ph. Track	cal Phases Dwell	Cycle	Pedes Ph. Track	trian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Gm
Default Data			Default Dat	a		Defau	ılt Data			
Preempt 4 Vehic Ph. Track	cal Phases Dwell	Cycle	Pedess Ph. Track	rian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Grn
Default Data			Default Dat	a		Defau	ılt Data			
Preempt 5 Vehic Ph. Track	cal Phases Dwell	Cycle	Pedess Ph. Track	rian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Grn
Default Data			Default Dat	a		Defau	ılt Data			
Preempt 6 Vehic Ph. Track	cal Phases Dwell	Cycle	Pedest Ph. Track	rian Phases Dwell	Cycle	Ovlp.	Ov Track	erlaps Dwell	Cycle	Trail Gm
Default Data System/Det	ectors Da	ıta	Default Dat	a		Defau	ılt Data			
Local Critical Local Free: No Local Fash: No		ıre: No	Coord Failure: Coord Fault: No		ash: No Re	Backup: 15 emote Flash oltage Monit	: No	1st Phone 2nd Phon		
Special Status 1: Traffic Respo System Detection Chan	onsive etor		•	cupancy M		1 Systen	-	ght Qu	Special Sta eue 2 Syste ectors Detec	em Weight
Default Data Sample Interval:			Queue: 1 Queue: 2	Input Selection: (Detector Failed I Input Selection: (Detector Failed I	evel : 0 =Average	Queue Level	e: Enter I lt Data	Defa Leave	ult Data Dial / Sp / /	lit / Offset

Vehical De	etector			Vehical D	etector			Special De	tector		
	Diag	nosti e Valu	ic 0		Diag	nostie Valu	c l		Diag	nostic Valu	e 0
Defector	Max Presence	No Activity	Erratic Count	Detector	Max Prasanea	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratic Count
1	10	0	75	1	30	0	75	1	10	0	75
2	10	0	75	2	30	0	75	2	10	0	75
3	10	0	75	3	30	0	75	3	10	Û	75
1	10	0	75	4	30	0	75	4	10	0	75
5	10	0	75	5	30	Ü	75	5	10	0	75
6	10	0	75	ű	30	0	75	ń	10	0	75
7	10	0	75	7	30	0	75	7	10	0	75
8	10	0	75	8	30	0	75	×	10	0	75
								Default l	Data - No	Diag 0 N	Valu -
Pedestriar	Detector			Pedestria	n Detector			Special De	tector		
	Diag	nosti e Valu	ic 0		Diag	nosti e Valu	c 1		Diag	nostie Valu	ല 1
Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Erratic Count
1	10	0	75		30	0	75	_ <u></u>	30	0	75
2	10	0	75	2	30	0	75	2	30	0	75
3	10	0	75	3	30	0	75	3	30	0	75
4	10	0	75	4	30	0	75	4	30	0	75
5	10	0	75	5	30	0	75	5	30	0	75
Ġ.	10	0	75	6	30	0	75	6	30	0	75
7	10	0	75	7	30	0	75	7	30	0	75
8	10	0	75	8	30	0	75	8	30	0	75
Default :	Data - No	Diag 0 V	/alues	Default	Data - No	Diag 1 V	/alues	Default l	Data - No	Diag 1	Values
Speed Tr Speed Tr	rap:					Dial/Sp //	lit/Offset	Speed Trap Low Treshol	-	ed Trap Treshold	
Detector		easureme er 2 Di	nt: islance :			Defau	lt Data				

Volume Detector Data

Report Interval ()
Volume Controller
Detector Detector
Number Channel

Default Data

1/24/2018

11:25:35AM Intersection Name: Atl Hwy. @ Eastmont Plaza #400 Intersection Alias: 400AtlHvEtPI Channel: Access Code: 9999 Address: 1 Access Data 1:1200 Baud Revision: 3.34g IP Address: 172.31.24.218 3:1200 Band Phase Initialization Data Phase 5 6 10 11 12 Initial 0-None 4-Gm 0-None 1-Inact 1-Inact 4-Gm 0-None 0-None 0-None 0-None 0-None 0-None 0-None 0-None 0-None PHASE DATA Vehical Basic Timings Mise Timings Pedestrian Timings Walk Walk Alt Actuated Bike Green Yellow Offset Offset Ped Flash Min All Bike Ped Alt Ext Rest in Phase Green Passage Maxl Max2 Yellow Red Delay Delay Time Clr Walk Ped Clr Walk Mode Green Psg Walk Cir Walk n 0.0 0 0 3.0 0.0 0 0-Advance 0 0 0 No 0 No 15 0 0 2 5.0 60 60 4.5 2.0 0-Advance 0 0 0 No 0 3 0 0.0 0 3.0 0.0 0-Advance 0 0 3.0 35 35 4.0 1.0 0-Advance 0 0 5 5 2.0 25 25 4.0 1.0 0-Advance 0 0 15 5.0 60 4.5 2.0 0-Advance 0 0.0 3.0 0-Advance No 8 0 0.0 0 3.0 0.0 0-Advance 0 No 9 0.0 4.0 2.0 0-Advance 0 No 10 0 4.0 2.0 0-Advance 0 No 11 4.0 2.0 0-Advance No 12 0.0 4.0 2.0 0-Advance No No 2.0 13 0.0 4.0 0-Advance No No 14 0.0 4.0 20 0-Advance 0 No No 15 0.0 4.0 2.0 0-Advance No No 16 0.0 4.0 20 0-Advance No No Vehicle Density Timings General Control Miscellaneous No Special Sequence Time Time Car Simu Last Veh Ped Recall Added Max B4 **B**4 To Min Non-Act Non Dual Car Condit Gap Minus Omit Ph. Recall Delay Response Recall Pass Service Initial Initial Redu Redu Redu Gap Lock Entry Out Omit Yel 1 0.0 0 0 0 0 0.0 No O None 0 No No No 0 0 None None No 7 0.0 0 0 0 0.0 0 n 0 NonActi Min None 0 No No No No No 3 0.0 0 o 0 0.0 None None None 0 No No No No No 0 4 0.0 0 0 0.0 0 None None None 0 Yes No No No No (3 5 0.0 0 0 0.0 0 None None None 0 Yes No No No No 0 0.0 6 0 O 0 0.0 NonActi Min None 0 No No No No No 0 0.0 Ö 0 0 0 0.0 None None None 0 No No No No No 0 8 0.0 0 0 0 0 0.0 None None None 0 No No No No No 0 9 0.0 Ò 0 0.0 None None None No No No No No 0 10 0.0 0 0 0.0 None None 0 No No No No No 11 0.0 0 0 0.0 None None None 0 No No No No No 12 0.0 0 0 0 0.0 None None None 0 No No No No No 0 13 0.0 0 0 0 0 0.0 None 0 No No No No 0 0 0 None No

Page 1 of 14

0.0

0.0

Ò

0

0

0

0

0.0

0.0

None

None

None

None

14

15

None

None

No

No

No

No

No

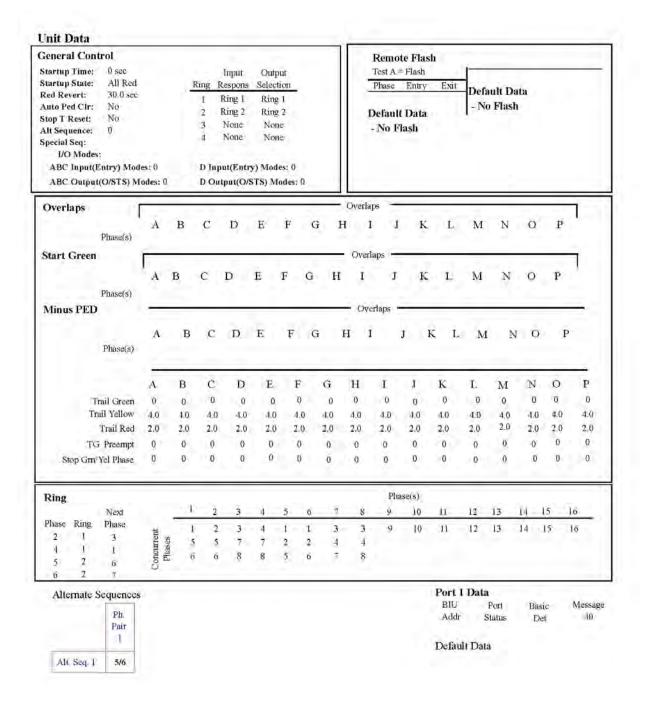
No

No

0

0

No


No

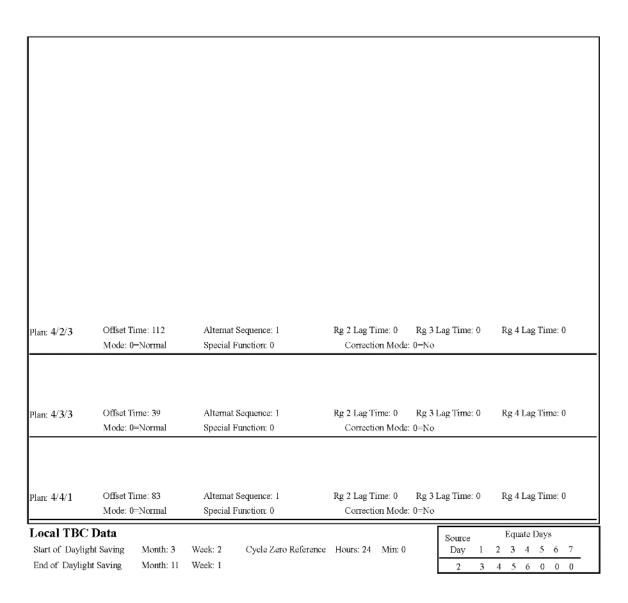
0

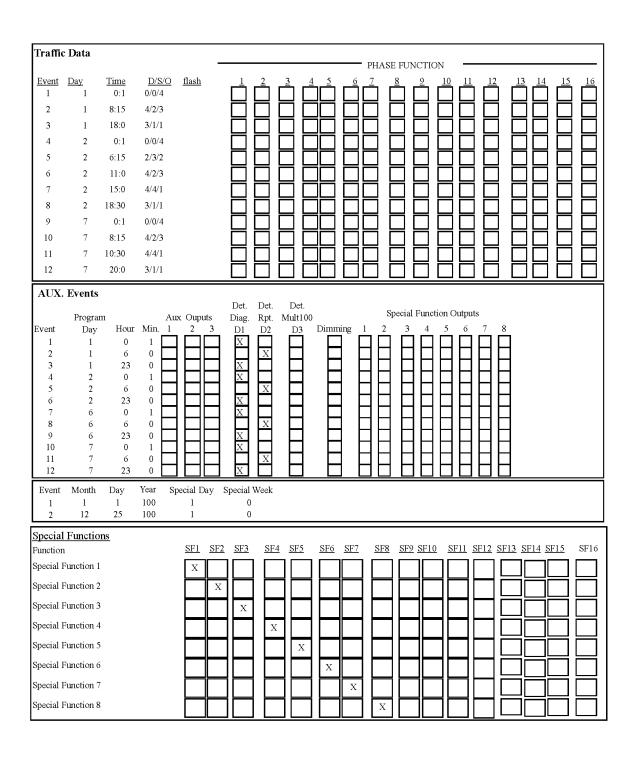
Ū 0

0 0

16	0.0	0	0	0	0	0.0	Notic	None	None	0	No	No	No	No	No	0	0	0
Vel	hical Deta	ector P	hase As	signmen	ıt		Pedestrian	Detector					Speci	al Detec	tor Phase	Assignm	nent	
		Assign Phase	Mede	Switch Phase	Extend	Delay		Assign Phase	Moda	Switch Phase	Extend	Delay		Assi Pha	ign ise Modo	Switch Phase		. Delay
D	efault I	Data					Default	. Data					Defa	ult Da	ta			

Page 3 of 14


Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW


Coordination Data			Dial/Split	Cycle
General Coordination Data			1/1	100
Operation Mode: 1=Auto	Offset Mode: 0-Beg Grn	Manual Dial: 1	1/3	115
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	2/3	130
Maximun Mode: 0=Inhibit	Max Dwell Time: 0	Manual Offset: 1	3/1	130
Correction Mode: 2=Short Way	Yield Period: 0		4/2	150
			4/3	170
			4/4	200

Cali	t Times	and Phase Me	odos								
	ı Times 1 / Split		oues								
Ph.		Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	82	1=Coordinate	4	18	0=Actuated	5	18	0=Actuated	6	64	1=Coordinate
Dial	1 / Split	3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	90	1=Coordinate	4	25	0=Actuated	5	20	0=Actuated	6	70	1=Coordinate
Dial	2 / Split	3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	100	1=Coordinate	4	30	0=Actuated	5	25	0=Actuated	6	75	1=Coordinate
Dial	3 / Split	1									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	100	1=Coordinate	4	30	0=Actuated	5	25	0=Actuated	6	75	1=Coordinate
Dial	4/ Split	2									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	125	1=Coordinate	4	25	0=Actuated	5	25	0=Actuated	6	100	1=Coordinate
Dial	4/ Split	3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	150	1=Coordinate	4	20	0=Actuated	5	20	0=Actuated	6	130	1=Coordinate
Dial	4/ Split	4									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	175	1=Coordinate	4	25	0=Actuated	5	25	0=Actuated	6	150	1=Coordinate

Traffic Plan	Data			
Plan: 1/1/1	Offset Time: 94	Alternat Sequence: 1	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
F1d1L 1/1/1	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	ng + Dag Thue. v
Plan: 1/3/1	Offset Time: 101	Alternat Sequence: 1 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Off-st Trave 119	Alternation	De 2 Les Tiene 0 De 2 Les Tiene 0	D-Alor Time 0
Plan: 2/3/2	Offset Time: 118 Mode: 0=Normal	Alternat Sequence: 1 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/1/1	Offset Time: 118	Alternat Sequence: 1	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	

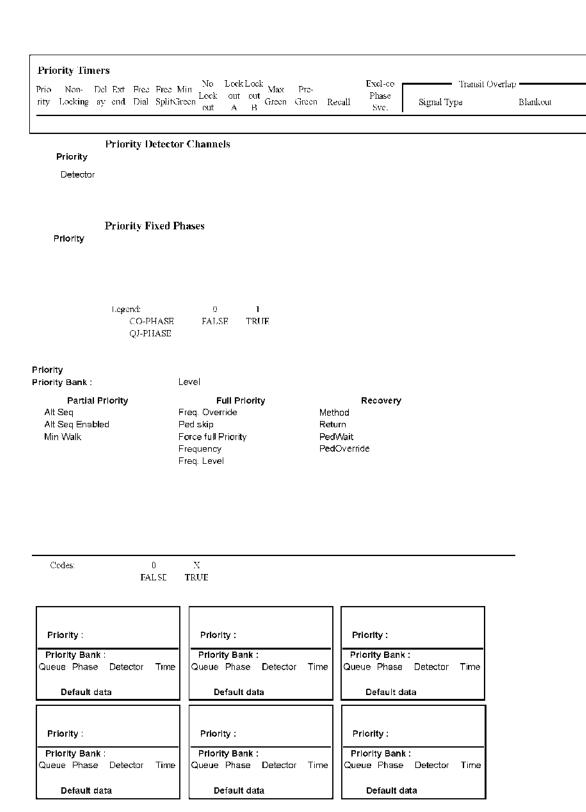
Page 6 of 14

Page 8 of 14

Phase Mac	PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Phase 1 Max2 X X X X X X X X X X X X X		
Phase 1 Max2	Phase 1 Max2 X I I I I I I I I I I I I I I I I I I		
Phase 2 Max2		PF15	PF16
Phase 3 Max2 X	FIIGSC 2 IVIGAZ	\dashv	님
Phase 4 Max2	Dhoca 2 May Down I Down		님
Phase 5 Max2			片
Phase 6 Max2		\blacksquare	片
Phase Omit Phase Omit Phase Omit Phase Ophit Phase Oph		\dashv	H
Phase Omit		=	H
Phase Omit			H
Phase 2 Phase Omit Phase 3 Phase Omit Phase 3 Phase Omit Phase 5 Phase Omit Phase 6 Phase Omit Phase 6 Phase Omit Phase 6 Phase Omit Phase 6 Phase Omit Phase 7 Phase Omit Phase 7 Phase Omit Phase 7 Phase Omit Phase 8 Phase Omit Phase 9 Phase Omit Phase 8 Phase Omit Phase 9 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16		DE15	DE16
Phase 3 Phase Omit Phase 4 Phase Omit Phase 5 Phase Omit Phase 5 Phase Omit Phase 6 Phase Omit Phase 6 Phase Omit Phase 7 Phase Omit Phase 7 Phase Omit Phase 8 Phase Omit PFI PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PFI PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PFI PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF17 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF16 PF17 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF17 PF18 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF17 PF18 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF17 PF18 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF17 PF18 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF17 PF18 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF17 PF18 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF17 PF18 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF17 PF18 PF18 PF18 PF18 PF18 PF18 PF18 PF19 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF18 PF18 PF18 PF18 PF18 PF18 PF18 PF18		PF13	PF10
Phase 4 Phase Omit Phase 5 Phase Omit Phase 5 Phase Omit Phase 6 Phase Omit Phase 6 Phase Omit Phase 7 Phase Omit Phase 7 Phase Omit Phase 8 Phase Omit PFI PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF10 PF10 PF10 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF10 PF10 PF10 PF10 PF10 PF10 PF10 PF10	Phase 2 Phase Omit	П	
Phase 5 Phase Omit Phase 6 Phase Omit Phase 6 Phase Omit Phase 8 Phase Omit Phase 9 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF16 PF16 PF16 PF17 PF18 PF19 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF16 PF16 PF17 PF18 PF19 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF16 PF16 PF16 PF17 PF18 PF16 PF16 PF17 PF18 PF19 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF16 PF16 PF16 PF17 PF18 PF19 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF16 PF16 PF17 PF18 PF16 PF17 PF18 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF16 PF17 PF18 PF16 PF17 PF18 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF16 PF17 PF18 PF16 PF17 PF18 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF17 PF18 PF16 PF17 PF18 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF17 PF18 PF16 PF17 PF18 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF16 PF17 PF18 PF16 PF17 PF18 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF17 PF18 PF16 PF17 PF18 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF17 PF18 PF16 PF17 PF18 PF18 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF16 PF17 PF18 PF18 PF18 PF18 PF18 PF18 PF18 PF18	Phase 3 Phase Omit X X		
Phase 6 Phase Omit Phase 7 Phase Omit Phase 8 Phase Omit PFI PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PFI PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PFI PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PVeh Det Switch Omit	Phase 4 Phase Omit X		
Phase 7 Phase Omit Phase 8 Phase Omit Phase 8 Phase Omit PF1	Phase 5 Phase Omit X		
Phase 8 Phase Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Coord ReSvc PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Ped Recall PF1 PF2	Phase 6 Phase Omit X		
Ped Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Coord ReSve PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Pbase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 <td></td> <td>X</td> <td></td>		X	
Veh Det Coord ReSve PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall	Phase 7 Phase Omit	=	\vdash
Function Phase Recall			X
Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Phase 8 Phase Omit		
PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Switch Omit PF1 PF2	Phase 8 Phase Omit		
PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Switch Omit PF1 PF2	Ped Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14	PF15	PF16
Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Ped Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14	PF15	PF16
Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Ped Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSve PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSve PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14	PF15 PF15	PF16
Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Phase 8 Phase Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSvc PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSvc PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14	PF15 PF15	PF16
Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Ped Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSve PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14	PF15 PF15 PF15	PF16
Veh Det Bike Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16 Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Ped Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSve PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14	PF15 PF15 PF15	PF16
Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Ped Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSvc PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11	PF15 PF15 PF15 PF15	PF16 PF16 PF16
Vehicle Function Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Ped Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSvc PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11	PF15 PF15 PF15 PF15	PF16 PF16 PF16
Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Ped Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSvc PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Switch Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Ped Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSvc PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Switch Now PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Phase 8 Phase Omit	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Switch Now PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16	Phase 8 Phase Omit	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
1 11 11 11 11 11 11 11 11 11 11 11 11 1	Phase 8 Phase Omit	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
	Phase 8 Phase Omit PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSve PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Coord ReSve PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Function Phase Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Phase Min Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 Veh Det Ped Recall PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF1	PF15 PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16

Page 9 of 14

Veh Det	Switch Also	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Overlap	Function	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Dimmir Default l	_	Dimming Pro	grammed									
Lanes	efination Name Data - Lan	Green Inbound	Yellow Inbound	Red Inbound	Green Outbound	Yellow Outbound		_				
progra	am day g	orogram hour	program	minute Land	ePhFun							


Preemption Data

General Preemption	Data	
Preempt > Flash Preempt 1 > Preempt 2	Preempt 2 > Preempt 3 Preempt 3 > Preempt 4	Preempt 4 > Preempt 5 Preempt 5 > Preempt 6

Preempt	Preem Non- Locking	n pt Tim Link to Preempt		Ext end	Dura tion	Max Call	Lock- Out	Min Green		Debo unce		Ped	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Re Ped Clear	turn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20

	Preempt	1]	Preemp	t 2	Preempt 3			Preempt 4			I	Preempt	1.5	Preempt 6		
Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls
1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes
2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes
3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes
4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes
5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes
6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes
7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes
8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes

Page 10 of 14

Page 11 of 14

Priority : Bank Detector		Α .		ЗА	4A	5A	6A	В	Priority : Bank Detector	PE	1A	2A	3A	4A	5A	6 A	В
		efau	it Data								Defa	ult Dat	а				
Priority : Bank Detector		IA Jefau	2A It Data	ЗА	4A	5A	6A	В	Priority : Bank Detector	PE	1A Defa	2A ult Dat	3A a	4A	5A	6A	В
Priority : Bank Detector		IA		3A	4A	5A	6A	В	Priority : Bank Detector	PE	1A	2A	3A	4A	5A	6A	В
		efau	It Data								Defa	ult Dat	а				
Preempt Ph. Track	l Vehical Pha Dwell	ses	Cycle		Ph Track		destriar Dw		s Cycle	Ovlp	Tracl		Overla well	-	cle	Trail	Gm
Default D]	Default :	Data				Defa	ult Da	ta					_
Preempt 2	Z Vehical Pha Dwell	ses	Cyc	cle <u> </u>	Po h. Track		au Phas Dwel		Cycle	Ov1p.	Track	Overla _l Dv	ps vell	Cycle	Ti	a ıl Sm	_
Default D Preempt 2]	Default i	Data				Defa	ult Da	ta					
Ph. Track	Vehical Pha Dwell	ses	Cycle	<u> </u> <u> </u>	Po h. Traci		an Phas Dwel		Cycle	Ovlp.	Track	Overla _l	ps Iwell	Cyela		Frail Gn	1
Default D Preempt]	Default i	Data				Defa	ult Da	ta					
Ph. Track	Vehical Pha Dwe		Cycle	<u> </u>	Pe h. Track		n Phase Dwell		Cycle	Ovlp	Track	Overta _l	ps well	Cycle	Т	ail Gm	
Default D Preempt :	fault Data Default Data								Default Data								
Ph. Track	Vehical Pha Dwell	ies	Cycle	- F	Pe h. Track		n Phase Dwell		Cyele	_ Օջքը.	Track	Overla _l	ps Iwell	Cycle	75	ail Grn	
Default D	ata			1	Default I	Data				Defa	ult Da	ta					
Ph. Track	6 Vehical Pha Dwo		Сус	<u> ا داد</u>	Po h Track		n Phas Dwell		Cycle	Ovlp.		Overla _l D	ps well	Cycle	Tı	ail Grn	
Default D	hata				Default 1	Data				Defa	ult ()a	ta					

Page 12 of 14

System/	Detecto	rs Data											
Local Cri	itical Alan	ms					Reve	rt to Ba	ekup: 15	;	1st Phone:		
Local Free:	No Cyc	le Failure:	No (Coord Fa	ilure: No	Conflict F	lash: No	Remo	te Flash	No 3	2nd Phone:		
Local Fash:	No Cyc	ele Fault: N	o (Coord Fa	ult: No	Premption	: No	Volta	ge Monit	or: No			
Special State	us 1: No	Special S	Status 2: 1	No St	pecial Statu	s 3: No - 8	Special Stat	tus 4: N	o St	pecial Status	5: No	Special Sta	atus 6: No
Traffic R	esponsive	•					p-p-radio local		1			operar ou	1440 0. 110
System	Detector			werage	Оссират	,	ш.	eue 1	Systen		-	,	
Detector	Channel	Name	Hr Tir	ne(mins)	Correction	n/10 Volu	me % Det	ectors	Detecto	rs Factor	Detect	ors Detec	ctors Factor
Default Da	to						Defa	ult Data	a		Default	Data	
Sample Inte				Queue:	1 Input	Selection:	0=Averag	ze	Queue	e:			
_						ctor Failed I		,	-		Leave	Dial / Sp	olit / Offset
				Queue:	2 Input	Selection:	0=Averag	ge				1.1	
					Dete	ctor Failed l	Level: 0		Defau	lt Data			
Vehical D	etector				Vehical D	etector				Special D	etector		
	Diag	nostic Valu	1e 0			Diag	nostie Valu	ie 1		-	Diag	nostie Valu	e 0
	Max	No	Erratic			Max	No	Erratio			Max	No	Erratic
Detector	Presence	Activity	Count		Detector	Presence	Activity	Count	<u>t </u>	Detector	Presence	Activity	Count
1	15	0	75		1	10	0	75 75		1	15	0	75 75
2	15	0	75		2	10	0	75		2	15	0	75 75
3	15	0	75		3 4	10	0	75		3	15	0	
4	15	0	75		-	10	0	75		4	15		75 75
5	15	0	75		5	10	0	75 75		5	15	0	75 75
6	15	0	75		6	10				6	15	0	75 75
7	15	0	75		7	10	0	75		7	15	0	75
8	15	0	75		8	10	0	75		8	15	0	75
										Default	Data - No	Diag 0 V	Valu
Pedestria	n Detector				Pedestria	1 Detector				Special D	etector		
	Diag	gnostic Valu	1e 0			Diag	nostie Valu	ie 1			Diag	nostic Valu	ie 1
Detector	Max	No	Erratic		Detector	Max	No A stissites	Erratio		Detector	Max	No Amtioritae	Erratic
	Presence	Activity 0	Count 75			Presence	Activity 0	Count			Presence	Activity 0	Count 75
1 2	15	0	75		1	10	0	75 75		1 2	10	0	75 75
	15	0	75		2	10	0	75		3	10	0	75
3 4	15	0	75		3 4	10	0	75		4	10	0	75
	15	0	75			10	0	75			10	0	75 75
5	15				5	10				5	10		
6	15	0	75		6	10	0	75		6	10	0	75 75
7	15	0	75		7	10	0	75		7	10	0	75 75
8	15	0	75		8	10	0	75		8	10	0	75
Default :	Data - No	Diag 0	Values		Default :	Data - No	Diag 1 V	Values		Default !	Data - No	Diag 1 V	Values
Speed Tr	ap Data									Speed Trap		ed Trap	
Speed Tr	rap:							lit/Offs	et]	Low Treshol	ld High	Treshold	
1	-	leasureme	ent:				//						
D ()	. TS						Defau	lt Data	а				

Detector 1 Detector_2 Distance:

Page 13 of 14

Default Data

Volume Detector Data

Report Interval ()

Volume Controller Detector Detector Number Channel

Default Data

Page 14 of 14

SEPAC ECOM All Data

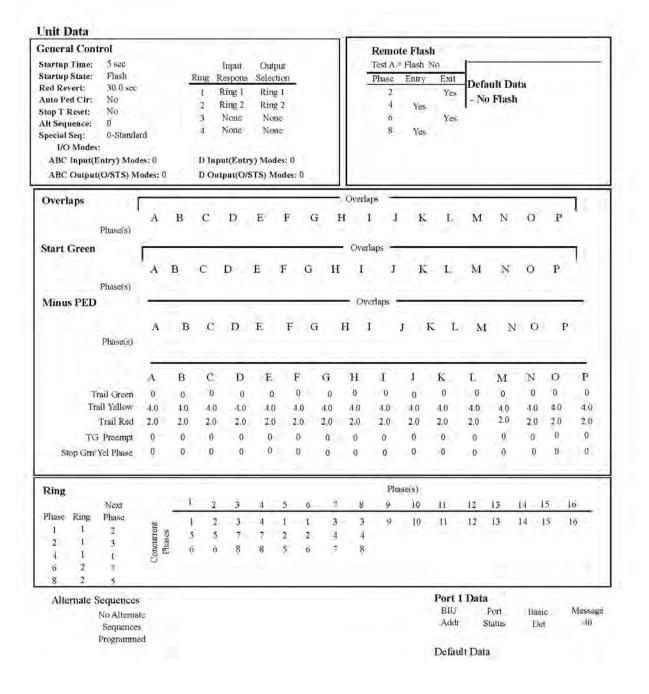
Intersection Name: Atlanta Hwy. @ Faulkner #351

Intersection Alias: 351AtlFalk

Access Data

I :1200 Baud 3 :19200 Baud Access Code: 9999 Revision: 3.34g Channel: Address: 1
IP Address: 172.31.24.217

Phase Initialization Data


Phase	+1+	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Initial	1-Inact	4-Gm	0-None	1-Inact	0-None	4-Gm	0-None	1-Inact	0-None							

Vehical Basic Timings								imings	Walk	Walk		= (Pedest	rian Ti	mings	Alt			Actuate
	Min					All	Green	Yellow	Offset	Offset	Bike	Bike		Ped	Alt	Ped	Flash	Ext	Rest in
Phase	Green	Passage	Maxl	Max2	Yellow	Red	Delay	Delay	Time	Mode	Green	Psg	Walk	Cir	Walk	Clr	Walk	Ped Clr	Walk
1	7	3.0	30	30	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	.0	No
2	20	6.0	70	70	5.0	2,0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
3	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
4	10	3.0	35	35	5.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
5	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
6	20	6.0	70	70	5.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
7	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
8	7	3.0	30	30	5.0	1.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
12	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
14	Ō	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No

Vehi	Vehicle Density Timings						General Co	ntrol			Miscell	laneous			No	Special Sequence		
Ph.	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
2	3.0	30	30	0	40	3.0	NonActl	Min	None	0	No	Yes	Yes	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	No	Yes	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
6	3.0	30	30	0	40	3.0	NonActi	Min	None	0	No	Yes	Yes	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	Yes	No	No	No	0	0	Ü
9	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	Ω
10	0.0	0	0	0	0	0,0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	O	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	()
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω.	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 14

16	0.0	0	0 0	0	0.0	Notic X	one	None	0	No	No	No	No	No	0	0	0
7	/ehical Detect	r Phase.	\ssignme	ııt		Pedestrian De	tector					Spec	ial Detec	tor Phas	e Assignm	ent	
	Ass Ph	_	Switel e Phase	n Extend	Delay	1	asign hase	Moda	Switch Phase	Extend	Delay		Assi Pha	_	Switch c Phase		Delay
	Default Da	la				Default D	ata					Defa	ault Da	ta			

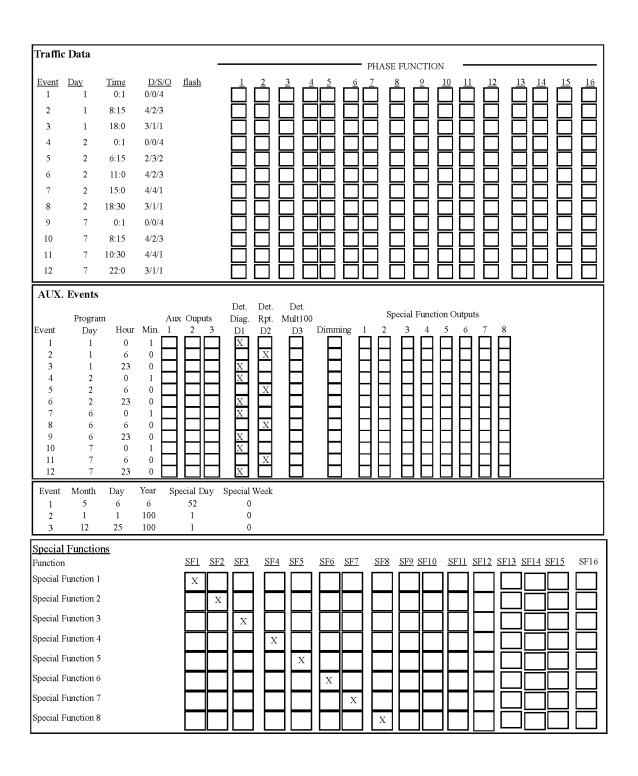
Page 3 of 14

Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW

Coordination Data			Dial/Split	Cycle	
General Coordination Data			1/1	100	
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 1	1/2	115	
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	1/3	115	
Maximun Mode: 0=Inhibit	Max Dwell Time: 0	Manual Offset: 1	2/1	130	
Correction Mode: 2=Short Way	Yield Period: 0		2/3	130	
			3/1	130	
			4/1	150	
			4/2	150	
			4/3	170	
			4/4	200	

Page 4 of 14

enti-	t Time	and Phase	Moder								
•	t Times 17 Split		viotes								
Ph.	-	Ph. Mode	Ph	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode
1 8	18 18	0=Actuated 0=Actuated	2	61	1=Coordinate	4	18	0=Actuated	б	82	1=Coordinate
	1/ Split										
Ph.	Splits	Ph. Mode	Ph	. Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Pli. Mode
1	21	0=Aetuated	2	.59	1=Coordinate	-1	35	0=Actuated	Ó	80	1=Coordinate
8	3.5	0=Actuated									
Dial	1 / Split	. 3									
Ph.	Splits	Ph. Mode	Ph	. Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	21	0-Actuated	2	73	1-Coordinate	4	21	0-Actuated	Ġ	94	1—Coordinate
8	21	0-Actuated									
	2 / Split		T01	Cl.,11:	DL 11-3-	ית	C!=1:+	DL 34-4.	F37	0.10	TN 1/1
Ph.	Splits	Ph. Mode	Ph		Ph. Mode	Ph.		Ph Mode	Plı.	Splits	Pli, Mode
1	30	0 Actuated	2	69	1 Coordinate	4	31	0 Actuated	6	99	I Coord in ate
8 D:-1:	31 a / Solit	0=Actuated									
Ph.	2 / Split Splits	Ph. Mode	Ph	. Splits	Ph. Mode	Ph.	Splits	Ph. Mode	DI-	Sedine	Ph. Mede
									Ph	Splits	
1	30 31	0-Actuated 0-Actuated	2	69	l-Coordinate	4	31	0-Actuated	ń	99	I—Coordinate
8 Dial	37 Split										
ľħ.	Splits	Ph. Mode	ľh	. Splits	Ph. Moda	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
I	30	0 Actuated	2	69	1 Coordinate	4	31	0 Actuated	ő	99	I Coordinate
8	31	0=Aemated									
Dial -	47 Split	. 1									
Ph.	Splits	Ph. Mode	Ph	. Splits	Ph. Mode	Plı.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	25	0=Actuated	2	75	1=Coordinate	4	50	0=Actuated	6	100	1=Coordinate
8	50	0=Actuated									
Dial -	4/ Split	. 2									
Ph.	Splits	Ph Mode	Ph	. Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Plı.	Splits	Plı. Mode
1	2.5	()=Aetuated	2	98	1=Coordinate	4	27	0=Actuated	6	123	1=Coordinate
8	27	0=Actuated									
	4 / Split										
Ph.	Sphts	Ph. Mode	Ph	. Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1	20	0-Actuated	2	114	1-Coordinate	4	36	0-Actuated	6	134	1—Coordinate
8	36	0-Actuated									
	4/ Split						40.10				
Ph.	Splits	Ph. Mode	Ph	. Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Plı.	Splits	Plı. Mode
1	20	0-Actuated	2	140	1-Coordinate	4	40	0-Actuated	6	160	I—Coord in ate
8	40	0 Actuated									


Page 5 of 14

Traffic Plan	Data			
Plan: 1/1/1	Offset Time: 99	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
Тап: 1/1/1	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	Ng 4 Dag Time. 0
	Office Times 2	Alternat Communication	D. 21 Time A. D. 21 Time A	D. 41 Tim 0
Plan: 1/2/1	Offset Time: 2 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	_ ** *			
Plan: 1/3/1	Offset Time: 97 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/1/1	Offset Time: 87	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
- / - / -	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 2/1/2	Offset Time: 87 Mode: 0≕Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
		*		
Plan: 2/3/2	Offset Time: 111 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	ALL VALLED AT VALLED AT A STATE OF THE STATE		WALLES AND WELL WATER	

Page 6 of 14

lan: 3/1/1	Offset Time: 111 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Correction Mode: 0=No
lan: 4/1/1	Offset Time: 85 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Correction Mode: 0=No
an: 4/2/3	Offset Time: 106 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Correction Mode: 0–No
an: 4/3/3	Offset Time: 41 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Rg 4 Lag Time: 0 Correction Mode: 0=No
us 7/3/3			
ш. Т. <i>Э</i> / Э			

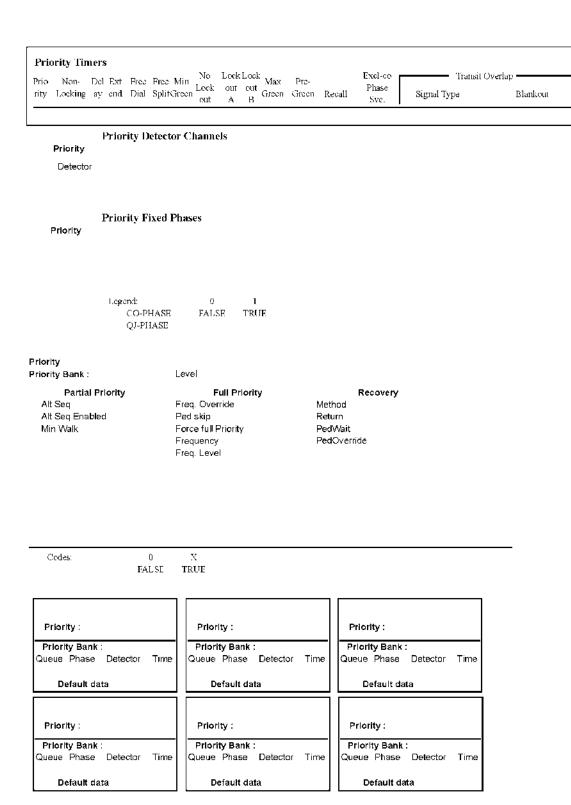
Page 7 of 14

Page 8 of 14

DI E 6																
Phase Function	DE1	DEG	DES	DE4	DDE	DE∠	DE7	DEO	DEO	DE10	DE11	DE12	DE12	DE1.4	DE15	DE14
Phase 1 Max2	PF1 X	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 2 Max2	一	Х	H	H	Ħ	Hi	=	۲i	\dashv		H		Ħ	Ħ	Ħ	뻬
Phase 3 Max2	Ħ	H	Х	H	Ħ	Hi	=	۲i	\exists		H		Ħ	H	Ħ	뻬
Phase 4 Max2	一	П	H	Х	Ħ	Πi	Ħi	Ħi	一				Ħ	Ħ	H	ĦI
Phase 5 Max2	Ħ	一	Ħ	亓	Х	ΠÏ	Ħi	Ħi	\exists				亓	一	Ħ	川
Phase 6 Max2	ಠ	一	Ħ	亓	Ħ	Х	Ħį	ĦΪ	\exists		同		П	Ħ	Ħ	Ħ١
Phase 7 Max2	Ħ		П	П	П	Mi	Х	Πİ					同	П	Ħ	ΠI
Phase 8 Max2	Ħ	Ħ	Ī	一	П	Πİ	Ħί	Х					同	同	Ħ	ΠI
Phase Omit	PF1	PF	2 PF	73 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Phase Omit		٦	٦	Ĩ	İ			\prod	X							
Phase 2 Phase Omit			Ī		im				П	X	П		П	Ħ	П	
Phase 3 Phase Omit											X					
Phase 4 Phase Omit												Х				
Phase 5 Phase Omit													X			
Phase 6 Phase Omit														X		
Phase 7 Phase Omit															X	
Phase 8 Phase Omit			1													X
					<u> </u>		_	<u> </u>	<u> </u>							
Ped Omit	PF1	PF	2 PF	3 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit	PF1	PF	2 PF	F3 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit Veh Det Coord ReSve	PF1	PF		F3 PF						PF10 PF10	PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16 PF16
Veh Det Coord ReSvc		PF	F2 P		4 PF:	5 PF	5 PF7		PF9							
Veh Det Coord ReSvc Function Phase Recall	PF1	PF	F2 P	F3 PF	4 PF:	5 PF	5 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Veh Det Coord ReSvc	PF1	PF	F2 PF	F3 PF	4 PF5	5 PF6	5 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Veh Det Coord ReSvc Function Phase Recall	PF1	PF	F2 PF	F3 PF	4 PF5	5 PF6	5 PF7	PF8	PF9 PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16
Veh Det Coord ReSvc Function Phase Recall	PF1	PF	F2 PI	F3 PF	4 PF5 4 PF5	5 PF6	5 PF7 6 PF7 7 PF7	PF8	PF9 PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall	PF1	PF	F2 PI	F3 PF	4 PF5 4 PF5	5 PF6	5 PF7 6 PF7 7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16 PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall	PF1	PF PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	F3 PF	4 PF5 4 PF5 4 PF5	5 PF6 PF6	5 PF7 6 PF7 7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall	PF1 PF1	PF PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	F3 PF F3 PF F3 PF	4 PF5 4 PF5 4 PF5	5 PF6 PF6	PF7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall	PF1 PF1	PF PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	F3 PF F3 PF F3 PF	4 PF5 4 PF5 4 PF5	5 PF6 PF6	PF7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall	PF1 PF1	PF	PI PI PI PI PI PI PI PI PI PI PI PI PI P	F3 PF F3 PF F3 PF	4 PFS 4 PFS 4 PFS 4 PFS	5 PF6 6 PF6 7 PF6 7 PF6	PF7 PF7	PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PF1 PF1 PF1	PF	PI PI PI PI PI PI PI PI PI PI PI PI PI P	F3 PF F3 PF F73 PF F73 PF	4 PFS 4 PFS 4 PFS 4 PFS	5 PF6 6 PF6 7 PF6 7 PF6	5 PF7 PF7 PF7 PF7	PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PF1 PF1 PF1	PF PF PF PF PF PF PF PF PF PF PF PF PF P	PF2 PF	F3 PF F3 PF F73 PF F73 PF	4 PF3 4 PF3 4 PF3 4 PF3 4 PF3 4 PF3	5 PF6 6 PF6 5 PF6 5 PF6 5 PF6 5 PF6	5 PF7 PF7 PF7 PF7	PF8 PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16

Page 9 of 14

Veh Det	Switch Also	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Overlap	Function	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Dimmir Default l	_	Dimming Pro	grammed									
Lanes	efination Name Data - Lan	Green Inbound e Defination	Yellow Inbound	Red Inbound	Green Outbound	Yellow Outbound		_				
progra	am day g	orogram hour	program	minute Land	ePhFun							


Preemption Data

General Preemption	Data	
Preempt > Flash Preempt 1 > Preempt 2	Preempt 2 > Preempt 3 Preempt 3 > Preempt 4	Preempt 4 > Preempt 5 Preempt 5 > Preempt 6

Preempt	Preem Non- Locking	n pt Tim Link to Preempt		Ext end	Dura tion	Max Call	Lock- Out	Min Green		Debo unce	Gate ext end	Se Ped Clear	elect Yel	Red	Grn	Track Ped	: —	Red	Dwell Green	Re Ped Clear	turn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20

	Preempt	1]	Preemp	t 2]	Preempt	3]	Preempt	t 4	J	Preemp	t 5]	Preemp	t 6
Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls
1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes
2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes
3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes
4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes
5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes
6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes
7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes
8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes

Page 10 of 14

Page 11 of 14

									1								
Priority : Bank Detector	PE	1A	2 A	ЗА	4 A	5A	6A	В	Priority : Bank Detector	PE	1A	2 A	3A	4A	5A	6 A	В
		Defa	ult Data	l							Defa	ult Dat	а				
Priority :									Priority :								
Bank Detector	PE	1A	2 A	ЗА	4A	5A	6A	В	Bank Detector	PE	1A	2 A	ЗА	4A	5 A	6A	В
		Defa	ult Data	ı							Defa	ult Dat	а				
Priority :									Priority :								
Bank Detector	PE	1A	2A	3A	4A	5A	6A	В	Bank Detector	PE	1A	2A	ЗА	4A	5A	6A	В
		Defa	ult Data	ı							Defa	ult Dat	а				
Preempt Ph. Track	Vehical	Phases vell	Cycle		Ph Track		destriar Dw		s Cycle	Ovlp	Tracl		Overla; well	-	cle	Trail	Gm
Default D	ata				Default	Data				Defa	ult Da	ta					
Preempt 2	Vehical	Phases well	Cy	cle	P Ph. Track		ou Phas Dwel		Cycle	Ov1p.	Track	Overlaj Dv	ps vell	Cycle	Ti	a ıl Om	_
Default D	ata				Default	Data				Defa	ult Da	ta					
Preempt. Ph. Track	Vehical	Phases vell	Cyc)	le	P Ph. Trac		an Phas Dwel		Cycle	Ovlp.	Track	Overlaj)	ps well	Cyela		Frail Gr	n
Default 1)					Default	Data				Defa	ult Da	ta					
Ph. Track	Vehical.	Phases)well	Cyc:	le	Pe Ph. Track		n Phasi Dwell		Cycle	Ovlp_	Track	Overtaj D	os well	Cycle	Ti	a il Gm	
Default D					Default	Data				Defa	ult Da	la					
Preempt :	Vehical	Phases vell	Cyc.	le	Pe Ph. Track		n Phasi Dwell		Cycle	<u>О</u> еђ	Track	Overlaj)	ps well	Cycle	Th	ail Grn	
Default D					Default .	Data				Defa	ult Da	ta					
Preempt	Vehical	Phases Iwell	Су	ela j	Po Ph Track		n Phase Dwell		Cycle	Ovlp.	Track	Overlaj D	ps well	Cycle	Ti	rail Grn	
Default D	hatu				Default :	Data				Defa	ult ()a	ta				_	

Page 12 of 14

System/Detectors Data

Local Crit Local Free: N Local Fash: N		ms										
	_					Rev	ert to Ba	ekup: 15		1st Phone:		
ocal Fash: N	No Cyc	le Failure:	No Coord	Failure: No	Conflict F	lash: No	Remo	ote Flash:	No 3	2nd Phone:		
Acces 1 cont. 1	No Cyc	le Fault: N	o Coord	Fault: No	Premption	: No	Volta	ge Monite	or: No			
pecial Statu	ıs 1: No	Special S	status 2: No	Special Statu	s 3: No 8	Special Sta	tus 4: N	To Sp	ecial Status	5: No	Special Sta	ıtus 6: Ne
Traffic Re	esponsive	•									_	
System I	•		Veh/ Average	Occupa	тсу М		ieue 1	System	_	-		
Detector (Channel	Name	Hr Time(mir	is) Correctio	n/10 Volu	me % De	tectors	Detector	s Factor	Detect	ors Detec	etors F
Default Dat	a					Defa	ult Dat	a		Default	Data	
Sample Inte	erval:		Quei	ie: 1 Inpu	t Selection:	0=Avera	ge	Queue	:			
				Dete	ctor Failed I	Level: 0		Level	Enter	Leave	Dial / Sp	lit / Offs
			Quei		t Selection:		σe				11	
			•	шри	ctor Failed l		50	Defaul	t Data		, ,	
Vehical De	tector			Vehical D	etector				Special D	etector		
	Diag	nostie Valu	ie 0		Diag	nostic Val	ne 1			Diag	nostic Valu	e 0
Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Errati Coun		Detector	Max Presence	No Activity	Erratic Count
1	15	0	75	1	10	0	75		1	15	0	75
2	15	0	75	2	10	0	75		2	15	0	75
3	1.5	0	75	3	10	0	75		3	15	0	75
4	15	0	75	4	10	0	75		4	15	0	75
5	15	0	75	5	10	0	75		5	15	0	75
6	15	0	75	6	10	0	75		6	15	0	75
7	15	0	75	7	10	0	75		7	15	0	75
8	15	0	75	8	10	0	75		8	15	0	75
									Default	Data - No	Diag 0 V	Valu
Pedestrian	Detector			Pedestria	n Detector				Special D	etector		
	Diag	nostie Valu	ie 0		Diag	nostie Val	ne 1			Diag	nostic Valu	ie 1
Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Errati Coun		Detector	Max Presence	No Activity	Erratic Count
1	15	0	75		10	0	75		1	10	0	75
2	15	0	75	2	10	0	75		2	10	0	75
3	15	0	75	3	10	0	75		3	10	0	75
4	15	0	75	4	10	0	75		4	10	0	75
5	15	0	75	5	10	0	75		5	10	0	75
6	15	0	75	6	10	0	75		6	10	0	75
7	15	0	75	7	10	0	75		7	10	0	75
8	15	0	75	8	10	0	75		8	10	0	75
Default I	Data - No	Diag 0 V	Values	Default	Data - No	Diag 1	Values		Default :	Data - No	Diag 1 V	Values
Speed Tra	ap Data								Speed Trap	Spe	ed Trap	
Speed Tra	ap:					Dial/S	plit/Offs	et L	ow Treshol	ld High	Treshold	
Detector 1		easureme	nt: istance :			,,	ılt Dat	•				

Default Data

Page 13 of 14

Volume Detector Data

Report Interval ()

Volume Controller Detector Detector Number Channel

Default Data

Page 14 of 14

1/24/2018 11:28:51 AM

Intersection Name: Atlanta Hwy. @ Carol Villa #26

Intersection Alias: 26AtlCarVill

Access Data

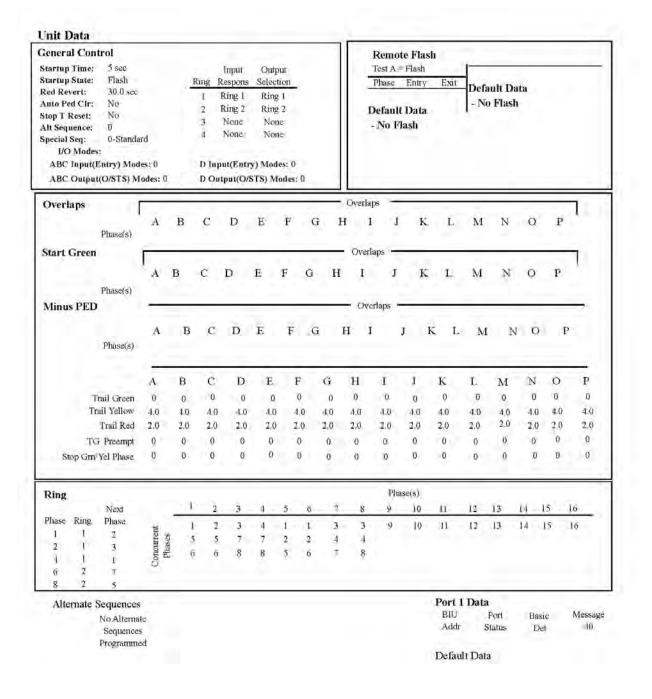
1 :1200 Baud 3 :19200 Baud Access Code: 9999 Channel:

Address: 1

Revision: 3.33d

IP Address: 172.31.24.216

Phase Initialization Data


Phase	-1	2	3	4	5	6	7	8	9	10	- 11	12	13	14	15	16
Initial	1-Inact	4-Gm	0-None	1-Inact	0-None	4-Gm	0-None	1-Inact	0-None	0-None	0-None	0-None	0-None	0-None	0-None	0-None

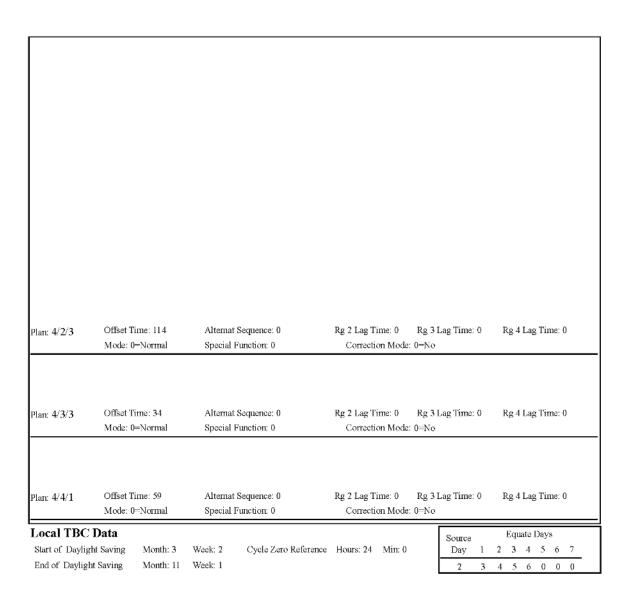
Vehic	al Basic	Timings					Mise 7	imings	Walk	Walk		= (Pedest	rian Ti	mings	Alt			Achuated
	Min					All	Green	Yellow	Offset	Offset	Bike	Bike		Ped	Alt	Ped	Flash	Ext	Rest in
Phase	Green	Passage	Maxl	Max2	Yellow	Red	Delay	Delay	Time	Mode	Green	Psg	Walk	Cir	Walk	Clr	Walk	Ped Clr	Walk
1	10	3.0	30	30	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	.0	No
2	20	6.0	70	70	5.0	2,0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
3	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
4	7	4.0	40	40	5.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
5	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
6	20	6.0	70	70	5.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
7	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0.			No	0	No
8	7	4.0	40	40	5.0	1.0	0,0	0.0	0	0-Advance	0	0	5.	15			No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0.			No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0.			No	0	No
12	O	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
14	O	0.0	0	0	4.0	20	0.0	0.0	0	0-Advance	0	0	0	0			No	O	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D.	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No

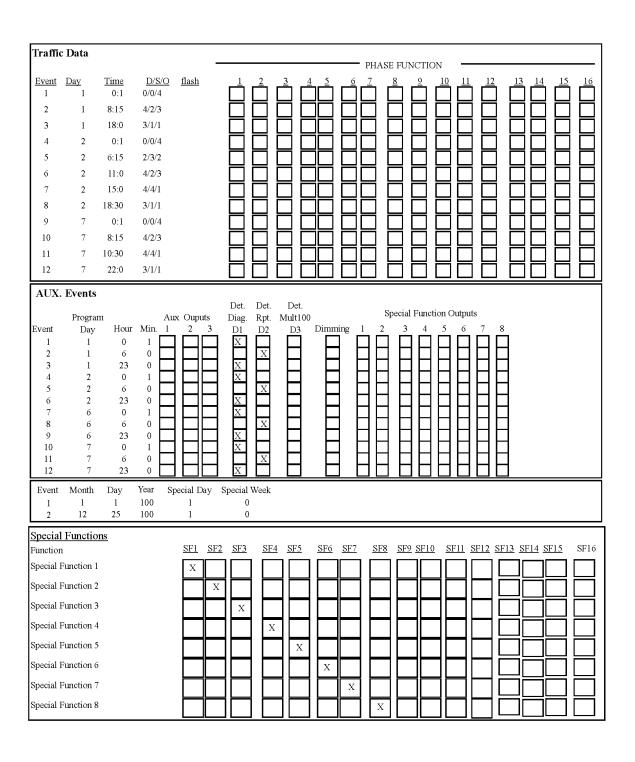
Veh	iele Densi	v Timin	gs				General Co	ntrol			Miscell	laneous			No	Special :	Sequence	2
Ph	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
2	3.0	30	30	0	40	3.0	NonActl	Min	None	0	No	Yes	Yes	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	No	Yes	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
6	3,0	30	30	0	40	3.0	NonActl	Min	None	0	No	Yes	Yes	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	Yes	No	No	No	0	0	O
9	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	Ω
10	0.0	0	0	0	0	0,0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	()
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	Ü	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	O

Page 1 of 14

16	0.0	0	0 0	0	0.0	Notic X	one	None	0	No	No	No	No	No	0	0	0
7	/ehical Detect	r Phase.	\ssignme	ııt		Pedestrian De	tector					Spec	ial Detec	tor Phas	e Assignm	ent	
	Ass Ph	_	Switel e Phase	n Extend	Delay	1	asign hase	Moda	Switch Phase	Extend	Delay		Assi Pha	_	Switch c Phase		Delay
	Default Da	la				Default D	ata					Defa	ault Da	ta			

Page 3 of 14


Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW


Coordination Data			Dial/Split	Cycle
General Coordination Data			1/1	100
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 1	1/3	115
Coordination Mode: 0=Permissive	Force Mode: 1=Cycle	Manual Split: 1	2/3	130
Maximun Mode: 0=Inhibit	Max Dwell Time: 0	Manual Offset: 1	3/1	130
Correction Mode: 2=Short Way	Yield Period: 0		4/2	150
			4/3	170
			4/4	200

Soli	t Times	and Phase M	Andes								
•	1 / Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode
1 8	18 28	0=Actuated 0=Actuated	2	51	1=Coordinate	4	28	0=Actuated	б	72	1=Coordinate
Dial	1 / Split	3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Pli. Mode
1 8	21 29	0=Actuated 0=Actuated	2	65	1=Coordinate	4	29	0=Actuated	6	86	1=Coordinate
Dial :	27 Split	3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode
1 8	21 40	0-Actuated 0-Actuated	2	69	1-Coordinate	4	40	0-Actuated	Ó	90	1—Coordinate
Dial :	3 / Split	1									
Ph.	Splits	Ph. Mode	\mathbf{P} h.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Ph. Mode
1 8	21 40	0 Actuated 0=Actuated	2	69	1 Coordinate	4	40	0 Actuated	6	90	I Coord in ate
Dial -	4/ Split	2									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1 8	21 37	0-Actuated 0-Actuated	2	92	I-Coordinate	4	37	0-Actuated	ń	113	1—Coordinate
	47 Split										
Ph.	Splits	Ph. Mode	₽h.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 8	20 29	0 Actuated 0=Actuated	2	121	1 Coordinate	4	29	0 Actuated	Ü	141	I Coordinate
	4 / Split	4									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Plı.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	22 30	0=Actuated 0=Actuated	2	148	1=Coordinate	4	30	0=Actuated	б	170	1=Coordinate

Traffic Plan	Data			
Plan: 1/1/1	Offset Time: 93 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 1/3/1	Offset Time: 105 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/3/2	Offset Time: 113 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/1/1	Offset Time: 113 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0

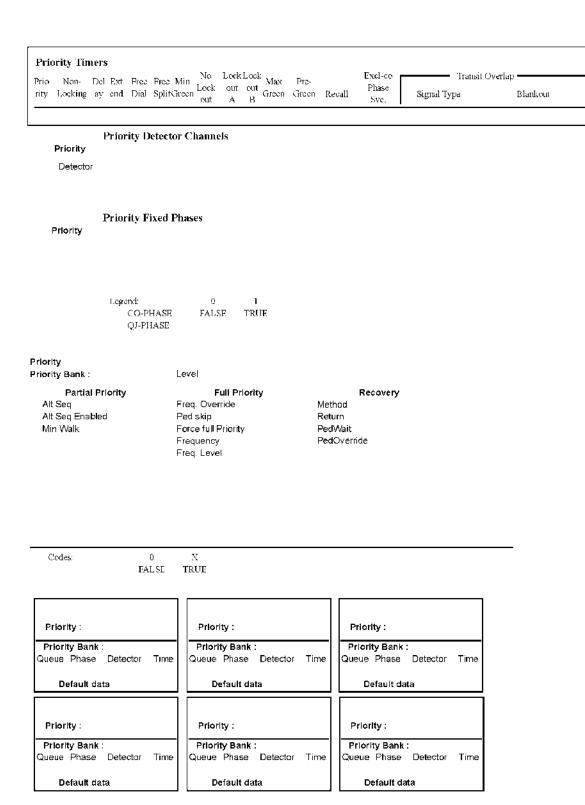
Page 6 of 14

Page 8 of 14

DI E 6																
Phase Function	DE1	DEG	DES	DE4	DDE	DE∠	DE7	DEO	DEO	DE10	DE11	DE12	DE12	DE1.4	DE15	DE14
Phase 1 Max2	PF1 X	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 2 Max2	一	Х	H	H	Ħ	Hi	=	۲i	\dashv		H		Ħ	Ħ	Ħ	뻬
Phase 3 Max2	Ħ	H	Х	H	Ħ	Hi	=	۲i	\exists		H		Ħ	H	Ħ	뻬
Phase 4 Max2	一	П	H	Х	Ħ	Πi	Ħi	Ħi	一				Ħ	Ħ	H	ĦI
Phase 5 Max2	Ħ	一	Ħ	亓	Х	ΠÏ	Ħi	Ħi	\exists				亓	一	Ħ	뻬
Phase 6 Max2	ಠ	一	Ħ	亓	Ħ	Х	Ħį	ĦΪ	\exists		同		П	Ħ	Ħ	Ħ١
Phase 7 Max2	Ħ		П	П	П	Mi	Х	Πİ					同	П	Ħ	ΠI
Phase 8 Max2	Ħ	Ħ	Ī	一	П	Πİ	Ħί	Х					同	同	Ħ	ΠI
Phase Omit	PF1	PF	2 PF	73 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Phase Omit		٦	٦	Ĩ	İ			\prod	X							
Phase 2 Phase Omit			Ī		im				П	X	П		П	Ħ	П	
Phase 3 Phase Omit											X					
Phase 4 Phase Omit												Х				
Phase 5 Phase Omit													X			
Phase 6 Phase Omit														X		
Phase 7 Phase Omit															X	
Phase 8 Phase Omit			1													X
					<u> </u>		_	<u> </u>	<u> </u>							
Ped Omit	PF1	PF	2 PF	3 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit	PF1	PF	2 PF	F3 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit Veh Det Coord ReSve	PF1	PF		F3 PF						PF10 PF10	PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16 PF16
Veh Det Coord ReSvc		PF	F2 P		4 PF:	5 PF	5 PF7		PF9							
Veh Det Coord ReSvc Function Phase Recall	PF1	PF	F2 P	F3 PF	4 PF:	5 PF	5 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Veh Det Coord ReSvc	PF1	PF	F2 PF	F3 PF	4 PF5	5 PF6	5 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Veh Det Coord ReSvc Function Phase Recall	PF1	PF	F2 PF	F3 PF	4 PF5	5 PF6	5 PF7	PF8	PF9 PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16
Veh Det Coord ReSvc Function Phase Recall	PF1	PF	F2 PI	F3 PF	4 PF5 4 PF5	5 PF6	5 PF7 6 PF7 7 PF7	PF8	PF9 PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall	PF1	PF	F2 PI	F3 PF	4 PF5 4 PF5	5 PF6	5 PF7 6 PF7 7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16 PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall	PF1	PF PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	F3 PF	4 PF5 4 PF5 4 PF5	5 PF6 PF6	5 PF7 6 PF7 7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall	PF1 PF1	PF PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	F3 PF F3 PF F3 PF	4 PF5 4 PF5 4 PF5	5 PF6 PF6	PF7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall	PF1 PF1	PF PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	F3 PF F3 PF F3 PF	4 PF5 4 PF5 4 PF5	5 PF6 PF6	PF7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall	PF1 PF1	PF	PI PI PI PI PI PI PI PI PI PI PI PI PI P	F3 PF F3 PF F3 PF	4 PFS 4 PFS 4 PFS 4 PFS	5 PF6 6 PF6 7 PF6 7 PF6	PF7 PF7	PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PF1 PF1 PF1	PF	PI PI PI PI PI PI PI PI PI PI PI PI PI P	F3 PF F3 PF F73 PF F73 PF	4 PFS 4 PFS 4 PFS 4 PFS	5 PF6 6 PF6 7 PF6 7 PF6	5 PF7 PF7 PF7 PF7	PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PF1 PF1 PF1	PF PF PF PF PF PF PF PF PF PF PF PF PF P	PF2 PF	F3 PF F3 PF F73 PF F73 PF	4 PF3 4 PF3 4 PF3 4 PF3 4 PF3 4 PF3	5 PF6 6 PF6 5 PF6 5 PF6 5 PF6 5 PF6	5 PF7 PF7 PF7 PF7	PF8 PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16

Page 9 of 14

Veh Det	Switch Also	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Overlap	Function	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Dimmir Default l	_	Dimming Pro	grammed									
Lanes	efination Name Data - Lan	Green Inbound e Defination	Yellow Inbound	Red Inbound	Green Outbound	Yellow Outbound		_				
progra	am day g	orogram hour	program	minute Land	ePhFun							


Preemption Data

General Preemption	Data	
Preempt > Flash Preempt 1 > Preempt 2	Preempt 2 > Preempt 3 Preempt 3 > Preempt 4	Preempt 4 > Preempt 5 Preempt 5 > Preempt 6

Preempt	Preem Non- Locking	n pt Tim Link to Preempt		Ext end	Dura tion	Max Call	Lock- Out	Min Green		Debo unce		Ped	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Re Ped Clear	turn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20

	Preempt	1	J	Preemp	t 2	I	Preempt	3]	Preempt	t 4	J	Preempt	t 5]	Preempt	t 6
Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls
1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes
2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes
3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes
4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes
5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes
6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes
7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes
8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes

Page 10 of 14

Page 11 of 14

								 								
Priority :								Priority :								
Bank Detector	PE 1A	2A 🤅	зА	4A	5A	6A	В	Bank Detector	PE	1A	2A	ЗА	4A	5A	6 A	В
	Dofe	ult Data								Dofo	ult Dat					
	Dela	un Data								Dela	uii Dat	а				
Priority : Bank								Priority : Bank								
Detector	PE 1A	2 A 3	A	4A	5A	6A	В	Detector	PE	1A	2 A	ЗА	4A	5 A	6A	В
	Defa	ult Data								Defa	ult Dat	а				
Priority :								Priority :								
Bank Detector	PE 1A	2A 3/	4	A	5A	6A	В	Bank Detector	PE	1A	2A	3A	4A	5A	6A	В
	Defa	ult Data								Defa	ult Dat	a				
Preempt 1	Vehical Phases Dwell	Cycle	Ph	Track	Pe	destriar Dw		es Cycle	Ovlo	Tracl		Overla well	ps Cy	cle	Trail	Gm
-			—— Def	`ault I)ata			·								
Default Da Preempt 2			D(1						Deta	ult Da	ta					_
Ph Track	Vehical Phases Dwell	Cycle	Ph.		destria	Dwel		Cycle	Ov1p.	Track	Overla Dv	ps vell	Cycle	Ti	n al Grn	_
Default Da	ıta		Def	ault I	Dat a				Defa	ult Da	ta					
Preempt 3	Vehical Phases Dwell	Cycle	Ph.	Pe- Track	destria	an Phas Dwel		Cycle	Ovlp.	Track	Overla : 13	ps well	Cyela		Trail Gr	n
Default Da			Def	ault I	Data				Defa	ult Da	ta					
Preempt 4 Ph. Track	Vehical Phases Dwell	Cycle	<u>Ph.</u>	Pec Track	lestria	n Phasi Dwell		Cycle	Ov1p	Track	Overta D	ps well	Cycle	Тэ	rail Grn	
Default Da	ıta		Def	ault E	ata				Defa	ult Da	la					
Preempt 5	Vehical Phases			Per	lestria	ın Phasi	es.				Overla	ns.				
Ph. Track	Dwell	Cycle	Ph.	Track		Dwell		Cycle	Ovlp.	Track		well	Cycle	15	rail Grm	
Default Da			Def	ault E	ata				Defa	ult Da	ta					
Preempt 6 Ph. Track	Vehical Phases Dwell	Cycla	P h		lestria	n Phase Dwell		Cycle	Ovlp.		Overla _l	ps well	Cycle	Ti	ra il Grn	
Default Da	ıta		Def	ault E	ata				Defa	ult ()a	ta					

Page 12 of 14

System/Detectors Data

System/	Detecto	rs Data											
Local Cri	tical Alan	ms					Reve	rt to Bac	ekup: 15	;	1st Phone:		
Local Free:	No Cvo	le Failure:	No (Coord Fai	ilure: No	Conflict F			te Flash	,	2nd Phone:		
Local Fash:		le Fault: N		Coord Far		Premption			ze Monit				
Special State	-	Special S			pecial Statu	-	Special Stat	,		ecial Status	5: No	Samuel St	.t 6. No
•		-	otatus 2. 1	vo st	eciai siaiu	8 5: NO 1	speciai siai	ius 4. IN	U S	eciai status	3. INU	Special Sta	ius o: 100
Traffic R System	•		Veh/ A	verage	Оссират	iev M	fin Qu	eue 1	Systen	n Weight	Queu	e 2 Syst	em Weight
Detector		Name		ne(mins)	Correction			ectors	Detecto	rs Factor	Detect	tors Detec	etors Factor
Defect De	4						Defa	ult Data	a		Default	t Data	
Default Da Sample Inte				Oueue:	1 Input	Selection:			Queuc				
•				•		ctor Failed	_	50	•		Leave	Dial / Sr	olit / Offset
				Queue:		Selection:		re.				//	
				-		ctor Failed	-	5*	Defau	lt Data			
17-17170							20101.0						
Vehical D		nostic Valu	ie 0		Vehical D		nostic Valu	ne 1		Special De		mostic Valu	e 0
	Max	No No	Erratic			Max	No	Erratio	,		Max	No	Erratic
Detector	Presence	Activity	Count		Detector	Presence	Activity	Count		Detector	Presence	Activity	Count
1	15	0	75		1	10	0	75		1	15	0	75
2	15	0	75		2	10	0	75		2	15	0	75
3	15	0	75		3	10	0	75		3	15	0	75
4	15	0	75		4	10	0	75		4	15	0	75
5	15	0	75		5	10	0	75		5	15	0	75
6	15	0	75		6	10	0	75		6	15	0	75
7	15	0	75		7	10	0	75		7	15	0	75
8	15	0	75		8	10	0	75		8	15	0	75
										Default	Data - No	Diag 0 V	Valu
Pedestria	n Detector				Pedestriai	1 Detector				Special De	etector		
	Diag	nostie Valu	ie 0			Diag	nostie Valu	ne 1			Diag	gnostic Valu	ie 1
	Max	No	Erratic			Max	No	Erratio	;		Max	No	Erratic
Detector	Presence	Activity	Count		Detector	Presence	Activity	Count	<u> </u>	Detector	Presence	Activity	Count
1	15	0	75		1	10	0	75		1	10	0	75
2	15	0	75		2	10	0	75		2	10	0	75
3	15	0	75		3	10	0	75		3	10	0	75
4	15	0	75		4	10	0	75		4	10	0	75
5	15	0	75		5	10	0	75		5	10	0	75
6	15	0	75		6	10	0	75		6	10	0	75
7	15	0	75		7	10	0	75		7	10	0	75
8	15	0	75		8	10	0	75		8	10	0	75
Default 1	Data - No	Diag 0 V	Values		Default :	Data - No	Diag 1 V	Values		Default :	Data - No	Diag 1 V	Values
Speed Tr	ap Data									Speed Trap	Spe	eed Trap	
Speed Tr								lit/Offs	et]	Low Treshol	d High	Treshold	
		easureme	nt:				//						
							Defau	lf Data	а				

Default Data

Detector 1 Detector_2 Distance:

Page 13 of 14

Default Data

Volume Detector Data

Report Interval ()

Volume Controller Detector Detector Number Channel

Default Data

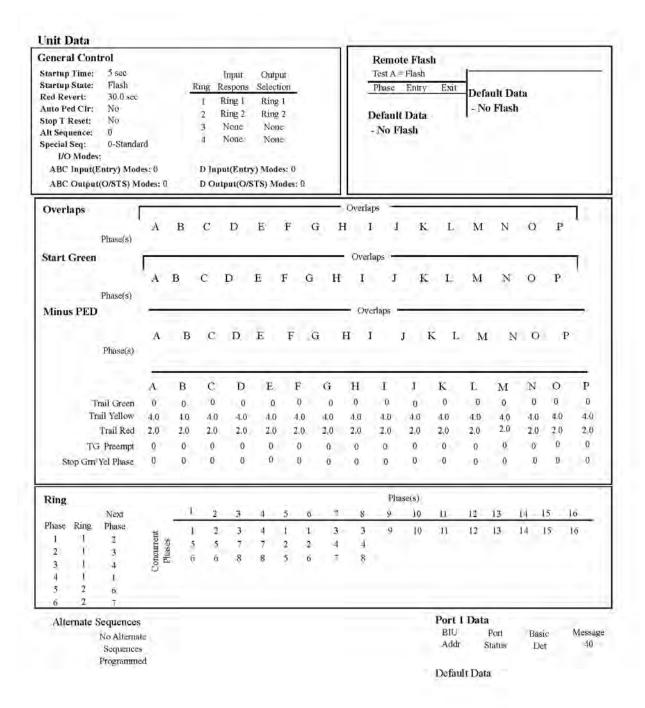
Page 14 of 14

SEPAC ECOM All Data

Intersection Name: Atlanta Hwy. @ Food World #356 Intersection Alias: 356AtlFoodWd

Access Data 1:1200 Baud Access Code: 9999 Channel: Address: 1
3:19200 Baud Revision: 3.34e IP Address: 172.31.24.215

Phase Initialization Data


 Phase
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

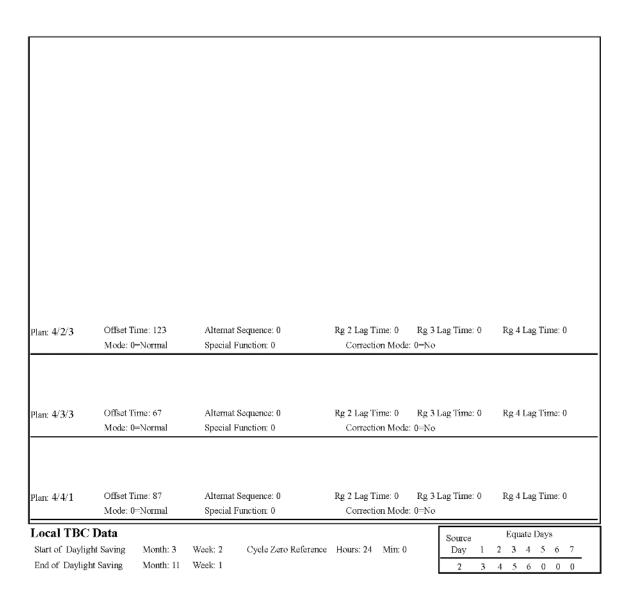
 Initial
 1-Inact
 4-Gm
 1-Inact
 1-Inact
 1-Inact
 1-None
 0-None
Vehic	al Basic	Timings					Mise 7	imings	Walk	Walk		= (Pedes	rian Ti	mings	Alt			Actuated
Phase	Min Green	Passage	Maxl	Max2	Yellow	All Red	Green Delay	Yellow Delay	Offset Time	Offset Mode	Bike Green	Bike Psg	Walk	Ped Clr	Alt Walk	Ped Clr	Flash Walk	Ext Ped Clr	Rest in Walk
1	7	3.0	30	30	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	.0	No
2	20	6.0	70	70	5.0	2,0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
3	7	4.0	40	40	5.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
4	7	4.0	40	40	5.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
5	7	3.0	30	30	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
6	20	6.0	70	70	5.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
7	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
8	0	0.0	0	0	3.0	0,0	0,0	0.0	0	0-Advance	0	0	0	0	0.	0	No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
12	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	O	No
14	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance		0	0	0	0	0	No	D	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0	0	0	No	0	No

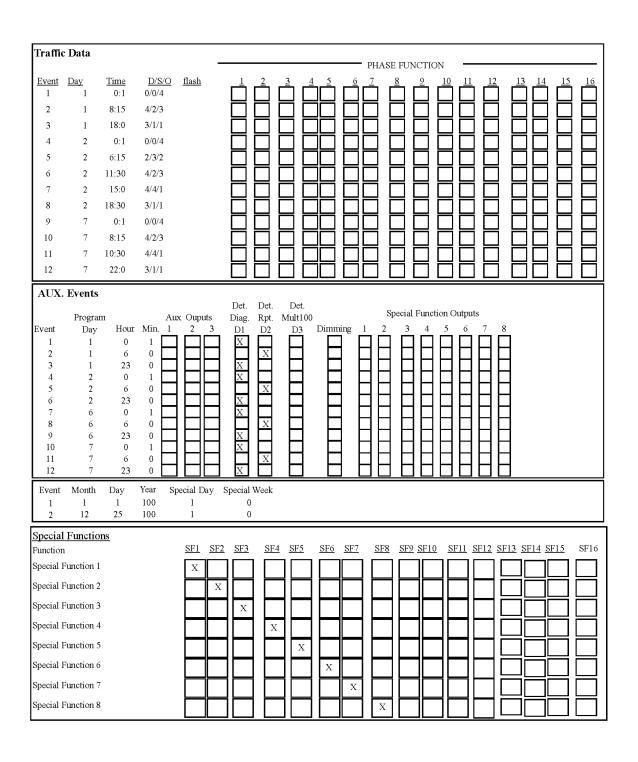
Vehic	le Densit	v Timin	gs				General Co	ntrol			Miscell	laneous			No	Special	Sequence	2
Ph.	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
2	3.0	30	30	0	40	3.0	NonActl	Min	None	0	No	Yes	Yes	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
6	3.0	30	30	0	40	3.0	NonActi	Min	None	0	No	Yes	Yes	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
9	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	0
10	0.0	0	0	0	0	0,0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	Ü	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 14

16	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
Veh	nical D	etector F	hase As	signmer	ıt		Pedestria	n Detector					Spec	ial Detec	tor Pha	se Assignı	nent	
		Assign Phase		Switch Phase	Extend	Delay		Assign Phase	Mode	Switch Phase	Extend	Delay		Ass Pha	_	Switch de Phase		l Delay
Veh D	et:1	1	Veh	0	0.0	0	Defau	ılt Data					Defa	ault Da	ıta			
Veh D	et:2	2	Veh	0	0.0	0												
Veh D	et:3	3	Veh	0	0.0	6												
Veh D	et:4	4	Veh	0	0.0	6												
Veh D	et:5	5	Veh	0	0.0	0												
Veh D	et:6	6	Veh	0	0.0	0												
Veh D	et:7	7	Veh	0	0.0	0	1											
Veh D	et:8	8	Veh	0	0.0	0												

Page 3 of 14


Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW


Coordination Data			Dial/Split	Cycle
General Coordination Data			1/1	100
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 1	1/3	115
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	2/3	130
Maximun Mode: 0=Inhibit	Max Dwell Time: 0	Manual Offset: 1	3/1	130
Correction Mode: 2=Short Way	Yield Period: 0		4/2	150
			4/3	170
			4/4	200

Sali	t Times	and Phase M	Indes								
•	1 / Split		ioties								
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	18	0=Actuated	2	46	1=Coordinate	3	18	0=Actuated	4	18	0=Actuated
5	18	0=Actuated	Ö	46	1=Coordinate						
Dial	1 / Split	. 3									
Ph.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Plı. Mode
1	21	0=Aetuated	2	53	1=Coordinate	3	20	0=Actuated	4	21	0=Achiated
5	21	0=Actuated	6	53	1=Coordinate						
Dial	27 Split	. 3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Płı.	Splits	Ph. Mode
1	2.5	0-Actuated	2	53	1-Coordinate	3	30	0-Actuated	4	22	0—Actuated
5	30	0-Actuated	6	48	1-Coordinate						
Dial	3 / Split	. 1									
Pla.	Splits	Ph Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph Mode	Plı.	Splits	Pli, Mode
1	25	0 Actuated	2	53	1 Coordinate	3	30	0 Actuated	4	22	0 Actuated
5	30	0=Actuated	ΰ	48	1=Coordinate						
Dial	4/ Split	2									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph	Splits	Ph. Mode
1	27	0-Actuated	2	84	l-Coordinate	3	19	0-Actuated	4	20	0-Actuated
5	27	0=Actuated	o o	81	1=Coordinate						
Dial	47 Split	3									
Ρħ.	Splits	Ph. Mode	₽ħ.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
I	20	0 Actuated	2	110	1 Coordinate	3	20	0 Actuated	4	20	0 Actuated
5	20	0=Aetnated	6	110	1=Coordinate						
Dial	4 / Split	. 4									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Plı.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	22	0=Actuated	2	134	1=Coordinate	3	22	0=Actuated	4	22	0=Actuated
5	22	0−Actuated	6	134	1=Coordinate						

Traffic Plan	Data			
Plan: 1/1/1	Offset Time: 19 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 1/3/1	Offset Time: 23 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
	Stead. C Steaming	appetial i diction.		
Plan: 2/3/2	Offset Time: 26 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/1/1	Offset Time: 26 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0

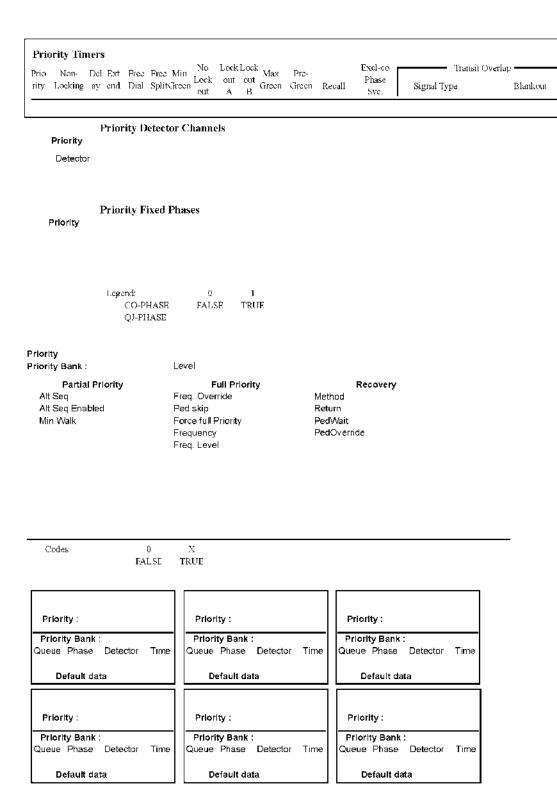
Page 6 of 14

Page 8 of 14

Phase Function																
ı	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Max2	Χ	Ш	Щ	Щ		_	<u></u>	!		\sqsubseteq	닏		닏	Ш	\sqsubseteq	닏Ⅱ
Phase 2 Max2		Χ	Ш				<u>_</u>				Ш		Ш			Ш
Phase 3 Max2			Χ				<u></u> [
Phase 4 Max2				X												
Phase 5 Max2					X											
Phase 6 Max2						Χ	\Box									
Phase 7 Max2							X									
Phase 8 Max2								X								
Phase Omit	PF1	PF	2 PF	3 PF-	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Phase Omit									X							
Phase 2 Phase Omit										X						
Phase 3 Phase Omit											X					
Phase 4 Phase Omit												X				
Phase 5 Phase Omit													X			
Phase 6 Phase Omit														X		
Phase 7 Phase Omit															X	
Phase 8 Phase Omit																X
Ped Omit	PF1	l PF	2 PF	3 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit	PF1	PF	2 PF	3 PF-	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit Veh Det Coord ReSve	PF1]						PF8		PF10 PF10	PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16 PF16
Veh Det Coord ReSvc		PF	72 PI	F3 PF	4 PF5	PF6	PF7		PF9							
Veh Det Coord ReSvc	PF1	PF	72 PI	F3 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Veh Det Coord ReSvc	PF1	PF	F2 PF	F3 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Veh Det Coord ReSve Function Phase Recall	PF1	PF	F2 PF	73 PF	4 PF5	PF6	PF7	PF8	PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16 PF16
Veh Det Coord ReSve Function Phase Recall	PF1	PF	72 PF	F3 PF	4 PF5 4 PF5 4 PF5	PF6	PF7 PF7	PF8	PF9 PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall	PF1	PF	72 PF	F3 PF	4 PF5 4 PF5 4 PF5	PF6	PF7 PF7	PF8 PF8	PF9 PF9	PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall	PF1	PF PF	P2 PF	73 PF	4 PF5 4 PF5 4 PF5 4 PF5	PF6 PF6	PF7 PF7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall	PF1	PF PF	P2 PF	F3 PF	4 PF5 4 PF5 4 PF5	PF6 PF6	PF7 PF7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16 PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall	PF1	PF PF	P2 PF	73 PF	4 PF5 4 PF5 4 PF5 4 PF5	PF6 PF6	PF7 PF7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall	PF1	PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	73 PF	4 PF5 4 PF5 4 PF5 4 PF5 4 PF5	PF6 PF6 PF6 PF6	PF7 PF7 PF7	PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PFI PFI PFI	PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	73 PF	4 PF5 4 PF5 4 PF5 4 PF5 4 PF5	PF6 PF6 PF6 PF6	PF7 PF7 PF7 PF7	PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PFI PFI	PF PF PF PF PF PF PF PF PF PF PF PF PF P	PF 22 PF 22	73 PF	4 PF5 4 PF5 4 PF5 4 PF5 4 PF5	PF6 PF6 PF6 PF6 PF6	PF7 PF7 PF7 PF7	PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function Veh Det Switch Omit	PFI PFF PFF PFF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	PF 22 PF 22	73 PF 73 PF 73 PF 73 PF 73 PF	4 PF5 4 PF5 4 PF5 4 PF5 4 PF5	PF6 PF6 PF6 PF6 PF6	PF7 PF7 PF7 PF7 PF7	PF8 PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16 PF16

Page 9 of 14

Veh Det	Switch Also	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Overlap	Function	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Dimmir Default l	_	Dimming Pro	grammed									
Lanes	efination Name Data - Lan	Green Inbound e Defination	Yellow Inbound	Red Inbound	Green Outbound	Yellow Outbound		_				
progra	am day g	orogram hour	program	minute Land	ePhFun							


Preemption Data

General Preemption Data												
Preempt > Flash Preempt 1 > Preempt 2	Preempt 2 > Preempt 3 Preempt 3 > Preempt 4	Preempt 4 > Preempt 5 Preempt 5 > Preempt 6										

Preempt	Preem Non- Locking	npt Time Link to Preempt		Ext end	Dura tion	Max Call	Lock- Out	Min Green		Debo unce		Ped	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Re Ped Clear	turn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20

Preempt 1			Preempt 2			Preempt 3			1	Preempt	t 4	1	Preempt	t 5	Preempt 6			
Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	
1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	
2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	
3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	
4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	
5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	
6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	
7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	
R	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	R	No	Yes	8	No	Yes	

Page 10 of 14

Page 11 of 14

									•								
Priority : Bank Detector	PE	1A		ЗА	4 A	5A	6 A	В	Priority : Bank Detector	PE	1A	2A	3A	4A	5A	6A	В
		Defa	ult Data								Defa	ult Dat	а				
Priority : Bank Detector	PE	1A Defai	2A ult Data	ЗА	4A	5A	6A	В	Priority : Bank Detector	PE	1A Defa	2A Jult Dat	3A ta	4A	5A	6A	В
Priority : Bank Detector	PE	1A	2A		4A	5A	6 A	В	Priority : Bank Detector	PE	1A		ЗА	4A	5A	6A	В
		Detai	ult Data								Defa	ult Dat	a				
Preempt Ph. Track	Vehical	Phases well	Cycle		Ph Tracl		destrian Dw		Cycle	Ovlp	Trac		Overla Well	ps Cy	cle	Trail	Gm
Default D	ata			I	Default	Data				Defa	ult ()a	ta					
Preempt 2	Vehical	Phases well	Су	cle <u>I</u>	P h. Tracl		ou Phase Dwell		Cycle	Ov1p.	Track	Overla Dv	ps vell	Cycle	Tı	ra ıl Orn	_
Default D	ata			I)efault	Data				Defa	ult ()a	ta					
Preempt 2 Ph. Track	Vehical	Phases well	Cycl	.e <u>I</u>	P h. Trac		an Phase Dwell		Cycle	Ovlp.	Track	Overla	ps Iwell	Cyela		Trail Gr	<u> </u>
Default D	ata			I	Default	Data				Defa	ult Da	ta					
Ph. Track	Vehical	Phases Dwell	Cycl	.e <u> </u> :	Po h. Track		n Phase Dwell		Cycle	_ Ovlp	Track	Overta D	ps)well	Cycle	Тэ	rail Grn	
Default D				1	Default	Data				Defa	ult Da	ta					
Preempt :	Vehical	Phases well	Cycl	e F	Po h. Track		n Phase Dwell		Cycle	<u>О</u> чђ.	Track	Overla 13	ps Iwoll	Cycle	75	rail Grn	
Default D				1	Default .	Data				Defa	ult Da	ta					
Ph. Track	Vehical	Phases Dwell	Су	ela <u>P</u>	Pe h Track		n Phase Dwell		Cycle	Ovlp.		Overla : D	ps well	Cycle	Tı	rail Grn	
Default D	าสเม			Ι	Default !	Data				Defa	ult Da	ta				_	

Page 12 of 14

System/	Detecto	rs Data											
Local Cri	tical Alar	ms					Reve	rt to Bac	ekup: 15		lst Phone:		
Local Free:	No Cyc	le Failure:	No (Coord Fa	ilure: No	Conflict Fl			te Flash:		nd Phone:		
Local Fash:	No Cyc	ele Fault: N	0 (Coord Fa	ult: No	Premption	: No	Voltag	ge Monit	or: No			
Special State	us 1: No	Special S	Status 2: 1	Vo St	pecial Status	: 3: No. 5	Special Stat	me 4: Ni	O St	ecial Status	5: No	Special Sta	utus 6: No
Traffic R			Matus 2. 1	, to si	pecial blatti	5 5. INO 6	special istat	шэ ч. т.	o si	eciai status	3. 140	special su	iuis 0. INO
System : Detector	Detector			verage ne(mins)	Occupan Correction	-	ш	eue 1 ectors	System Detector		Queue Detect	,	_
Default Da	ta						Defa	ult Data	a		Default	Data	
Sample Inte	erval:			Queue:	1 Input	Selection:	0=Averag	ge	Queue	:			
					Dete	ctor Failed I	Level: 0		Level	Enter	Leave	Dial / Sp	lit / Offset
				Queue:	2 Input	Selection:	0=Averag	ge				1.1	
					Dete	ctor Failed I	Level: 0		Defaul	t Data			
Vehical D	etector				Vehical De	etector				Special De	tector		
	Diag	gnostic Valu	ie 0			Diag	nostie Valu	ie 1			Diag	nostic Valu	e 0
Detector	Max	No	Erratic		Detector	Max	No	Erratio		Detector	Max	No	Erratic
Detector	Presence	Activity	Count		Detector	Presence	Activity 0	Count 75	<u> </u>	Detector	Presence	Activity 0	Count 75
1 2	15	0	75 75		1 2	10 10	0	75		1 2	15 15	0	75
3	15	0	75		3	10	0	75		3	15	0	75
4	15	0	75		4	10	0	75		4	15	0	75
5	15	0	75		5	10	0	75		5	15	0	75
6	15 15	0	75		6	10	0	75		6	15	0	75
7	15	0	75		7	10	0	75		7	15	0	75
8	15	0	75		8	10	0	75		8	15	0	75
o	1.5	v	,,,								Data - No	Diag 0 V	Valu
Pedestria	n Detector				Pedestriar	Detector				Special De	tector		
1 cocsu iai		gnostie Valu	ie 0		1 cucati iai		nostie Valu	ıe 1		Брески Бе		nostic Valu	ie 1
	Max	No	Erratic			Max	No	Erratio	;		Max	No	Erratic
Detector	Presence	Activity	Count		Detector	Presence	Activity	Count	<u>:</u>	Detector	Presence	Activity	Count
1	15	0	75		1	10	0	75		1	10	0	75
2	15	0	75		2	10	0	75		2	10	0	75
3	15	0	75		3	10	0	75		3	10	0	75
4	15	0	75		4	10	0	75		4	10	0	75
5	15	0	75		5	10	0	75		5	10	0	75
6	15	0	75		6	10	0	75		6	10	0	75
7	15	0	75		7	10	0	75		7	10	0	75
8	15	0	75		8	10	0	75		8	10	0	75
Default !	Data - No	Diag 0 V	Values		Default 1	Data - No	Diag 1 V	Values		Default 1	Data - No	Diag 1 V	Values
Speed Tr	ap Data									Speed Trap	Spe	ed Trap	
Speed Tr	-							lit/Offse	et I	ow Treshol	d High	Treshold	
		leasureme	nt:				//						
D 4 1		• 5					Defau	lt Data	а				

Default Data

Detector 1 Detector_2 Distance :

Page 13 of 14

Default Data

Volume Detector Data

Report Interval ()

Volume Controller Detector Detector Number Channel

Default Data

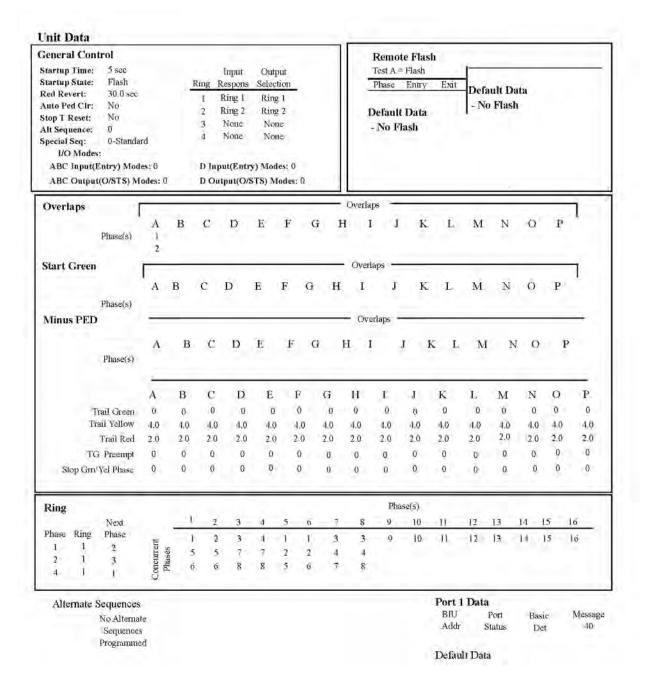
Page 14 of 14

SEPAC ECOM All Data

Intersection Name: Atl Hwy @ East Blvd South #159 Intersection Alias: 159AtlEBvSo

Phase Initialization Data

 Phase
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16


 Initial
 1-Inact
 4-Gm
 0-None
 1-Inact
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None

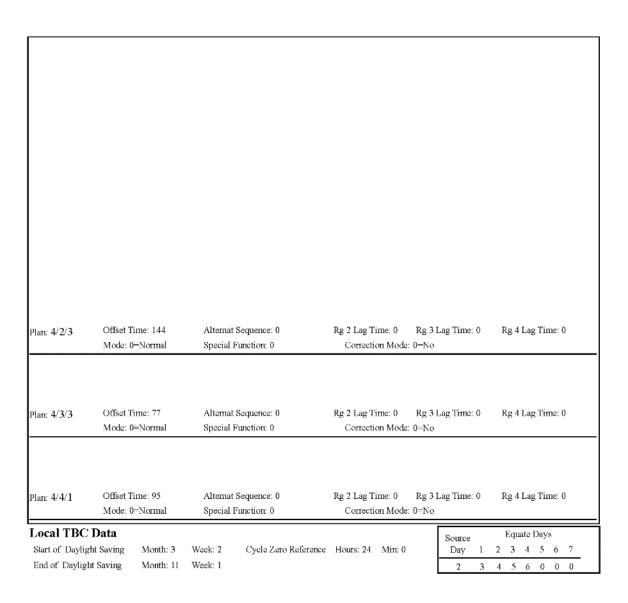
Vehic	al Basic	Timings					Mise 7	imings	Walk	Walk		= (Pedest	rian Ti	mings	Alt			Actuated
	Min					All	Green	Yellow	Offset	Offset	Bike	Bike		Ped	Alt	Ped	Flash	Ext	Rest in
Phase	Green	Passage	Maxl	Max2	Yellow	Red	Delay	Delay	Time	Mode	Green	Psg	Walk	Cir	Walk	Clr	Walk	Ped Clr	Walk
1	15	3.0	50	50	4.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	.0	No
2	20	6.0	70	70	5.0	2,0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
3	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
4	10	3.0	32	32	5.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
5	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
6	0	0.0	0	0	3.0	0.0	0,0	0.0	0	0-Advance	0	0	Ō	0			No	0	No
7	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
8	0	0.0	0	0	3.0	0,0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
12	O	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
14	Ô	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No

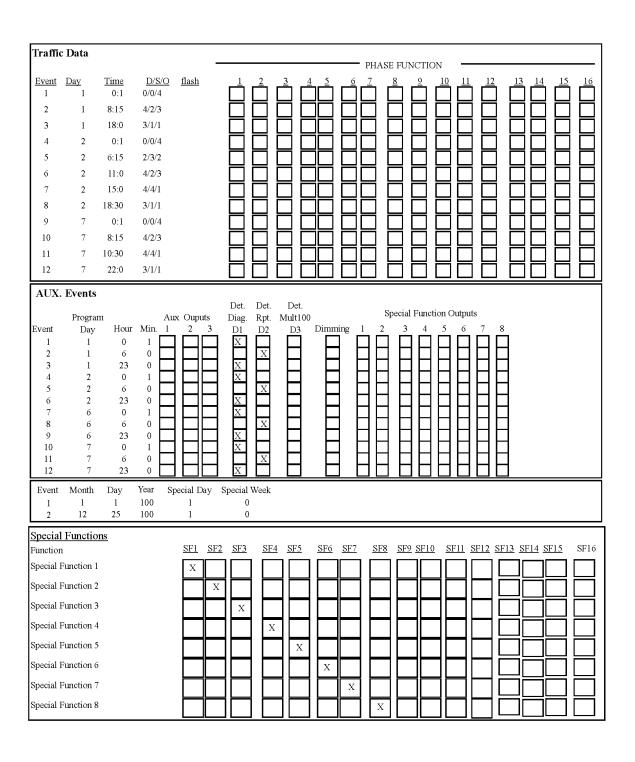
Vel	icle Densi	tv Timin	gs				General Co	ntrol			Miscel	lancous			No	Special :	Sequence	2
Ph	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
2	3.0	30	30	0	40	3.0	NonActl	Min	None	0	No	No	No	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	.0	No	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
6	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	O
9	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	Ω
10	0.0	0	0	0	0	0,0	None	None	None	0	No	No	No	No	No	0	0	0
-11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	()
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	Ü	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	O

Page 1 of 14

16	0.0	0	0	0	0	0.0	Notic	None	None	0	No	No	No	No	No	0	0	0
Vel	hical Deta	ector P	hase As	signmen	ıt		Pedestrian	Detector					Speci	al Detec	tor Phase	Assignm	nent	
		Assign Phase	Mede	Switch Phase	Extend	Delay		Assign Phase	Moda	Switch Phase	Extend	Delay		Assi Pha	ign ise Modo	Switch Phase		. Delay
D	efault I	Data					Default	. Data					Defa	ult Da	ta			

Page 3 of 14


Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW


Coordination Data			Dial/Split	Cycle
General Coordination Data			1/1	100
Operation Mode: 1=Auto	Offset Mode: 0=Beg Grn	Manual Dial: 1	1/3	115
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	2/3	130
Maximun Mode: 0=Inhibit	Max Dwell Time: 0	Manual Offset: 1	3/1	130
Correction Mode: 2=Short Way	Yield Period: 0		4/2	150
			4/3	170
			4/4	200

C-1:	. Ti	and Dhass Mar	1								
•	t 11mes 1/ Split	and Phase Moo	ies								
Ph.	_	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	22 1 / Split	0=Actuated	2	60	1=Coordinate	4	18	0=Actuated			
Ph.	_	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	25	0=Actuated	2	65	1=Coordinate	4	25	0=Actuated			
Dial : Ph.	2 / Split Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 Dial	38 3 / Split	0=Actuated	2	61	1=Coordinate	4	31	0=Actuated			
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
l Dial -	38 4 / Split	0=Actuated 2	2	61	1=Coordinate	4	31	0=Actuated			
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 Dial	36 4 / Split	0=Actuated 3	2	78	1=Coordinate	4	36	0=Actuated			
Ph.		Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
l Dial -	32 4 / Split	0=Actuated 4	2	97	1=Coordinate	4	41	0=Actuated			
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	38	0=Actuated	2	118	1=Coordinate	4	44	0=Actuated			

Traffic Plan	Data			
Plan: 1/1/1	Offset Time: 14 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 1/3/1	Offset Time: 18 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/3/2	Offset Time: 28 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/1/1	Offset Time: 28 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0

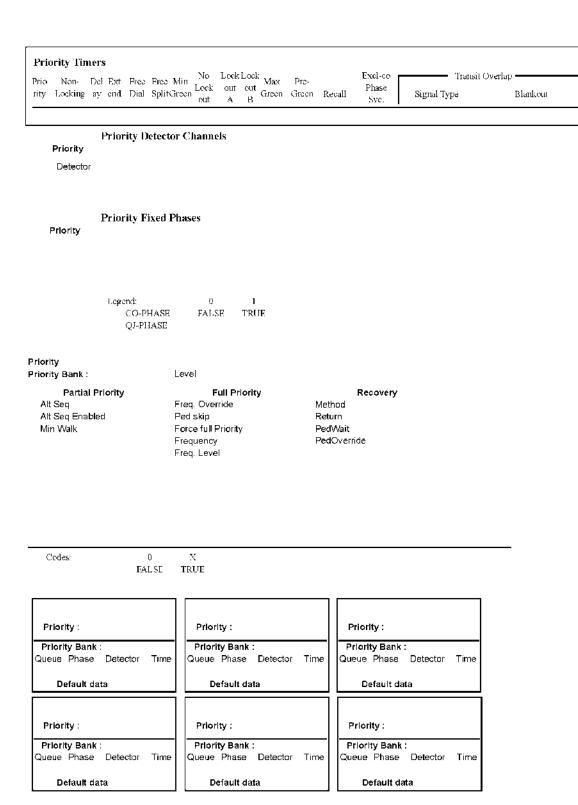
Page 6 of 14

Page 8 of 14

DI E 6																
Phase Function	DE1	DEG	DES	DE4	DDE	DE∠	DE7	DEO	DEO	DE10	DE11	DE12	DE12	DE1.4	DE15	DE14
Phase 1 Max2	PF1 X	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 2 Max2	一	Х	H	H	Ħ	Hi	=	۲i	\dashv		H		Ħ	Ħ	Ħ	뻬
Phase 3 Max2	Ħ	H	Х	H	Ħ	Hi	=	۲i	\exists		H		Ħ	H	Ħ	뻬
Phase 4 Max2	一	H	H	Х	Ħ	Πi	Ħi	Ħi	一				Ħ	Ħ	H	ĦI
Phase 5 Max2	Ħ	一	Ħ	亓	Х	ΠÏ	Ħi	Ħi	\exists				亓	一	Ħ	H
Phase 6 Max2	ಠ	一	Ħ	亓	Ħ	Х	Ħį	ĦΪ	\exists		同		П	Ħ	Ħ	Ħ١
Phase 7 Max2	Ħ		П	П	П	Mi	Х	Πİ					同	П	Ħ	ΠI
Phase 8 Max2	Ħ	Ħ	Ī	一	П	Πİ	Ħί	Х					同	同	Ħ	ΠI
Phase Omit	PF1	PF	2 PF	73 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Phase Omit		٦	٦	Ĩ	İ			\prod	X							
Phase 2 Phase Omit			Ī		im				П	Х	П		П	Ħ	П	
Phase 3 Phase Omit											X					
Phase 4 Phase Omit												Х				
Phase 5 Phase Omit													X			
Phase 6 Phase Omit														X		
Phase 7 Phase Omit															X	
Phase 8 Phase Omit			Ī													X
					<u> </u>		_	<u> </u>	<u> </u>							
Ped Omit	PF1	PF	2 PF	3 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit	PF1	PF	2 PF	F3 PF	4 PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit Veh Det Coord ReSve	PF1	PF		F3 PF						PF10 PF10	PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16 PF16
Veh Det Coord ReSvc		PF	F2 P		4 PF:	5 PF	5 PF7		PF9							
Veh Det Coord ReSvc Function Phase Recall	PF1	PF	F2 P	F3 PF	4 PF:	5 PF	5 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Veh Det Coord ReSvc	PF1	PF	F2 PF	F3 PF	4 PF5	5 PF6	5 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Veh Det Coord ReSvc Function Phase Recall	PF1	PF	F2 PF	F3 PF	4 PF5	5 PF6	5 PF7	PF8	PF9 PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16
Veh Det Coord ReSvc Function Phase Recall	PF1	PF	F2 PI	F3 PF	4 PF5 4 PF5	5 PF6	5 PF7 6 PF7 7 PF7	PF8	PF9 PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15	PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall	PF1	PF	F2 PI	F3 PF	4 PF5 4 PF5	5 PF6	5 PF7 6 PF7 7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16 PF16
Veh Det Coord ReSve Function Phase Recall Phase Min Recall	PF1	PF PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	F3 PF	4 PF5 4 PF5 4 PF5	5 PF6 PF6	5 PF7 6 PF7 7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall	PF1 PF1	PF PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	F3 PF F3 PF F3 PF	4 PF5 4 PF5 4 PF5	5 PF6 PF6	PF7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall	PF1 PF1	PF PF	PF PF PF PF PF PF PF PF PF PF PF PF PF P	F3 PF F3 PF F3 PF	4 PF5 4 PF5 4 PF5	5 PF6 PF6	PF7 PF7	PF8 PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall	PF1 PF1	PF	PI PI PI PI PI PI PI PI PI PI PI PI PI P	F3 PF F3 PF F3 PF	4 PFS 4 PFS 4 PFS 4 PFS	5 PF6 6 PF6 7 PF6 7 PF6	PF7 PF7	PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PF1 PF1 PF1	PF	PI PI PI PI PI PI PI PI PI PI PI PI PI P	F3 PF F3 PF F73 PF F73 PF	4 PFS 4 PFS 4 PFS	5 PF6 6 PF6 7 PF6 7 PF6	5 PF7 PF7 PF7 PF7	PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16
Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PF1 PF1 PF1	PF	PF2 PF	F3 PF F3 PF F73 PF F73 PF	4 PF3 4 PF3 4 PF3 4 PF3 4 PF3 4 PF3	5 PF6 6 PF6 5 PF6 5 PF6 5 PF6 5 PF6	5 PF7 PF7 PF7 PF7	PF8 PF8 PF8 PF8 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16

Page 9 of 14

Veh Det	Switch Also	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Overlap	Function	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16
Dimmir Default l	_	Dimming Pro	grammed									
Lanes	efination Name Data - Lan	Green Inbound	Yellow Inbound	Red Inbound	Green Outbound	Yellow Outbound		_				
progra	am day g	orogram hour	program	minute Land	ePhFun							


Preemption Data

General Preemption Data											
Preempt > Flash	Preempt 2 > Preempt 3	Preempt 4 > Preempt 5									
Preempt 1 > Preempt 2	Preempt 3 > Preempt 4	Preempt 5 > Preempt 6									

Preempt	Preem Non- Locking	n pt Tim Link to Preempt		Ext end	Dura tion	Max Call				Debo unce	Gate ext end	Se Ped Clear	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Re Ped Clear	eturn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20

	Preempt	1	J	Preemp	t 2]	Preempt	3]	Preempt	t 4]	Preempt	t 5		Preempt	t 6
Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls
1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes
2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes
3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes
4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes
5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes
6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes
7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes
Я	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes	8	No	Yes

Page 10 of 14

Page 11 of 14

Priority:								Priority :								
Bank Detector	PE 1A	2A 3	BA	4A	5A	6A	В	Bank Detector	PE	1A	2A	ЗА	4A	5A	6A	В
	Defa	ult Data								Defa	ult Dat	а				
Priority :								Priority :								
Bank	DE 44	24 0			<i>-</i> 4	0.4	_	Bank	DE.	4.0	0.4	2.0	4.0		0.4	
Detector	PE 1A	2 A 3,	٠	4A	5A	6A	В	Detector	PE	1A	2 A	ЗА	4A	5 A	6A	В
	Defa	ult Data								Defa	ult Dat	ta				
Priority :								Priority :								
Bank								Bank								
Detector	PE 1A	2A 3A	. 4	A	5A	6A	В	Detector	PE	1A	2A	ЗА	4A	5A	6A	В
	Defa	ult Data								Defa	ult Dat	a				
Preempt																
Ph. Track	Vehical Phases Dwell	Cycle	Ph	Track		Jestriar Dw		s Cycle	Ovlp	Tracl		Overla Well	ps Cy	cle	Trail	Gm
Default I	Data		Def	ault I	Data				– Defa	ult ()a	ta					
Preempt	2 Vehical Phases			Pe	destria	ııı Phas	es .				Overla	D5				
Ph. Track	Dwell	Cycle	Ph.	Track		Dwel		Cycle	Ov1p.	Track		vell	Cycle	T	ra ıl Grn	_
Default I	Data		Det	ault I	Data				Defa	ult Da	ta					
Preempt Ph. Track	Vehical Phases	Cycle	Ph.	Pe Track		un Phas Dwel		Cycle	Ovln.	Track	Overla	ps Iwell	Cyela		Trail Gr	n
			- Det	fault I												
Default II Preempt			Del	autt 1	अध				Deta	ult Da	uál					
Ph. T rack	Vehical Phases	Cycle	<u>Ph.</u>	Ped Track	destria	n Phasi Dwell		Cycle	Ovlp	Track	Overta E	ps)well	Cycle	Ti	rail Grn	
Default E	Data		Det	a ul t l	Data				Defa	ult Da	la					
Preempt				-		Tr.										_
Ph. Track	Vehical Phases Dwell	Cycle	Ph.	Track	nestria	n Phase Dwell		Cycle	Ovlp.	Track	Overla -	ps Iwall	Cycle	15	rail Grn	
Default I			Def	ault L	Data				Defa	ult Da	ta					
Ph. Track	Vehical Phases	Cods	Рh		destria	n Phase Dwell		Cycle	0-3-		Overla	•	Cyrola	т.	roil Chr	
. ii. Tinck	Биы	c, yora		THEK		Dwell		Cycle	_ Ovlp.	Track	. L	well	Cycle	11	ra il Grn	
Default I	Data		Def	ault I	Data				Defa	ult Da	ta					

Page 12 of 14

System/Detectors Data

Local Crit Local Free: N Local Fash: N		ms										
	_					Rev	ert to Ba	ekup: 15		1st Phone:		
ocal Fash: N	No Cyc	le Failure:	No Coord	Failure: No	Conflict F	lash: No	Remo	ote Flash:	No 3	2nd Phone:		
Acces 1 cont. 1	No Cyc	le Fault: N	o Coord	Fault: No	Premption	: No	Volta	ge Monite	or: No			
pecial Statu	ıs 1: No	Special S	Status 2: No	Special Statu	s 3: No 8	Special Sta	tus 4: N	To Sp	ecial Status	5: No	Special Sta	ıtus 6: Ne
Traffic Re	esponsive	•									_	
System I	•		Veh/ Average	Occupa	тсу М		ieue 1	System	_	-		
Detector (Channel	Name	Hr Time(mir	is) Correctio	n/10 Volu	me % De	tectors	Detector	s Factor	Detect	ors Detec	etors F
Default Dat	a					Defa	ult Dat	a		Default	Data	
Sample Inte	erval:		Quei	ie: 1 Inpu	t Selection:	0=Avera	ge	Queue	:			
				Dete	ctor Failed I	Level: 0		Level	Enter	Leave	Dial / Sp	lit / Offs
			Quei		t Selection:		σe				11	
			•	шри	ctor Failed l		50	Defaul	t Data		, ,	
Vehical De	tector			Vehical D	etector				Special D	etector		
	Diag	nostie Valu	ie 0		Diag	nostic Val	ne 1			Diag	nostic Valu	e 0
Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Errati Coun		Detector	Max Presence	No Activity	Erratic Count
1	15	0	75	1	10	0	75		1	15	0	75
2	15	0	75	2	10	0	75		2	15	0	75
3	1.5	0	75	3	10	0	75		3	15	0	75
4	15	0	75	4	10	0	75		4	15	0	75
5	15	0	75	5	10	0	75		5	15	0	75
6	15	0	75	6	10	0	75		6	15	0	75
7	15	0	75	7	10	0	75		7	15	0	75
8	15	0	75	8	10	0	75		8	15	0	75
									Default	Data - No	Diag 0 V	Valu
Pedestrian	Detector			Pedestria	n Detector				Special D	etector		
	Diag	nostie Valu	ie 0		Diag	nostie Val	ne 1			Diag	nostic Valu	ie 1
Detector	Max Presence	No Activity	Erratic Count	Detector	Max Presence	No Activity	Errati Coun		Detector	Max Presence	No Activity	Erratic Count
1	15	0	75		10	0	75		1	10	0	75
2	15	0	75	2	10	0	75		2	10	0	75
3	15	0	75	3	10	0	75		3	10	0	75
4	15	0	75	4	10	0	75		4	10	0	75
5	15	0	75	5	10	0	75		5	10	0	75
6	15	0	75	6	10	0	75		6	10	0	75
7	15	0	75	7	10	0	75		7	10	0	75
8	15	0	75	8	10	0	75		8	10	0	75
Default I	Data - No	Diag 0 V	Values	Default	Data - No	Diag 1	Values		Default :	Data - No	Diag 1 V	Values
Speed Tra	ap Data								Speed Trap	Spe	ed Trap	
Speed Tra	ap:					Dial/S	plit/Offs	et L	ow Treshol	ld High	Treshold	
Detector 1		easureme	nt: istance :			,,	ılt Dat	•				

Default Data

Page 13 of 14

Volume Detector Data

Report Interval ()

Volume Controller Detector Detector Number Channel

Default Data

Page 14 of 14

SEPAC ECOM All Data

Intersection Name: Atl Hwy @ East Blvd North #30

Intersection Alias: 30AtlEBvN

Access Data

1 :1200 Baud 3 :19200 Baud Access Code: 9999

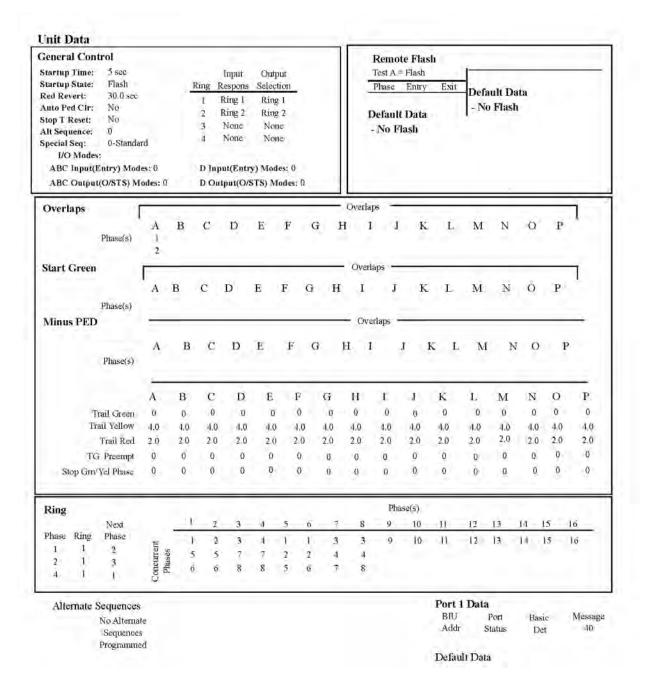
Channel: Address: 1

Revision: 3.33d IP Address: 172.31.24.213

Phase Initialization Data

 Phase
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

 Initial
 1-Inact
 4-Gm
 0-None
 1-Inact
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None
 0-None


PHASE DATA

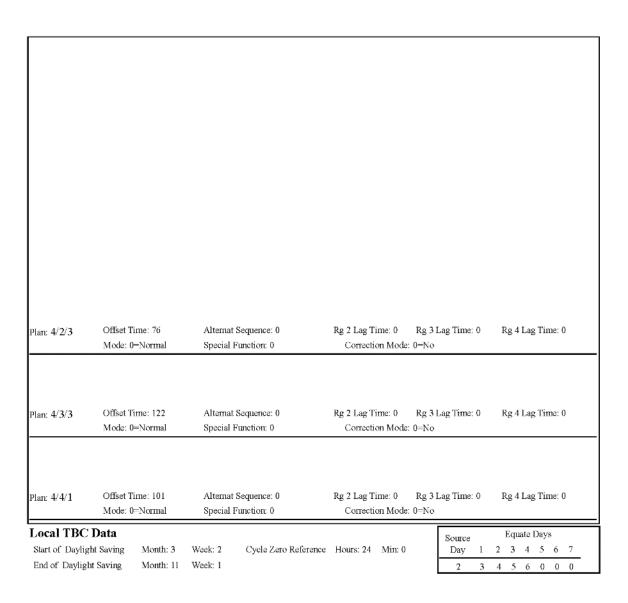
Vehic	al Basic	Timings					Mise 7	imings	Walk	Walk			Pedes	man Ti	mings	Alt			Actuated
	Min					All	Green	Yellow	Offset	Offset	Bike	Bike		Ped	Alt	Ped	Flash	Ext	Rest in
Phase	Green	Passage	Maxl	Max2	Yellow	Red	Delay	Delay	Time	Mode	Green	Psg	Walk	Cir	Walk	Clr	Walk	Ped Clr	Walk
1	7	3.0	32	32	5.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
2	20	6.0	70	70	5.0	2,0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
3	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
4	7	3.0	35	35	5.0	1.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
5	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
6	0	0.0	0	0	3.0	0.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
7	0	0.0	0	0	3.0	0.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
8	0	0.0	0	0	3.0	0,0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
9	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
10	0	0.0	0	0	4.0	2.0	0,0	0.0	0	0-Advance	0	0	0	0			No	0	No
11	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
12	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
13	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
14	0	0.0	0	0	4.0	20	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No
15	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	D	No
16	0	0.0	0	0	4.0	2.0	0.0	0.0	0	0-Advance	0	0	0	0			No	0	No

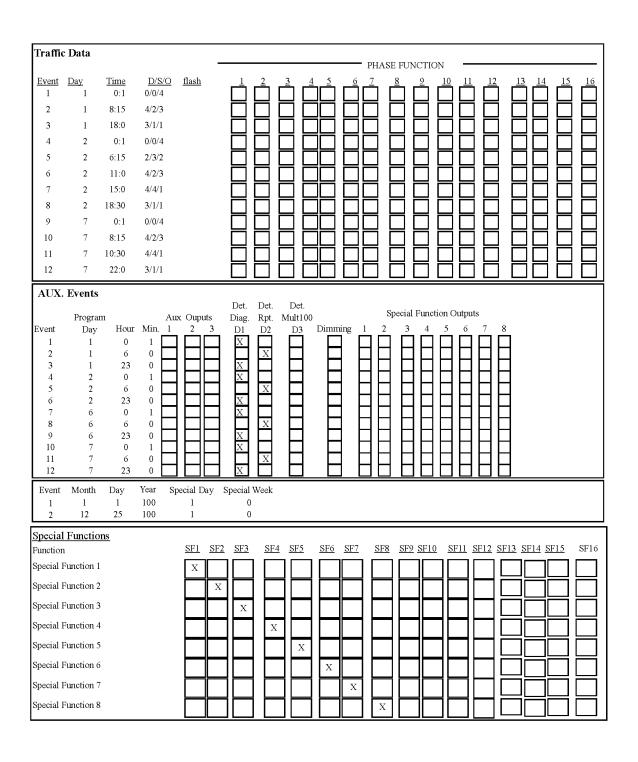
Vehic	le Densit	v Timin	gs				General Co	ntrol			Miscell	ancous			No	Special :	Sequence	ē.
Ph.	Added Initial	Max Initial	Time B4 Redu	Car B4 Redu	Time To Redu	Min Gap	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Car Pass	Condit Service	Simu Gap Out	Omit	Minus Yel	Omit Call
1	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
2	3.0	30	30	0	40	3.0	NonActl	Min	None	0	No	No	Yes	No	No	0	0	0
3	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
4	0.0	0	0	0	0	0.0	None	None	None	0	Yes	No	No	No	No	0	0	0
5	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
6	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
7	0.0	0	0	.0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
8	0,0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	Ü
9	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	Ω	0	Ω
10	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
11	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	()
12	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
13	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
14	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0
15	0.0	0	0	0	0	0.0	None	None	None	0	No	No	No	No	No	0	0	0

Page 1 of 14

16	0.0	0	0	0	0	0.0	Notic	None	None	0	No	No	No	No	No	0	0	0
Vel	hical Deta	ector P	hase As	signmen	ıt		Pedestrian	Detector					Speci	al Detec	tor Phase	Assignin	nent	
		Assign Phase	Mede	Switch Phase	Extend	Delay		Assign Phase	Moda	Switch Phase	Extend	Delay		Assi Pha	ign ise Modo	Switch Phase		. Delay
D	efault I	Data					Default	. Data					Defa	ult Da	ta			

Page 3 of 14


Channel	Control	Hardware Pins
1	1 - Veh Phase 1	1 - Phase 1 RYG
2	2 - Veh Phase 2	2 - Phase 2 RYG
3	3 - Veh Phase 3	3 - Phase 3 RYG
4	4 - Veh Phase 4	4 - Phase 4 RYG
5	5 - Veh Phase 5	5 - Phase 5 RYG
6	6 - Veh Phase 6	6 - Phase 6 RYG
7	7 - Veh Phase 7	7 - Phase 7 RYG
8	8 - Veh Phase 8	8 - Phase 8 RYG
9	18 - Ped Phase 2	10 - Phase 2 DPW
10	20 - Ped Phase 4	12 - Phase 4 DPW
11	22 - Ped Phase 6	14 - Phase 6 DPW
12	24 - Ped Phase 8	16 - Phase 8 DPW
13	33 - Overlap A	17 - Overlap A RYG
14	34 - Overlap B	18 - Overlap B RYG
15	35 - Overlap C	19 - Overlap C RYG
16	36 - Overlap D	20 - Overlap D RYG
17	17 - Ped Phase 1	9 - Phase 1 DPW
18	19 - Ped Phase 3	11 - Phase 3 DPW
19	21 - Ped Phase 5	13 - Phase 5 DPW
20	23 - Ped Phase 7	15 - Phase 7 DPW


Coordination Data			Dial/Split	Cycle
General Coordination Data			1/1	100
Operation Mode: 1=Auto	Offset Mode: 0-Beg Grn	Manual Dial: 1	1/3	115
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	2/3	130
Maximun Mode: 0=Inhibit	Max Dwell Time: 0	Manual Offset: 1	3/1	130
Correction Mode: 2=Short Way	Yield Period: 0		4/2	150
			4/3	170
			4/4	200

C-1:	4 T:	and Dhass Mas	1								
•	t 11mes 1/ Split	and Phase Mod	ies								
Ph.	_	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	20 1 / Split	0=Actuated	2	56	1=Coordinate	4	24	0=Actuated			
Ph.	_	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	25	0=Actuated	2	69	1=Coordinate	4	21	0=Actuated			
Dial : Ph.	2 / Split	3 Ph. Mode	Ph.	Splits	Ph. Mode	Dl	Colita	Ph. Mode	DI-	Culita	Dh. Mada
Pn.	Splits	Ph. Mode	Pn.	Spins	Ph. Mode	Pn.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	28	0=Actuated	2	64	1=Coordinate	4	38	0=Actuated			
	3 / Split										
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1 Dial	28 4 / Split	0=Actuated	2	64	1=Coordinate	4	38	0=Actuated			
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	36	0=Actuated	2	77	1=Coordinate	4	37	0=Actuated			
Dial -	4/ Split	3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	30	0=Actuated	2	109	1=Coordinate	4	31	0=Actuated			
Dial -	4/ Split	4									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
1	34	0=Actuated	2	132	1=Coordinate	4	34	0=Actuated			

Traffic Plan	Data			
Plan: 1/1/1	Offset Time: 69	Alternat Sequence: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0	Rg 4 Lag Time: 0
-	Mode: 0=Normal	Special Function: 0	Correction Mode: 0=No	
Plan: 1/3/1	Offset Time: 66 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 2/3/2	Offset Time: 86 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0
Plan: 3/1/1	Offset Time: 86 Mode: 0=Normal	Alternat Sequence: 0 Special Function: 0	Rg 2 Lag Time: 0 Rg 3 Lag Time: 0 Correction Mode: 0=No	Rg 4 Lag Time: 0

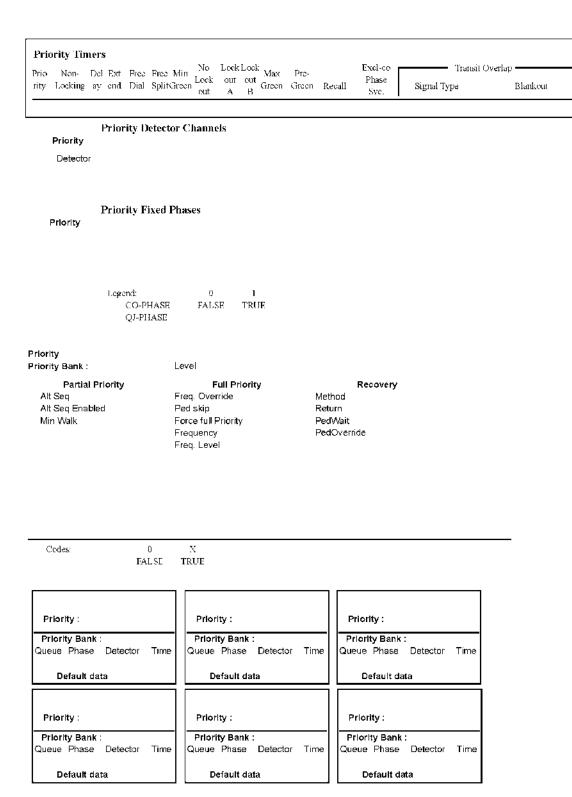
Page 6 of 14

Page 8 of 14

Phase Function																
ı	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Max2	Χ	Ш		\sqsubseteq	Ш	\bigsqcup	Щ	إلِــا		\square	Щ		\square	\square	Ш	닏
Phase 2 Max2		Χ			Ш		Ш	<u> </u>					Ш			
Phase 3 Max2			X													
Phase 4 Max2				X												
Phase 5 Max2					X											
Phase 6 Max2						X										
Phase 7 Max2							X									
Phase 8 Max2								X								
Phase Omit	PF1	PF	2 PF	73 PF	4 PF:	5 PF	6 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Phase Omit									X							
Phase 2 Phase Omit										X						
Phase 3 Phase Omit											X					
Phase 4 Phase Omit												X				
Phase 5 Phase Omit													X			
Phase 6 Phase Omit														X		
Phase 7 Phase Omit															X	
Phase 8 Phase Omit			1		1											X
- I I I I I I I I I I I I I I I I I I I						<u> </u>	<u></u>					<u> </u>				
Ped Omit	PF	PF	² 2 PI	F3 PF	4 PF:	5 PF	6 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
	PF	PF	² 2 PI	F3 PF	4 PF:	5 PF	6 PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
	PFI			F3 PF] [PF10	PF11	PF12	PF13 PF13	PF14	PF15	PF16
Ped Omit] [
Ped Omit] [
Ped Omit Veh Det Coord ReSve		PF	F2 P		74 PF	5 PF	6 PF7	7 PF8	PF9							
Ped Omit Veh Det Coord ReSve	PFI	PF	F2 P	F3 PF	74 PF	5 PF	6 PF7	7 PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit Veh Det Coord ReSve	PFI	PF	F2 P.	F3 PF	64 PF	5 PF	6 PF7	7 PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall	PF	PF	F2 P.	F3 PF	4 PF	5 PF	6 PF7	7 PF8	PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15 PF15	PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall	PF	PF	F2 P1	F3 PF	4 PF	5 PF 5 PF 5 PF	6 PF7	7 PF8 PF8	PF9 PF9	PF10 PF10	PF11 PF11	PF12 PF12	PF13 PF13	PF14 PF14	PF15 PF15	PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall	PF1	PF	F2 P1	F3 PF	4 PF	5 PF 5 PF 5 PF	6 PF7	7 PF8 PF8	PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall	PFF PFF	PP	P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P	F3 PF F3 PF F3 PF	4 PF	5 PF 5 PF 5 PF	6 PF7	PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSvc Function Phase Recall Phase Min Recall Veh Det Ped Recall	PF1	PP	P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P	F3 PF	4 PF	5 PF 5 PF 5 PF	6 PF7	PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13	PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall	PFF PFF	PP	P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P	F3 PF F3 PF F3 PF	4 PF	5 PF 5 PF 5 PF	6 PF7	PF8 PF8	PF9 PF9 PF9	PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall	PFF PFF	PP PP PP PP PP PP PP PP PP PP PP PP PP	F2 P1 P1 P2 P1 P1 P1 P2 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	F3 PF F3 PF F3 PF	4 PF	5 PF 5 PF 5 PF 5 PF	6 PF7	7 PF8 PF8 PF8 7 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PFT PFT PFT	PP PP PP PP PP PP PP PP PP PP PP PP PP	F2 P1 P1 P2 P1 P1 P1 P2 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	F3 PF F3 PF F73 PF F73 PF	4 PF.	5 PF 5 PF 5 PF 5 PF	6 PF7 6 PF7 6 PF7	7 PF8 PF8 PF8 7 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function	PFT PFT PFT	PF	F2 P1 P2 P1 P2 P2 P1 P2 P2 P1 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	F3 PF F3 PF F73 PF F73 PF	4 PF. 4 PF. 4 PF.	5 PF 5 PF 5 PF 5 PF	6 PF7 6 PF7 6 PF7	7 PF8 PF8 PF8 7 PF8 7 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16
Ped Omit Veh Det Coord ReSve Function Phase Recall Phase Min Recall Veh Det Ped Recall Veh Det Bike Recall Vehicle Function Veh Det Switch Omit	PF PF PF PF PF PF PF PF PF PF PF PF PF P	PF PF PF PF PF PF PF PF PF PF PF PF PF P	F2 P1 P2 P1 P2 P2 P1 P2 P2 P1 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	F3 PF F3 PF F3 PF F3 PF	4 PF. 4 PF. 4 PF.	5 PF 5 PF 5 PF 5 PF	6 PF7 6 PF7 6 PF7 6 PF7	7 PF8 PF8 PF8 7 PF8 7 PF8	PF9 PF9 PF9 PF9	PF10 PF10 PF10 PF10 PF10 PF10	PF11 PF11 PF11 PF11 PF11	PF12 PF12 PF12 PF12 PF12 PF12	PF13 PF13 PF13 PF13 PF13	PF14 PF14 PF14 PF14 PF14	PF15 PF15 PF15 PF15 PF15	PF16 PF16 PF16 PF16 PF16

Page 9 of 14

Veh Det	Switch Als	so PF1 PF	72 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16		
Overlap :	Function	PF1 P	F2 PF3 PF4	PF5 PF6	PF7 PF8	PF9 PF10	PF11	PF12	PF13	PF14	PF15	PF16		
l	Dimming Data Default Data - No Dimming Programmed													
Lane De	efination Name	Green Inbound	Yellow Inbound	Red Inbound	Green Outbound	Yellow Outbound		_						
Default 1	Default Data - Lane Defination													
progra	am day	program hour	<u>program</u>	minute Lane	<u>PhFun</u>									


Preemption Data

General Preemption Data											
Preempt > Flash Preempt 1 > Preempt 2	Preempt 2 > Preempt 3 Preempt 3 > Preempt 4	Preempt 4 > Preempt 5 Preempt 5 > Preempt 6									

Preempt	Preem Non- Locking	npt Time Link to Preempt		Ext end	Dura tion	Max Call		Min Green		Debo unce		Ped Clear	elect Yel	Red	Grn	Track Ped	Yel	Red	Dwell Green	Re Ped Clear	turn Yel	Red
1	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0	0	0	8	40	20	10	8	40	20	10	8	40	20

Preempt 1		Preempt 2			Preempt 3			1	Preempt	t 4]	Preempt	t 5	Preempt 6			
Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls	Phase	Exit Phase	Exit Calls
1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes
2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes	2	No	Yes
3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes
4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes
5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes
6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes	6	No	Yes
7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes
Q	No	Ves	R	No	Ves	R	No	Ves	8	No	Yes	R	No	Ves	8	No	Yes

Page 10 of 14

Page 11 of 14

Priority : Bank Detector	PE	1A Def ai	2A ult Data	ЗА	4 A	5A	6A	В	Priority : Bank Detector	PE	1A Defa	2A oult Dat	3A :a	4A	5A	6 A	В
Priority : Bank Detector	PE	PE 1A 2A 3A 4A 5A 6A B Default Data					Priority : Bank Detector	: PE 1A 2A 3A 4A 5A 6A E Default Data									
Priority : Bank Detector	PE	1A De fa	2A ult Data	3A	4A	5A	6A	В	Priority: Bank Detector	PE	1A De fa	2A ult Dat	3A a	4A	5A	6A	В
Preempt Ph. Track	Vehical	Phases vell	Cycle		Ph Tracl		destrian Dw		s Cycle	Ovlp	• Traci		ps Cy	cle	Trail	Gm	
Preempt 2 Vehical Phases Ph Track Dwell Cycle					Default Ph. Track Default	edestri.	a u Pha s Dwell		Cycle	Overlaps Ovlp. Track Dwell Cycle Trail Grn Default Data							
Default Defaul	3 Vehical	Phases vell	Cycl			edestri	an Phas Dwell		Cycle		Track	Overla	Cyela	elo Trail <mark>Grn</mark>			
Default 12 Preempt Ph. Track	4 Vehical	Phases Owell	Cycl		Default Po Ph. Track	edestria	an Phase Dwell		Cycle	Default Data Overlaps Ovlp Track Dwell Cycle Tra							_
Default E Preempt		Phases		ı)efault Pe		on Phase	es.		Defa	ult Da			_			
Ph. Track Default D Preempt	Dv Data	vell	Cycl		h. Track Default.		Dwell		Cycle	Ovlp. Defa	Track)well	Cycle	Th	rail Grn	
Ph. Track	Vehical	Phases Iwell	Су	_	h Track		an Phase Dwell		Cycle	Ovlp.			ps well	Cycle	Ti	rail Grn	
Default D	Data]	Default 1	Data				Defa	ult Da	ta					

Page 12 of 14

System	/Detecto	rs Data														
Local Cri	itical Alan	ms					Reve	rt to Bac	ekup: 15		1st Phone:					
Local Free:	No Cyc	le Failure:	No	Coord Fa	ilure: No	Conflict F			te Flash:	No 2	2nd Phone:					
Local Fash:	No Cyc	ele Fault: N	lo i	Coord Fa	ult: No	Premption	: No	Voltag	ge Monit	or: No						
Special Stat	us 1: No	Special S	Status 2:]	No Si	pecial Statu	s 3: No - 5	Special Stat	his 4: No	o Sr	ecial Status	5: No	Special Sta	itus 6: No			
-	Responsivo		Jenes 2		occini onici	00.110	special ball	1. 1.	0 0	com oma	3.110	opeciai ou	1003 0. 140			
System Detector	Detector	Name		werage ne(mins)	Occupar Correction	,	ш	eue 1	System Detector	-	Queu Detect	,	_			
Default Da	ıta						Defa	ult Data	1		Defaul	t Data				
Sample Int	erval:			Queue:	1 Input	t Selection:	0=Averag	ge	Queue	:						
					Dete	ctor Failed I	Level : 0		Level	Enter	Leave	Dial / Sp	lit / Offset			
				Queue:	2 Input	t Selection:	0=Averag	ge				//				
					Dete	ctor Failed I	Level : 0		Defaul	t Data						
Vehical D	etector				Vehical D	etector				Special De	tector					
	Diag	nostic Valı	1e 0			Diag	nostic Valu	ne 1			Diag	mostic Valu	e 0			
	Max	No	Erratic			Max	No	Erratic	;		Max	No	Erratic			
Detector	Presence	Activity	Count		Detector	Presence	Activity	Count		Detector	Presence	Activity	Count			
1	15	0	75		1	10	0	75 75		1	15	0	75 75			
2	15	0	75 75		2	10	0	75 75		2	15	0	75 75			
3	15	0	75			10	0	75		3	15					
4	15	0	75		4	10	0			4	15	0	75 75			
5	15	0	75		5	10	-	75		5	15	0	75			
6	15	0	75		6	10	0	75		6	15	0	75			
7	15	0	75		7	10	0	75		7	15	0	75			
8	15	0	75		8	10	0	75		8	15	0	75			
										Default 1	Data - No	Diag 0 V	Valu 💮			
Pedestria	n Detector				Pedestriai	1 Detector				Special Detector						
	Diag	nostie Valı	1e 0			Diag	nostic Valu	ne 1		Diagnostic Value 1						
	Max	No	Erratic			Max	No	Erratio	;		Max	No	Erratic			
Detector	Presence	Activity	Count		Detector	Presence	Activity	Count		Detector	Presence	Activity	Count			
1	15	0	75		1	10	0	75		1	10	0	75			
2	15	0	75		2	10	0	75		2	10	0	75			
3	15	0	75		3	10	0	75		3	10	0	75			
4	15	0	75		4	10	0	75		4	10	0	75			
5	15	0	75		5	10	0	75		5	10	0	75			
6	15	0	75		6	10	0	75		6	10	0	75			
7	15	0	75		7	10	0	75		7	10	0	75			
8	15	0	75		8	10	0	75		8	10	0	75			
Default	Data - No	Diag 0	Values		Default	Data - No	Diag 1 V	Values		Default :	Data - No	Diag 1	Values			
Speed Tr	ran Data									Speed Trap	Spe	eed Trap				
Speed T	-						Dial/Sp	olit/Offse	et I	ow Treshol		Treshold				
Sprou I	*	easureme	ent:				//									
D	i Di	2 5					Defau	lt Data	a							

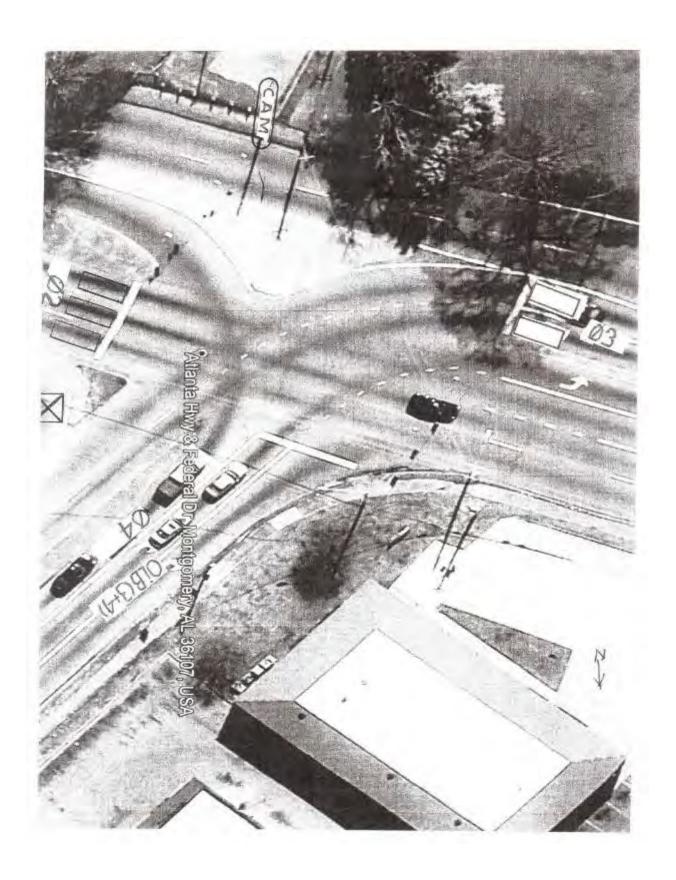
Default Data

Detector 1 Detector_2 Distance:

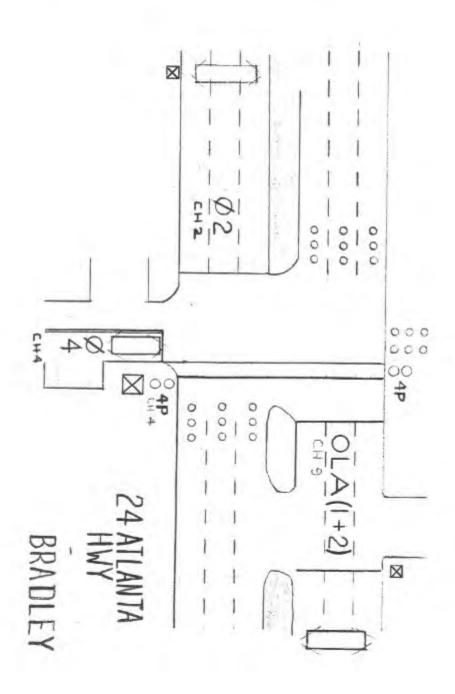
Page 13 of 14

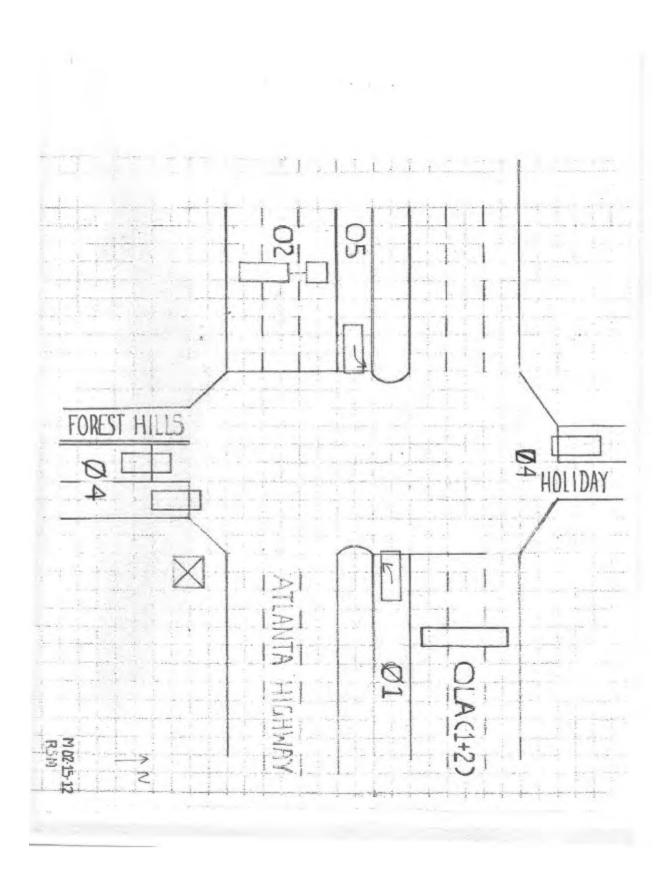
Default Data

Volume Detector Data


Report Interval ()

Volume Controller Detector Detector Number Channel


Default Data


Page 14 of 14

Appendix D: Phasing Diagrams

