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EXECUTIVE SUMMARY 

The American Association of State Highway and Transportation Officials (AASHTO) provides 
basic guidance for state transportation agencies (STAs) on the preparation of construction cost 
estimates using bid data from previous construction projects. However, these guidelines are too 
general to effectively guide estimators on the effective implementation of bid-based cost 
estimating, which is the most common estimating approach used by STAs. Accurate and reliable 
estimates are required to effectively support STAs’ planning and investment decisions. Thus, poor 
implementation of this cost estimating approach could potentially lead to an inefficient use of 
public resources. The research efforts presented in this report are intended to help the Alabama 
Department of Transportation (ALDOT) overcome this issue by proposing a bid-based cost 
estimating system that facilitates the leverage of available historical bid data to maximize 
estimating effectiveness. 

The proposed system integrates various statistical and data analytics techniques intended to model 
the cost impacts of four different factors on transportation projects in Alabama: 1) project scale, 
2) time, 3) location, and 4) estimating uncertainty. The influence of project scale on construction 
costs is associated with the economies of scale principle. According to this principle, lower unit 
prices should be expected from larger quantities of work since applicable fixed costs can be 
distributed among a greater number of work units. This quantity-unit price relationship was 
modeled in this study using non-linear regression equations at the pay item level. 

The time factor in this study is associated with two issues that arise when old data is used to 
estimate current prices. The first issue is the determination of an optimal number of years of 
historical data that should be used in bid-based estimating. This report includes a methodology to 
assist ALDOT in the effective determination of look-back periods. It consists of an innovative 
Moving-Window Cross-Validation (MWCV) approach designed to measure the estimating 
performance of the system under different look-back periods ranging from one to five years. This 
iterative process allows for the identification of the optimal amount of historical data that would 
maximize estimating effectiveness.  

Defining an optimal look-back period is a critical aspect of bid-based cost estimating. However, it 
still does not address that fact that old data is being used to estimate current prices. Cost estimating 
systems based on historical data may be more effective at estimating prices for projects in the past 
and less effective for current projects. This is the second time-related issue identified and addressed 
in this study. This issue was tackled using construction cost indexes (CCIs) to adjust bid-based 
estimates according to observed fluctuations in construction prices. A total of 20 cost indexing 
alternatives were evaluated to find the one that offers the best estimating accuracy and reliability.     

The location factor refers to the fact that different geographic conditions bring different types of 
challenges and project requirements. Therefore, different prices could be expected for the same 
type of work or construction activity in different geographic locations. A location cost index (LCI) 
has been developed in this study to compare construction prices across three different regions in 
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Alabama (north, central, and south) and to adjust cost estimates according to their respective 
geographic location.  

The last cost-influencing factor considered in the proposed system, estimating uncertainty, refers 
to the quantification of the unavoidable uncertainty inherent in construction cost estimating. This 
factor was incorporated via probabilistic analysis to convert traditional deterministic estimates into 
risk-based cost estimates. A risk-based estimate, as defined in this study, is assumed to represent 
all possible cost scenarios, and their probability of occurrence, in the form of a probability 
distribution function. This type of estimate allows agencies to make estimating decisions under 
different levels of risk.   

The study was conducted with historical bid data provided by ALDOT for all projects awarded 
between 2006 and 2016 (over 3,600 projects). The report illustrates the application of the proposed 
cost estimating system and validates its effectiveness using a pay item frequently included in 
ALDOT’s construction contracts. The implementation and validation processes are presented in a 
detailed manner so that it can be repeated for other pay items. The selected case study item is the 
hot mixed asphalt pay item most commonly used by ALDOT (Item ID 424A360). This is 
considered by the authors as the most relevant pay item used by this agency in terms of frequency 
of use and dollar expenditure. 

Finally, the results from the case study item were analyzed to determine the level of effectiveness 
of the cost estimating system. Effective cost estimating is defined in this study as the capacity of 
STAs to maximize estimating accuracy and reliability, with accuracy referring to a measure of 
central tendency among observed estimating errors, and reliability being the degree to which the 
system yields a sustained level of accuracy across all projects. The MWCV approach was not only 
used to define an optimal look-back period, but also to quantify the improvement in estimating 
effectiveness offered by each of the four cost-influencing factors. The validation process, via 
statistical testing, revealed that each factor, if appropriately incorporated into the estimating 
process, has the potential to significantly improve cost estimating effectiveness.  

Additional research validation efforts were performed to compare the proposed system against 
ALDOT’s current cost estimating practices, revealing an improvement in estimating reliability 
when using the system presented in this report to estimate unit prices for the case study item. 
However, this improvement in reliability was not found to be statistically significant. On the other 
hand, the proposed system was significantly superior in terms of accuracy, with an overall 
improvement in estimating accuracy of 15% with respect to ALDOT’s current practices. These 
results are very promising when considering that observed improvements were obtained by 
processing only data extracted from ALDOT’s bid tabulations. There is great potential for further 
improvement through the integration of the proposed system with the experience and knowledge 
of ALDOT’s estimators. This integration could help to refine the system through a better 
understanding of major cost-influencing factors, as well as through the potential identification of 
additional factors that could be modeled and incorporated into the cost estimating process.    
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 

The U.S. transportation infrastructure network includes over four million miles of roads, from 
interstates to residential streets (ASCE, 2017). “In 2016 alone, U.S. roads carried people and goods 
over 3.2 trillion miles –or more than 300 round trips between Earth and Pluto” (ASCE, 2017), 
making it one of the most critical national infrastructure elements. State transportation agencies 
(STAs) play a key role in the planning, design, construction, operation, and maintenance of the 
highway network in the U.S. These duties and responsibilities are carried out with funding coming 
from various sources, including federal-aid programs and vehicle fuel taxes and registration fees 
collected at the state and federal level (Iowa DOT, 2017). The American Society of Civil Engineers 
(ASCE) estimates that in 2014, federal and state governments spent over $160 billion updating, 
operating, and maintaining the highway infrastructure system. Even though it may look like a 
massive investment in public infrastructure, the same study revealed that such levels of investment 
are not sufficient to satisfy the current needs of the national highway network. “The U.S. has been 
underfunding its highway system for years, resulting in an $836 billion backlog of highway and 
bridge capital needs” (ASCE, 2017). 

This underfunding situation is one of the main causes of the rapidly deteriorating transportation 
infrastructure network and is affecting taxpayers in several ways, including increased vehicle 
operating costs, longer commute times, higher crash and traffic fatality rates, and increased 
pollution due to the longer commutes (Miller and Gransberg, 2014; ASCE, 2017). The increasing 
gap between available and needed funding is also affecting STAs ability to guarantee an optimal 
use of their limited available resources. The ability of STAs to offer the best value for taxpayers’ 
money depends, in part, on the effectiveness of their cost estimating systems. Sound estimates of 
the expected costs of addressing current and foreseen infrastructure needs facilitate an effective 
allocation of resources through reliable cost-benefit analyses.  

As a contingency measure to mitigate the impact of the unavoidable, increasing funding gap, STAs 
have been intensifying their efforts towards the improvement of cost estimating practices. This 
report is contributing to those efforts by proposing a methodology to improve what has become 
the estimating approach most commonly used by STAs: historical bid-based cost estimating 
(AASHTO 2013). 

Bid-based estimating refers to the use of bid data from previously awarded projects to estimate 
unit prices for current or future projects (AASHTO 2013). Previous research has found that this 
estimating approach is used to some extent by all STAs (Anderson et al. 2009; Schexnayder et al. 
2003). The Practical Guide to Cost Estimating, published by the American Association of State 
Highway and Transportation Officials (AASHTO) (2013), provides some guidance on the 
preparation of bid-based cost estimates. However, these guidelines are not presented at the level 
of detail required to effectively guide STAs on the implementation of bid-based cost estimating 
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systems. This lack of guidance is preventing STAs from taking full advantage of their vast 
databases to improve their cost estimating practices. This report is aimed to guide the Alabama 
Department of Transportation (ALDOT) on the use of a cost estimating framework designed to 
exploit the unused potential of its historical bid data as a means to improve cost estimating 
accuracy and reliability.  

The proposed bid-based cost estimating system integrates various statistical and data analytics 
techniques, including advanced data cleaning procedures, non-linear regression modeling, time 
series analysis, and various statistical significance tests. The system has been designed to account 
for the impact of four key cost-influencing factors in the estimation of construction costs of 
transportation projects in Alabama. These factors are: 1) project scale, 2) time, 3) location, and 4) 
estimating uncertainty. The proposed system produces a deterministic cost estimate after assessing 
scale, time, and location impacts (the first three factors). The fourth factor is then used to convert 
the deterministic estimate into a risk-based cost estimate using the distribution of percentage errors 
obtained during the validation of the deterministic process. A risk-based estimate, as defined in 
this study, consists of a range of possible construction cost values with their respective probability 
of occurrence. Risk-based estimates are represented by probability distribution functions that 
facilitate decision-making under different levels of risk.       

The study was conducted with historical data extracted from ALDOT’s bid tabulations for all 
projects awarded between 2006 and 2016 (over 3,600 projects in eleven years). The report 
illustrates the application of the proposed cost estimating system and validates its effectiveness 
using a pay item frequently found in ALDOT’s construction contracts. The application of the 
system on the selected case study item is presented in a step-by-step fashion and with a sufficient 
level of detail to facilitate its eventual application on other pay items. The case study item (Item 
ID 424A360) is considered by the authors as the most relevant pay item used in ALDOT’s 
construction projects in terms of frequency of use and dollars expenditure. This is a hot mixed 
asphalt pay item defined in ALDOT’s contracts as a superpave bituminous concrete wearing 
surface layer with a maximum aggregate size of 1/2". The system is used to estimate unit prices 
for this item on a tonnage basis, including the cost for “all materials, procurement, handling, 
hauling, and processing cost, […] all equipment, tools, labor, and incidentals required to complete 
the work” (ALDOT 2018). 

Finally, a three-part research validation process was implemented to assess the performance of the 
proposed cost estimating system when applied to the case study item. The following is a brief 
description of each of the three parts of the validation process: 

• Research Validation Part 1 is aimed to assess the estimating improvement offered by each 
of the first three cost-influencing factors in the generation of deterministic cost estimates. 
This assessment is performed using an innovative Moving-Window Cross Validation 
(MWCV) algorithm. Part 1 also allows estimators to determine the optimal amount of years 
of historical bid data that should be used to maximize estimating effectiveness. Results from 
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Part 1 are used in the other two parts of the validation process to compare the performance 
of the proposed methodology against ALDOT’s current cost estimating system.   

• Research Validation Part 2 is conducted to compare the overall deterministic performance 
of the proposed cost estimating system, with the first three factors and the look-back period 
identified in Part 1, against ALDOT’s current cost estimating practices. 

• Research Validation Part 3 is intended to compare the overall stochastic performance of 
the proposed cost estimating system against ALDOT’s current cost estimating practices. In 
other words, Part 3 is intended to test the performance of the risk-based cost estimates 
obtained with the system against ALDOT’s cost estimate ranges. 

When applied to the case study item, all three parts of the validation process yielded positive results 
in favor of the proposed bid-based cost estimating system, demonstrating that ALDOT’s current 
cost estimating practices could still be significantly improved through an appropriate utilization of 
its historical bid data. The fact that these positive results were obtained by processing only data 
provided in ALDOT’s bid tabulations suggests that there is still considerable room for 
improvement if other sources of project-specific information are considered and if the experience 
and empirical knowledge of ALDOT’s estimators are used to refine the system. 

The following sections in this chapter present some relevant background information intended to 
facilitate the understanding of this report and summarize the research objectives that motivated 
this study. 

1.2 Alabama Department of Transportation – Facts and Funding 

Alabama has over 102,000 miles of public roads. This number includes all types of roads; 
freeways, arterials, collectors, local roads, and neighborhood streets (ASCE, 2017). The ASCE 
estimates that about 60% of all travel miles in Alabama occur on the 11,000 miles of federal and 
state highways operated and maintained by ALDOT (ASCE 2017; ASCE 2015). A study 
conducted by ALDOT in 2014 revealed that only 51% of these 11,000 miles can be considered to 
be in good condition, while 40% were rated as fair, and the remaining 9% as poor or very poor 
(ASCE, 2015). A report published in 2016 by TRIP, a nonprofit national transportation research 
group, shows that the percentage of roads in poor and very poor condition increased from 9% to 
11% during a two-year period of time (TRIP, 2016). The TRIP’s study also estimates that deficient 
roads are costing Alabama motorists about $1.5 billion a year in extra vehicle operating costs and 
repairs. This number does not include the additional almost $2 billion a year due to motor vehicle 
crashes and congestion costs (ASCE, 2015). 

ALDOT’s current funding situation, and the condition of its infrastructure assets, is not very 
different from the current situation of the other STAs nationwide. STAs across the country are 
currently looking for strategies that allow them to maintain the expanding highway network with 
a shrinking funding stream (Taylor and Maloney 2013). In view of the lack of sufficient funding, 
ALDOT has been modifying its resource allocation strategies to spend less to make needed 



4 
 

improvements, and more to maintain existing roads and bridges open and in acceptable condition 
(ASCE, 2015). “Without an increase in funding, Alabama will no longer be able to make needed 
improvements and is facing significant impacts to highway conditions and safety and risks losing 
economic development opportunities in the future” (ASCE, 2015). Unfortunately, there is little 
ALDOT can do to increase its funding stream. ALDOT’s budget is built with funding from 
multiple federal, state, local sources (ALDOT, 2015). Federal and state gasoline and diesel taxes 
are the main sources of transportation funding. These taxes are collected as a fixed-rate for every 
gallon of fuel purchased. The federal gas tax rate has not increased since 1993 (ASCE, 2015). On 
the other hand, in March 2019, the Alabama State Legislature approved the Rebuild Alabama Act, 
which included an increase of 10 cents in the state gas tax. This is the first increase in the Alabama 
gas tax since 1992 (ASCE, 2015). This means that the government has collected exactly the same 
amount of cents on every gallon of fuel purchased for more than 25 years, a situation recognized 
in the literature as one of the main causes of the increasing funding gap (Miller, 2015). Although 
the recent increase in the state gas tax will definitely contribute to reducing the funding gap, it is 
not expected to fully address the backlog of existing transportation infrastructure needs in 
Alabama.            

Recognizing their funding constraints, and their limited ability to increase their funding capacity, 
STAs have been investing efforts in the optimization of their resource management systems to 
ensure that their shrinking budgets are effectively invested to maintain the transportation 
infrastructure system in the best possible condition with the available resources. Effective resource 
management systems count with reliable procedures to prioritize infrastructure needs based on 
cost-benefit analyses, which rely on the effectiveness of STAs’ cost estimating practices. This is 
how the methodology proposed in this report will contribute to improving ALDOT’s budget 
control and management capabilities –by facilitating a more effective use of ALDOT’s historical 
bid data to produce better construction cost estimates.      

1.3 Challenges in Construction Cost Estimating  

In project management, a project is defined as a “temporary endeavor undertaken to create a unique 
product, service, or result” (PMI 2013), and these endeavors usually demand the consumption of 
different types of resources (i.e., money, time, materials, and labor/equipment hours). Under this 
definition, cost estimating is the process used to predict the required amount of a specific type of 
resource: money. The required amount of money is associated with the required quantities for other 
resources. Higher costs are expected from larger projects that require a significant consumption of 
materials and labor/equipment hours.  

Cost estimating processes are used in all industries and businesses, not only on construction 
projects. However, unlike other industries, a single construction owner or contractor might need 
to manage a highly diversified project portfolio in terms of project-specific scopes, designs, and 
requirements. Each construction project is characterized by a unique combination of several 
factors, including project objectives, deliverables, location, environmental requirements, technical 
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complexity, etc. This uniqueness, and the fact that it is virtually impossible to accurately quantify 
the impacts of all these factors on a project, makes construction cost estimating a particularly 
challenging process.   

From a construction owner's perspective, cost estimates are commonly used to define the project 
scope, to determine whether or not a project should proceed, and to allocate the required funds for 
its completion (AASHTO 2013). On the other hand, a construction contractor may use cost 
estimates to assess its financial capacity to undertake a given project and to prepare a bid for an 
owner. In both cases, cost estimates are basically used for risk assessment purposes, to support 
business decisions, and to maximize returns from project portfolios. Thus, effective cost estimating 
could be translated into effective decision-making and greater returns for owners or contractors 
(Fakültesi and Zeynep 2004; Arafa and Alqedra 2011; Byrnes 2002). 

The selection of projects for funding is becoming more challenging for STAs due to the increasing 
gap between available resources and those actually required to maintain the national transportation 
infrastructure in optimal conditions. This situation is demanding more effective resource allocation 
and cost estimating practices by transportation public owners. The 2013 Report Card for America’s 
Infrastructure (ASCE 2013), published by the U.S. Society of Civil Engineers (ASCE), estimates 
that “32 percent of America’s major roads are in poor or mediocre condition, costing U.S. motorists 
more than $67 billion a year […] in additional repairs and operating costs.” The same study has 
found that about $170 billion should be invested annually to improve the current conditions and 
performance of all roads and bridges across the country by 2028. However, only $91 billion is 
currently being assigned for this purpose (ASCE 2013). The evident growth in this gap during the 
last two decades led to the enactment of the Moving Ahead for Progress in the 21st Century Act 
(MAP-21), through which the federal government allocated over $105 billion to surface 
transportation programs (U.S. Congress 2012). To ensure the best value for taxpayers’ money, and 
recognizing the limitations of traditional deterministic cost estimating practices, MAP-21 also 
requires STAs to develop and implement better cost estimating and risk control strategies (U.S. 
Congress 2012) such as the bid-based cost estimating system presented in this report.     

1.4 Factors Influencing Construction Cost Estimating  

The main challenges faced by STAs in their efforts to produce effective cost estimates are 
associated with their capacity to identify, understand, and model the impacts of cost-influencing 
factors. Thus, one of the first steps in this study was to conduct a literature search to identify key 
factors impacting the effectiveness of cost estimating practices in the transportation construction 
industry. Project scale, time, geographic location, and estimating uncertainty are identified in the 
literature as major cost-influencing factors. Those are also the factors considered in this report. 
Those four factors, and the approaches used to include them in the proposed methodology, are 
described in the following subsections. 
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1.4.1 Project Scale 
Project scale refers to the size of the project, which is usually reflected in the project budget, 
schedule, physical dimensions, and overall consumption of resources (Odeck 2004). It is usually 
assumed that larger projects have higher costs. Although this is a valid assumption, the relationship 
between these two parameters is not linear. The relationship between project scale and unit prices 
is defined by the concept of economies of scale (Akintoye 2000). “Economies of scale refers to a 
reduction in total cost per unit as output increases” (Betts 2007). The higher the quantities of work, 
the lower the unit price (Zhang and Sun 2007; Akintoye 2000).  

Figure 1.1 illustrates the concept of economies of scale using unit prices for the case study item in 
bids received by ALDOT between 2012 and 2016. As shown in this figure, the quantity-unit price 
relationship for this item can be modeled using a non-linear regression equation. This type of 
model is actually how this study incorporated the project scale into the proposed cost estimating 
system. A detailed description of the non-linear regression models developed in this study is 
presented in Chapter 3 of this report. 

 
Figure 1.1 Quantity and unit price relationship for case study item (Item ID 424A360). 

1.4.2 Time 
The ability to track changes in the construction market over time is a major challenge faced by 
STA estimators (Shane et al. 2009). Fluctuations of construction prices may occur due to 
inflationary trends at industry or commodity-levels, changes in demand conditions of labor and 
materials, changes in interest rates, or seasonal effects (Xu and Moon 2011; Zou, Zhang, and Wang 
2007). In the context of this study, the time factor is associated with the constant fluctuations of 
construction prices over time. The total cost of a given project today is not expected to be equal to 
the cost of the same project a year ago or next year. More specifically, the time factor is considered 
in this study to answer two questions that arise when data from old projects are used to produce 
cost estimates for current projects:  

1. How much historical data should be used? 
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2. How can old prices be adjusted to reflect current construction market conditions?     

The first question refers to the determination of the optimal number of years of historical data that 
should be used in bid-based estimating. When defining a look-back period for data retrieval in bid-
based estimating, STAs usually face two conflicting requirements: 1) the amount of historical bid 
data must be large enough to allow for a valid and reliable statistical analysis; and 2) the historical 
bid data must be recent enough to effectively reflect current market conditions in the construction 
industry. The conflict between these two requirements lies in the fact that larger datasets can be 
obtained with longer look-back periods, but it implies the use of older data that could not 
effectively reflect current pricing trends. Thus, the look-back period should be long enough to 
include sufficient data to model price fluctuation trends, but not too long that older (and now 
irrelevant) trends do not affect estimating accuracy. This report includes a methodology to assist 
ALDOT in the effective determination of look-back periods. This methodology consists of an 
innovative MWCV approach designed to evaluate different possible look-back periods ranging 
from one to five years in order to identify the optimal amount of historical data that would offer 
the optimal cost estimating effectiveness.  

The optimal look-back period must be identified before the actual implementation of the proposed 
cost estimating methodology on a given pay item. It indicates the amount of data that should be 
used to create the non-linear regression model used during system implementation. Knowing the 
optimal number of years of historical data that should be used in the regression models is a 
fundamental part of the proposed system. However, it still does not address that fact that old data 
is being used to estimate current prices. This fact refers to the second question stated above.  

Cost estimating systems based on past data might be more effective at estimating prices for projects 
in the past and less effective for current projects. Ideally, bid-based estimates should be adjusted 
to represent current market conditions. This type of price adjustment over time is commonly done 
using construction cost indexes (CCIs) (Rueda 2016), which is the approach adopted in this study. 
A total of 20 CCIs are evaluated in this report in order to find the one that offers the best estimating 
accuracy and reliability for the case study item. The selected CCI is then used to bring unit prices 
from the non-linear regression models into current dollars. The 20 indexing alternatives evaluated 
by the authors include twelve different CCIs developed in this study using ALDOT’s historical 
data and eight existing CCIs currently used in the construction industry.  

It should be noted that in the context of this study the time factor does not refer to the duration of 
construction projects. Even though the research team recognizes that the duration of a project has 
some impact on its cost, the study assumes that project duration is directly proportional to the 
project scale. Therefore, it can be said that this factor (project duration) has already been accounted 
for by the project scale factor. However, future research should evaluate the impact of project 
duration on ALDOT’s construction costs since this impact might not be fully accounted for 
through the assessment of the project scale factor.   
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1.4.3 Location 
Different geographic locations bring different challenges and project requirements. Therefore, 
different prices could be expected for the same type of work or commodity in different locations. 
Price variability across the country and at the state level depends on multiple factors including 
local climate and geological conditions, availability of qualified local labor, suppliers, and 
subcontractors, and local applicable regulations (Akanni, Oke, and Akpomiemie 2015; Cuervo and 
Sui 2003; Kaming et al. 1997). Traffic characteristics at the jobsite also affect costs in 
transportation construction projects since those dictate the strictness or laxity of traffic control 
requirements, increasing or reducing construction costs. 

The location factor has been addressed in this study by developing a location cost index (LCI) for 
the case study item. This index was developed by dividing the state of Alabama into three different 
regions: north, central, and south. The process to develop the LCI is described in Chapters 3 of 
this report.   

1.4.4 Estimating Uncertainty 
Traditional deterministic cost estimating practices have shown to have a limited capacity to cope 
with the current needs of the transportation construction industry since they fail to objectively 
account for the unavoidable and increasing uncertainty associated with the development of cost 
estimates. In an attempt to quantify this uncertainty, some STAs have already developed and 
implemented data-driven systems that produce risk-based estimates on a per project basis. These 
agencies include the STAs in Florida, Colorado, Washington State, Nevada, New Jersey, and 
Texas. A risk-based cost estimate is a range of possible construction costs with their respective 
probabilities of occurrence (ASCE 2013). These estimates are usually represented by probability 
distribution functions that allow STAs to make better estimating decisions under different 
confidence levels. In this study, deterministic estimates are converted into probability distributions 
by multiplying the deterministic value by a distribution of percentage errors obtained during Part 
1 of the validation process. A detailed description of the development of risk-based estimates is 
presented in Chapter 3. 

Figure 1.2 shows an example of a risk-based estimate for a given project. Using the probability 
distribution from Figure 1.2 (b), an agency could decide to set a base cost estimate of $51,600 for 
this project plus a contingency of $8,400 ($59,993 - $51,562 ≈ $8,400) if a 75% confidence level 
is desired. It means that the agency would be 75% confident of having enough funds to complete 
the project. The base cost estimate in this example corresponds to the 50% confidence level. Risk-
based estimates provide STAs with great flexibility to establish risk tolerance levels based on the 
specifics of each project. The budget contingency is intended to account for the uncertainty 
associated with unit price estimating errors, changes in quantities of work, and other variations in 
project costs due to potential change orders issued by the agency. Given that this study was 
conducted using historical bid data, the risk-based estimates presented later in this report only 
represent possible bid prices to be submitted by the winning contractor. These estimates do not 
correspond to expected costs at project completion. However, future research efforts to refine the 
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proposed system should analyze the impact of change orders issued by ALDOT during the 
construction of previous projects, as well as historical discrepancies between planned and actual 
quantities of work in order to produce risk-based estimates for total construction costs at project 
completion.     

 
(a)                                                                                 (b) 

Figure 1.2 Risk-based cost estimate – Example. 

 

1.5 Bid-Based Cost Estimating 

“There is a growing data torrent such that managers and potential users are ‘drowning in data while 
thirsting for knowledge’” (Woldesenbet, 2014). With this sentence, Woldesenbet is referring to 
the fact that public agencies have been spending a considerable amount of resources to collect, 
clean, and store large amounts of different types of data, but they lack the tools and skills to process 
this data into meaningful knowledge that could be exploited to improve various types of 
procedures undertaken by these agencies. The unused potential of existing STAs’ data could help 
to optimize procedures in virtually all management areas, including construction cost estimating.  

The use of historical bid data to estimate costs for current and future projects is not a new practice 
in the transportation construction industry. It has been used for decades and has become the most 
commonly used estimating approach among STAs (Anderson et al. 2009; Schexnayder et al. 
2003). However, it does not mean this is a mature approach that has been successfully refined over 
the years. Unfortunately, there is not much guidance for STAs on how to develop, implement, and 
update bid-based cost estimating systems, which often leads to an inefficient use of public 
resources due to a “trial and error” approach. Likewise, most STAs have not taken full advantage 
of the advanced data processing technologies and procedures available today (Woldesenbet, 2014).  

1.6 Effective Construction Cost Estimating 

This study has evaluated and modeled the impact of four key cost-influencing factors. Although 
these four factors account for most of the variability in construction cost estimating, there are still 
several other internal and external factors that are virtually impossible to identify and/or model. 
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Nonetheless, it would be unreasonable to condition effective cost estimating to perfect accuracy. 
Effective cost estimating is defined in this study as the capacity of STAs to maximize estimating 
accuracy and reliability. The validation process in this report was focused on the assessment of 
these two effectiveness parameters by applying the proposed system to a group of projects 
(hereinafter referred to as testing projects) for which actual bid prices are known. This allowed for 
a comparison between actual and estimated values.    

Accuracy is usually a measure of central tendency such as mean, median, and mode values. This 
parameter is defined in this report as the degree to which the system truly measures what it is 
intended to measure. The level of accuracy in a unit price estimated with the proposed system is 
given by the absolute percentage error (APE) calculated as shown in Equation 1.1. Equation 1.2 is 
then used to determine the overall accuracy of the system by averaging the APEs of all testing 
projects. This is called the mean absolute percentage error (MAPE). MAPE values are commonly 
used in the cost estimating literature to measure and compare accuracy levels between cost 
estimating models (Gardner 2015).  

𝐴𝐴𝐴𝐴𝐴𝐴 =  |𝐴𝐴𝑖𝑖−𝐸𝐸𝑖𝑖|
𝐴𝐴𝑖𝑖

× 100%            Eq. 1.1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ �𝐴𝐴𝑖𝑖−𝐸𝐸𝑖𝑖�

𝐴𝐴𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
× 100%       Eq. 1.2 

Where: APE = Absolute Percentage Error  
MAPE = Mean Absolute Percentage Error 
𝐴𝐴𝑖𝑖 = Actual unit price for intended item in testing project 𝑖𝑖  
𝐸𝐸𝑖𝑖 = Estimated unit price for intended item in testing project 𝑖𝑖  
n = Number of testing projects 
  

In quantitative modeling, reliability refers to the degree of consistency in the model’s outputs 
(Golafshani 2003). In the context of this study, reliability is the degree to which the proposed cost 
estimating system consistently yields similar APEs every time it is used. Reliability represents the 
amount of variability in APE values and is measured in this study as the standard deviation of 
APEs across testing projects. 

The concepts of accuracy and reliability are relative to the type of estimate and project phase during 
which they are produced. While conceptual estimates performed early in the planning phase are 
expected to have an accuracy between -50% and +200%, detailed construction cost estimates at 
design completion tend to be significantly more accurate with errors ranging between -5% and 
+10% (AASHTO 2013). It should be noted that the cost estimating approach presented in this 
report is intended to be applied at the pay item level and at design completion, or as soon as the 
bid quantity for the intended item is known. 
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1.7 Development of Proposed Bid-Based Cost Estimating System – Overview 

Figure 1.3 is a simplified representation of the process that ALDOT should follow to get the bid-
based cost estimating system ready for implementation.  

 
Figure 1.3 Development of proposed bid-based cost estimating system. 
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The process illustrated in this figure must be repeated for every pay item to be incorporated into 
the system. This section briefly summarizes the steps of this process, but they are explained in 
more detail throughout this report as they are applied to the case study item.After identifying a pay 
item to be added to the system, the next step in the process shown in Figure 1.3 is to define the 
elements required to account for the impact of the first three cost-influencing factors. To model 
the project scale impact, it is necessary to identify the type of non-linear regression model that 
reasonably explains the quantity-unit price relationship for the item under consideration. On the 
other hand, suitable construction and location cost indexes (CCI and LCI) must be 
selected/developed to incorporate the time and location factors into the system. As explained 
earlier in this chapter (Section 1.4.2), there are two elements associated with the time factor; 
however, only one, the CCI, is required at this early stage. The second time-related element, the 
optimal look-back period, is actually a byproduct of the MWCV in the first part of the research 
validation process. Once the elements for each factor are defined, their performance is assessed 
through the three-part research validation, but it is first necessary to identify the testing projects to 
be used to quantify the estimating effectiveness of the system. Guidelines on the selection of testing 
projects are provided in Chapter 3 of this report.  

Part 1 of the validation process corresponds to the proposed MWCV algorithm. It is intended to 
determine if each of the three input elements is actually contributing to the overall improvement 
in estimating accuracy and reliability at the deterministic level. After the contribution to estimating 
effectiveness offered by each input is demonstrated, Parts 2 and 3 of validation are used to compare 
the performance of the proposed methodology against ALDOT’s current cost estimating system, 
at the deterministic and stochastic level, respectively. A detailed description of the three-part 
validation process is provided in Chapter 4 of this report.   

If the deterministic and risk-based estimates produced with the proposed system show higher 
accuracy and reliability than those developed by ALDOT for the same item, it can be concluded 
that the system offers an effective performance for the intended pay item. Therefore, the system is 
ready for implementation on that specific pay item.  

1.8 Research Objectives 

The main objective of this study is to determine if an appropriate processing and analysis of 
historical bid data would improve the effectiveness of ALDOT’s construction cost estimating 
practices while allowing for the development of reliable risk-based cost estimates. The following 
sub-objectives have been identified as necessary steps to accomplish the main research objective: 

• Identify major cost-influencing factors in the transportation construction industry, and 
assess and model the relationship between each factor and construction prices paid by 
ALDOT. 
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• Design and develop a system that integrates the impacts of all cost-influencing factors in 
an attempt to maximize cost estimating accuracy and reliability in ALDOT’s construction 
projects. 

• Develop and implement a reliable research validation approach to demonstrate the 
effectiveness of the proposed cost estimating methodology. 

1.9 Organization of the Report 

This report has been organized intofive chapters, as follows:  

Chapter 1: Introduction and Background, describes the research problem that motivated this study, 
summarizes the fundamentals of bid-based cost estimating, and presents the main research 
objectives. 

Chapter 2: Literature Review, summarizes the existing literature on cost estimating, including 
previous studies and research reports. This chapter explains the cost estimating process across 
project development phases. It describes the different cost estimating approaches currently used 
by STAs, paying particular attention to bid-based and risk-based cost estimating, which are the 
primary concern of this study. 

Chapter 3: Research Approach, describes the research plan that led to the development of the cost 
estimating methodology proposed in this study. The research plan is presented in detail, describing 
all research procedures and tools used to develop and validate the proposed methodology. Chapter 
3 also describes the data analytics and statistical techniques used to model the impacts of the four 
cost-influencing factors on prices paid by ALDOT for the case study item. This chapter ends with 
the framework designed to integrate all identified factors to produce both deterministic and risk-
based cost estimates. 

Chapter 4: Development and Validation of Stochastic Bid-based Cost Estimating System, 
discusses the process to develop the proposed bid-based cost estimating and presents and analyzes 
the results from the three-part research validation approach designed to demonstrate the 
effectiveness of the proposed methodology at the deterministic and stochastic level.  

Chapter 5: Conclusions and Recommendations, summarizes the main conclusions, findings, and 
contributions to the body of knowledge made by this study and discusses the limitations. Finally, 
this chapter outlines some limitations associated with the research findings presented in this report 
and recommends some research topics that should be considered to further explore and develop 
this study’s findings and contributions. 
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CHAPTER 2. LITERATURE REVIEW 

 

2.1 Introduction 

Cost estimating is critical at any project phase, from conceptual design and planning to the 
operation and maintenance of infrastructure assets. The estimation of construction costs may be a 
complex process involving a number of challenges. It seems that it was not until the mid-1960s 
that these challenges started to be addressed through formal research. From 1965 onwards, there 
has been an exponential increase in research conducted on how to develop better and more 
effective cost estimating systems at all project phases (Trost and Oberlender 2003).  

Even though there is a great variety in the configuration and definition of project life cycle phases 
among STAs, in general, a construction project can be represented as a sequence of three phases: 
conceptual, engineering/design, and execution (Phaobunjong 2002). Each phase poses different 
estimating challenges and requirements. With the amount of project-specific information 
constantly increasing while a project moves from conception to project completion, the estimator’s 
understanding of the project also increases allowing for better cost estimating effectiveness 
(Manfredonia 2016). Figure 2.1 shows the classification of construction cost estimates based on 
the three generic project phases. 

 

 
Figure 2.1 Construction cost estimating phases (Adapted from Manfredonia 2016). 

First, a conceptual cost estimate is developed during the  early stages of project development. Since 
this is an early estimate, it is usually calculated with little information and with a roughly defined 
scope of work. Conceptual estimates are expected to be the most inaccurate among all estimates 
developed along the life cycle of construction projects (Phaobunjong 2002). Despite their low 
accuracy, conceptual estimates are highly necessary to determine the financial viability of 
candidate projects, to define feasible scopes of work, and to support other strategic business 
decisions (Liu and Zhu 2007). These estimates are used by both owners and contractors to design 
project portfolios that match their financial capabilities, as well as to quickly compare the cost 
implications associated with different construction methods and materials (Manfredonia 2016). 
The lack of project-specific information at this early phase makes it hard for estimators to produce 
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effective cost estimates (Kim, An, and Kang 2004); however, the existing literature provides a 
number of tools and methodologies to aid STAs on this matter (Fragkakis et al. 2010; Asmar et al. 
2011; Juszczyk 2013; Sonmez 2004; Phaobunjong 2002).   

A detailed cost estimate is then developed by the end of the engineering/design phase or at the 
completion of design work. This estimate is based on a detailed design for a well-defined scope of 
work, and depending on the type of contract being awarded, it is also based on the anticipated 
construction methods and materials, schedule constraints, required milestones, and deliverables 
(among other project-specific characteristics). Due to the detailed project-specific information 
available at this phase, detailed cost estimates are expected to be considerably more accurate than 
conceptual estimates (Phaobunjong 2002; Manfredonia 2016). This is the last estimating attempt 
made by owners before awarding a contract. This is commonly used to verify if the intended 
project is still feasible and to make any necessary adjustments to the project budget (AASHTO 
2013). These estimates are also intended to serve as a point of reference during potential price 
negotiations with contractors.  

Finally, the execution phase begins when the contract is awarded. The definitive cost estimate at 
this phase is given by the price proposal submitted by the selected contractor and/or any price 
negotiations held between the owner and the contractor before signing the contract. It is also 
referred to as the actual contracted price. This estimate is usually compared against the previously 
developed detailed estimate to determine if further budget adjustments are required (Manfredonia 
2016; Phaobunjong 2002). The contracted price is used for payment purposes and to monitor the 
financial status of the project throughout the construction period (Hendrickson and Au 1989). 

After the conceptual estimate, subsequent estimates are usually built using the previous cost 
estimate as the starting point (Hendrickson and Au 1989). Thus, each subsequent estimate can be 
considered as a revised version of the previous one, with the revision occurring in the light of the 
additional information that became available in between phases. It must be noted that all three 
types of estimates described in this section are equally important at their respective phases.  

Cost estimates developed with the system proposed in this study fall within the detailed estimating 
category. The system is aimed to be applied at design completion, or as soon as the expected 
quantity of work to be delivered by the selected contractor is known. 

2.2 Cost Estimating Approaches Currently used in Transportation Projects 

This section discusses four different cost estimating approaches outlined by the American 
Association of State Highway and Transportation Officials (AASHTO) in its Practical Guide to 
Cost Estimating (2013): 1) parametric, 2) bid-based, 3) cost-based, and 4) risk-based estimating. 
The AASHTO guidebook associates each of these estimating approaches with a different project 
development phase, as shown in Table 2.1. The four project development phases in Table 2.1 
correspond to a more detailed configuration of the conceptual and engineering/design phases 
discussed in the previous section, which are also shown above in Figure 2.1. This table shows the 
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level of project maturity at each project development phase as a percentage of all the planning and 
design work required to successfully award the contract. This table also shows the most suitable 
cost estimating approach at each phase with its respective expected estimating accuracy. Table 2.2 
summarizes the main activities contained within each project development phase.   
 
Table 2.1 Cost Estimating Classification (Adapted from AASHTO 2013) 

Project 
Development 

Phase 

Project Maturity 
(% project definition 

completed) 
Estimating Approach Estimating 

Accuracy 

Planning 

0% to 2% Parametric 
Risk-Based 
(optional 

combination 
with other 

approaches) 

-50% to +200% 

1% to 15% 
Parametric or 

Historical Bid-
Based 

-40% to +100% 

Scoping 10% to 30% Historical Bid-
Based or Cost-

Based 

-30% to +50% 
Design 30% to 90% -10% to +25% 
Final Design 90% to 100% -5% to +10% 

 
Table 2.2 Project Development Phases and Typical Activities (Adapted from AASHTO 2013) 

Project 
Development 

Phase 
Typical Activities 

Planning 

Purpose and need; improvement or requirement studies; environmental 
considerations; right-of-way considerations; schematic development; project 
benefit/cost feasibility; public involvement/participation; interagency 
conditions. 

Scoping 
Environmental analysis; alternative analysis; preferred alternative selection; 
public hearings; right-of-way impact; environmental clearance; design criteria 
and parameters; funding authorization (programming). 

Design Right-of-way development and acquisition; preliminary plans for geometric 
alignments; preliminary bridge layouts; surveys/utility locations/drainage. 

Final Design 
Plans, specifications, and estimate (PS&E) development—final right-of-way 
acquisition; final pavement and bridge design; traffic control plans; utility 
drawings; hydraulics studies/final drainage design; final cost estimates. 

 
As mentioned before, the greater the level of project development, the more accurate and reliable 
the cost estimate. That explains the progressive accuracy improvement in Table 2.1. The risk-
based estimating approach seems to be presented in the AASHTO guidebook as an optional 
version of the other three approaches. The following sections present a more detailed description 
of each of these cost estimating approaches. 

2.2.1 Parametric Estimating 
Parametric cost estimating techniques are usually applied during early project development in the 
planning phase and at a conceptual level. “Parametric estimating techniques are primarily used to 
support development of planning or early scoping phase estimates when minimal project definition 
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is available. Statistical relationships or non-statistical ratios, or both, between historical data and 
other project parameters are used to calculate the cost of various items of work (i.e., center lane 
miles or square foot of bridge deck area)” (AASHTO 2013). The use of parametric estimating 
models has served as an alternative to the traditional expert-based approach (almost discontinued 
by STAs), in which conceptual cost estimates are solely the result of the estimator’s subjective 
opinions built from previous construction experiences (Phaobunjong 2002). The expert-based 
approach may not appropriately account for the main factors influencing the cost estimating 
process if the estimator’s experience does not match the scope of the intended project. As a data-
driven approach, parametric cost estimating methods have added some needed objectivity to the 
development of conceptual estimates and have shown improvement in the estimating accuracy 
during early project phases (Trost and Oberlender 2003; Kwak and Watson 2005). 

Parametric estimating models are usually straightforward, user-friendly models (Bajaj, Gransberg, 
and Grenz 2002). However, these models have a limited capacity to handle the high cost 
uncertainty levels during early project development phases. According to Harbuck (2002), the 
main sources of uncertainty in construction cost estimating are: 1) changes in the scope of work, 
2) potential design changes, 3) errors in the calculation of quantities of work and unit costs, and 4) 
unforeseen site conditions. When considering the nature of these four uncertainty sources, it is 
easy to understand how difficult it could be for a STA to quantify their potential impacts on early 
cost estimates developed only with a preliminary scope of work.  

2.2.2 Historical Bid-Based Estimates 
As shown in Table 2.1, historical bid-based cost estimating could be used at all project 
development phases. This is actually recognized as the most common cost estimating approach 
currently used by STAs. This approach is used to some extent by all STAs (Anderson et al. 2009; 
Schexnayder et al. 2003). The AASHTO guidebook defines bid-based estimating as an approach 
that “uses data from recently let contracts as the basis for determining estimated unit prices for a 
future project” (AASHTO 2013). As per AASHTO guidelines, bid-based estimates are usually 
developed with data from projects awarded during the last one or two years. Longer look-back 
periods might be considered when the most recent two years of historical data do not provide 
sufficient relevant data. However, STAs do not count with a mechanism to make objective 
decisions on the length of look-back periods. The decision of whether to use one, two, or more 
years of data is mainly based on the subjective judgment of STA estimators.      

An advantage of bid-based estimating over the other estimating approaches is that the former 
requires less previous experience from estimators. Experience is replaced by trends and relevant 
statistic parameters extracted from the bid data. This advantage becomes very relevant when 
considering the high retirement rates of seasoned staff experienced by STAs during the last decade. 
An efficient bid-based cost estimating system would be expected to improve the resilience of cost 
estimating processes to the effects of the current brain drain situation, allowing estimating systems 
to perform satisfactorily with fewer, and overall, less experienced staff.     
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2.2.3 Cost-Based Estimates 
Cost-based estimates are composite estimates resulting from the aggregation of seven cost 
elements: time, equipment, labor, subcontractor, material, overhead, and profit (AASHTO 2013). 
In comparison to bid-based cost estimating, a cost-based approach demands greater estimating 
efforts to apply quantitative procedures at a deeper level of detail. Bid-based techniques are 
frequently used to support cost-based estimates by providing prices for one or more of the seven 
elements mentioned above (AASHTO 2013). Even though STAs tend to prefer the use of bid-
based cost estimating techniques, a cost-based approach should be favored if the estimator 
perceives a high level of uncertainty in a bid-based estimate at the project level (AASHTO 2013).  

Although cost-based estimates are more complex and require greater estimating efforts, if well 
developed, they could facilitate better planning and design by forcing the project staff to better 
understand the project. This would allow for the timely identification of issues that otherwise 
would be discovered during construction. Problems found during construction, and resulting from 
poor planning or design errors, usually have a negative impact on projects in terms of increased 
costs, extended project durations, or both. A better understanding of construction projects and the 
timely identification of potential issues through cost-based estimating, have allowed the Utah 
Department of Transportation to save about $11 million due to a reduced number of change orders 
issued during construction (Utah Construction & Design 2013). 

2.2.4 Risk-Based Estimates 
“Risk-based cost estimation entails developing probable cost for project components, and the 
project, based on identified known quantities and costs and contingency developed from a list of 
identified uncertainties from both opportunities and threats and their potential impact on the 
project” (Shane et al. 2015). In a simpler definition provided by AASHTO (2013), risk-based 
estimating refers to the combination of risk analysis techniques with any of the estimating 
approaches described above. A risk-based approach converts a typical deterministic output 
(parametric, bid-based, or cost-based) into a stochastic cost estimate in the form of a probability 
distribution function. “This approach is used to establish the range of total project cost and to 
define how contingency should be allocated among the critical project elements” (AASHTO 
2013).  

Even though the use of risk-based estimating techniques has not been adopted by most STAs, it is 
becoming increasingly popular among transportation agencies. Some STAs, including the 
Washington State Department of Transportation (WSDOT) and Montana Department of 
Transportation (MDT), have already developed their own risk-based estimating systems 
(Molenaar 2005; Gardner 2015). WSDOT’s risk-based estimating system was developed by 
Molenaar (2005) and was intended for projects greater than $100 million, referred to as “Highway 
Megaprojects.” Molenaar found that the main benefits provided by this system were better budget 
control and resource allocation, as well as an increase in public confidence due to a more 
transparent communication of financial expectations. Molenaar’s estimating system was found to 
be effective; however, it was estimated that its implementation would have a cost of about $3 
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million. Likewise, its implementation required the employment of a risk-analyst expert, unlike the 
methodology proposed in this study.      

MDT’s risk-based estimating system was developed by Gardner (2015) using 189 paving projects 
previously awarded by this agency. Gardner used multiple regression and artificial neural network 
models to produce stochastic conceptual cost estimates using 14 input variables. Even though some 
of the input variables used by Gardner should be considered to refine the estimating methodology 
proposed in this report, those 14 inputs do not take into consideration adjustments required to 
counteract the impact of inflation and construction market volatility over time. Moreover, 
Gardner’s system considers specific topographic and geotechnical characteristics of the jobsite, 
but it fails to consider regional market conditions that might potentially influence construction 
pricing. As shown later in this report, the research team has proven the significant influence of 
project specific geographic considerations on transportation construction prices in Alabama.  

2.3 Consequences of Inaccurate Cost Estimating 

The following four scenarios summarize the existing literature on the potential negative 
consequences of inaccurate cost estimating (AASHTO, 2013; Sanders et al., 1992).  

• Overrun Budgets: When more funds than those originally estimated are required to 
successfully complete a given project, a STA might be forced to relocate its annual budget 
affecting or canceling other approved projects scheduled in its construction program. 

• Underrun Budgets: Even though some may argue that finishing projects under budget is a 
sign of effective management and budget control, it might actually be a sign of poor cost 
estimating. Overestimating construction costs reduces the ability of STAs to maximize the 
value of their limited budgets since more funds than required are allocated to execute 
approved projects. This prevents STAs from developing more projects with the same 
available funding. 

• Unreasonably High Estimates: When construction cost estimates are unreasonably high, 
due to calculation errors or poor estimating, cost-benefit ratios are inflated, leading to the 
rejection of projects that should be accepted. 

• Unreasonably Low Estimates: When construction cost estimates are unreasonably low, due 
to calculation errors or poor estimating, cost-benefit ratios are understated, leading to the 
acceptance of projects that should be rejected.  

Cost overruns seem to be the most common scenario in the transportation industry (Schexnayder, 
et al., 2003) and are usually attributed to estimating and design errors (AKinci & Fischer 1998, 
Molenaar et al., 2007). A study conducted by Flyvbjerg et al. (2002) on 258 transportation 
infrastructure projects led to the following observations: 

• The cost of about 90% transportation infrastructure projects is underestimated. 
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• Actual costs in highway construction projects are about 20% higher than estimated costs, 
and with a standard deviation of 30%. 

• Flyvbjerg et al.’s study was conducted at the international level, finding that cost 
underestimation seems to be a global phenomenon.  

To avoid or mitigate the impact of cost overruns, or any of the other unfortunate estimating 
scenarios listed above, STAs are required to implement construction cost estimating systems that 
allow for the recalculation of expected costs at the different project development phases (Anderson 
et al., 2007; AASHTO 2013). It allows STAs to monitor and control estimates throughout project 
development, facilitating timely decisions to ensure that projects stay within the approved budgets. 
As a project moves forward across development phases, more project information and details 
become available for cost estimating, which allows for greater estimating accuracy (Jui-Sheng 
Chou, 2009).  

2.4 Statistical and Causal Data-Driven Cost Estimating 

Previous studies have proposed a number of quantitative methods to estimate construction costs 
using historical data. Those methods have been classified into two major groups: statistical and 
causal methods. Statistical methods mainly rely on time series analysis and curve fitting to estimate 
unit prices based on recent trends (Touran and Lopez 2006; Hanna and Blair 1993). On the other 
hand, causal methods use mathematical techniques to model the relationship between one or 
multiple independent variables (also called explanatory or causal variables) and the dependent 
variable (Hanna and Blair 1993; Makridakis et al. 1998). Under the context of this study, the 
dependent variable would be the unit price of the pay item under consideration.  

Based on the classification of data-driven cost estimating methodologies stated above, it can be 
said that the system proposed in this report corresponds to a statistical bid-based estimating 
approach. Although without providing much detail, the AASHTO guidebook shows some 
examples of statistical bid-based estimating approaches currently used by STAs. Figure 2.2 was 
taken from the AASHTO guidebook and shows an example of a spreadsheet used by a STA to 
estimate unit prices using curve-fitting techniques, more specifically, using a non-linear regression 
model similar to those used in this report as well as to the one shown in Figure 1.1 in Chapter 1.  
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Figure 2.2 Historical bid analysis using non-linear regression modeling (AASHTO, 2013). 

The literature review revealed that causal methods, such as multiple regression, are more popular 
and have been used more frequently by previous authors than statistical methods (Bowen & 
Edwards, 1985; Khosrowshahi & Kaka, 1996). It could be explained by the fact that, in comparison 
with causal approaches, statistical methods require a substantial amount of data, which is not 
usually available to researchers. In a previous study on data-driven cost estimating modeling, 
Gardner et al. (2015) found that more than 50% of the bid-based estimating models are developed 
and validated with data from less than 100 previous projects. The largest sample found by that 
study was 530 projects, which is a small dataset considering the vast databases currently managed 
by construction owners and contractors. This is also considerably less than the number of projects 
used in this report. 

The literature contains several examples of bid-based cost estimating models. Many of them using 
multiple regression techniques. In fact, one of the first causal cost estimating models for highway 
construction projects was developed for ALDOT. In 1987, Bell and Bozai used multiple regression 
to develop bid-based cost estimating models for ALDOT (at that time known as the Alabama 
Highway Department). Those models were built and tested with 174 projects and were intended 
to forecast construction costs over long time horizons. Independent variables for those models 
included quantities per mile for various pay items. Bell and Bozai’s multiple regression equations 
calculated project costs per mile with an estimating accuracy ranging from ±17% to ±35%. In a 
subsequent study, also in Alabama, Sander et al. (1992) developed a multiple regression cost 
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estimating model for bridge widening projects on urban highways. With an average accuracy of 
6%, Sander et al.’s model could be considered fairly accurate. However, these results are 
questionable due to the fact the model was developed and validated only with data from 11 
previous projects. 

Gardner (2015) found that in spite of the fact that some data-driven cost estimating models in the 
literature show high effectiveness when validated by their respective authors, they have never been 
implemented by STAs due to their questionable validation processes. Some positive validation 
results are the result of testing the performance of the models with very small testing samples, in 
some cases, using only two projects for validation (Gardner 2015).   

2.5 Analysis of Current Validation Techniques in Data-Driven Cost Estimating Modeling 

Cross validation (CV) is a research approach commonly used to assess the performance of data-
driven models, including cost estimating models. A typical CV process is performed in four 
general steps:  

1. The available data is split into a training and a testing dataset.  

2. The training dataset is then used to develop the model. 

3. The model is applied to each observation in the testing dataset to estimate the values of the 
dependent variable(s) on each observation.  

4. Estimated values are compared against the actual values of the dependent variable(s) in the 
testing dataset. The result of this comparison is used to assess the performance of the 
model.  

The CV process is intended to simulate the actual implementation of a model so that CV results 
are assumed to reflect the level of performance that should be expected by the final users. However, 
the literature review revealed some major issues associated with traditional CV approaches that 
could compromise the integrity of the validation results in cost estimating models. As mentioned 
in the previous section, a major issue found in the literature on the validation of cost estimating 
models is the use of small testing datasets.   

Rueda (2016) identified another problem associated with traditional CV procedures used in cost 
estimating models in the construction industry. Observations for the training and testing datasets 
are sometimes assigned in a random manner. However, as suggested by Rueda (2016), a random 
partition of the data might not be appropriate for a bid-based cost estimating model since it implies 
the use of recent projects to estimate older prices, which would be an impossible scenario during 
actual implementation. This simulated scenario would be a case in which an estimator uses future 
prices (which are obviously unknown) to estimate current prices. According to Rueda (2016), 
model developers should intentionally (instead of randomly) place older projects in the training 
dataset and the more recent projects in the testing dataset for the validation of bid-based cost 
estimating models. In that way, the CV process would not only “determine the accuracy of the 
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construction cost estimating models, but also the ability of bid data from previous projects to 
estimate current construction costs” (Rueda 2016).  

Although Rueda’s approach is a more accurate representation of the actual model implementation, 
this study has identified another opportunity to improve CV procedures in bid-based estimating. 
This allows for an even more appropriate representation of the eventual utilization of a given 
estimating model. In the actual implementation of bid-based estimating models, the look-back 
period is formed with historical bid data from the most recent projects so that the look-back period 
for data retrieval ends just before the current date. Thus, an effective CV process for bid-based 
estimating should allow for the adjustment of the training period to match the period of time 
immediately preceding each testing project. That is not possible with the fixed training and testing 
datasets typically used in CV. The proposed moving-window cross-validation (MWCV) 
algorithm, described in detail in Chapters 3 and 4, is intended to address this CV limitation by 
allowing for a dynamic partition for training and testing observations.        

2.6 Construction Cost Indexing  

As defined by Fisher (1922), who is a pioneer in the development of price indexes, “[a]n index 
number of prices […] shows the average percentage change of prices from point of time to another” 
(Fisher 1922). Thus, a construction cost index (CCI) is defined as an instrument to measure average 
fluctuations of construction prices over time. CCIs are used to adjust prices over time and estimate 
construction costs based on observed trends in the construction market (Rueda and Gransberg 
2015).  

Indexes were initially used to track fluctuations in the stock market, wholesale/retail prices, and 
wages. Their use in the construction industry started in the early 20s with the Aberthaw Index 
intended to measure changes in the construction cost of a standard seven-story reinforced concrete 
building (Hubbard 1921; Gill 1933). Since then, CCIs have become more popular, and today it is 
possible to find different types of cost indexes published and maintained by different public and 
private participants in the construction industry. There are also other types of indexes aimed to 
monitor changes in factors other than money, such as safety (Du 2013), quality (Lee 2013), 
sustainability (Olson 2013).  

The literature review revealed several different criteria used to classify CCIs. They can be 
classified based on their mathematical approach (e.g. arithmetic, geometric, aggregative), index 
composition and configuration (e.g. simple or unweighted, weighted, composite), updating 
frequency (e.g. monthly, quarterly, annual), and geographic scope (e.g. national, state, local) 
(Fisher 1922; Allen 1975; Rueda 2013). CCIs are also classified as input or output indexes. “Input 
indexes measure the price change in one or more construction components or materials, while 
output indexes indicate observed changes in construction prices, including general costs, overhead, 
profit, risk, and other possible external factors” (Rueda and Gransberg 2015). As another criterion 
to classify CCIs, Rueda and Gransberg (2015) proposed a three-tier classification system based on 
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their intended industry sectors or level of detail. This classification system is illustrated in Figure 
2.3. 

 
Figure 2.3 Construction cost index classification by industry sector/level of detail         

(Rueda and Gransberg 2015). 

Tier 1 corresponds to indexes designed to track price changes for specific commodities or cost 
elements (e.g. fuel, asphalt, cement, steel, a specific pay item, etc.). Indexes in Tiers 2 have been 
classified at a broader scale into either building (vertical construction) or highway (horizontal 
construction) CCIs. These indexes are commonly used to estimate and forecast costs at the project 
or program level within their respective construction sectors. Finally, general CCIs at Tier 3 are 
calculated at the broadest level in an attempt to quantify overall changes in the construction 
industry, covering all construction sectors. It should be noted that the twelve CCIs developed in 
this study are only intended to track price changes for the case study item. Therefore, they are 
classified as Tier 1 cost indexes. The eight existing indexes also evaluated in this report include 
one Tier 1 and seven Tier 2 indexes.     

The literature review for this study has shown several STAs developing and using Tier 1 and 2 
indexes to gain a better understanding of the highway construction market, to estimate future 
highway funding needs, and to predict construction costs (Erickson, 2011; White, 2011; Guerrero, 
2003). Tier 2 indexes developed by STAs are usually applied to all types of highway construction 
projects (e.g. resurfacing, bridge construction, road widening) (Rueda and Gransberg, 2015). To 
calculate these CCIs, STAs collect historical unit costs from a few relevant construction activities 
or commodities, and mathematically combine them to obtain a single index number. These are 
called composite weighted indexes (Rueda and Gransberg, 2015). There are two main challenges 
associated with the development of composite weighted indexes: 1) the definition of weights and 
2) the integration of index inputs into a single index value. The lack of mechanisms to effectively 
overcome these challenges has prevented STAs from an effective implementation of cost indexes.   

Rueda and Gransberg (2015) introduced two important principles that are repeatedly violated when 
using composite indexes to adjust construction prices: the matching and proportionality principles. 
The matching principle refers to the degree of similarity between the components used in the 
calculation of a CCI and the composition of the item or project to be adjusted by the index. Once 
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the matching principle has been fairly met, the proportionality principle appears. It refers to the 
degree of consistency between the weight of each component in the calculation of the index and 
the actual weight of its respective matched component in the item or project to be adjusted.  

Thus, a perfect application of a CCI implies that each cost element in the adjusted item/project is 
represented by one component in the CCI, and the weights used in the calculation of the index are 
proportional to the contribution of each cost element to the total cost (Rueda and Gransberg 2015). 
It should be noted that a violation of the matching principle implies a violation of the 
proportionality principle. Rueda and Gransberg (2015) also discuss two assumptions usually made 
by STAs when using composite CCIs for estimating purposes and how they suppose a strong 
violation of matching and proportionality principles. These assumptions are: 

1. Changes in the construction market from period to period have an equal or similar impact 
on all kinds of construction activities. 

2. Weighted price changes between two construction periods in a few significant materials or 
construction components represent an overall construction cost change between the same 
two periods. 

STAs usually apply a single CCI to cost estimating procedures in all types of projects or 
construction activities (assumption 1). These CCIs are calculated with a few commodities or cost 
elements, assuming that they are suitable to equally represent all types of work (assumption 2). 
With these two assumptions, STAs are clearly violating the matching and proportionality 
principles since not all construction activities combine the same elements or cost items, and even 
if some projects share the same items, they do not necessarily appear in the same proportions 
(Rueda and Gransberg 2015). 

Even though the matching and proportionality principles should prevent the use of traditional 
composite indexes to adjust prices at the pay item level, this report still evaluates the performance 
of seven Tier 2 composite indexes in the generation of bid-based cost estimates for the case study 
item. The other existing index evaluated in this study (the Tier 1 index) is the Asphalt Price Index 
developed and updated by ALDOT.  

Finally, the twelve CCIs developed in this study were calculated following a methodology 
previously developed by Gransberg and Rueda (2014) for the Minnesota Department of 
Transportation (MnDOT). This methodology facilitates the creation of a Multilevel Construction 
Cost Index (MCCI) strategically designed to overcome the limitations of traditional indexing 
practices and to better meet the matching and proportionality principles. The MCCI consists of a 
group of pay item indexes (Tier 1 indexes) organized in a multi-level arrangement. Thus, each 
item in a construction contract can be adjusted with the index from the MCCI that best matches it. 
Different projects might require different sets of indexes, offering great flexibility to customize 
price adjustment procedures to the unique characteristics of each project. It should be noted that 
this study has used Gransberg and Rueda’s methodology on a single pay item: the case study item. 
Therefore, this report does not present a fully developed MCCI for ALDOT. Further data 
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processing efforts should be directed to repeat the same process presented in this report to create 
a fully functional MCCI as well as to incorporate more pay items into the proposed bid-based cost 
estimating system. 
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CHAPTER 3: RESEARCH APPROACH 

 

3.1 Introduction 

After gaining a better understanding of the research problem through the literature review 
summarized in Chapter 2, the authors proceeded to design an appropriate research plan, which 
illustrated in Figure 3.1. This flow chart guided the research team through the development and 
validation of the bid-based cost estimating system for the case study item. The process and research 
activities performed at each step of the research plan are described throughout this chapter. 

 

 

Figure 3.1 Research methodology. 
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3.2 Data Collecting and Cleaning 

Data collection and cleaning efforts in this work consisted of mining historical pricing data from 
the bid tabulations for all projects awarded by ALDOT between 2006 and 2016. Data from all 
3,661 projects awarded during this 11-year period was extracted from ALDOT’s Bid Tabulations 
website. Bid data published on this website is available in Portable Document Format (PDF), 
which is not a suitable format for data manipulation and processing. Figure 3.2 is a screen capture 
from one of the PDF files. This figure shows a few unit prices submitted by three bidders for a 
bridge replacement project in Etowah County, Alabama. 

 
Figure 3.2 ALDOT Bid Tabulations - PDF Format. 

A web-based format-conversion application was used to reformat the data into a format compatible 
with Microsoft Excel (hereinafter referred to as Excel). However, data in the Excel spreadsheets 
was still arranged as in the original PDF files, which is still not ideal for data processing purposes. 
Additionally, the converted data presented several critical format inconsistencies such as 
discontinued or shifted columns and unintended combined cells. Given the large amount of data 
collected by this study, manual reformatting and correction of inconsistencies was not an option. 
Part of the data cleaning efforts in this study were aimed to develop an Excel data cleaning 
spreadsheet carefully designed to identify and correct all formatting inconsistencies while 
rearranging the data into a tidy format. A screen capture of the tidy dataset is shown in Figure 3.3.  

 
Figure 3.3 Tidy Dataset Format. 
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“Tidy datasets are easy to manipulate, model and visualize, and have a specific structure: each 
variable is a column, each observation is a row, and each type of observational unit is a table” 
(Wickham 2014). There is only one observational unit in this study: pay items included in contracts 
awarded by ALDOT between 2006 and 2016. Therefore, there is only one table, in which each 
row refers to a single pay item used in a given project, and each column presents all the available 
attributes and information associated with that pay item as well as with its respective contract. 
Information provided for each item on each row includes, but is not limited to, item identification 
number, item description, awarded quantity, unit of measurement, contract number, project 
location (county[ies]), number of bidders proposing on the project, names of bidders, and the unit 
price submitted by each bidder.  

The final tidy dataset had 169,947 rows and 131 columns. It should be noted that ALDOT has a 
standard list of pay items and some of them are frequently used in different projects. It means that 
the same item may appear several times in the dataset, but each time it appears, it corresponds to 
a different project. A total of 5,246 different pay items have been used by ALDOT in the 3,661 
projects contained in this dataset.  

Initially, all 11 years of collected and cleaned data were considered in this study. However, a 
significant trend change was found in the case study’s prices around 2010, suggesting that 
something may have changed the conditions of the paving construction market in Alabama during 
that year. Since this study is intended to demonstrate the applicability of the proposed methodology 
in the current construction market, when this trend change was found, the authors decided to 
continue the case study only with the most recent six years of data, from 2011 to 2016. 
Nonetheless, a considerable portion of the data cleaning and analysis efforts were applied the entire 
11 years of data.       

3.2.1 Outlier Detection and Removal  
A critical part of the data cleaning process consisted of removing those observations that do not 
appear to belong with the rest of the data, generally called outliers. “Usually, the presence of an 
outlier indicates some sort of problem. This can be a case that does not fit the model under study, 
or an error in measurement” (Cho et al. 2010). In this study, the authors used two outlier 
identification methods strategically selected and applied to serve different purposes. 

The first outlier detection approach used in this study was the modified Z-score method. This 
method was applied following the guidelines provided by Iglewicz and Hoaglin (1993) and it was 
used at the pay item level (to each row) in order to identify outliers among the set of unit prices 
submitted for the same item under the same contract. These are unit prices estimated for the same 
quantity and under the same project-specific considerations. While some outliers identified with 
the modified Z-score method could be the result of typographical errors or the misinterpretation of 
the pay item associated with the unit price, a number of them are actually the result of unbalanced 
bids (Rueda 2016). “A bid is considered unbalanced if the unit rates are substantially higher or 
lower, in relation to the estimate and the rates quoted by other bidders” (JICA 2000). A contractor 
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unbalances a bid to either protect its intended profit or fixed costs, to maximize profits by taking 
advantage of errors in the bid quantities listed in the solicitation documents, or to inflate prices of 
early activities to reduce the cost of borrowing money (FHWA 1988). Regardless of the ethical 
implications typically associated with unbalanced bids, it is a fact that this practice is currently 
used by construction contractors, and it is also a fact that unbalanced bids might affect the 
performance of bid-based cost estimating models. 

The modified Z-score method was applied using Equation 3.1. The reason behind the use of this 
method is that outliers are identified using the sample median (𝑥𝑥�)46T and the median absolute 
deviation (MAD) making it more suitable for small samples. Since this method was used on bids 
submitted by different contractors under the same contract, it was applied to relatively small 
samples. The average number of bids received by ALDOT for a single contract is between three 
and four. Other more commonly used outlier detection methods rely on the sample mean and 
standard deviation to identify outliers. However, these two statistics are more sensitive to extreme 
values in small samples, increasing the risk of not detecting outliers that should be discarded 
(Iglewicz and Hoaglin, 1993). Based on Iglewicz and Hoaglin guidelines, all unit prices with 
absolute modified Z-score greater than 3.5 (|𝑀𝑀𝑖𝑖| > 3.5) were removed from the dataset.  

𝑀𝑀𝑖𝑖 = 0.6745(𝑋𝑋𝑖𝑖−𝑥𝑥�)
𝑀𝑀𝑀𝑀𝑀𝑀

                           Eq. 3.1 

Where: 𝑀𝑀𝑖𝑖 = Modified Z-Score for Observation i 
MAD = Median Absolute Deviation = {|𝑋𝑋𝑖𝑖 – Median|} 
𝑥𝑥𝑖𝑖 = Value of Observation i 
𝑥𝑥� = Median of All Observations 

The second outlier detection approach used in this study was the Robust Regression and Outlier 
Removal method (ROUT). This method was developed by Motulsky and Brown in 2006 and 
combines robust regression and non-linear regression techniques to identify values that could be 
significantly apart from the regression equation. The ROUT method was used to detect outliers 
during the development of non-linear regression models. These are outliers not detected by the 
modified Z-score method, including those resulting from unusual project requirements that may 
have forced all contractors to bid outside the typical unit price ranges. Since the modified Z-score 
method compares unit prices for the same item under the same contract, this method might find no 
outliers if unique project conditions force all bidders to submit unit prices substantially higher (or 
lower) than those typically paid by ALDOT for the same pay item in other projects. Due to their 
unique circumstances, these unit prices should also be excluded from the process to develop the 
proposed system.   

The ROUT method was applied using GraphPad Prims 7, a statistical software equipped with a 
ROUT function that can be activated during the development of non-linear regression models. 
Figure 3.4 shows an example of the output yielded by this software. This is a non-linear regression 
model developed for the case study item using all unit prices recorded between 2006 and 2016. 
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All red data points are outliers detected by the ROUT method and excluded from the regression 
analysis. 

 
Figure 3.4 GraphPad Prims 7 Output – Example. 

 

3.3 Exploratory Data Analysis 

An exploratory data analysis (EDA) is a common step in data-driven research. It is intended to 
provide researchers with a better understanding of the variables contained in the available data and 
the relationships among them. In this particular study, EDA facilitated a further identification of 
inconsistencies and errors in the data, allowing the authors to take the necessary measures to 
correct them before proceeding with data processing. The EDA also helped with the selection of 
the case study item and with the identification of potential elements that could be used to model 
the relationship between each cost-influencing factor and construction prices paid by ALDOT. 

With regard to the case study item, the authors were looking for the most relevant pay item used 
in ALDOT contracts. The EDA showed a single pay item clearly identified as the most relevant in 
terms of frequency of use and dollar expenditure: “Superpave Bituminous Concrete Wearing 
Surface Layer, 1/2" Maximum Aggregate Size Mix, Item ID 424A360.” This item corresponds to 
the second highest dollar expenditure in ALDOT’s annual construction program. It is only 
outranked by mobilization expenses. It should be noted that unlike the selected pay item, 
mobilization costs are paid by ALDOT in almost all contracts, which explains the greater 
expenditures under that pay item. Having identified the case study item and the four key cost-
influencing factors, the authors proceeded with the modeling efforts to quantify the cost impact of 
each factor on the case study item, as described in the following section.    
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3.4 Quantitative Modeling  

This section refers to the process to quantitatively model the relationship between each of the four 
cost-influencing factors and unit prices paid by ALDOT for the case study item. The assessment 
and modeling process for each of the factors is presented in the following subsections.  

3.4.1 Project Scale Impact  
Based on the economies of scale principle discussed in Section 1.4.1, it was necessary to model 
case study’ unit prices as a function of their bid quantities. This was modeled using non-linear 
regression techniques. More specifically, the study used power regression models like the one 
shown in Figure 1.1 in Chapter 1. This regression approach has been successfully used by Rueda 
(2016) to model unit prices for MnDOT. Moreover, it seems to be a widely accepted approach in 
the transportation construction industry as inferred from the AASHTO Practical Guide to Cost 
Estimating (2013) as shown in Figure 2.2. in Chapter 2. Power regression models are defined by 
Equation 3.2, where ‘A’ and ‘B’ are constant values determined for each set of observations to be 
modeled. The suitability of power regression equations for unit price modeling has been further 
demonstrated in the first part of the validation process discussed later in this report. 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐴𝐴 ∗ (𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄)𝐵𝐵                              Eq. 3.2 
 

Where:  A and B are constant values. 

3.4.2 Time Impact  
Two elements must be defined to incorporate the time factor into the proposed bid-based cost 
estimating system: 1) a CCI to adjust cost estimates for inflation and price fluctuations over time 
and 2) an optimal look-back period for data retrieval. This subsection only refers to the selection 
of the CCI since this is a required element to identify the optimal look-back period later during the 
first part of the validation process. 

The literature review found a number of different cost indexing alternatives that could be used in 
this study. It was concluded that it would not be possible to objectively select one of these 
alternatives without a formal comparative analysis among all of them. Thus, Part 1 of the validation 
process was performed in an iterative manner to test 20 different CCIs. Results of this iterative 
process were analyzed to identify the CCI that provides the best cost estimating effectiveness for 
the case study item. The 20 CCIs evaluated in this report include twelve CCIs developed by the 
authors using ALDOT’s historical bid data through a methodology previously developed, and 
positively validated, by Gransberg and Rueda (2014). The remaining eight indexes correspond to 
existing CCIs currently used in the construction industry. 

The non-linear regression techniques discussed in the previous section were used for two different 
purposes. At a later stage of the study, they are used to produce deterministic unit price estimates 
based on expected quantities of work, but they are first used to make sure that price fluctuations 
in the twelve CCIs developed by the authors are measured between similar quantities of work. The 
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economies of scale concept indicates that a comparison between the unit price for 50 tons of asphalt 
and the unit price for 50,000 tons of asphalt would not be an “apples to apples” comparison. Thus, 
to develop cost indexes with ALDOT’s bid data, it was first necessary to define quantity ranges 
for the case study item, so that price changes over time are measured between unit prices from the 
same quantity ranges (similar quantities of work).  

Figure 3.5 illustrates the process proposed by Gransberg and Rueda (2014) to develop 12 out of 
the 20 CCIs evaluated in this report. This process starts with the definition of quantity ranges for 
the case study item. According to Gransberg and Rueda’s methodology, the quantity ranges for a 
given item are defined using its non-linear regression model and the largest average price variation 
(LAPV) between the lowest and the largest bids received for that specific item. The LAPV is 
calculated as shown in Equation 3.3 and is defined as “the typical maximum difference between 
two bids for the same pay item and quantity” (Gransberg and Rueda 2014).      

 
Figure 3.5 Developed of Proposed Construction Cost Indexes 

               𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
× 100%            Eq. 3.3 

Where: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖  
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 =  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 

𝑛𝑛 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
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Figure 3.6 and Table 3.1 show the process to define the quantity ranges for the case study item. 
The application of Equation 3.3 to the available historical bid data yielded an LAPV value of 
13.9% for the case study item. Figure 3.6 shows how the LAPV is used along with the regression 
model to define the quantity ranges. Four quantity ranges have been defined for the selected item. 
Different pay items may have a different number of quantity ranges. The number of ranges depends 
on the LAPV value and the regression equation. The lower and upper values for each of the four 
ranges for the case study item are listed in Table 3.1. As done by Gransberg and Rueda (2014), 
quantity ranges were defined to cover at least 90% of the observations. 

 
Figure 3.6 Quantity Range Determination – Case Study Item 

 
Table 3.1 Quantity Ranges for Case Study Item 

Average Percentage Variation 
In Unit Price 

Quantity 
Range 

Lower Limit of 
Range (Tons) 

Upper Limit of 
Range (Tons) 

13.9% 

1 188 766 
2 766 3124 
3 3124 12735 
4 12735 51915 
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The twelve cost indexes developed in this study correspond to the combination of three different 
index updating frequencies (i.e. quarterly, semi-annual, and annual) with four types of inputs (i.e. 
average values on a project basis, median values on a project basis, only awarded bids, and all 
bids), as shown in Figure 3.5. Table 3.2 shows the updating dates for each updating frequency. 
The twelve cost indexes developed with ALDOT historical bid data are the following: 

• Quarterly updated with average values (Quarterly Average) 

• Quarterly updated with median values (Quarterly Median) 

• Quarterly updated only with awarded bids (Quarterly Awarded Bids) 

• Quarterly updated with all bids (Quarterly All Bids) 

• Semi-Annual updated with average values (Semi-Annual Average) 

• Semi-Annual updated with median values (Semi-Annual Median) 

• Semi-Annual updated only with awarded bids (Semi-Annual Awarded Bids) 

• Semi-Annual updated with all bids (Semi-Annual All Bids) 

• Annual updated with average values (Annual Average) 

• Annual updated with median values (Annual Median) 

• Annual updated only with awarded bids (Annual Awarded Bids) 

• Annual updated with all bids (Annual All Bids) 

 
Table 3.2 Index Updating Dates 

Updating Periods Updating Date 

Quarterly 

Quarter 1 (Q1) 31st March 
Quarter 2 (Q2) 30th June 
Quarter 3 (Q3) 30th September 
Quarter 4 (Q4) 31st December 

Semi Annual Semester 1 (S1) 30th June 
Semester 2 (S2) 31st December 

Annual Year (Y) 31st December 
 

Table 3.3 shows the quarterly, semi-annual, and annual cost indexes for the case study item for the 
years 2006 and 2007. The index values in this table correspond to the CCIs calculated with all bids 
(index input) received by ALDOT for this item during these two years. All cost indexes have a 
base period used as a point of reference to measure price changes, which is usually assigned an 
index value of 100 (Gransberg and Rueda 2014). In this study, the reference base periods for the 
quarterly, semi-annual, and annual indexes are Q1-2006, S1-2006, and Y-2006, respectively (see 
Table 3.3). Variations in index values are intended to proportionally represent average price 
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changes between periods. Thus, the quarterly index in Table 3.3 has perceived an average change 
of -2.71% between the fourth quarter of 2006 and the fourth quarter of 2007 ([120.87 – 
124.24]/124.24). Table 3.3 only shows the first two years of the “all bids” indexes for the three 
updating frequencies. These CCIs were actually calculated until 2016 for all index inputs. 

Table 3.3 Construction Cost Index for Case Study Item 2006-2007 (All bids) 
Annual 
Index 

2006 2007 
100 99.76 

Semi-
Annual 
Index 

S1 S2 S1 S2 

100 111.42 104.23 107.14 

Quarterly 
Index 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 
100 104.33 115.78 124.24 120.31 118.47 122.71 120.87 

 

The average price variation between indexing periods is calculated as a weighted average of the 
variations for all quantity ranges, as shown below in Equation 3.4. Quantity ranges are weighted 
based on the total number of bids at each range. The larger the number of bids used to calculate 
the price variation, the more reliable the measure of variability, and the greater the weight. Once 
the average price variation between two consecutive periods has been calculated, the new index 
value is established using Equation 3.5. 

                  𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 =
∑ �(𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅+𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅)×𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅
�𝑛𝑛

𝑖𝑖=1

∑ (𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅+𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅)𝑛𝑛
𝑖𝑖=1

                         Eq. 3.4 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 × (1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃)             Eq. 3.5 

 
Where: 𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 
 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑑𝑑𝑒𝑒𝑒𝑒 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 

𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 
𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 
𝑛𝑛 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

In addition to the 12 cost indexes developed by the authors, the study has evaluated eight existing 
CCIs currently used in the construction industry. Table 3.4 outlines the existing CCIs, which 
include indexes published and maintained by private organizations, such as the Building Cost 
Index (BCI) and CCI developed by the Engineering News Record (ENR), and the CCI published 
by the RSMeans. The ENR provides a national CCI, as well as local CCIs for 20 cities across the 
country. This study has assessed the performance of both the ENR National CCI and a CCI 
developed to track changes in the construction market in Birmingham, Alabama. As shown in 
Table 3.4, the selected existing CCIs include two indexes mainly intended to be used in the vertical 
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construction industry: the ENR-BCI and the RSMeans CCI. Even though these two indexes are 
aimed for a different construction sector, they have been considered in this study because the 
literature review revealed that some building CCIs are being used by STAs or by other authors for 
cost estimating purposes (Rueda 2016). 

Table 3.4 Existing Construction Cost Indexes 

Index Components Applicability  Frequency  

Engineering News Record: 
Building Cost Index (BCI)  

• Cement  
• Structural Steel  
• Lumber  
• Labor 

National  Monthly 

Engineering News Record: 
Construction Cost Index 
(CCI)  

• Cement  
• Structural Steel  
• Lumber  
• Labor (more labor intensive than BCI) 

National  Monthly 

Engineering News Record: 
Construction Cost Index 
(CCI)- Birmingham, AL  

• Cement  
• Structural Steel  
• Lumber  
• Labor (more labor intensive than BCI) 

Birmingham, AL Monthly 

RSMeans Construction Cost 
Index (CCI)  

• 9 types of buildings 
- 66 construction materials 
- Wage rates for 21 different trades 
- 6 types of construction equipment 

National  Quarterly 

Federal Highway 
Administration: 
National Highway 
Construction Cost Index 
(NHCCI) 

• Nations Highway Projects 
- Standard Pay Items 
- Material 
- Labor 

National  Quarterly 

California Department of 
Transportation:  
Price Index for Selected 
Highway Construction Items  

• Roadway excavation per cubic yard 
• Aggregate base per ton 
• Asphalt concrete pavement per ton 
• Portland cement concrete (Pavement) 

per cubic yard 
• Portland cement concrete (Structure) 

per pound 
• Bar reinforcing steel per pound 
• Structural steel per pound 

California Quarterly 

Washington State 
Department of 
Transportation: Price Index 
for Highway Construction 
Items  

• Roadway excavation per cubic yard 
• Crushed Surfacing per ton 
• Hot Mix Asphalt per ton 
• Concrete Pavement per cubic yard 
• Structural concrete per cubic yard 
• Steel Reinforcing bar per pound 
• Structural steel per pound 

Washington 
State Annual 

Alabama Department of 
Transportation: Price Index 
for Asphalt 

• Asphalt – Price per gallon  
 Alabama Monthly 
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3.4.3 Location Impact  
To model the relationship between geographic location and construction prices with a location cost 
index (LCI), it was first necessary to split the available historical bid data into comparable regions. 
Counties within each region are assumed to share similar market conditions. Likewise, each region 
was required to provide sufficient data to allow for reliable analysis, and at the same time, they 
could not be too large, so that, they would become meaningless geography-wise. The study initially 
considered the five geographic regions used by ALDOT to organize its operations: north (N), east-
central (EC), west-central (WC), south-central (SC), and south-west region (SW). Figure 3.7 
shows the partition of the state of Alabama according to these five regions.  

 

Figure 3.7 ALDOT geographic regions: Five-region classification. 
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The decision to use the partition shown in Figure 3.7 had to be reevaluated when the EDA revealed 
that some of these regions were not providing a constant stream of pricing data for the case study 
item throughout the period of time considered in this study. The lowest count of paving projects 
corresponded to the WC and SW regions. This issue was solved by rearranging this partition into 
three regions: north, central, and south region. The final partition is shown in Figure 3.8. 

 

Figure 3.8 Final geographic regions: Three-Region Classification. 

After defining the three geographic regions for the LCI, the research team used time series analysis 
to determine if significant differences in unit prices for the case study item should be expected for 
the same bid quantity across the three regions. The study identified a typical paving project 
awarded by ALDOT and used the collected bid data to determine the annual average unit price for 
case study item in that project in each region. Figure 3.9 shows how the average unit price for 
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8,715 tons of the case study item (bid quantity in a selected project) changed between 2006 and 
2016 in each region. 

 

Figure 3.9 Annual average unit price for case study item per region. 

The next step was to determine if there is a significant difference between the three time series in 
Figure 3.9. The location factor would not be necessary for the proposed cost estimating 
methodology if no significant differences are found between regions. A visual inspection of this 
figure seems to show that unit prices for the case study item across the three regions started to 
increasingly spread out after 2010. A series of ANOVA tests applied to different time frames were 
used to validate this statement. The results of these tests are presented in Table 3.5.  

The first test was conducted to compare the 11-year average unit price (2006-2016) between the 
three regions and it revealed no significant difference with a 5% significance level. The time frame 
was then reduced by one year (2007-2016), and the ANOVA test was run again with the same 
results. This process was repeated a number of times, reducing the time frame by one year at a 
time, showing that significant differences between these regions started to appear after 2010.  

Two important findings were derived from this statistical analysis. First, it can be assumed that 
unit prices for the case study item change significantly between regions in the current construction 
market. The second finding is that some sort of event(s) affected the paving construction market 
in Alabama around 2010. Therefore, the authors decided to continue developing and validating the 
proposed system using only data from projects awarded between 2011 and 2016 (2,122 projects) 
since old pricing trends might affect the results of the study, misleading ALDOT on the expected 
performance of the proposed system in today’s construction market. Thus, the authors proceeded 
to develop an annual LCI to quantify the price differences between these regions starting in 2011. 
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Table 3.5 ANOVA Test Results to Compare Average Unit Prices per Region 

Years Time 
Frame Region Average Unit 

Price P-value Conclusion 

11 2006-2016 
North 67.05 

0.607 

Not enough 
information to 

prove a 
significant 

difference with a 
significance level 

of 5% 

Central 74.74 
South 73.00 

10 2007-2016 
North 68.41 

0.549 Central 76.15 
South 74.12 

9 2008-2016 
North 69.90 

0.394 Central 77.87 
South 75.31 

8 2009-2016 
North 71.36 

0.215 Central 79.19 
South 74.96 

7 2010-2016 
North 72.43 

0.076 Central 81.27 
South 75.66 

6 2011-2016 
North 73.72 

0.034 

Significant 
difference with a 
significance level 

of 5% 

Central 82.86 
South 76.44 

5 2012-2016 
North 75.48 

0.005 Central 84.41 
South 77.37 

4 2013-2016 
North 76.59 

0.007 Central 84.89 
South 78.57 

3 2014-2016 
North 76.42 

0.018 Central 86.29 
South 79.58 

 
Finally, the LCI was developed following a similar approach adopted by the RSMeans for the 
calculation of its City Cost Index (RSMeans 2018). The RSMeans City Cost Index compares 
average construction costs among 731 U.S. and Canadian cities. The index values for all U.S. cities 
are calculated using the U.S. national average as a reference. Every year, the U.S. national average 
is assigned an index value of 100, and index values at the city level are calculated in a proportional 
manner around the national index. For example, if the index value for a given city is 95, that would 
mean that the average construction costs in that city are 5% lower than the national average. 
Likewise, an index value of 102 would indicate that local average costs are expected to be 2% 
above the national average.  
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Figure 3.10 shows the same three time series from Figure 3.9 as well as the addition of one more 
series for the state average unit price for 8,715 tons of the case study item. The values plotted in 
this figure for each region were compared against the state average at their respective years. The 
results of these comparisons were then translated into index values in a similar fashion as in the 
RSMeans City Cost Index. The resulting LCI is shown in Table 3.6. 

 

Figure 3.10 Annual average unit price for case study item per region and state average. 

 

Table 3.6 Location Cost Index for Case Study Item 
Year State North  Central South 

2011 100.00 95.15 102.56 100.21 
2012 100.00 97.53 106.98 96.35 
2013 100.00 102.02 104.51 94.93 
2014 100.00 97.12 106.75 97.37 
2015 100.00 97.80 105.70 94.22 
2016 100.00 98.46 110.25 92.42 

 

While it does not seem to be a clear pattern to define the difference in prices for the case study 
item between the north and south regions, Figure 3.10 and the LCIs shown in Table 3.6 show a 
clear trend of higher prices in the central region in comparison with the other two regions. On 
average, among the six years shown in Table 3.6, unit prices for the case study item in the central 
region are 8.3% and 10.8% higher than in the north and south regions, respectively. Further 
research is required to attempt to explain the reason behind the price differences between regions. 
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3.4.4 Estimating Uncertainty Impact  
Unlike the scale, time, and location factors described above, the estimating uncertainty factor is 
not incorporated as an input to the proposed estimating system. It is essentially a byproduct of the 
validation process, as illustrated in Figure 3.11. To implement the proposed system on a given pay 
item, ALDOT’s estimators must perform the same process presented in this report for the case 
study item, but with the most recent historical bid data for the intended pay item. After Part 1 of 
the validation process, estimators shall produce a set of percentage errors by applying Equation 
3.6 on each testing project. These percentage errors are then used to create a probability 
distribution function intended to represent the level of uncertainty of the estimating system for the 
pay item under consideration. This distribution is then saved for future use during the actual 
implementation of the system to account for the uncertainty factor within the cost estimating 
process, as discussed in the next section. The same process should be followed for every pay item 
to be incorporated into the bid-based cost estimating system. Therefore, each item should have its 
own distribution of percentage errors. 

𝑃𝑃𝑃𝑃 =  𝐴𝐴𝑖𝑖−𝐸𝐸𝑖𝑖
𝐸𝐸𝑖𝑖

× 100%            Eq. 3.6 

Where: PE = Percentage Error 

 𝐴𝐴𝑖𝑖 = Actual unit price in testing project i 

 𝐸𝐸𝑖𝑖= Estimated unit price in testing project i  

 
Figure 3.11 Generation of distribution of percentage errors. 

It should be noted that the errors in this distribution are calculated as percentages of the estimated 
values, unlike APEs, which are percentages of the actual values. The distribution of percentage 
errors is intended to represent all possibilities for the actual values around the estimated value, 
while APEs are calculated around actual values. For example, if the estimated unit price for the 
case study item on a testing project is $71/ton and the actual price paid by ALDOT is $67/ton, the 
APE for this estimate according to Equation 1.1 would be 6.0%, which means that the percentage 
difference with respect to the actual price is 6.0%. It is irrelevant whether it is greater or lower 
since the APE is an absolute value, but in this case, the estimated price is 6.0% greater than the 
actual price. If the same percentage difference were calculated with respect to the estimated value, 

Distribution of 
Percentage Errors
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as in the values used to create the distribution of percentage errors, it would be -5.6%, meaning 
that the actual price is 5.6% lower than the estimated price.       

3.5 Integration of Factor-Level Models  

The previous section has presented all the elements and models used to consider the impact of each 
cost-influencing factor on the proposed bid-based cost estimating process. Now it is necessary to 
establish a framework to integrate and facilitate the use of all these elements and models. That 
framework is illustrated in Figure 3.12.  

 
Figure 3.12 Integration of Factors for Implementation. 
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This framework shows how the system should be implemented by ALDOT’s estimators on a pay 
item that has already been subjected to the development process in Figure 1.3 from Chapter 1 and 
also presented again in the next chapter. It means that upon using this framework, the optimal 
look-back period, the CCI, and the LCI for the intended pay item have already been defined. This 
figure only refers to the actual implementation of the system. All the steps in Figure 3.12 are 
described below.    

1. Step 1 – Project Scale Factor: Develop a power regression model using unit prices for 
the intended pay item from all previous projects contained in the optimal look-back period. 

2. Step 2 – Time Factor: Use the power regression model to estimate a deterministic unit 
price (unadjusted) for the expected units of work to be delivered under the current project. 
Assume that the unadjusted deterministic unit price corresponds to the mid-point of the 
look-back period, and use the selected CCI to bring this estimate into current dollars using 
Equation 3.7 (time-adjusted deterministic unit price). 

                             𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶

               Eq. 3.7 

Where: TADUP = Time-adjusted deterministic unit price 
 UADUP = Unadjusted deterministic unit price 
 Current CCI = Last CCI value known at current date 
 Base CCI = Last CCI value known at the mid˗point of the look˗back Period 

3. Step 3 – Location Factor: Use the LCI and Equation 3.8 to adjust the time-adjusted 
deterministic unit price for the region in which the current project is to be constructed. The 
time-adjusted deterministic unit price from Step 2 was estimated with projects awarded 
across the entire state. Therefore, it is assumed to be a state average unit price. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
100

       Eq. 3.8 

Where:  LADUP= Location˗Ajusted Deterministic Unit Price 
             TADUP= Time˗Ajusted Deterministic Unit Price 

4. Step 4 – Estimating Uncertainty Factor: Develop the final stochastic unit price by 
multiplying the location-adjusted deterministic unit price by the distribution of percentage 
errors obtained during the system development process. 

Since the three-part research validation process adopted in this study is intended to simulate the 
actual implementation of the system, the four steps in Figure 3.12 are also applied to the testing 
projects during the development phase in the same fashion described above. The main difference 
between the development and implementation phases for a give pay item lies in the fact that the 
three-part research validation process is only used during development to ensure that all system 
elements and factor-level models will work properly during implementation. The system 
development and validation processes are illustrated in the next chapter using the case study item. 
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CHAPTER 4: DEVELOPMENT AND VALIDATION OF STOCHASTIC BID-BASED 

COST ESTIMATING SYSTEM  

 

4.1 Introduction  

This chapter presents an in-depth discussion of the process to develop the proposed bid-based cost 
estimating system as well as a careful analysis of the validation results obtained from the case 
study item. The system development process, which is to be applied to each pay item to be 
incorporated into the system, is illustrated in Figure 4.1. This process includes the three-part 
research validation approach. 

 
Figure 4.1 Development of proposed bid-based cost estimating system. 
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Most of this chapter is concerned with Part 1 of the research validation process, which consists of 
the use of the MWCV algorithm. This algorithm was applied in a systematic, iterative fashion in 
an attempt to fulfill three different purposes: 

• Demonstrate the contribution of each cost-influencing factor towards the improvement in 
cost estimating effectiveness. 

• Identify the optimal look-back period for data retrieval (in years). 

• Identify the most suitable cost indexing approach. 

Upon completion of the first part of the validation process, the research team proceeded to 
determine if the deterministic estimating effectiveness offered by the proposed system is superior 
to the level of estimating accuracy and reliability achieved with ALDOT’s current practices. This 
was Part 2 of the validation process. Finally, after demonstrating the deterministic performance of 
the bid-based estimating system, the third validation part consisted of a second “proposed systems 
vs. current practices” comparison, but this time from a stochastic perspective. All three parts of 
the validation process yielded positive results, indicating that the case study item was successfully 
incorporated into the system. Although the results presented in this chapter are only applicable to 
the selected pay item, the following sections present the development and validation process with 
a sufficient level of detail to guide ALDOT on the incorporation of other pay items into the system.  

4.2 Definition of First Three Cost-Influencing Factors 

As shown in Figure 4.1, the first step in the system development process is to define the non-linear 
regression equation that will represent the scale factor as well as to identify suitable cost and 
location cost indexes to account for the time and location cost impacts associated with the pay item 
under consideration. Section 3.4.1 has already explained the decision of using a power regression 
equation to consider the scale factor. Likewise, Section 3.4.3 has presented the quantitative 
analysis that led to the development of the LCI for the case study item. What has not yet been 
addressed in this report is the identification of the most suitable CCI for the case study item among 
the 20 cost indexing alternatives listed in Section 3.4.2. This will be addressed in the next section 
through additional iterations of the MWCV algorithm during Part 1 of research validation.       

4.3 Research Validation Process 

Figure 4.1 shows the role played by the three-step research validation process during the system 
development phase. This process must be repeated for every pay item to be incorporated into the 
system. The following subsections describe each of the three parts of the research validation 
approach as they are applied to the case study item. 

4.3.1 Research Validation Part 1: Moving-Window Cross-Validation  
Part 1 of the research validation process consists of the MWCV algorithm. This algorithm is 
illustrated in Figure 4.2. This is basically an advanced version of the cross-validation (CV) 
techniques described in Section 2.5, and it is designed to overcome the limitations of traditional 
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CV procedures described in the same section. The term “moving-window” refers to a time window 
of fixed width moving across the testing period (period of time containing the testing projects), 
which has been defined as the year 2016 for this study. After discarding outliers, the testing dataset 
was formed by 97 projects that used the case study item during 2016. The width of the time window 
corresponds to the optimal look-back period. To determine the optimal window width for the case 
study item, the MWCV in Figure 4.2 was applied a total of five times, once for a different look-
back period ranging from one to five years. The optimal look-back period for the selected pay item 
was then the one that yielded the best estimating effectiveness.  
 

 
Figure 4.2 Moving-window cross-validation algorithm. 

The MWCV process started by placing the right-end of the time window at the beginning of the 
testing period (January 1, 2016). It was then moved towards the end of the testing timeline. Every 
time that the right-end of the moving-window found a project, it stopped, the unit price for the case 
study item in that project was estimated using the bid data contained in the moving-window 
(following Steps 1 to 3 from Figure 3.12), and the APE was calculated. After that, the fixed time 
window continued moving until finding the next project. At the end of the MWCV process, the 
MAPE and standard deviation of the APEs (97 APE values– one for each project in the testing 
period) were calculated to determine the overall estimating accuracy and reliability of the system 
on the case study item. The MWCV algorithm allowed for the calculation of the MAPE and 
standard deviation values that ALDOT would have actually experienced if the proposed cost 
estimating methodology would have been used to estimate unit prices for the case study item 
during 2016. This would not be possible with traditional CV techniques.   

In addition to the iterations to test the different look-back periods, the MWCV algorithm was also 
run multiple times to determine if each of the three input elements (non-linear regression equations, 
CCI, and LCI) was actually contributing to the improvement in estimating accuracy and reliability 
at the deterministic level. The MWCV approach was applied before and after incorporating each 
of the first three factors into the cost estimating process, as they were added one-by-one. The 
comparison of “before” and “after” estimates allowed for the quantification of the estimating 
improvement attributed to each factor. 
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Assuming that the regression approach, CCI, LCI, and the optimal look-back period are already 
known, the MWCV approach would have been applied four times (hereinafter referred to as 
passes) as described below and as shown in Figure 4.3. An APE value is obtained from each testing 
project on each MWCV pass. Thus, each MAPE and standard deviation value in Figure 4.3 was 
calculated in this study with 97 APEs. The following is the description of each MWCV pass: 

 

Figure 4.3 Four passes of moving-window cross-validation algorithm. 

1. MWCV Pass 1 (no cost-influencing factors): Unit prices for the intended pay item in the 
validation projects are estimated as the average of the historical unit prices contained in the 
look-back period. This pass disregards the potential impacts of the four cost-influencing 
factors.  

2. MWCV Pass 2 (project scale): Unit prices for the intended pay item in the testing projects 
are estimated using the non-linear regression equation (as shown in Step 1 in Figure 3.12) 
and according to the quantities of work contracted under each testing project. The 
improvement in cost estimating effectiveness attributed to the incorporation of the project 
scale factor is determined by comparing accuracy and reliability measures between Passes 
1 and 2.  

3. MWCV Pass 3 (project scale + time): Unit prices for the intended pay item in the testing 
projects are estimated using the non-linear regression equation and the selected CCI to 
bring old prices into current dollars (up to Step 2 in Figure 3.12). The improvement in 
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estimating effectiveness attributed to the incorporation of the time factor is determined by 
comparing accuracy and reliability measures between Passes 2 and 3. 

4. MWCV Pass 4 (project scale + time + location): Unit prices for the intended pay item in 
the testing projects are estimated using the non-linear regression model, the CCI, and the 
LCI to adjust prices according to the geographic location of each testing project (up to Step 
3 in Figure 3.12). The improvement in estimating effectiveness attributed to the 
incorporation of the location factor is determined by comparing accuracy and reliability 
measures between Passes 3 and 4.  

In order to determine the optimal look-back period, the sequence of MWCV passes described 
above was repeated five times, one for each of the five look-back periods under consideration. It 
would imply a total of 20 MWCV iterations (4 passes x 5 look-back periods = 20 iterations). 
However, there are still additional iterations required to identify the most suitable CCI among the 
20 cost indexing alternatives described in Section 3.4.2. It means that 10 of those 20 iterations, 
those corresponding to MWCV Passes 3 and 4, had to be repeated 20 times. In other words, 
MWCV Passes 3 and 4 were each performed 100 times (5 look-back periods x 20 CCIs = 100 
iterations), increasing the total number of iterations to 210 (5 iterations first pass + 5 iterations 
second pass + 100 iterations third pass + 100 iterations fourth pass = 210 iterations).       

In a similar way, some of the four MWCV passes could have been performed additional times to 
evaluate the cost estimating performance of the system under different regression equations and/or 
LCIs. A systematic iterative application of the MWCV algorithm could help to identify the look-
back period, regression approach, CCI, and LCI combination that would offer the best total 
improvement in estimating accuracy and reliability for the intended pay item, but this study only 
evaluated different alternatives for the look-back period and the CCI.  

Table 4.1 shows the MAPE and standard deviation values for each of the five look-back periods 
before and after using the non-linear regression models to account for the scale factor (MWCV 
Passes 1 and Pass 2).  

Table 4.1 Research Validation Part 1 – MWCV Passes 1 and 2 
MWCV Pass Look-Back Period MAPE SD of APEs 

MWCV Pass 1 
No Cost-Influencing Factors  

1 Year 19.46% 14.79% 
2 Year 21.62% 16.18% 
3 Year 20.61% 15.30% 
4 Year 20.19% 15.24% 
5 Year 19.31% 14.60% 

MWCV Pass 2 
Scale 

1 Year 14.95% 10.30% 
2 Year 16.62% 10.85% 
3 Year 16.16% 10.44% 
4 Year 15.47% 9.99% 
5 Year 14.96% 9.63% 
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Improvements in cost estimating performance between MWCV Passes 1 and 2 were measured via 
statistical significance testing. Two different statistical tests were used: 1) the paired two-sample 
t-test to determine the level of significance in accuracy improvement (reduction of MAPE) and 2) 
the F-test to assess the improvement in reliability (reduction in the standard deviation of APEs). 
The paired two-sample t-test was appropriate in this case because both MWCV calculations were 
applied to each of the 97 testing projects.  

After the second MWCV pass, it was still difficult to anticipate which of the five look-back periods 
would offer the best cost estimating performance. However, the statistical analysis allowed to 
conclude (with a 99% confidence level) that, regardless of the number of years used to develop  
regression models, the incorporation of the scale factor significantly improved cost estimating 
accuracy and reliability for the case study item. The statistical test showed a significant reduction 
in MAPE and standard deviation values between MWCV Passes 1 and 2 under all look-back 
periods.   

Table 4.2 shows the results of the 100 iterations under MWCV Pass 3. A closer look at this table 
seems to point to a two-year look-back period as the optimal amount of data for bid-based cost 
estimating for the case study item. Most of the top ten cost estimating performances on both 
effectiveness parameters (MAPE and standard deviation) were obtained with two years of data. 
However, it is too early to make a conclusion regarding the most appropriate look-back period. 
That conclusion should be made after the application of the LCI in MWCV Pass 4 since it could 
change the performance ranking.  

MWCV Pass 3 is mainly intended to determine if the use of a CCI to bring bid-based cost estimates 
into current dollars would improve cost estimating effectiveness. To make this determination it is 
not necessary to demonstrate an estimating improvement by each of the 100 iterations, which is 
obviously not the case. Showing improvement with a single iteration would be sufficient. Among 
the 100 iterations in Table 4.2, the one showing the lowest MAPE and standard deviation is the 
one that uses the Quarterly All Bids index with a two-year look-back period. Statistical testing 
results allowed to assert (with a 95% confidence level) that the levels of accuracy and reliability 
under this iteration are significantly better than those from any of the five iterations from Pass 2. 
In conclusion, these results have demonstrated the importance of using CCIs to address the fact 
that historical bid data does not reflect current pricing levels. The statistical analysis described in 
this paragraph was similar to the one applied above to compare the results of MWCV Passes 1 and 
2.   
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Table 4.2 Research Validation Part 1 – MWCV Pass 3 
Indexing Approach Look-Back 

Period MAPE SD of 
APEs Indexing Approach Look-Back 

Period MAPE SD of 
APEs 

Quarterly All Bids  

1 Year 13.33% 8.94% 

Annual Average  

1 Year 15.05% 10.43% 
2 Year 12.52% 8.21% 2 Year 16.89% 10.99% 
3 Year 13.53% 10.41% 3 Year 19.04% 12.28% 
4 Year 14.64% 10.05% 4 Year 19.84% 12.54% 
5 Year 14.75% 9.90% 5 Year 21.02% 12.99% 

Quarterly Median 

1 Year 14.32% 8.92% 

Annual Awarded Bid  

1 Year 15.53% 10.99% 
2 Year 13.12% 8.43% 2 Year 18.07% 11.56% 
3 Year 13.49% 9.66% 3 Year 19.84% 12.52% 
4 Year 15.23% 10.11% 4 Year 20.34% 12.76% 
5 Year 15.78% 10.16% 5 Year 21.31% 13.13% 

Quarterly Average  

1 Year 14.36% 8.89% 

National Highway 
CCI 

1 Year 14.56% 9.41% 
2 Year 13.15% 8.46% 2 Year 15.17% 9.91% 
3 Year 13.57% 9.67% 3 Year 15.12% 9.75% 
4 Year 15.34% 10.21% 4 Year 16.07% 10.74% 
5 Year 16.08% 10.34% 5 Year 16.52% 10.53% 

Quarterly Awarded 
Bid  

1 Year 14.49% 9.31% 

Caltrans CCI 

1 Year 20.91% 15.34% 
2 Year 12.90% 8.29% 2 Year 22.42% 15.40% 
3 Year 12.86% 9.02% 3 Year 25.63% 16.09% 
4 Year 14.80% 9.91% 4 Year 27.25% 17.79% 
5 Year 15.35% 9.60% 5 Year 33.27% 28.47% 

Semi Annual All Bid  

1 Year 13.44% 9.36% 

Washington State 
DOT CCI 

1 Year 19.91% 13.34% 
2 Year 12.73% 8.90% 2 Year 20.52% 15.83% 
3 Year 15.08% 11.68% 3 Year 16.22% 10.54% 
4 Year 16.24% 11.23% 4 Year 27.40% 16.56% 
5 Year 16.21% 11.19% 5 Year 40.04% 23.18% 

Semi Annual Median  

1 Year 13.72% 9.45% 
Engineering News 

Record -Birmingham 
CCI 

1 Year 15.28% 10.54% 
2 Year 13.24% 8.84% 2 Year 17.80% 11.49% 
3 Year 15.36% 11.62% 3 Year 17.39% 11.22% 
4 Year 16.95% 11.21% 4 Year 17.21% 10.90% 
5 Year 16.93% 11.21% 5 Year 17.64% 11.20% 

Semi Annual 
Average  

1 Year 13.70% 9.39% 

Engineering News 
Record CCI 

1 Year 15.85% 10.72% 
2 Year 13.22% 8.81% 2 Year 18.72% 11.90% 
3 Year 15.21% 11.48% 3 Year 18.80% 11.95% 
4 Year 16.88% 11.18% 4 Year 18.97% 12.10% 
5 Year 16.94% 11.19% 5 Year 19.31% 12.28% 

Semi Annual 
Awarded Bid 

1 Year 13.53% 9.29% 
Engineering News 

Record  
Building Cost Index 

1 Year 15.65% 10.63% 
2 Year 13.09% 9.05% 2 Year 18.21% 11.64% 
3 Year 15.63% 11.87% 3 Year 18.36% 11.70% 
4 Year 17.06% 11.44% 4 Year 18.63% 11.88% 
5 Year 16.79% 11.23% 5 Year 18.69% 11.93% 

Annual All Bid  

1 Year 15.31% 10.74% 

RSMeans CCI 

1 Year 15.07% 10.27% 
2 Year 17.54% 11.31% 2 Year 17.03% 11.07% 
3 Year 19.68% 12.51% 3 Year 16.71% 10.74% 
4 Year 20.43% 12.80% 4 Year 16.63% 10.70% 
5 Year 21.91% 13.46% 5 Year 16.56% 10.53% 

Annual Median  

1 Year 15.07% 10.46% 

ALDOT Asphalt 
Index 

1 Year 15.24% 11.30% 
2 Year 16.95% 11.02% 2 Year 22.51% 12.07% 
3 Year 19.02% 12.26% 3 Year 34.78% 11.28% 
4 Year 19.78% 12.51% 4 Year 37.09% 9.83% 
5 Year 21.09% 13.03% 5 Year 36.84% 9.59% 
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Table 4.3 shows the results of the 100 iterations under MWCV Pass 4 after applying the LCI for 
the last price adjustment. This table shows the total cumulative improvement after applying the 
first three cost-influencing factors with four different look-back periods and 20 different cost 
indexing alternatives. After applying the LCI in Pass 4, the two-year Quarterly All Bids iteration 
is still the one showing the best cost estimating performance. The paired two-sample t-test showed 
a statistical significant reduction of 9.61% in the MAPE value for this “look-back period/CCI” 
combination due to the adjustments for location. On the other hand, this combination showed an 
increase in the standard deviation of APEs, which would suppose a reduction of 11.08% in the 
level of reliability after using the LCI. However, the F-test did not show this reduction as 
statistically significant, meaning that, in the long run, the level of reliability before and after 
applying the LCI could be similar. Therefore, this study can conclude that the implementation of 
the LCI would have a significant positive impact on construction cost estimating accuracy without 
affecting estimating reliability.      

Before moving forward with the validation process, it is necessary to make a decision regarding 
the most suitable look-back period and CCI for the case study item. As mentioned before, the use 
of a two-year look-back period and the Quarterly All Bids CCI has yielded the best total 
improvement. Nonetheless, it is difficult to conclude with a visual inspection of Table 4.3 if the 
MAPE and standard deviation values under this iteration are significantly lower than those 
obtained with other look-back period/CCI combinations. So far, statistical testing techniques have 
been used to analyze cost estimating improvements between MWCV passes, and they are now 
required to compare the results from all iterations at the end of Pass 4. Due to the nature of this 
statistical analysis, the paired two-sample t-test and F-test are not applicable this time. Other two 
statistical tests were used in this analysis: the two-way ANOVA test to compare MAPE values and 
the Levene’s test to evaluate the variances among the iterations. 

Levene’s test was used to maximize reliability. The null hypothesis tested with the Levene’s test 
was that the variances across all look-back period/CCI combinations are equal. This test was 
systematically used in this study to reduce the number of possible look-back period/CCI 
combinations into the subset of combinations that offered the lowest comparable variance. The 
look-back periods and indexing approaches showing the higher variability were discarded one-by-
one until having a subset of combinations with the lowest comparable variances. Subsequently, an 
in a similar systematical manner, the two-way ANOVA test was applied on this subset to form a 
smaller subset with the combinations offering the lowest comparable MAPEs. After applying both 
statistical tests, the original 100 look-back period/CCI combinations were of 18 combinations with 
the lowest comparable MAPEs and standard deviation values. These 18 combinations are listed in 
Table 4.4. 
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Table 4.3 Research Validation Part 1 – MWCV Pass 4 
Indexing Approach Look-Back 

Period MAPE SD of 
APEs Indexing Approach Look-Back 

Period MAPE SD of 
APEs 

Quarterly All Bids  

1 Year 12.15% 11.90% 

Annual Average  

1 Year 13.83% 10.52% 
2 Year 11.31% 9.12% 2 Year 15.68% 11.00% 
3 Year 12.42% 10.24% 3 Year 17.71% 12.37% 
4 Year 13.50% 10.08% 4 Year 18.63% 12.34% 
5 Year 13.49% 10.06% 5 Year 19.76% 12.91% 

Quarterly Median 

1 Year 13.00% 9.55% 

Annual Awarded Bid  

1 Year 14.28% 11.04% 
2 Year 12.08% 9.17% 2 Year 16.81% 11.55% 
3 Year 12.27% 9.75% 3 Year 18.50% 12.58% 
4 Year 14.07% 10.34% 4 Year 19.11% 12.58% 
5 Year 14.60% 10.30% 5 Year 20.05% 13.02% 

Quarterly Average  

1 Year 13.02% 9.56% 

National Highway 
CCI 

1 Year 13.08% 9.87% 
2 Year 12.13% 9.19% 2 Year 13.86% 10.04% 
3 Year 12.30% 9.81% 3 Year 13.61% 10.07% 
4 Year 14.19% 10.42% 4 Year 14.62% 10.94% 
5 Year 14.89% 10.48% 5 Year 15.27% 10.47% 

Quarterly Awarded 
Bid  

1 Year 13.36% 9.64% 

Caltrans CCI 

1 Year 19.43% 14.98% 
2 Year 11.88% 9.12% 2 Year 20.75% 14.97% 
3 Year 11.72% 9.35% 3 Year 24.31% 15.85% 
4 Year 13.67% 10.20% 4 Year 25.45% 17.08% 
5 Year 14.17% 9.94% 5 Year 32.42% 29.63% 

Semi Annual All Bid  

1 Year 12.37% 9.74% 

Washington State 
DOT CCI 

1 Year 18.45% 13.24% 
2 Year 11.68% 9.37% 2 Year 19.34% 15.61% 
3 Year 14.33% 11.50% 3 Year 14.97% 10.89% 
4 Year 15.07% 11.30% 4 Year 26.28% 16.14% 
5 Year 15.10% 11.21% 5 Year 38.97% 21.95% 

Semi Annual Median  

1 Year 12.56% 9.77% 
Engineering News 

Record -Birmingham 
CCI 

1 Year 13.97% 10.66% 
2 Year 12.04% 9.35% 2 Year 16.54% 11.53% 
3 Year 14.36% 11.62% 3 Year 16.22% 11.11% 
4 Year 15.74% 11.25% 4 Year 15.88% 11.00% 
5 Year 15.76% 11.24% 5 Year 16.43% 11.16% 

Semi Annual 
Average  

1 Year 12.54% 9.72% 

Engineering News 
Record CCI 

1 Year 14.51% 10.87% 
2 Year 12.01% 9.34% 2 Year 17.50% 11.84% 
3 Year 14.22% 11.47% 3 Year 17.61% 11.81% 
4 Year 15.67% 11.22% 4 Year 17.80% 11.90% 
5 Year 15.77% 11.21% 5 Year 18.15% 12.05% 

Semi Annual 
Awarded Bid 

1 Year 12.37% 9.70% 
Engineering News 

Record  
Building Cost Index 

1 Year 14.33% 10.79% 
2 Year 11.97% 9.48% 2 Year 16.99% 11.62% 
3 Year 14.61% 11.91% 3 Year 17.09% 11.66% 
4 Year 15.85% 11.48% 4 Year 17.46% 11.72% 
5 Year 15.63% 11.25% 5 Year 17.57% 11.71% 

Annual All Bid  

1 Year 14.08% 10.79% 

RSMeans CCI 

1 Year 13.81% 10.41% 
2 Year 16.30% 11.31% 2 Year 15.81% 11.08% 
3 Year 18.34% 12.58% 3 Year 15.53% 10.71% 
4 Year 19.19% 12.62% 4 Year 15.40% 10.79% 
5 Year 20.68% 13.30% 5 Year 15.36% 10.59% 

Annual Median  

1 Year 13.85% 10.54% 

ALDOT Asphalt 
Index 

1 Year 15.48% 10.99% 
2 Year 15.73% 11.03% 2 Year 23.21% 11.75% 
3 Year 17.69% 12.35% 3 Year 35.42% 10.81% 
4 Year 18.57% 12.31% 4 Year 37.71% 9.39% 
5 Year 19.83% 12.95% 5 Year 37.45% 9.16% 
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Table 4.4 Research Validation Part 1 – MWCV Pass 4 
Indexing Approach Look-Back Period MAPE SD of APEs 

Quarterly All Bids  1 Year 12.15% 11.90% 
2 Year 11.31% 9.12% 

Quarterly Median 1 Year 13.00% 9.55% 
2 Year 12.08% 9.17% 

Quarterly Average  1 Year 13.02% 9.56% 
2 Year 12.13% 9.19% 

Quarterly Awarded Bid  1 Year 13.36% 9.64% 
2 Year 11.88% 9.12% 

Semi Annual All Bid  1 Year 12.37% 9.74% 
2 Year 11.68% 9.37% 

Semi Annual Median  
1 Year 12.56% 9.77% 
2 Year 12.04% 9.35% 

Semi Annual Average  1 Year 12.54% 9.72% 
2 Year 12.01% 9.34% 

Semi Annual Awarded Bid 1 Year 12.37% 9.70% 
2 Year 11.97% 9.48% 

National Highway CCI 
1 Year 13.08% 9.87% 
2 Year 13.86% 10.04% 

 

In general, all quarterly and semi-annual indexes outperformed the annual and existing cost 
indexes, demonstrating the suitability of the cost indexing methodology proposed by Gransberg 
and Rueda (6) to track price fluctuations at the pay item level in Alabama. Only one of the existing 
CCIs was not discarded by the statistical analysis: the National Highway CCI. However, it showed 
the worst performance among the remaining 18 combinations.  

Even though the statistical tests did not reveal significant differences in the performance of the 
remaining 18 combinations, the final recommendation made by the authors regarding the most 
suitable combination for the case study item is still to select the top-ranked combination: the two-
year look-back period with the Quarterly All Bids index. This combination showed the lowest 
cumulative MAPE and standard deviation values. Rather than proving that all 18 combinations 
would have the same performance, the statistical tests failed to prove that there are significant 
differences among them. It is still possible that the test failed to detect actual significant differences 
in the performance of the top combinations. If that were the case, the top-ranked combination (two-
year/Quarterly All Bids) would still most likely be the one offering the best cost estimating 
performance. It was still important to conduct the statistical analysis to identify the top 18 
combinations to inform ALDOT about other possible combinations with comparable 
effectiveness, which could be used in case of not having access to the elements required to use to 
top-ranked alternative.     

The study has now demonstrated the importance of factoring scale, time, and location impacts into 
bid-based cost estimating processes and has identified the look-back period and CCI that offer the 
best cost estimating effectiveness for the case study item. However, this “best cost estimating 
effectiveness” was determined among other iterations of the proposed cost estimating system. 
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Positive validation results from Part 1 would not necessarily mean that the proposed system is 
superior to ALDOT’s current cost estimating system in terms of estimating accuracy and 
reliability. In order to make such statement, it is still necessary to prove that cost estimates for the 
testing projects obtained with the proposed system are more accurate and reliable than the actual 
estimates calculated by ALDOT’s estimators for the same pay item in the same projects. The 
comparison of the system against ALDOT’s current estimating practices is performed in Parts 2 
and 3 as described below.  

4.3.2 Research Validation Part 2: Deterministic Validation against ALDOT’s Current Cost 
Estimating System   

Validation efforts on Parts 2 are simpler than those undertaken in Part 1. Part 2 compares the 
deterministic estimating effectiveness of the system against the levels of accuracy and reliability 
observed in ALDOT’s deterministic estimates in the testing projects for the selected pay item. 
Even though the authors did not have access to the unit prices estimated by ALDOT for the case 
study item in the 97 testing projects, it was possible to reasonably approximate ALDOT’s unit 
prices using ALDOT’s cost estimates at the project level (total construction cost estimate including 
all pay items) and all bids received for each project. The process to infer ALDOT’s unit prices for 
the case study item is illustrated in Table 4.5. This table shows the process for three of the 97 
projects in the testing period. In all three contracts in Table 4.5, ALDOT only received bids from 
three different contractors.  

Table 4.5 ALDOT’s Unit Price Estimates for Case Study Item 

Project 
Quantity Item 
424A360 (tons) 

[A] 

Percentage of 424A360  
in Total Bid Price Average 

% 
[B] 

ALDOT’s 
Total Cost 
Estimate 

[C] 

Inferred Unit Price 
Estimate for Item 

424A360* 
[D] Bidder 1 Bidder 2 Bidder 3 

1 16,045 43.7% 44.0% 41.9% 43.2% $2,252,826 $60.68/ton 
2 7,809 17.8% 18.2% 16.9% 17.6% $3,001,141 $67.74/ton 
3 3,959 48.8% 50.5% 49.7% 49.7% $560,736 $70.33/ton 

* D = C x B / A 

The process shown in Table 4.5 was repeated for all 97 observations in the testing period.  This 
inference process is based on the assumption that ALDOT’s estimators would be able to determine 
similar proportions between total bid prices and the portion of the total price that corresponds to 
the case study item. The authors consider that this is a strong assumption given that ALDOT’s 
estimates and contractors’ bids are both prepared with the same plans and specifications, and are 
based on the same project specific information. Likewise, a visual review reveals an apparent low 
variability in this proportion among bidders competing for the same project (e.g. all contractors in 
Project 1 seem to know that this proportion is around 42%-44%), suggesting that an average 
estimator should be able to foresee this proportion with reasonable accuracy. In other words, total 
bid-case study item proportions obtained by ALDOT’s estimators are expected to be similar to 
those obtained by the contractor’s estimators. 

Inferred unit price estimates were compared against those unit prices actually paid by ALDOT 
(submitted by the low bidder) under each project.  MAPE and standard deviation values resulting 
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from this comparison were 13.3% and 9.2%, respectively. When compared against the outputs 
from MWCV Pass 4 for the two-year/Quarterly All Bids combination, it was found that the cost 
estimating system proposed in this study has the potential to increase ALDOT’s estimating 
accuracy by 15% ([0.133-0.113]/0.133 x 100%). Statistical tests show this MAPE reduction as a 
significant improvement in cost estimating accuracy when using the proposed bid-based cost 
estimating system instead of ALDOT’s current practices. In terms of reliability, both the proposed 
and ALDOT’s cost estimating systems showed a similar performance with similar values for the 
standard deviations of the 97 APEs. Although the two-year/Quarterly All Bids combination in 
MWCV Pass 4 yielded a lower standard deviation, these difference is not significant, suggesting 
that both systems offer similar levels of reliability. Based on these results, it can be concluded that 
the implementation of the proposed bid-based cost estimating system would have a significant 
positive impact on ALDOT’s construction cost estimating accuracy without significantly affecting 
estimating reliability.        

4.3.3 Research Validation Part 3: Stochastic Validation against ALDOT’s Current Cost 
Estimating System   

Part 3 of the validation efforts correspond to the assessment of the performance of risk-based 
estimates obtained by combining the deterministic estimates with the distribution of percentage 
errors defined with the results from Part 1. The risk-based estimate generated for the intended item 
on each testing project is compared against the bracket estimate generated by ALDOT for the same 
project. The term “bracket estimate” is used by ALDOT to refer to a range of possible construction 
costs defined by a minimum and a maximum expected value. The bracket estimates, as well as the 
total cost estimates in Table 4.5, were extracted from the Notice to Prospective Bidders issued by 
ALDOT for each of the testing projects.  

To generate risk-based cost estimates for each testing project, it is first necessary to define the 
distribution of percentage errors as explained in Section 3.4.4. Table 4.6 shows the percentage 
errors calculated for each of the 97 testing projects using Equation 3.6. The inputs for this equation 
are the actual unit prices submitted by the successful bidders and the most accurate and reliable 
unit prices obtained from MWCV Pass 4 (those from the two-year look-back period/Quarterly All 
Bids combination). Figure 4.4 corresponds to the empirical probability distribution built with the 
percentage errors listed in Table 4.6.   

Even though this empirical probability distribution could be used to produce risk-based estimates, 
it is important to consider that this distribution is to be saved and distributed among ALDOT 
estimators for future use during the actual implementation of the system. Sharing an empirical 
probability distribution is usually more complicated than sharing a standard distribution with two 
or three parameters. For example, if ALDOT uses a normal distribution instead of the empirical 
distribution in Figure 4.4, all the information needed for future use and to be shared with ALDOT’s 
estimators would be the mean and standard deviation values of the distribution. 
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Table 4.6 Percentage Errors for Testing Projects 
Testing 
Project 

Actual 
Unit Price 

Estimated UP 
MWCV 4 % Error Testing 

Project 
Actual 

Unit Price 
Estimated UP 

MWCV 4 % Error 

1 $115.00 $71.76 60.2% 50 $60.58 $61.91 -2.2% 
2 $108.98 $106.36 2.5% 51 $81.25 $73.09 11.2% 
3 $60.00 $64.19 -6.5% 52 $80.46 $83.23 -3.3% 
4 $70.00 $69.85 0.2% 53 $115.00 $74.30 54.8% 
5 $87.77 $88.26 -0.6% 54 $79.20 $81.75 -3.1% 
6 $67.10 $59.69 12.4% 55 $74.90 $90.38 -17.1% 
7 $88.75 $76.23 16.4% 56 $82.60 $82.51 0.1% 
8 $89.06 $68.26 30.5% 57 $110.92 $75.50 46.9% 
9 $64.34 $68.01 -5.4% 58 $77.50 $75.91 2.1% 
10 $80.00 $72.83 9.9% 59 $81.08 $74.59 8.7% 
11 $53.89 $60.12 -10.4% 60 $78.86 $73.19 7.7% 
12 $80.00 $98.85 -19.1% 61 $88.11 $73.71 19.5% 
13 $79.16 $68.74 15.2% 62 $56.50 $59.94 -5.7% 
14 $87.38 $82.05 6.5% 63 $72.62 $74.83 -3.0% 
15 $72.75 $60.24 20.8% 64 $64.00 $65.16 -1.8% 
16 $69.85 $69.70 0.2% 65 $65.19 $66.26 -1.6% 
17 $59.46 $67.53 -11.9% 66 $80.02 $85.92 -6.9% 
18 $71.06 $67.87 4.7% 67 $63.68 $60.06 6.0% 
19 $78.10 $68.33 14.3% 68 $54.45 $61.05 -10.8% 
20 $62.77 $80.64 -22.2% 69 $60.00 $66.21 -9.4% 
21 $78.77 $65.78 19.8% 70 $85.65 $83.78 2.2% 
22 $62.90 $63.09 -0.3% 71 $59.75 $60.65 -1.5% 
23 $66.00 $70.05 -5.8% 72 $56.14 $64.75 -13.3% 
24 $65.87 $71.28 -7.6% 73 $56.00 $72.18 -22.4% 
25 $58.00 $75.55 -23.2% 74 $60.00 $68.40 -12.3% 
26 $72.15 $84.34 -14.5% 75 $84.33 $67.60 24.8% 
27 $79.15 $60.59 30.6% 76 $62.41 $71.23 -12.4% 
28 $68.85 $58.55 17.6% 77 $72.25 $66.75 8.2% 
29 $64.99 $65.54 -0.8% 78 $87.25 $66.73 30.7% 
30 $75.75 $71.74 5.6% 79 $68.86 $69.59 -1.1% 
31 $82.50 $71.00 16.2% 80 $70.13 $74.49 -5.9% 
32 $54.25 $60.39 -10.2% 81 $88.33 $86.12 2.6% 
33 $95.00 $97.85 -2.9% 82 $75.00 $82.75 -9.4% 
34 $57.07 $67.24 -15.1% 83 $78.00 $77.59 0.5% 
35 $67.23 $78.10 -13.9% 84 $56.85 $69.56 -18.3% 
36 $70.06 $90.03 -22.2% 85 $106.26 $96.98 9.6% 
37 $66.01 $62.82 5.1% 86 $70.64 $72.72 -2.9% 
38 $80.25 $69.97 14.7% 87 $92.00 $68.25 34.8% 
39 $56.00 $62.42 -10.3% 88 $80.30 $77.15 4.1% 
40 $66.86 $62.59 6.8% 89 $66.00 $73.51 -10.2% 
41 $63.00 $62.01 1.6% 90 $57.24 $66.64 -14.1% 
42 $69.75 $72.15 -3.3% 91 $61.23 $70.02 -12.5% 
43 $53.25 $56.93 -6.5% 92 $56.95 $57.43 -0.8% 
44 $55.82 $66.39 -15.9% 93 $115.00 $98.68 16.5% 
45 $55.79 $68.58 -18.7% 94 $73.11 $73.37 -0.4% 
46 $90.25 $63.32 42.5% 95 $73.23 $67.60 8.3% 
47 $83.92 $74.62 12.5% 96 $58.50 $55.83 4.8% 
48 $55.00 $64.76 -15.1% 97 $90.00 $70.85 27.0% 
49 $85.00 $87.43 -2.8% - - - - 
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Figure 4.4 Empirical Distribution of Percentage Errors – Case Study Item. 

Although the simplicity of a normal distribution function would be convenient for the 
implementation of the cost estimating system, it seems clear that the distribution of percentage 
errors in Figure 4.4 does not fit a normal distribution. Thus, the chi-square goodness of fit statistical 
test was used to infer the most suitable standard probability distribution for these percentage errors. 
This test was conducted using @Risk, a statistical software package that facilitates the 
identification of the most suitable distribution among several possible options. The test found that 
the distribution of percentage errors for the case study item most probably follows an extreme 
value distribution, which is defined by two parameters: alpha (location parameter; α) and beta 
(scale parameter; β). The extreme value distribution that best fits the empirical distribution of 
percentage errors is shown in Figure 4.5. The alpha and beta parameters for these distributions are 
-0.049 and 0.125, respectively. 

 
Figure 4.5 Extreme Value Distribution of Percentage Errors – Case Study Item. 
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The extreme value distribution in Figure 4.5 can now be used to generate risk-based estimates for 
the case study item in the 97 testing projects. These estimates are produced by multiplying the 
deterministic outputs of the system by the distribution of percentage errors. It should be noted that 
different pay items might require different types of distributions to model estimating uncertainty. 
Likewise, the rules for arithmetic operations between constants and probability distributions may 
also vary depending on the type of distribution. Equation 4.1 shows how to use the deterministic 
estimate and the extreme value distribution of percentage errors to produce risk-based estimates 
for the case study item. All estimates produced with this equation will also follow an extreme value 
distribution. After a positive validation of the stochastic performance of the system, ALDOT can 
start using the validated distribution of percentage errors to develop risk-based estimates for 
intended projects using the same equation (Equation 4.1).  

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐷𝐷𝐷𝐷 × �1 + 𝐸𝐸𝐸𝐸(𝛼𝛼𝐷𝐷𝐷𝐷𝐷𝐷;𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷)� = 𝐸𝐸𝐸𝐸(𝛼𝛼𝑆𝑆𝑆𝑆;𝛽𝛽𝑆𝑆𝑆𝑆) = 𝐸𝐸𝐸𝐸(𝐷𝐷𝐷𝐷 × (1 + 𝛼𝛼);𝐷𝐷𝐷𝐷 × 𝛽𝛽)     Eq. 4.1 

Where: RBE = Risk-based estimate 
 DE = Deterministic Estimate  

   EV(𝛼𝛼𝐷𝐷𝐷𝐷𝐷𝐷;𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷)= Extreme Value Distribution of Percentage Errors  
 EV(𝛼𝛼𝑆𝑆𝑆𝑆;𝛽𝛽𝑆𝑆𝑆𝑆)= Extreme Value Distribution for Risk-Based Estimate 
 

If for example, ALDOT wants to develop a risk-based estimate for the case study item given a 
deterministic unit price estimate of $80/ton, the alpha and beta values of the risk-based estimate 
would be 76.08 (α_SE=80×[1+[-0.049]]) and 10.00 (β_SE=80×0.125), respectively. This risk-
based estimate is illustrated in Figure 4.6.  

 
Figure 4.6 Risk-Based Estimate Example – Case Study Item. 
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Figure 4.6 also shows the estimated unit price for the case study item at four different confidence 
levels. For example, if ALDOT wants to be 70% sure of allocating enough funds to cover the costs 
for this pay item, the unit price for this item should be around $86.4 per ton (Figure 4.6b). 
Similarly, for an 80% and 95% confidence level, the unit price should be $91.1 and $105.8 per 
ton, respectively (Figures 4.6c and 4.6d). Equation 4.1 was used in the same manner on each testing 
project, and each resulting risk-based distribution was then used to create a bracket estimate of 
similar magnitude as the one originally established by ALDOT on each project, but the new bracket 
estimates were set around the median of each risk-based estimate. A comparison between the two 
sets of bracket estimates showed that actual prices paid by ALDOT for the case study item in 2016 
(according to the winning proposal) fall outside of ALDOT’s bracket estimates 59% of the time. 
The proposed methodology reduced this number to 45%.  

The stochastic validation process concludes the study, demonstrating that the proposed bid-based 
cost estimating methodology was successfully applied to the case study item, improving estimating 
accuracy and reliability. However, as mentioned a few times throughout this report, this research 
project was not intended to develop a cost estimating methodology for a single pay item. The study 
was aimed to create a framework that could be applied to pay items with sufficient historical bid 
data. Although this study's results are very promising, the proposed methodology can still be 
further improved if supplemented with the experience and knowledge of ALDOT’s experts and 
estimators. The results presented in this report were obtained only from the analysis of ALDOT’s 
historical bid data, without the input of ALDOT’s experts and estimators, which would most likely 
enhance estimating accuracy and reliability even more.     
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 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS  

 
This report has presented the exhaustive research efforts undertaken to develop a bid-based cost 
estimating methodology for ALDOT. The proposed methodology is applied at the pay item level. 
It uses a number of mathematical and statistical techniques to incorporate three major factors into 
the cost estimating process: 1) scale, 2) time, and 3) location, and 4) estimating uncertainty. This 
report describes the development and validation of the proposed methodology as it is applied on a 
case study pay item frequently included in ALDOT’s construction contracts. This is a hot mixed 
asphalt pay item (Item ID 424A360), and is considered by the authors as the most relevant pay 
item used by ALDOT. 

The study was conducted using bid data from all projects awarded by ALDOT between 2006 and 
2016 (over 3,600 projects). The relationship between unit prices for the selected pay item and the 
cost-influencing factors under consideration was modeled using non-linear regression techniques, 
an innovative Multilevel Construction Cost Index (MCCI), a location cost index (LCI), and an 
advanced cross-validation approach.  

Estimating uncertainty was considered by developing a distribution of percentage errors with the 
results from the research validation process presented in Chapter 4. The distribution of percentage 
errors is intended to be used during the implementation of the proposed methodology to generate 
risk-based estimates by quantifying the uncertainty associated with deterministic estimates 
produced by the first three cost-driven factors.   

All the cost-influencing factors were integrated through the four-step framework outlined below, 
which facilitates the implementation of the proposed methodology by ALDOT. ALDOT’s 
estimators can apply this four-step framework after calculating the expected amount of work for 
the intended pay item. 

1. Step 1 – Project Scale Factor: Develop a power regression model using unit prices for 
the intended pay item from all previous projects contained in the optimal look-back period. 

2. Step 2 – Time Factor: Use the power regression model to estimate a deterministic unit 
price (unadjusted) for the expected units of work to be delivered under the current project. 
Assume that the unadjusted deterministic unit price corresponds to the mid-point of the 
look-back period, and use the selected CCI to bring this estimate into current dollars. 

3. Step 3 – Location Factor: Use the LCI to adjust the time-adjusted deterministic unit price 
for the region in which the current project is to be constructed. 

4. Step 4 – Estimating Uncertainty Factor: Develop the final risk-based unit price by 
multiplying the location-adjusted deterministic unit price by the probability distribution of 
percentage errors obtained during the system development process. 
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Research validation was systematically performed through a three-part process involving the 
iterative application of an innovative Moving-Window Cross-Validation (MWCV) approach. The 
MWCV process was intended to demonstrate and quantify the improvement in estimating accuracy 
and reliability offered by each cost-driven factor, as they were incorporated into the system one-
by-one. The iterative MWCV approach was performed 210 times to meet the objectives of this 
study. The study found that each of the four factors significantly improves cost estimating accuracy 
and reliability for the case study item. The use of the LCI showed a significant improvement in 
estimating accuracy, but a statistical F-test found no evidence to prove a significant change in 
estimating reliability due to the LCI. Thus, it is reasonable to conclude that the use of the proposed 
LCI would have a significant positive impact on cost estimating accuracy for the selected pay item 
without significantly affecting estimating reliability. 

Initial research validation efforts showed an overall improvement in estimating effectiveness at a 
deterministic level (after incorporating the first three cost-driven factors). The study proved this 
improvement to be statistically significant in comparison with a cost estimating model that does 
not consider any of the cost-driven factors under consideration. However, that would not 
necessarily mean an improvement for ALDOT’s current cost estimating practices. Further 
validation efforts demonstrated that the proposed methodology was 15% more accurate than 
ALDOT’s current cost estimating practices. This increase in estimating accuracy was proven to be 
statistically significant. In terms of reliability, both the proposed and ALDOT’s cost estimating 
systems showed similar performance. The stochastic effectiveness of the risk-based cost estimates 
produced by the proposed methodology was also compared against the effectiveness of ALDOT’s 
bracket estimates for the 97 projects considered in the research validation process. The study  found 
that unit prices for the case study pay item submitted to ALDOT by successful contractors fall 
outside of their respective bracket estimates 59% of the time. This number was reduced to 45% 
with the proposed methodology. 

It should be noted that besides proving the importance of considering the scale, time, location, and 
uncertainty impacts on construction cost estimating, the study has also demonstrated the 
effectiveness of the tools and methods used to model those impacts, as well as the effectiveness of 
the framework used to combine those factors. The incorporation of each factor into the cost 
estimating process only improves estimating effectiveness if each factor is properly assessed and 
modeled, as explained in this research report. 

5.1 Study Limitations 

The following are the main limitations associated with this study, which must be considered when 
interpreting the results presented in this report and during the implementation of the proposed cost 
estimating methodology: 

• The cost estimating system presented in this report is intended to maximize accuracy and 
reliability in estimating original contract amounts. It is not aimed to estimate construction 
costs at project completion, which may differ from original contract amounts due to scope 
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creep, design errors or omissions, differing site conditions, and/or change orders issued by 
ALDOT during the project construction phase. 

• The specific quantitative results presented in this study are only applicable to the case study 
item in contracts to be awarded by ALDOT. However, every step of the study is presented 
in great detail to make it possible for ALDOT to develop and implement this methodology 
for other pay items or by other transportation agencies. 

5.2 Recommendations for Future Research 

During the study, the authors identified some research questions that should be considered in future 
studies. These questions are outlined below: 

• What factors are causing price differences across geographic regions in Alabama? 

- The LCI developed in this study revealed significant differences in prices across the 
state of Alabama. However, the factors causing price differences among geographic 
regions have not been clearly defined at the time of this writing. A better understanding 
of these factors could improve the performance of the cost estimating system proposed 
in this report. 

• Does “level of competition” impact transportation construction prices in Alabama? 

- Initial research efforts also considered “level of competition” as a cost-driven factor. 
The impact of the level of competition was assumed to be related to the number of 
vendors competing on ALDOT’s projects in each geographic region. No substantial 
differences were found on the average number of vendors per project per region; 
therefore, this factor was not further considered in the proposed cost estimating system 
since it was assumed to impact all ALDOT’s projects equally. However, the research 
team recognizes that further research is needed in this area. The level of competition is 
not only a result of the number of vendors competing on a project. The level of 
competition is relative to the perception of each bidder. Even though an anticipated 
large number of bidders may drive vendors to submit lower price proposals, other 
factors may have a similar effect. Some of those factors could be anticipated 
competitors with access to cheaper suppliers/subcontractors or more cost-effective 
materials or construction methods. 

• How would the proposed cost estimating system perform for other pay items different from 
the case study item? 

- The proposed MCVW approach has proven its ability to improve cost estimating for 
the case study item in terms of accuracy and reliability. Further research is needed to 
determine if the proposed system would have a similar effect on cost estimating 
procedures for other ALDOT’s pay items. 
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