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I. INTRODUCTION 

1.1 Object and Scope of the Study 

With the present-day tendency toward the use of higher 
strength concrete and reinforcing steel, and shallower aect
ions, the problem of deflections ia aasuming greater and 
greater importance . The purpose of thia inveetigation 11 to 
consolidate information on deflections as much as possible 
and to study the complex defo~mat1onal behavior of reirtforced 
concrete beams as influenced by the interrelated effects of 
cracking, shrinkage warping, creep, teneile and compreosive 
steel percentage , continuity, moment redistribution in stat
ically indeterminate beams, etc. 

The experimental phase of the program waa designed to 
elucidate certain aspects of the deflection problem not here
tofore clearly defined, such ae the relative effects of high 
quality concrete, effects of sustained loads sufficient to 
cause 1110derate cracking, and the effects of special combina
tions of singly-reinforced steel percentages in companion 
simple and continuous beams. 

Particular emphasis is placed on a study of the effects 
of random cracking on deflections; especially with regard to 
moment redistribution in continuous beams resulting from 
cracking. Shrinkage warping and creep deflection are also 
analyzed from both theoretical and empiri cal points of view. 
Analytical procedures for predicting the various aspects of 
the deflection problem are discussed and. in certain cases, 
new procedures advanced. Comparieons are made with test 
data to show the nature of the agreement that can be expected. 

1.2 Notation 

Avg. 

As 
N s 
a 
b 
b' 
C 
ct 

D 
d 
d ' 

EI 

1eff average effective moment of inertia for simple 
spans (Eq. 24) 
area of tensi l e steel 
area of compressive steel 
~- cremental length of beam 
width of beam at the compression side 
width of beam at the tension side 
constant, also used to denote compresaive force 
creep coefficient defined as ratio of creep strain 
to initial strain 
total depth of beam 
effective depth of concrete section 
distance from centroid of compressive steel to 
extreme compressive fiber 
flexural rigidity 



Ect 

e 

kd 

L 
M 
Mer 

2 

--aodulua of elasticity of concrete, short duration of 
loading 

--reduced or sustained modulus of elasticity of con
crete, long duration of loading 

--modulus of elaeticity of ateel 
--average effective modulu1 of elasticity of steel 

when participation of tensile concrete is taken in
to account (see Eq. (9)) 

--distance between the centroids of the uncracked trans
formed aection (u1ing net> and the steel area 

--distance between the centroids of tbe gross concrete 
section and the • teel area 

--compressive stress in concrete 
--concrete compre• sive strength at age 28 daya 1 or 

other age if specified 
--modulu• of rupture of concrete 
--steel stress 
--yield point of steel 
--relative humidity (H • 70 for 70l herein) 
--average effective moment of inertia for continuous 

beam, (Rq1. 25 and 26) 
--moment of inertia of the cracked transformed section 
--moment of inertia of the uncracked transformed sec-

tion using net 
--effective moment of inertia at an individual section 

(Eqs. 21, 22, 23) 
--moment of inertia of the grosa concrete section (neg

lecting all steel) 
--moment of inertia of the uncracked tranaformed sect

ion 
--distance from extre• e compression fiber to neutral 

axia for cracked transformed section 
--span length 
--bending moment of beam 
--moment corresponding to flexural cracking 

m --a conatant power 
max --aubacript denoting maximum value 
n --IQOdular ratio defined aa E8 /Ec 
net --increased modular ratio defined as Es/Ect 
p --tensile steel percentage defined herein as (Aa/bd) 

p' 

Pw 
Pf 

(100) 1 
--compre•sive steel percentage defined herein as 

(A~/bd)(lOO) ~ 
-•steel percentage in T-beama defined as (A8 /b'd) 
--•teel percentage in T-beams defined as (A8 f/b'd). 

where As£= (0.85)(fb)(b - b')(t)/fy 
--equivalent concentrated load 
--tensile force 
--total compressive force induced in steel by shrirulage 
--flange thickness for T-beama 
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- - denotes time interval, also used as subscr i pt 
denoting t ime-dependent 

--subscript denoting ultimat e value 
--beam shear 
- - uniformly distributed load, a lso unit weight. of 

concrete in Eq. (1) 
- -uniform dead- load 
--uniform superimposed- l oad 
--beam deflection 
-- - distance from neutral ax.is to the extreme fiber in 

tension 
--maximum deflection 
- - comput ed maximum deflection using t he cracked 

transformed section moment of inertia 
-- specific creep or unit creep strain defined as cr eep 

strain per unit stress 
- - unit strain 
--steel strain 
- - free shrinkage strain 
--berun slope 
- - unit stress 
- -curvature or angle change per unib length of beam 
- - curvature due to shrinkage warping 
--equivalent concentrated angle change 
--coefficient taking into account the participation of 

concrete in tension (see Eq . 9) 



4 

II . NATURE OF THE DEFLECTION PROBLEM FOR REI WORCED cm CRETE 
FLEXURAL MEMBERS 

2. 1 Primary Factors I volved in De lection Prediction and 
Control o Reinforced Concrete Flexural Members 

The problem of predicting and controlling deflections of 
reinforced cone ete flexural members under wo king loads is 
extremely complex as a result of the large number of sig ifi
can yet uncertain £actors involved. A partial list and brief 
di cussion of t he more important factor follows : 

1 . I.ack of accura e knowledge in advance of pertinent 
concrete properties· such 2s modulus of rupture and c.ompressive 
trength moduius of elasticity, and shrinkage and creep charac

teri stics. Knowing m:i11imum specified strengths is not enough 
~ince this does not provide sufficient information of for 
example shrinkage and creep behavior. Higher strength con
cretes may or may not shrinK and creep less than lower strength 
concretes. It can obv-iously be aid, however, that when minimum 
strength and modulus values and maximum shrinkage and creep 
values are used computed deflections will tend toward the 
high side. 

2. Ambient emperatures and humidities which arfect the 
i~ems in l , The priJllary influence here i uso.ally the effect 
of humidity on shrinkage and creep . 

J. Concrete age when sustained loads are applied which 
primarily affects creep behavior . 

u. The ef_ective section propert ies under instantaneous 
load along the beam, including primarily the effect of "extent 
of cracking"_ The cracked and uncracked transformed section 
properties are the two theoretical extremes and t.hen only for 
linear- elas ic materials . Differences in the gross and uncracked 
transformed section properties are seldom worth con idering and 
the gross section is much more convenient to use for design pur
poses. I nvolved in the determination of the e_fective flexural 
rigidity is the contribution of concrete in tension between 
cracks . Also involved is the effect of steel percentage, varying 
depths and the flanges of T- be8.JTlw (especially for continuous 
beams) on the effective section properties along the beam. 

5. Difficulty in determining shrinkage warping and creep 
deflections including the effects of a given crack pattern as 
well as the phenomenon of progressive cracking under sustained 
loads. Involved is a movement of the neutral axis with tilTle 
as a result of the time-dependent deformations in the non
homogeneous composite concrete- steel structural member , Also of 
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importance is the effect of compression steel in reducing 
shrinkage and creep deflections. This i s especially important 
with regard to ultimate strength designs where it is usually 
more economical, from a s t rength standpoint, to place additional 
steel in tension rat her than use compression steel . 

6. The determination of what constitutes critical 
deflections; that i s the difficult question of serviceability. 

7 . Other factors include. the increase (above the 28- day 
values used in design) in concrete strength and modulus of 
elast icity with time the effects of bond creep, member size, 
slab act ion etc. 

The difficulties involved in rationally analyzing the above 
effects are virtually insurmountable in the average design 
office if not in the research office . The problem appears to be 
primarily one of a statisLical nature involving statistically 
optimum designs and confidence intervals for computed deflections. 
The large number of variables involved, the variabilit y of these 
parameters and the interdependence of most of the variables 
strongly supports this point of view. Nevertheless a determin
istic formula or formulas however approximate, which incorporates 
all of t he factors that may be pertinent in a given design 
si tua t.ion would be of benefit to both the designer and t he 
researcher. It is to this t ask that the report herein addresses 
i t.self particularly with regard to the effects of cracking) 
warping, continuity and steel percentage . 

2 . 2 Review and Discussion of Existing Methods Guides and Rules 
of Thumb for Predicting Deflections 

Presented in the following paragraphs i s a brief discussion 
of existing methods. guides and rules of thumb for determining 
deflection parameters and deflections themselves of reinforced 
concrete flexural ;members. Items 1 through 6 of Section 2 .1 are 
considered in that order : 

1 . , 2 . and 3. Concrete Properties : 

Values of .modulus or rupture and modulus of elasticity of 
concrete are not accurate function of compressive strength 
alone. evertheless for mot practical applications, the 
:'al lowing approximat e _ornnD.a- are usua11y salisfa.c uOr:'r : 

l 2Ec = 33 ~ (1) 

EC = 57 . 700 VT 
3f~b= 7.5 l{rf 

fo concrete weighing 145 pcf (2) 

(3) 
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where Ee is the ins Lan taneous modulus of elasticity, 1r1 is the 
unit we1.ght, of concrete . f~ is t he comp!'essive strength and f~b 
is the modulus of rupture . 

Coucret.e streng Lh , modulus of elasticity, shrinkage and 
creep cont.:..nue to increase .for very long periods of tiffie. I n 
the case of shrinkage and creep properties it. is only poss ible 
to generalize wit.hin ra~her broad limiLs , and accurate test dat.a 
whi ch incorporates the effects of local conditions should be 
used when availabl e . In the absence of test data: the following 
shri nk.:ige and creep inf orma t.i on is of ten useful : 

Schoret' ' s4 formula is probably adequate for calculating 
shrinkage strains for 1·11ost desig!'I purposes : 

€sh = 12 . 5 x 10 - t' ( yo - H) (Lt.) 

where €. sh is the free sl1rj rikage strain in inche:;; per inch and 
H i s relative: humidity (H = 70 fo1· 70% rel. hurn . ) . This formula 
gives an ultimar,e ur design Lotal ::;ltrinkage strain as a fw1cti('ln 
of relative humidit,y bu!, olher variables accoru1t f or rather 
wide variations W1der cer-r;ain conditions . Howevec, most, 
Ehrinkage data agree with Eq . (4) within 25%. 

In cons:..dering the effects of creep on the 
concrete members, the use of a unit creep strain 
w1it. stress) or a creep coefficient Ct. (ratio of 
ini tial strain) amom.ts to t.i:.e same tni!lg, since 
modulus Ee must be brought in in either case and 

C t. == J t.Ee 

This is seen from the relati.on 

Creep Strain = ( 0-cunstan 1) rft, = ( €.initial) 

where i,:: = 
C a-constant) I ( t. initial) 

deflection 01' 
dt (creep per 

creep strain to 
the concrete 

l\ 

(5) 

(6) 

(7) 

Which to use is a ma Lter o.:· c:onvenience depending un whether it 
i.,.; desired to apply the creep factor t-.o applied stress or str ain 
1-,hen compu Ling creep strain in Eq . ( 6) . 

Approxil!late ultimate values .for Lhe creep coefficient fot· 
·1ormal weight concrete tinder average design conch tions a r e shown 
in '!'able 1, where. in each case , the larger of t he values 
corresponds Lo an earlier loading age. 
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Table 1 . Creep Coefficients 

l.Jl. tima te C = C . (Ratio of lil tima te Creep Strain to 
u Initial 0trai n) 

Concre te Avera e Relative Hurni dit 
f-------,---:r--""-"""T'""--,:-:,--;:r-----r----'":rc-~-----; 

Stren th 100•~ 70 
Ordinary 1 - 2 1.5 - 3 2 -

Hi h 0.7 - l .S 1 - 2.S 1.S - 3.5 

h. Effective Section Properties Under Short- Term Loading 

The stress distribution and effective moment of inertia of 
reinforced concrete beams vary considerably along the length of 
tne beam. In region of small moment the concreLe works in 
Len .. inn, and the unci·acked transformed section properties are 
effective ~n determining stresses and deflections under short
term loads . In !·egions where the bending moment is greater than 
he moment corresponding to flexural cracking) Mer, the concrete 

cracks al though tensile concrete oet\•Teen cracks sti 11 cont1 ibutes 
signi_icantly to the flexural rjgidity of the beam. 

The racked transfo.1.med sec t,ion proper Lies (neglecting all 
concrete on the ten .. ion side of Lhe neutral axis) aTe not 
unreasonable for u c in calculating stresses in cracked regions 
unoer worldrig load , because the governing stresses usually 
refer prilnarily to maximu.rr! moment sections. Also, any di..,crep
ancies c _countered in con1pu ting stresses using the cracked 
section propertie are on the high or safe side, and are rs
flec1.ed, a:. least in part in well tested safety factors . The 
ques ion with regard to deflections is serviceability J not 
safety: and here it is not generally possible to provide lim:its 
of serviceability i' r all t.ypes f structure"'. I n other words, 
there is more of a premium on bejng able to predict de:lections 
accnra,.,e]y, than to compute f ictitous nuJnbers call ed stresses. 
Also, defleci.,ion::: are seen ana felt . 

The e.ffec l,ive .:lexural r'igidity can vary grea vly along a 
c·einl'o!·ced con ere te beam in r·egions of cracld..ng . The ratio of 
uncracked o cracked transformed moment of inertia for "low 11 

5teel- percen Lage beams i.s often of the order of five and larger. 
The effective 10menL o.f ir.erti.a at any section that is cracked 
has some value be t,ween the uncracked and cracked r1oments of 
lner1;ia) which depends primarily on the magnitude of the moment 
or a given l>eam and materials _ 

An acceptable method in many cases js to stmply use an 
average of l,he uncracked and cracked t.rans.:ormed moments of 
inertia .r5r t.he enLire length of beam _ An European Concrete 
Committee recommends that the gross- section flexural rigidity 
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be used for tha t. part of the load that produces firs t cracking 
and a modif i ed cracked- t ransformed- section flexural rigidity for 
~he remainder of the load, with the computed deflection not to 
exceed the 11 crackecl t ransformed section'' deflection . This 
provides a consi deration of l oading stage s but does not account. 
for variations in f l exural rigidity along t he beam. With the 
question of loading stages , however, arises the thought t hat the 
por tion of t he beam t ha t cracks under maximum load no longer is 
uncracked (even under the first i ncrements of reload) upon 
reloading . 

Since the secti ons being discussed are gross and transformed 
concrete sect i ons, the concrete modulus of elasticity i s , of 
course, used in any flexural rigidity (EI) expression . 

Yu and Winter
6 developed an expression for an average 

effective moment of i nertia to t ake into account the participa
t i on of tensile concrete in resisti ng defl ections . Their 
results were stated in t.he fo:lowing form : Multiply (and t hus 
reduce) deflections , computed us ing the cracked transf ormed 
secti on propel' ties by the factor 

(1 - b ' I\) 
M 

(8) 

where Ml : 0 . 1 (r • )2/3 (D) 
C 

(D kd) 

M = moment under wor king load::; 

b' = width of beam at the tension s i de 

D = total depth of the beam 

Tl:e ciel'i va tion or t.hi s cx.pressio11 followed an elastic- theory 
c:.pproad1 witn Lhe f actor 0 . 1 having been determined eJ1pirical:.v 
from heam tests. 

The m,Jrrtent. Jvl wa,'": a pu.rr:; bendin~ mon:ent in the deriv,3.t,ion, 
5.nd r.he fact,01 0 . ~ ;,ra:'" dete!'lllined 011 the basis that H i: the 
rnaxi.rit1111 moment. in the sp~n for t.he bc9.ms teste,J . It doe..: 
suffice Lo suggest that Ll1e ef'fective m01nent of inertia at, a 
given section might. be olJt,afr1ed by dividing th,:, crac~eo 
tran:3formed n:omenL of inerL.;d b~- 3ome J·ac,,•n· ·imilar to ~'l • (13) , 
vihere i' is 1;.h,: man.en-: :at the glven .::ecU,·,n . 

l'he modiffr.atinn fact.or given hy Eq . (8) has a similar 
efl'ee · 011 ~omputed de.:-=.ec ti,.>n~ a2 the meil10d nf' Murashev7 _·or 
Laki 11g i.n to arcou11 c. the part..icipa t::.,:-n <..•f t,8nsi.le concre-;r; in 
"i'e.::i-;LiHE; je~'le(: t.,llli!;:. . Thi ~, mt:r,l!od u:-cs the r·raclced 1..?'!J.n::l'urmed 
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moment, o: iner-cia and an :_ncr eased effectjve steel modulus of 
elastici ~y . E. given by Eq. (9) . 

E = E/ If ) f ~ 1.0 (9) 

wher e }V = l - C (.Mcr/M) 2 and C is a constanL . This method is 
based on t,he consideration tha t be Lween cracks the steel stress 
and hence deformation is less than right, at the cracks; there
fore, r,he average effecr,ive steel modulus of elasticity, S, 
should be greater than the actual steel modulus, E. at the cracks . 
A value for the consLant, C, of 2/3 was recommended . 

Specific locations of sections o: first cracking can be 
determined by Eq . (10) , 

.1. 

Jvicr ::: f ~b I~cr (10) 
Yt 

where Mer is the moment correspo~ding to flexural cracking, 
i'tb i s the modul us of ruptur e I~cr is the moment of inerr,ia 
01' the uncracked transformed section and Yt i s the distance 
f rorn t he neutral axis of the u.ncracked transformed sec-r;i on to 
the extreme fiber in tension . For most purposes and most cases! 
Eq . (10) can be replaced by -r;he simpler Eq . (11), 

~er == ftb Ig 
Yt 

(11) 

where Ig i s the moment of i nertia of t he gross concrer.e secti on 
alone (neglecting all steel) and Yt refers to t he same gross 
concrete section . 

There ",Iould be 2 of these Mer- sections in a t:.ypical 
-reinforced concrete simple beam W1der service loads . Where 
cracking occurs in both positive and negative moment regions, 
4 such Mer-sect i ons would exist in ful'ly conti.nuous beams and 
3 in beams wiLh only one end continuous . Consideration of the 
effects of con Linuous T-beam flanges and beams of varing depths 
would affect t he above only in detai :.s . Also, t he effect of 
varying r,ensile and compressive s teel percentages along t he 
heam would usually be a minor factor in l 0catin~ a given Mer
.section and would not be involved at all when Eq. (ll) is used . 

At. a time when low worldng stresses were used, it was 
deemed satisfactory to use t,he cracked transformed sec t.i on pro
perties in computing Jeflections . An American Concrete Institute 
Deflection Comnd.t tee Ileport8 in 1931 recommended t his for general 
use . However , in the last, twenty- f l ve years or so it has become 
common practice to use the gross section propert i es in com
put ing deflections under working load3 . The Portland Cement 
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Associat,ion has recommended this practice for many years . 

The new ACI Code2 contains the same gross- section pro
vision but modifies it slightly to provide for the use of the 
cracked transformed secti on properties when pfy is greater than 
500. Tlti8 i::; an attempt to guard cJ.gainst W1derestimating 
deflections (using the gross moment of inertia) when high steel 
stresses exist, such as where high working steel stresses are 
used . or whe11 high yield- point steel is used in ul t:i.ma.te strength 
design . 

In ultimate strength designs by Whitney's method9 , a 
balanced steel percentage is given by Eq . (12) . 

Tu = Cu 

As fy = 0 .85 .r-1 
J. C b (0 .537d) 

Pbal :: 0 .46 f l 
C 

fy 
(12) 

Investigators lO, 11 have felt that a deflection warning should 
be sounded when the rati o p for singly-reinforced beams, (p - p') 
for doubly-reinforced beams and (pw - Pf) for 1'- beams exceeds 
0 .18 fb/f,. This ratio is close to the balanced steel ratio by 
elastiic tKeory and less i:.han one- half the balanced design ratio 
by ultimate strength theory. 

For singly-reinforced beams the marginal steel percentage i s 

p = 0 . 18 f~/fy 

and P~ = 0 .18 f' = 5ho .:...y C when fc = 3000 psi . 

Hence the ACI value of pfy = 500 is selected for ordinary 
strength concrete . 

(13) 

For the cases where pfy is less than 0 .18 fe, , the previous 
reasoning calls f~r the use of the gross section properties. 
nowe:ver 1 tile PCA showed that the use of gross- section proper
ties could be dangerous when steel percentages are low and where 
working stresses are relatively high . It follows from the 
previous observation that the effect of ::-teel percentage alone 
on effective f1 exural rigidity tends to be contradictory . 

Tne AASHO3 and others have for a long Lime advocated the use 
of the gross- section properties to determine the flexural rigidity 
of continuous beams for purposes of L~determinate analysis as 
well as for computing deflections . This, admittedly, has been a 
rather vague compromise, but one that was dictated by the nature 
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of the problem. In the case of continuous T-beams (flange 
usually cracked in negati ve moment regions) and beams of 
varying depth, an average of the positive and negative moment 
section properties is often used in estimating deflections 
using conventional formulas for prismatic members . 

Since the use of the cracked transformed moment of inertia 
tends to overestimate deflections, a reduced modular ratio (such 
as n = 8 for all strength concretes recommended by the AASHo13 
for computing deflections under short-term loads) i s often used 
in an attempt to offset the high computed deflec t ions . This 
reduced modular ratio has the same effect as t hat provided by 
an increased effective concrete mopulus of elasticity. Another 
technique that has been suggestedl4 is to reduce the deflectionsj 
computed using the cracked transformed moment of inertia, oy t.he 
following empirical factors: 

Deflection, 6 = 0.9 A~r for simple beams 

= 0.8 ..6.gr for one end continuous (lu) 

-= 0.7 A~r for both ends continuous 

where Ll ~r is the computed deflection using the cracked trans
formed moment of i nertia . For continuous beams, the section 
properties corresponding to the points of maximum positive and 
negative moments are usually used in this method as constant 1 1 s 
throughout the regions of positive and negative momentJ 
respectively . 

The misuse of the cracked transformed section properties 
Lends to be more pronounced in conti.riuous beams than in sil'lple 
beams, as indicated by the factors in Eq_s, (lL) . A greater 
length of beam will norrri.ally be uncracked in continuous beam~ 
as compared to simple beams (moment gradients are greater in 
continuous beams and hence maximum moments drop off faster). 
For example, consider the following extreme case : if a uniformly
loaded, continuous, prismatic reinfo:rced concrete beam with the 
same positive and neg~tive moment reinforcement has a crac.t{"'ng 
moment. capacity of wL'"/2L, 0.821 or 82% of the span will be un
cracked. For the same simple beam, but with the load multiplied 
by 2/3 to account for the smaller allowable load on the simple 
beam (the ratio of the maximum moment3 .:or the two cases), only 
0 . 291 or 29% (18% if l..he load were not i-educed) of the span will 
be uncracked. However, certain factors such as distribution of 
loads, varying section depth, steel percen"tage, etc., can cause 
the use of these factors to lead to e1-r0neous results. 
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S. Shrinkage Warping and Creep Deflection 

Concrete s.J,.rinkage induces stre ses in both statically 
determinate and indeterminate reinforced concrete struct.ure~ .. 
In deter.mina.te member,., the shortening of the beam resulting 
from shrinkage is resisted by the reinforcing steel, inducing 
compressive stresses in the steel aid tensile stresses in the 
concrete. The tensile concrete tresse are maximum in the 
vicinity of ~1e reinl'orcement and thus combine with ~ensile 
stresses re~ulting _rem transverse load~ to cause additional 
cracking . Shrinkage of he girders in redundant frames also 
induces additional bending moments which are subject to direct 
analy""is . 

\~1en rein orce~ent is unsymmetrical shrinkage causes a 
nommirorm strain distribut,ion which results in warping of the 
cross-section . Although shrinkage and creep are undoubtedly 
interdependent, the coe ficients defining the magnitude of 
these effects are usually expressed separately for practical 
p poses . The.e are eY.ceptions to his that are discussed 
later in this ,3ection. Eve 'though the effects o_ hrinkage 
might be considered (in an approxima e manner) apart from those 
of transverse load hrinkage warping is obviou ly affected by 
cracking and t herefore by transverse load. 

Shrinkage warping formulas have be~n developed for both 
uncracked and era.eked sectionsl2t 1.5, 16, 17, in which an 
equivalent elastic analysis is employed . In consi dering craclced 
sec -ions. however 1 t e effect of load and sh ' inkage must be 
co sidered simultaneou lyJ vince the extent of cracking is a 
direct .function of the tramn erse load . Since shrinkage warping 
rreq ently has only a secondarJ effect and seldom a predominan 
effect on total deflections the simpler uncracked section 
met.hod L p obably just as adequate as the other method and can 
be used wi thou I, regard to effects of Lransverse load .. 

Co siderin 0 an uncracJ.ced tran ... formed section (either singly 
or doutly- reinforced beams with or without flanges) tho 
warping curvature at any cros3- e~t.i.on due t.o shrinkage is given 
by 

T Se 
-~ 

4>sh = i"I = (15) EI Ect Ic 

where (/)sh 
= warping curvature resulting from ohrinka.ge 

~:- Note that Ferguson16 did not include the effects f creep in 
t,he expression for EI a doe.., Eq . (15). 
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e = distance between the centroids of the uncracked 
transformed sectioD (using net= E5 /Ect) and the 
steel area 

E ct = sustained modulus of elasticity as defined by Eq. 
(19) 

and Ts 

where Ts 

As 

A• s 

t sh 

E s 

= moment of inertia (using net= E5 /Ect) of the 
uncracked transfor med secti on 

= (As + A' 
3 

) Esh Es 

= total compressive force induced in the steel 

tensile steel area 

= compressive steel area 

= free shrinkage strain 

= modulus of elasticity of steel 

For singly-reinforced beams. A5 = 0. When As, As and e are 
essentially constant along the span. the maximum shrinkage 
deflection for a simple beam becomes, 

'F' sh 
1 2 = Ts e 1 2 

ti 8 Ect 1 ct 

where 6. is the midspan deflection and L is the span length . 

(16) 

(17) 

In considering the distribut.ion of shrinkage strains and 
corresponding shrinkage warping, creep effects should be :t,nclndedJ 
because shrinkage st.resses are sustained stresses . However, the 
use of the usual creep factors, for concrete under constant 
compressive stress, are rather nebulous, since shrinkage stresses 
are variable (increasing at a decreasing rate with time), and 
are tensile in nature. Also, the effective concrete modulus of 
elasti city of interest here should refer to concrete in tension . 
It. is obvious from this discussion that the solutions of 
shrinkage warping using quasi-elastic concepts leave much to be 
desired. The_y, nevertheless do provide rough estimates of 
shrinkage deflections that can be compared with experimental 
data with partial success . 

Mi1ler18 has presented an interesting and different approach 
to the shrinkage warping problem for singly-reinforced beams 
only . His basic assumption is that the extreme fiber of the beam 
on the side a.way from the reinforcing steel shrinks the same 
amount as the plain concrete (Fergusonl6 disagrees with thi s) . 
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Foll owing t his a ssumption, the beam curvature i s given by 

€sh (1 _ ~i 
d € sh 

cf>sh = (18) 

where fs rus the steel strain and dis the usual eff ective depth 
measured from the center of gravity of the steel to the opposite 
extreme fiber . Miller suggests empirical values of ~s/c,~ = 0 .1 
f or heavily reini'orced members and O. 3 for moderately reinforced 
members . This type of simplified empirical approa ch seems to have 
merit, and is discussed further in Section S. l . 

Time- dependent deflections of reinforced conc~ete flexural 
members, resulting solely from effects of sustained load (creep 
deflections), are usually greater than, and often two to three 
times as great as deflections resulting from all other effects 
combined during the life of a structure subjected predominantly 
to sustained loads . Thus, creep deflections are of primary 
interest and should always be considered in addition to those 
resulting from instantaneous loads and shrinkage . 

In addition to the difficulty of computing the creep- time 
history of a particular concrete under constant, unifonnly
distributed sustained stress, a reinforced concrete flexural 
member is suoject to a nonuniform stress distribution and very 
often a variable- load hisLory . An accurate analysis of the 
effects of a variable stress history even for uniformly loaded 
specimens , requires creep- t ime curves and a 'knowledge of the 
l oadL~g history The rate-of- creep method19 or the super
position method20 can t hen be used when detailed creep and 
loading information are available . 

The rate-of-creep method , illustrated in Fig. 1, is s traight 
forward . Consider an extreme case i:1 which a concrete specimen 
is subjected to a compressive stress a- f or a time int erval t1 . 
At the end of this interval . t he stress is removed completely . 

Ac ... ording t·r1 the r a T,e - o f-cree:p tne Lhocl, r.he creep strain a L 
time t 1 is (T ~ •,1 . the p.roifoct, of t,he sust.ai..1:ed sl;ress and the 
w,it, creep 51.,rai n for the Lime r-on2idered. Once Lhe stress is 
removed. there is no further change in c:?:eep s train and at a 
Lj_me , saJ 2t1 . the creep strain L: s ti 11 rr J t

1
. 

The 3Uperpo::ii t.ion method . i:..l11:.:.t1·atecl :..n Fig. 2 , preciicts 
!_,Ji& same creep s ... .ruin at. c:..me L1 ,.:: f CT cf t . However, ra 1,her than 
assumi ng directly t,har, the coinprr!ssi ve st ress is removed c1.t time 
Li . it, is assu-rn~d :;hat i:,he specimen is <;1Jbjec tea to an adcii ti onal 
st.r ess o.f CT in tensi on and creeps undc"" l.w0. opr,osi:ig fictitious 
<:: tresses , For example, assuming that. Lhc creep characteristi cs 
of t-he concrete are I.he same ii: tension a:1d compre ssion and are 
indeper:dent. of :r.e concrete age when l,:,aded , the compressive c.~·eep 
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• 

Time 

Fig. 1--Creep strains by the rate of creep method 

+ - • 
r;- ------------

Time 

Fig. 2--Creep strains by the superposition method 
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strain a L time 2 t 1 is r;r J 2 t while the tensile creep strain 
is q-- of L , sj nee the tensile stress is a new stress applied for 
a t ilne interval t 1 . The l;,o Lal compressive creep strain at time 

2 t1 is thus O'" ( r:f 2t - rJ t,, ) and represents a reduction with 
respect to Lhe creep sL:rA.in at tilne t1, since ( r:f 2t1 - f t1) is 
less Lhan J t, (pri1na1·y creep curve i.ncreases at a decreasing 
rate with time) . 

Usuall y such a detailed anal ysis is not feasible, and a 
shorter, more approxilllate method is used . One such method i s 
t he sustained-modulus method which refers to concrete under a 
constant sustai ned stress . In this case a reduced or effective 
modulus cal led the sustained modulus of elasticity is used for 
computing initi al-plus- creep deflections . 

CTconstant tr constant 
Et= € + E = e . .• . l ll + Gt) c initial creep 1niu1a 

(19) 

where Ect = sustained concrete modulus of elasticity 

EC = ordinary concrete modulus of elasticity under 
instantaneous load 

ct = creep coefficient defined as the ratio of creep 
strain to init ial strain 

When the sustained modulus of elasticity is used with, say 
the gross section properties in computing deflections, the 
resulting creep deflecti ons are silnply equal to the initial 
deflections multi plied by the creep coefficient . It seems 
inappropriate however, to use the term flexural rigidity (EI) 
or beam stiffness in connection with the sustained modulus of 
elasticity, since the effect of creep is to increase deflections 
bu t not Lo decrease the bendi ng stiffness of the beam (such as 
for additional short-term loads, eLc . ). 

Most recommended methods for computing creep deflections 
follow some ramification of this approach . Usually the deflec
tions computed using the gross- section properties are obtained 
and creep factors (or deflection factors), which include com
pressive steel effects, specified . Both shrinkage and creep 
deflections tend to be drastically reduced when compressive 
steel is used . Only the quasi-elastic method (Eq . 17)~ and not 
t he method of Miller (Eq. 18) refer to shrinkage warping for 
doubly- reinforced beams . 

The CRSI21 suggests the following method for computing 
combined shrinkage and creep deflections : Use the gross 
concrete section propert ies and a shrinkage-plus- creep factor 
of J ; that is, the toLal deflection is h times the initial 
deflection or Ect = Ec/h . For a compression J teel area equal 
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to. the tension steel area, use one- half the usual shrinkage
plus- creep factor or 1.5 for simple beams and one- third the 
usual factor or 1 . 0 for continuous beams. 

Yu and Winter6 presented an empirical table of such 
shrinkage-plus-creep factors for dirferent durations of loading 
up to five years . The new ACI Code2 adopted their 5-year or 
11ultima.te 11 values as follows : "The additional long- time deflec
tions may be obtained by multiplying the :immediate deflections 
caused by the sustained part of the load by 2 .0 when AJ:, = O; 
1. 2 when A!:, = 0. 5 As; and O. 8 when A:l, = As· 11 Typical differ
ences are seen for such recommended factors by comparing the 
CRSI and ACI values of 3 with 2 and 1.5 or 1.0 with· 0 .8. The 
reason for such variation is that o~her factors, such as con
crete quality, age ,-1hen loaded, loading duration> relative 
humidity, etc . . significantly influence time- dependent concrete 
defonnations . 

Total time-dependent (combined shrinkage and creep) deflec
tions might be computed simultaneously, with the use of some 
combined shrinkage-plus- creep factor, using any method advocated 
for computing creep deflections alone . The combination of these 
two effects is probabl y satisfactory for broad-approximate design 
procedures, but leaves much ~o be desired in analytical work 
where reasonably precise results are desired in unusual as well 
as typical structures . 

In addition to the fact that the strain distribution is 
nonuniform i n any flexural member, even though linear> creep 
of the reinforced concrete beam seems to have the effect of 
moving the neutral axis toward the tension zone . This effect 
can be obtained by the use of a cracked transformed section 
method where an increased modular ratio (resulting in an 
increased effective steel area), is defined by 

:: E s (20) 
Ect 

where n = E5/Ec , However> in regions where cracking is limited 
or nonexistent, this method tends to lead to computed deflections 
that are too large, as does t he use of the cracked transformed 
section for short- term loads with the usual modular ration. 

6 . Serviceability 

Deflections of reinforced concrete flexural members should 
be controlled so as not to affect adversely t he appearance and 
serviceabili~y of a structure . This statement is completely 
general but is of primary concern to the design engineer . 
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III . DESCRIPTION OF EXPERIMENTAL INVESTIGATION 

3.1 Specimens and Instrumentation 

The experimental phase of this investigation included 
primartly the measurement of instantaneous deflections; time
dependent deflections; and concrete strains resulting from 
elastic shortening, shrinkage and creep . Two silnple- span beams 
and two continuous beams (each continuous over two spans) were 
the pri ncipal test specimens. One simple (SB-1) and one 
continuous beam (LB-1) were reinforced wi th one #3 bar and the 
other simple (SB-3) and continuous beam (:B- 3) were reinforced 
with three #3 bars. All spans were 9 feet (continuous beams, 
18 feet long) . Duplicate shri nkage specimens containing one #J 
bar, three #3 bars, and also containing no steel were used. 
These were placed on their sides on a smooth surface in order 
to minimize frictional effects . 

The geometry and de~ails of the test beams are shown in 
Fig . 3. ~o stirrups were required in the beams of this investi
gation . The shrinkage specimens were the same size as the 
simple beams . The design details of the test beams are shown 
in Table A.l. 

The slump of the concrete was 1.5 in . , and the 28- day 
concrete cylinder sgrength and modulus of elasticity were 5130 
p. s.i. and 4.4 x 10· p . s . i . , 1·espectively. The concrete mix 
design, per cubic yard of concreteJ was as follows: 

Cen1ent (Type I) 
Sand 
Stone 
Water 

l.J23 lb 
1335 lb 
1930 lb 

20 gal 

The ~ensile yield point of Ghe hard grade billet steel rein
forcement averaged 52 ,000 p.s.i . 

A Whi ttemure mechani cal strain gage, shoi,m in Fig . 5, 
6 (ten- inch gage length providing direct readings to 10 x 10-

inches per inch) was useo to measure the concrete strains. The 
gage points were stainless steel inserts imbedded in the concrete . 
Each beam had one gage near the top and one near the bottom on 
both sides and at three different locations along the beam, as 
shown in Fig . 3. The strain gage points on the shrinkage 
specimens were placed in the same locations as those of the 
simple beams except on one si de only, since these shrinkage 
specimens were placed on their sides. A total of 12 strain 
gages ( 2u gage poi..11ts) were used on each simple and continuous 
beam and 6 strain gages (12 gage points) used on each shrinkage 
specimen . Strai ns resulting .from temperatm·e changes were 
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1 - #3 bar 
As 0.11 in( 

0 

20 

4" 

, .. 

5,, 3 - #3 bar~ . ,.. 
A9 =0.33 inl 

0 0 O 

Notes: 1. These sections inverted (9ame section) in negative 
moment regions. 

2. No web reinforcement was used. 
J. All main reinforcement in continuous beams was cut 

off one foot beyond the elastic inflection points 
(quarter-points). No bent-up bars were used. 

(a) One-bar and three-bar cross-sections 

311 
4 Dial-Gage Location 

l" 1011 

3 "2" 

- 311 2' - JI' 2' - )I' 2 ' - 11 

L' - 6" 4, - 6n 

(b) Simple beam 

Dial-Gage Locations 
Strain-G 

}· 

J.1" 
}?11 
T111 

II t111 

9' - 0'' 9' - 011 '2" 

( C) Continuous beam 

Fig. J--Geometry and details of test beams 
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Fig. 4-~View of test beams, shrinkage 
specimens and instrumentation 

Fig. 5--View showing close-up of 
Whittemore gage and dial gage 
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eliminated from all shrinkage and creep data by means of a 
control gage having the same thermal coefficient as the concrete . 
The inner bar of the Whittemore gage is made of invar metal . 

Dial gages were used on both sides of each simple beam at 
midspan and at the point of maximum elastic deflection for the 
continuous beams . The accuracy of the dial gages (0 . 0001 in.) 
for measuring deflect ions provided excellent data for this par t 
of the study . 

3 . 2 Experimental Results 

All beams were loaded at age 28 days with the beam dead
load plus a uniformly distributed superimposed- load . Iron 
bricks were used for the additi onal loading. The br icks were 
placed continuousl y along t he 3- bar beams and spaced 11-~iformly 
along t he 1-bar beams (in the latter case the difference between 
t he deflections computed for t he int ermittent - l oad and the equiv
alent continuous- load was of the order of 1% and was ignor ed in 
the study). A superimposed- load to dead- load ratio of 2 . 0 was 
used for t he 1-bar beams and 5.5 for t he 3-bar beams. The total 
loads resulted i n computed maximum concrete compressive stresses 
tha t were the same for t he corresponding simple and continuous 
beams (the 1- bar beams- -also the 3-bar beams) 3 also res ulted in 
computed maximtm1 concrete compressive stresses that were the 
same at all points along t he 1- bar and 3- bar simple beams--also 
the same at all points along the 1-bar and 3- bar continuous 
beams . 

A comprehensive schedule of deflection and strai n measure
ments was maintained throughout t he test period of 60 days. 
Each deflection and strain value reported is an average of the 
readings on both sides of t he beam in the same posi t i on . ThusJ 
any small effects resulting from warping or accidental eccentri 
cities of loading were compensated for . Also , onl y the average 
of the corresponding strain readings on the duplicate shrinkage 
speci.mens, t he quarter-point strain gages for the simple beams 
and the strain gages located at the points of maximum el astic 
deflection for the continuous beams were reported . This pro
vided a statistical approach for determining eA--perimental values . 
The variations were random and not significant . The basic 
strain curvature and deflection data are s hovm in Figs . A. l 
through A.10 . 

Additional daLa obtained ir.clude temperatm·e and relative 
humidity data. The average ambient tempera t· . .rre was 81.i degrees 
F. with e):tremes recorded of 79 and 91 degrees F . The aver age 
ambien t relative humidity was 59% with extremes recoTded of 32 
and 72%. Pict1.rres of the test specimens and instrurnem,ation are 
shown ·in Figs. 4 and S. 
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IV . EFFECTS OF CRACKING ON INSTANTANEOUS DEFLECTIONS OF SIMPLE 
AND CONTINUOUS REINFORCED CONCRETE BEAMS 

As discussed in Section II, a relatively large number of 
methods, guides and rules of thumb have been recommended from 
time to time for computing instantaneous and time-dependent 
deflections of reinforced concrete flexural members with varying 
degrees of success . Conflicting aspects of the existence of a 
complex problem and the need for quick, practical design methods 
have resulted in an over-emphasis on the latt er. It now seems 
e1rlden t that it is probably not possible to describe an accept
able method for predicting deflecti ons that is as brief as 
desirable and still includes provisions for all eventualities. 

Irrespective of the difficultie s of nol:. lmowing, in advance, 
the material properties and time-dependent characteristics of the 
particular concrete to be used, it is, nevertheless) of utmost 
desirability to prescribe designJT1ethods that incorporate all of 
t.he pertinent aspects of the problem. The business of gettmg 
concrete that meets specified conditions is largely one of 
quality controlj an area that is subject to improvement in 
keeping with the demand for such improvement, 

Instantaneous deflections are of primary importance in con
sideri ng deformational behavior of ~einforced concrete beams 
under transient live-loads as wel l as in determining initial 
deflections under sustained loads . Most practical methods for 
c0mputing creep deflections are based on the initial computed 
deflections . 

Considered in this section are the effecLs of cracking on 
deflections of reinforced concrete beams under short- term loads . 
fhis requires an evaluation of the effective section properties 
along t he beam as influenced by effects of cracking and partici
pation of tensile concrete between cracks . Since behavior under 
repeated loading (not necessarily in the sense of fatigue loading) 
shoul d generally be considered, the effective sections a l ong t he 
beam under all increments of loading should be taken as those 
under the maximum load, or neglecting the effect of loading stages . 
That is; t.he portions o.f the beam that have cracked under maximum 
load. can no longer be uncracked w1der smaller loads, if heal ing 
effects are neglected. Overloads would affect this consideration 
but would tend to be offset by t he continued increase in concrete 
strength with time. A dis~inction might be made between short
term live-load deflections, where reloading occurs, and initial 
sustained-load deflections such as under dead-load, which may be 
applied only once . However, this distinction is probably not 
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jusLif" ed in most cases and is con~idered of ~econdary impor
ta nce in the analyses to e discussed. Also oi interec- t i s a 
practical me ,hod for in egrating the effects of cracking long 
the l ength of the beam in the case of both simple and continuou.., 
beams . 

u .l Development of an Analytical Met.hod .for Including the Effect 
of Crack· t1g in the Prediction of Instantaneous De "l ections 

In regions of cracking the effective moment o_ ine c.ia , 
Ieff under ins tan.taneous load is l ess than the uncracked trans
Iormed moment or inertia, I~cr but greater than the cracked 
transformed momen•~ o.f i.I:ertia ~ rgr, due to the participa t.ion o.f 
-Len ile concrete be ween crack;:; . The actual value of Ieff' at. a 
gi ven section depends primarily on the extent. of cracking or the 
magnitude of the bending moment M, i n addition to the section 
de1.,ails and conc1~ete strength . 

One logical form of an expression for Ieff a a given sec 
ti on . that sa tisfi e ~ thE: boundary conditions t..rhen M =- Mc r, 
Ief.f = 1-~cr · and when M -;;,,-""? Mer Ieff - I~r) > i s give1, by Eq . (21) . 

hlhen M 7 Mer, 

Ief:f • I/icr - [ I/icr - I~r ] [ l - ( M:,.) m] (21) 

where m i'"' an unlmown power, A pre ede t for a power ..:\mer.ion 
rela ,ion relative to the distribution o:' cracking effects was 
e t abli,,.hed by Murashev ' s Eq . (9) in a totally different form , 
However, a considerably different val ue for the power is deter
mined herein alt.houeh initially ii:. was thought tha t a secon 
degree fw1ction was reasonable. as int e case of Eq . (9) . 

SL11ce the w1cracked transfo1med moment o.f inertia is u.,ually 
only Jightly larger c.han the gros sect:_o. moment of j_nertia , 
the latter is used in the remai nder of the discus-ion . ln case 
involving heavily reinforced members, it might be desirable to 
u -e the uncracked ran s orn1ed section value. 

It is seen that, l,he 
equal Lo unity, and . 
value between Ig and 

(22) 

um of the two ur·acketed terms is always 
hence . Ieff in Eq . (22) always has :.:;ome 
I~l' when M ;::, vJc..r , 
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If an acceptable evaluation can be made of the 
appropriate value form, Eq. (22) should provide an effec
tive means for determining the severity of cracking at a 
given section under applied moment in a form directly 
applicable to the computation of deflections. A study of 
Eq. (22) reveals the following weighted values for the two 
section properties corresponding to different magnitudes 
of moment greater than Mer: 

leff = C1Ig + C2I~_i: 
M = 1.2 Mer M = 2.0 Mer M = 4.0 Mer 

C1 c2 C1 c2 C1 c2 

m = l 0.83 0.17 0.50 0.50 0.25 0.75 
m = 2 0.69 0.31 0.25 0. 75 0.06 0.94 
m = 3 0.58 0.42 0.13 0.87 0,02 0.98 
m ;: 4 0.48 0.52 0.06 0.94 0.00 1.00 
rn = 5 0.40 0.60 0.03 0.97 0.00 1.00 

An exhaustive study was made of the current and other 
experimental data involving statically determinate rectangu
lar and T- beams to determine the appropriate value or values 
form, corresponding to the effective moment of inertia at 
the individual sections. The Newmark22 numerical procedure 
(illustrated in ~ig. 6) was used for this purpose . Results 
using m: 4 for both rectangular beams and T-beams are seen 
in Table 2, Col. F to agree with test data in all cases 
within± 25% and in 65% of the cases within± 10%. Twenty
three test results were used in the comparison. 

In addition, test data for eleven continuous rectangu
lar beams were compared with the calculated results using 
m = 4 . The Ne~mark procedure, as used in these solutions 
(illustrated in Fig. 7), provides a method for incorporat 
ing the effects of moment redistribution due to cracking 
in statically indeterminate beams. As shown in Table 2, 
Col. F, the computed results agree with the test data in 
all cases within t 17% and in 70% of the cases within t 10%. 

All of the test beams, concrete properties and computa
tion details referred to are summarized in Tables 3 and 4. 

Thus, for determining the effective moments of inertia 
at individual sect ions, Eq. (23) is suggested: 
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For Rectangular Beams and T-Beams 

leff = t Icr (23) 

Fol lowing the above evaluation , it was deemed 
desirable to attempt to obtain appropriate values for the 
power min an expression that could be used as an average 
effective moment of inertia for the entire length of a 
beam. The general expression provided by Eq . (22) is of 
a form that should accommodate such an evaluation, since 
it includes both extremes of moment-of-inertia values 
along the beam as well as appropriate moment variables. 
Since all of the test data involved uniformly distributed 
loads, other distributions of moment might be expected to 
resu lt i n a different evaluat ion of m. In cases involving 
heavy concentrated loads, for example, the more general 
solution such as that provided in the Newmark numerical 
solution with the use of Eq. (23), should be emp loyed. 

In effect, the use of Yu and Winter's Eq. (8) along 
with the cracked transformed moment of inertia provides 
an average effective moment of inertia for an entire length 
of beam. However, the empirical constant of 0.1 was based 
on test beams that were all rather severely cracked. The 
results in Table 3, Col. X for beam LB-3 suggest that 
Eq. (8) may not apply general l y in cases where beams are 
only moderately cracked; a condition that was included in 
the evaluations herein . 

For determining an average effect ive moment of inertia 
over the entire length of a simple reinforced concrete 
beam, Eq . (24) was found to be appropriate (see Table 2). 

For Rectangular Beams and T-Beams 

Avg. Ieff = [ (::J J] lg + [ 1 _ (:::.) 

3 J r&r (24) 
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Because of the way in which these equations are bounded by 
reasonably well-established limits (lg and I~r) in addition 
to the experimental verifications herein, the use of Eq.(24) 
should be acceptable for general use with a considerable de
gree of confidence. The results of the experimental evaluation 
of the powers in Eq. (24) is shown in Table 2, Col. H. These 
solutions using Eq. (24) differed from those using the 1>0re ia
volved mume:c:i.a.ld solutions and Eq. (23) by a maximum of 3'L. 
This comparison is shown in Table 2, Col. I. 

This short-cut approach for obtaining average effective 
moments of inertia for simple beams was found to be applicable 
to beams continuous at one end using the following weighted 
average for the positive and negative moment regions (see Table 
2): 

: (25) 

Although, the experimental data did not include beams continu
ous at both ends, it is believed that an acceptable solution 
for obtaining an average effective moment of inertia for beams 
continuous at both ends is as follows: 

I ¾ [ Neg.Mom.Avg. Ieff] 

Left 
End 

(26) 

Right 
End 

In either case (involving Eqs.(25) or (26) the positive 
moment section properties have the dominant influence on deflec
tions. Results using Eqs.(24) and (25) are shown in Table 2, 
Col. H to agree with test data in all cases within l 151.. 
Eleven test results were used in the comparison. The redundant 
moments were determined on the basis of elastic analysis for 
prismatic members in these solutions. 

4.2 Outline of Computational Procedures 

The following procedures are outlin~d for computing instan
taneous deflections using the previous equations and Bq.(ll); 

Simple Beam {Constant Concrete Dimensions) 

1. Computed the cracking moment, Mer, using Eq.(11). 
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2. If the inaximum bending mo111ent under service loads i 
less than Mer, use Elg for the flexural rigidity at all point 
along the beam in computing the beam deflections. 

3. If the maximum moment (including overloads if desired), 
Mmax> is greater t:har. Mer, compute values for Ieff uaing Bq. (23) 
~ta sufficient number of sections in the cracked regions and 
compute the service-load deflections using the moments of iner
tia thus determined. The conjugate beam method or, preferably, 
the Newmark numerical procedure (illuatr ted in Fig. 6) are 
well suited for this purpose. 

3(a). Sufficient accuracy can usually be obtained with 
the use of a constant moment of inertia value deter~ined by 
Eq. (24). 

Continuouu Beam (Con tant Concrete Dimensions, Including 
T-Beama) 

1. Compute the cracking moment, Mer, for both po itive 
and negative 010ment regions (same value for both except for 
T-bea111e, in which case the flange overhangs should be neglected 
in computing the negative-moment value) using Eq. (11). 

2 . If the maximum bending moment (determined from a prie
matic beam analysis) under service load• ia less than Her in 
both positive and negative wment regions, use Elg for the 
flexural rigidity at all point& along the beam in computing 
the beam deflection . 

3. If the maximum neg tive moment using prismatic beam 
analysis (including overloads if desired).~~• is greater 
tban Mer, computed values for Ieff using Eq. {23) at a auffi
cent number of sections in the negative moment region or region. 
Do the same thing for the positive moment region. If the maxi
mum ~oment is less than Mer in only one of the region•, use lg 
in that region. Compute the service-load deflectiona u ing 
the moments of inertia thus determined and the Newmark numerical 
procedure (illustrated in Fig. 7 for a beam continuous at one 
end only) whieb includes the effect of moment rodi tribution 
due to cracking. 

3(a). Sufficient accuracy can u•ually be obtained witb 
the uae of a constant moment of inertia value determined by 
Eq. (24) and Sqs. (25) or (26). 
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Continuous Beam (Witb Variable Depthsl 

l. Determine values for M, Mer• I, I~, and Ieff in 
the Newmark solution (also using 2qs. (fl) a~d (23)) and com
pute the deflections at the same time. A unique solution can 
be found which incorporateB the effects of moment redistribu
tion resulting from cracking, although a number of trials will 
usually be required. A shorter method in this case can easily 
lead to erroneous results. However, a ve~y rough short-cut 
estimate could be obtained by following the procedure outlined 
for constant-dimensioned beams ueing Eqa. (24) and Eqs. (25) 
or (26). 

In many cases computed deflections using the ordinary 
gross-section method will not be greatly different fro111 de
flections using the numerical procedure. However, the more 
extensive method is needed to take into account unusual con
dition• of proportioning, loading, ete. 

The following is a eummary of the boundary conditions, 
aaeociated with different cases of statically indeterminate 
beams, required in the numerical solution to incorporate tbe 
effects of moment redistribution resulting from cracking in 
computing deflections of continuous reinforced concrete beame: 

l. Single Span Bea~, One End Fixed, One End Pinned 

The eolution of tbie problem ia illustrated in Fig. 7. 
The procedure applies equally well to uniform and nonuniform 
beams (symmetrical or unsy~metrical), with variations in I 
properly taken into account for nonuniform beams. The trial 
shear diatribution ia required since no boundary condition is 
known for shear. ' 

Boundary Conditions: 
V • 1 
M: 0 at pinned end 
8 • 0 at fixed end 
y = 0 at both ends 

2. Single Span Beam, Both Buds Fixed 

A. Symmetrical Beam (uniform or nonuniform) 
Consideration of half of the beam would be con
venient in the numerical procedure. A trial 
DOment distribution is required since no boundary 
condition ia known for IDOment, in general. The 
procedure would be similar to that of Fig. 7 for 
Caee l above, except that the diatribution check 
would be made for alope inetead of for deflection. 



 



Simple Beam 

"' L/2 
- a I a I_ a I 

Description I -I I 
Moment, M 0 o. 4375 0 .7500 0. 9375 
Curvature ,t, 0 0.4375 o. 7500 0. 9375 
aEquiv. Conc . Value, cp 5.1250 8.8750 11 .1250 
Avg. Slope, e 31.0580 25 .9330 17.0625 
Deflection y 0 31.0580 56 .9910 74 .0535 

A = 80 wL2 (L/8) 2 = 5wLL. ,, Exact Answer 
96 EI 3Bt""ITT 

(a) Example of Ideal Solution for Constant EI Beam Under Uniform Load 

0. 4375 0. 7500 0. 9375 
l+ 0.732 0.586 

41. 7 25 .0 21. 0 
0.010, 0.0300 0.0446 
0 .135 0.355 0.525 

e 1. 306 1.171 0.816 
y 0 1. 306 2.L.77 3. 293 

a 

Start 
5.9375 

Start 
0.291 

1.0000 
1.0000 

11. 8750 
(~r 80) 
79. 9910 

1.0000 
0.549 

20 . 3 
0.0493 
0.582 

3 .584 

MultiElier 
wL2/8 
~,1L2 /8EI 
w12a/96EI ,, 
vL2a2/96EI 

16 L.00 11# 

-:--4 
1.Il 

16,400/Ec 
161400a/12Ec 

II 

16,40oa2/12Ec 

9 ? 2 
(16,400)( ~8) - (12) = 0 . 20311 as compared to 0 ,206!', computed by t he 

(12)C 4 .!.i (10)6 
= 3.584 

approximate method recommended, and 0.153'' determined experimentally. Thi s example demonstrate s the 
worst agreement between computed and measured deflections of thirty-four test results . The other 
extreme is illustrated in Fig. 7 . The comparisons are shown in Table 2 . 

(b) Example of Solution in Whi ch Cracking is Considered for Beam SB- 3. 

(Continued on next page) 



 



 

a -
<P1 =12 ( o/0 + 10 ~l + ~2), etc . 

Example above : f5.125 =i;[ 0 + (10)(.4375) + • 7500] = 
1

~(5.2150) 

b Mer computed using Mer= (f~b I g~/(D/2) 

c Using Ieff • [( M~r)4 ] Ig + [ 1 - ( M~r)4 ] I~r 

Fig . 6--Example of Newmark22 ntUnerical solution for computing deDections of simple beams 
(Beam SB- 3) using an effective moment of inertia at the individual sections. 



DescriEtion 

Distributed Load 

aEquiv .Conc . Load, Q 

bAssumed Avg .Shear V 

Trial Deflection . Yt 

aEquiv. Conc .Load . Q 

bNew V 
Moment, M 

cMcr/M 
d1 .,f 6.L 

Curvature qi 
eEquiv .Conc . Value, <P 
A.verage Slope, e 

Trial Deflection , Yr, 
Linear Correction 
Deflection y 

1 
Continuous Beam 

J. 

l.raO 
L 

1~00 a .,k a itoa a .1 .. a 
1100 

a 1toa a 

1~00 liOO 

1.00 1 . 00 1.00 1.00 1.00 
Start 

3 . 25 2 . 25 1.25 o. 25 -0 . 75 -1 . 7> 
Follow Procedure Belo~ 

bJ .180 0 0 .878 2.254 3 . 366 J . 863 3.757 

bThe shear dist ibution must be adjusted until the required linear 
deflection- corrections are zero (or small); in which case the 
deflection curve has been determined . Also the effects of moment 
redistribution due to cracking in statically indeterminate beams 
are included in the solution . 

1.00 1.00 1.00 1.00 1.00 

3 .16 2 .16 1.16 - 0 . 84 -l . 8h 
-3 , 96 - 0.80 1. 36 2.52 2 .68 1.84 0 
-0 .623 - 1+ l + 0 . 979 0 . 920 l + 
21.7 41.7 41.7 39 .8 35 . 0 41.7 -
0 . 1825 0 . 0192 - 0 . 0326 - 0.0633 - 0 . 0766 - 0 . 0441 0 
0 , 713 0 . 342 - 0 . 370 - 0 . 742 - 0 . 873 - 0 .518 
0 - 0,713 -1 .055 - 0 . 685 

M l tiolier 

135 . 2# /f-'-

13.~ . 2 a 

lJ5 . 2aL./12E~ 
I.; 

135 . 2a 

" 
1}5. a2 

. -r; 
l.:1 2 . 

w 
w 

-35.2a /Ee 
1 5 . 2a3/-23c 

II 0 .057 0 . 930 1.44 
(Small)b 

135 . 2a4/12Ec 0 0 . 713 1. 768 2.453 2 . 396 1.46 0 . ,)18 
0 - 0 . 00} - 0.006 - 0 . 002 - 0 . 012 -0, 072 0 .018 ,, 
0 0 . 710 1 . 762 2 . 444 2.38h 1 . 451 0 II 

(Continued on next page) 



b. = 2./.41.i4 ((i~5(t:E{ti~j~2)3 = 0.0548 11 as compared to 0.0550' computed by the 

approximate method recommended) and 0 .056" determined experiJnentally . This example demonstrates 
one of the best agreement- between computed and measured deflections of _thirty-four test results. 
The comparisons are shown in Table 2 . 

aValues for Q can also e easily computed for other than nniform loads. 

1.:: er computed using : Mer= (f6t Ig)/ (D/2) 

dUsing Ieff a [ ( M~r)" ] Ig + [ 1 -( ~r) 4] rgr 
e 

o/o _ a (1 ~ + 6 ip - 1 q> ) Example above: f .713 -~~ (.1825) + -12 2 ° 2 ' 2 2 
6 (. 0192) - l (- .0326)] -
2 2 

= ~(0 .713) 
12 

\,,.) 

i a 
~2. + 10 <p1 + ~'t ) <P 1~ [ .0326 + (10)( .0633) + .0766] 1~(0.742) 

4!' 
= - ( etc . Example above: 0.742 = = 

l2 

Fig . ?--Example of Newmark22 numerical solution for computing deflections of continuous beams 
(Beam LB- 3) using an effective rno.ment of inertia .at the individual sections. Effects 
of moment redistribution due to cracking are incorporated in the numerical solution. 



TABLE 2, COMPUTED DEFLECTIONS COMPARED WITH TEST DATA 

Concrete bcomputed ccomputecl 
Compressi ve aMeasured Deflections De lections 

Refer- Desig- Strength At Instan- Using Col. D Using Col. D Col. E 
ence nation Age-When- taneous Newmark Col. E Short-cut Col. G Col. G 

Loaded Deflections Procedure Procedure 

psi in. in. in . 

A B C D E F G H I 

SIMPLE SPAN RECTANGULAR BEAMS 
\.,J 

Current SB-1 5130 0.041 o.oso 0.82 0 .050 0 . 82 1. 00 
V, 

Investi- SB-3 5130 0.153 0.203 0. 75 0.206 0 . 74 0. 99 
~ation 

asha Al,A.4 3630 0 . 53 0 .61 0.87 0.62 0.85 0 . 98 
and ')3 Bl Bu 3020 0 . 92 0.99 0.93 0 . 99 0.93 1.00 

FluckL Cl,CL 291.io L58 1.75 0.90 1.75 0.90 1.00 
Dl DL. 2920 0 .47 0.63 0 .75 o.63 o. 75 1.00 
El,El, 2990 2.34 2.07 1.13 2.06 1.14 0.99 
A2,A5 3630 0,62 o.63 0.98 0 .64 0.97 0.98 
B2 B5 3020 0 .98 1.02 0 . 96 1 .02 0.96 1.00 
C2 C5 2940 1. 71 1.76 0,97 l. 77 0 . 97 0.99 
D2,D5 2920 o.56 0 .64 0.88 0 .65 0 . 86 0 . 98 
E2 ES 2990 2 . 20 2 . 09 1.05 2.08 1.07 1.01 
A3,A6 3630 0.67 0.66 1.02 0 . 66 1.02 1.00 
B3,B6 3020 1.04 1.02 1.02 1 .02 1.02 1.00 
CJ,C6 2940 1.88 1.83 1.03 1.82 1.03 1.01 
D3,D6 2920 0.70 0 ,66 1.06 0 .66 1.06 1.00 
E3,E6 2990 2.48 2 .10 1.18 2.09 1.19 1.01 



 



TABLE 2. (Continued) 

A 

Yu and 
Winter6 

B 

A-1 
B-1 
C-1 
D-1 
E-1 
F-1 

C 

3680 
3880 
3530 
3680 
4260 
4260 

D 

1. 34 
1.24 
1.19 
1.27 
0.51 
2.20 

E F 

SIMPLE SPAN T-BEAMS 

1.25 
1.24 
1.24 
1. 36 
0 . 61 
2.28 

1.07 
1.00 
0.96 
0.93 
0.84 
0.97 

G 

1.24 
1. 24 
1. 23 
1.36 
0.60 
2.25 

H 

1.08 
1.00 
o. 97 
0.93 
0.85 
0.98 

RECTANGULAR BEAMS CONTINUOUS OVER SINGLE SUPPORT (TWO SPANS) 

Current LB-1 
Investi- LB-3 
ation 

Washa Xl,X4 
and Yl, Y4 

Fluck24 Zl,Z4 
X2,XS 
Y2 , Y5 
Z2,Z5 
X3,X6 
Y3,Y6 
Z3.Z6 

5130 
5130 

3230 
3360 
3300 
3230 
3360 
3300 
3230 
3360 
3300 

0.021 
0 . 056 

0.56 
0.89 
1.04 
0.57 
0.93 
1.13 
0 . 62 
1.00 
1.20 

0.021 
0.055 

0.63 
0.97 
1.02 
0.65 
1.01 
1.03 
0 . 64 
0.99 
1.03 

1.00 
1.02 

0.89 
0.92 
1.02 
0,88 
0.92 
1.10 
0 . 97 
1.01 
1.17 

0.021 
0.055 

0.65 
0.99 
1.04 
0.65 
1.00 
1.04 
0.65 
1.01 
1 .04 

1.00 
1.02 

0.86 
0.90 
1.00 
0.88 
0.93 
1.09 
0 . 95 
0. 99 
1.15 

I 

1.00 
1.00 
1.00 C 

1.00 
1.02 
1.01 

1.00 
1.00 

0.97 
0 . 98 
o. 98 
1.00 
1. 01 
0 . 99 
0. 98 
1.00 
0.99 

8Both measured and computed deflections refer t o combined dead-load and superimposed-load. 
bsee Figs. 6 and 7 for examples of Newmark22 numerical solution for computing deflections 

using effective moments of inertia at individual sections obtained in Eqs. (23)and(24) 
ccomputed using Eqs. (25) ~ (26), and (27). 



 



TABLE 3. LOADS, BEAM DETAILS AND SECTION PROPERTIES FOR TEST BEAMSa 
(This table is composed of 6 pages; the 2nd, 4th, and 6th 
pages being lateral extensions of the 1st 3rd and 5th 
pages, respectively . ) 

Beam Super- Crack-
Refer - Desig- imposed Dead Span ing Max . Rati o Section De~ails and Properties 
ence nation Load Load Mom. Mom . 

L M t\ax 
M b b' t d d ' D ar As A' WSL WDL er p = 

er-
~ax 

g 12~ X 
~ 

;:, 

bd 

#/ft #/ft ft . in- k in-k in in in in in in inL . 2 % in2 lll ......, 

A B C D E F G H I J K L M N 0 p Q R 
-....J 

SIMPLE SPAN RECTANUULAR BEAMS 

Current SB-1 h1.6 20.8 9 9 ,0 7.6 1.18 4 4 4 .00 5 hl. 7 0 .11 0. 69 
Investi- SB-3 114.4 20.8 9 9.0 16.h .5h9 4 4 h.oo 5 hl. 7 0 . 33 2.07 
ation 

Wasna Al,A 2 1 97 20 227 .J 1 . lJ .L.: - - \ l._ ll~C - ": ':. 1. -, 1. ;,..: . - ...:.. • ·- L• J • .,~ ., 
and 23 Bl,B4 59 48 20 26.h 64 . 2 . 411 6 6 6.19 1.81 8 256 0.62 1 . 67 0.62 

Fluck Cl,C4 22 60 20.8 20.3 53 , 2 .382 12 12 4.00 l .00 5 125 0,80 1.67 O 80 
Dl , D4 169 60 12 .5 20 . 3 53. 7 ,378 12 12 4 .00 1.00 5 125 0 . 80 l. 67 0.80 
El,E4 0 38 17 .5 7.4 17 .5 .423 12 12 2.31 o .69 3 27.0 0.44 1 .59 0 . )44 
A2,A5 281 97 20 86.5 227 .381 8 8 10.l2 1 .88 12 1150 1.32 1.63 0 . 62 
B2,B5 59 48 20 26.4 64.2 .411 6 6 6.19 1.81 8 256 0 .62 1 .67 0.31 
C2,C5 22 60 20.8 20 . 3 53. 2 .382 12 12 w .• oo 1.00 5 125 a.Bo 1 .67 0 . 40 
D2,D5 169 60 12.5 20 . 3 53 .? .378 12 12 4.00 1.00 5 125 0,80 1 .67 o.4o 
E2,E5 0 38 17.5 7.4 17.5 . 423 12 12 2. 31 o .69 3 27.0 o.44 1.59 0 . 22 



 



TABLE 3. (Continued) 

Ieff = I~r/(1-b I Ml ) 
~ 

Beam where M1 = 
Refer- Desig- Section details 

O.l(ft) 2f3n(D-kd) ence nation and properties Ratio 

Using- n = 29 x 10b /Ee Ieff by Method B Col. U 
kd Tt bAvg . l!r of Ref. 6 

Col .W -er 
1eff 

av 

in in4 . 4 
lil in . in4 

A B s T u V w X w 
CX) 

SrnPLE SPAN RECTANGULAR BEAMS 

Current SB-l 
Investi- SB-3 1.65 18. 2 22.0 20.9 1.05 
o-ation 
Washa ~ I 3 .6h 600 630 65;, 0. 96 -. , . 

and 23 Bl B4 2.13 111 121 122 0 . 99 
Fluck Cl,C4 1.54 60 .0 63.6 65.1 0,98 

Dl,D4 1.54 60 .0 63 .6 65 .1 0.98 
El,E4 0 .90 10 .9 12 . 2 12 .0 1.02 
A2,A5 3.82 583 614 636 0. 97 
B2,B5 2 . .50 108 118 U8 1.00 
c2,c5 1.60 59.0 62 .7 64.0 0 . 98 
D2 D5 1.60 59.0 62 .6 63 .9 0 ,98 
E2,E.5 0 .93 10 . 8 12 .1 ll.9 1.02 



TABLE 3. (Continued) 

A B C D E F G H I J K. L M N 0 p g R 

AJ.A6 281 97 20 86 . 5 227 .381 8 8 - 10.12 12 1150 1.32 1.63 
B3,B6 59 48 20 26.4 64 . 2 .411 6 6 6.19 8 256 0.62 1.67 
C3,C6 22 60 20.8 20.3 53 . 2 . 382 12 12 4.00 s 125 0 . 80 1.67 
D3,D6 169 60 12.5 20 . 3 53.7 .378 12 12 4.00 s 125 0.80 1.67 
E3,E6 0 38 17 .5 7 .4 17 .5 .423 12 12 2.31 3 27 .o 0.44 1.59 

SIMPLE SPAN T-BEAMS 

Yu A-1 349 91 20 100 264 .379 12 6 2.5 10.2 12 6.82 0.62 0.51 
and 1153 
Winter6 B-1 350 91 20 103 265 .389 12. 6 2.5 10.2 l.6 12 6.82 0.62 0.51 9.31 

1153 v-l 
\0 

C-1 348 91 20 98 263 .373 12 6 2.5 10.2 1.6 12 6.82 0.62 0.51 0.62 
1153 

D-1 682 122 20 92 483 . 190 24 6 2.5 9.7 12 7.83 1.20 0.52 
1513 

E-1 752 90 14 108 248 .436 12 6 .2. 5 9 . 8 12 6.82 0.62 0.51 
1153 

F-1 198 62 20 35.9 156 .230 12 6 2.0 6.2 8 4.60 0.62 0.84 
347 

RECTANGULAR BEAMS CONTINUOUS OVER SINGLE CENTER SUPPORT CTWO SPANS) 

Current LB-1 41.6 20.8 2- 9.0 7.6 1.18 4 4 - 4 5 41.7 0.11 o. 69 
Inveeti- 9 4.3 2. 10 0.11 0.69 
gation LB-3 114 .. 4 20.8 2- 9.0 16.4 .549 4 4 - 4 s 41.7 0.33 2.07 

9.2 . 935 0 •. 33 2.07 



TABLE 3 . (Continued) 

A B s 'l: u V w X 

AJ , A6 4 . 01 566 589 615 0 . 96 
B3 B6 2. 54 107 118 117 J .01 
CJ C6 1.68 57 .5 61.3 62 . 2 0 . 99 
D3 .D6 1.68 57 .5 61.2 62 . 2 0 . 98 
EJ~E6 0 .95 10 . 7 12 .0 17 . 7 l .03 

SIMPLE SPAN T- BEAMS 

Yu A- 1 2.66 392 415 414 1.00 
and r.. 

.f:-~vinter0 B-1 2.59 395 420 421 . 00 o . 

C-1 2. 53 395 417 420 LOO 

D-1 2.54 683 684 705 0. 97 

E-1 2.59 360 hOl 378 1.06 

F - 1 1 . 99 130 131.i luO 0 . 96 

RECTANGULAR BEAMS CO ITINUOUS OVER SINGLE CENTER. SUPPORT (TWO SPANS) 

Current LB-1 
Investi -
gati on LB- 3 1 . 65 18 . 2 22 . 0 34 .0 20 . 9 L 0.5 

1.65 18 .2 40 .0 23 . 3 1. 72 



 



TABLE 3 . (Continued) 

A B C D E F G H I J K L M N 0 p Q R 

Washa Xl XL. lh2 h8 2- 27 .3 117 .6 .232 
,, 

6 6 .. 19 l . 81 8 256 1.06 2, 86 0.93 0 -
and ? 4 20 66 . 2 . 4l2 6 .19 l.81 0.62 1.67 0 .62 

Fluck~ Y Yh 86 60 2- 21.a- 94 . 7 .230 12 12 - 4.00 1 .00 5 125 1.55 3. 22 1.55 
20 . 8 53 . 3 .409 4 . 00 1 .00 0 . 80 1.67 0 . 80 

Zl, Z4 30 38 2- 7 . 77 31. 2 . 2h9 12 12 - 2. 31 o .69 3 27 . 0 0 .80 2.89 1 .00 
17 .5 17 .6 .L41 2.31 0 .69 O.L4 1.59 0.44 

X2,X5 11-12 h8 ::: - 27 . 3 117 .6 . 232 6 6 6 .19 l.81 8 256 1 .06 2.86 0 . 93 
20 66 . 2 . 412 6 .19 l . 81 0 . 62 .67 0 . 31 

'£2 Y5 86 60 2- 21. 8 9L. . 7 .. 230 12 12 - 4.00 l,00 5 125 1. 55 3. 22 1. 55 
20 .8 53 .3 .409 ti .oo 1 . 00 0 . 80 1.67 0 . 40 +" ..... 

Z2 Z5 30 38 2- 7. 77 31. 2 . 249 l_2 12 - 2 . 31 0 . 69 3 27 . 0 0 .80 2.89 1.00 
17 . 5 17 .6 .h41 2 . 31 0 .69 O.hl.t 1. 59 0 . 22 

X3.X6 lu2 h8 2- 27 . 3 117 .6 . 232 6 6 - 6 .19 l.81 8 256 1.06 2. 86 0 .93 
20 66 . 2 .412 6.19 l.81 0 . 62 1. 67 

YJ,Y6 86 60 2- 21.8 9h . 7 . 230 12 12 - /.i .00 1.00 5 125 1.55 3.22 1.55 
20 . 8 53 _3 .409 h.oo 0 . 80 1 .67 

Z3,Z6 30 38 2- 7. 77 3 . 2 . 249 12 12 - 2.31 0 .69 3 27 .0 0 . 80 2.89 1.00 
17 . 5 17 .6 .441 2. 31 0 . 44 1 .59 

¾here two numbers appear the top number ref ers to t he maximum negative moment secLion value and the bottom 
number to the maxiJnum positi ve moment section value; excepu Col, 0 or T- beams . In Col . 0 for T- beams, the 
top number refers to the distan e from the extreme tension fiber to the centroid of the gross concrete 
secti on (neglecting all steel) . 



 



TABLE 3. (Continued) 

A 

Washa 
and . 24 

Fluck 

B 

Xl,X4 

Yl ., Y4 

Zl,Z4~ 

X2,X5 

Y2,YS 

Z2,Z5 

X.3,X6 

Y3,Y6 

s 
2.85 
2.13 
1.81 
1.54 
1.03 
0.90 
2.85 
2. SO 
1.81 
1.60 
1.03 
0.93 
2.85 
2. 54 
1.81 
1.68 
1.03 
0.95 

T 

160 
111 
98.5 
60.0 
27.5 
10.9 
160 
108 
98.5 
59.0 
27.5 
10.8 
160 
107 
98.5 
57.5 
27.5 
10. 7 

u 

161 
119 
99.0 
64.4 
27.5 
12.3 
161 
118 
99.0 
63.5 
27.5 
12.3 
161 
117 
99.0 
62.l 
27.5 
12.3 

V 

133 

760 

17.4 

132 

75.3 

17 .4 

132 

74.4 

17 .4 

'W 

168 
122 
103 
65.7 
28.9 
12.0 
168 
118 
103 
64.6 
28.9 
11.9 
168 
117 
103 
62.8 
28 .. 9 
11.8 

X 

0.96 
0.98 
0.96 
0.98 
0.95 
1.03 
0.96 
1.00 
0.96 
0.98 
0.95 
1.03 
0.96 
1.00 
0.96 
0.99 
0.95 
l 04 

bPor •i~le ::~t~::!:: Beans: 
2 

Avg.I 0 ff • [( ~~) : ] lg I [1 -( ~~) 3
] l~r 

cFor Cont:inuous Bea.ma; lav : 3 (Pos.Mo111. Avg . Ieff) I 3 (Neg.Mo• .Avg. Ieff) 



 



TABLE 4. CO CRETE PROPERTIES AND PARAMETERS FOR TEST BEAlvJ.S 

aConcrete Strength Moduli of Elasticiti 
Beam Loading a t Age-When- d,b Tensile 

Refer - Sched- b C 
Mod - l Al Steel Desig- Loaded and .easured Ee Co - s WSL ~ ence nation ule At 28 Days puted ular D Rs Pe -

WDL 1"1 
EC Rati o centage ma .... .. 

age when f l at f~bat f' a Ec at Ee at E Cat C c28 loaded age age age 28 age 
w.en wher. days when days when n p 
loaded loaded loaded loaded 

Days psi psi psi psi,. 
X 10° 

psi,, psi % 
X lQD X J.06 ... 

A B C D E F G H I J K L M N 0 
l.,J 

SIMPLE SPAN RECTANGULAR BEAMS 

Current SB-l 28 5130 539 5130 4 .4 4.4 4 .1 7 22 0 0.69 2.0 1.18 
Investi- SB-3 28 5130 539 5130 Li. 4 4.4 4.1 7 22 0 2 . 07 5.5 .549 
Wat.ion 
Washa Al.PL ih 3630 452 ho8o 3.0 3.3 3.5 8 20 1.0 1.63 ? 0 .381 - . ; 

and Bl:B4 14 3020 413 3420 2.7 3.1 3. 2 9 30 1.0 1.67 1.2 .411 
Fluc1c23 Cl C4 14 2940 ho6 3290 2.7 2.9 3 .1 9 50 1.0 1.67 0.4 . 382 

Dl D4 14 2920 405 3530 2.6 2.8 3.1 9 30 1 ,0 1.67 2.8 . J78 
El.Eu 14 2990 410 3660 2.7 3.0 3.2 9 70 1 . 0~ 1.59 0 . l..i.23 
A2 A5 14 3630 452 4080 3. 0 3.3 3.5 8 20 o.s 1.63 2. 9 .381 
B2,B,5 14 3020 413 3420 2.7 3.1 3.2 9 30 0 , 5 1.67 1,2 .411 
c2.c5 14 2940 406 3290 2.7 2.9 3.1 9 50 0.5 1.67 0 .4 .382 
D2,D5 14 2920 405 3530 2.6 2.8 3.1 9 30 0.5 1.67 2.8 . 378 
E2 .E5 14 2990 hlo 3660 7,7 3.0 3. 2 Q 70 0.5 1.59 0 . 423 ; 



TABLE 4. (Continued) 

.ri. 3 D E F Ci tl I J 1 '-'1 ,1 

A3,A6 lh 3630 452 4080 3.0 3.3 3.5 8 20 0 1.63 2.9 . 381 
BJ B6 14 3020 hl3 3h20 2.7 3.1 3.2 0 30 0 1.67 1. 2 .411 ., 
CJ C6 14 2940 406 3290 2.7 2.9 3.1 9 50 0 1.67 0 .4 . 382 
D3,D6 14 2520 405 3530 2.7 2. 8 3.1 9 30 0 1.6? 2.8 . 378 
E,J,E6 1h 2990 410 3660 2.6 3.0 3.2 9 70 0 1.59 0 . 423 

SIMPLE SP AN T- BEAMS 

Yu A-1 30· 3680 455 3680 3.1, 2.6 ) .1~2 .6 3.5 9 20 0 0. 51 J . 8 . 379 
and 6 B-1 29 3880 467 3880 J .1,2 .5 3.1~2 .5 3.6 9 20 0.5 0. 51 3.8 .389 ~ 

l:'-
Winter C-1 28 3530 445 3530 3.1,2.5 3.1 2.5 3.u 9 20 LO 0 .51 3. 8 . 373 

D-1 31 3680 455 3680 3.1,2 .6 3.1 2.6 3.5 a 20 0 o .52 5.6 .190 ,; 

E-1 29 4260 h5o h260 3.1 2.6 3.1 2.6 3.8 9 lh 0 0 .51 8. 4 .l 36 
F-1 34 4260 490 4260 3.1,2 .6 3.1,2.6 J.8 9 30 0 0 .84 3.2 . 230 

RECTANG !ill BEAMS CON_ IN ·ous OVER SINGLE CENTER SUPPOR.T 

Current LB-1 28 5130 539 5130 h.4 4.h 4.1 7 22 0 0.69 2.0 1.18 
Investi- 0 0.69 2.10 
gation LB- 3 28 5130 539 5130 l.i.4 4.4 4.1 7 22 0 2.07 5.5 .549 

0 2.07 .975 
·, asha xi.xi 1L .;.2 30 2.6 ., . L - .. 

.) . 9 30 0 . 5' 2.86 J.O . 232 
and 1.0 1.67 . 412 

Fl ck2L. Yl Y4 14 3360 435 3990 2.9 J .L 3. 4 9 50 1.0 3. 22 1.4 . 230 
1.0 1.67 .409 

Zl ZG 14 3300 LJl 3760 2.9 .I • J 3.3 Q 70 1.3 ·2 .89 0 .8 . 249 ., 
1.0 l.~9 .441 



TABLE h . (Continued) 

.\ B 
,., 

D E F G I ~1 K L u 

X2:XS 14 3230 426 3680 2. 8 3.4 3 -, . .,) 9 30 O.? 
0.5 

Y2,Y5 lh 3360 LJ5 3990 2.9 3.L 3.L 9 50 1.0 
0 .5 

Z2 . Z5 llt 3300 431 3760 2. 9 .3 ") , .,) J . 3 9 70 1 . 3 
o.5 

XJ,X6 14 3l'.30 1.126 3680 2. 8 3 .h 3. 3 9 30 0 . 9 
0 

YJ . Y6 lu 3360 ltJS 3990 2.9 3. ~ 3.4 0 so 1.0 ,, 
0 

Z3 , Z6 lh 3300 uJ1 3760 2.9 3 . 3 3.3 q 70 1.3 
0 

aAll con ret.e compressi e st.reng hs de ermined by 6 11 by - 2" cylinder t,e -t s . 
The modulus of r p~ure, f'i -cb was computed • _f I us1..ng cb = 7.5 Ji~ 

b 
0.h5 f~ 2h ; ValLLes in Cols . G and H efer to : Secant value at for Re erences 23 and 

t l, e ini t ial t.angen t modulus f or " e current i nvestigation; and t he initial angen 
modu1us a .d secan 1 .i. 0 5 ·•t va e a u . le: respect.:.vely ~ for Reference 6. The measured 
init" a- tangent value for Ec at the age when Joaded was used in all cal cul at.ions, 
except where tr.is ..ras not obtained 1 i.n whic! a""e the computed value for Ee at the 
age when loaded was used . 

cComputed values of Ee de t.ermined using Ee = 57 700 ~ , whe1 e f~ is the concrete 
co:npressive strength a r.he age when loaded . 

dModular ra io determined (and rounded off) using n 
~ 

= 29 x 10°/Ec, 

N 0 

2.86 3 .0 . 232 
1. 67 _4- 2 
3 . 22 1. . 230 
1.67 .h09 
2.89 0 . 8 . 2h9 
1.59 .441 
2.86 3.0 . 232 
1.67 . 412 
3. 22 1.1.i . 230 
1.67 .h09 
2.89 0 . 8 .249 .i:--

VI 

.59 ,441 
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V. DISCU~SION OF T3ST RESULTS 

The experimental phase of this investigation was undertaken 
in order to evaluate the effects of certain variables heretofore 
not clearly distjngnished . Relatively high quality concrete 
beams of moderate span-depth ratios and loaded so that moderate 
cracking occurred provided a useful disLinction from most of the 
other deflection tests t.ha "L have been reported _; which were o.f 
average concrete qua)ity average- to - large span- depth rat~os 
(up to 70 which .:..s abnormally la:.ge) and severely cracked (see 
Tables 3 ad 4) . Also, the test. beams herein were carefully 
designed with different steel percentages so that the computed 
maximum concrete compressive stre sses were the same for the 
corresponding simple and continuous beam (the 1-bar beams -
also the 3- bar beams) · also that the computed maximum concrete 
compressive stresses were the same at aJ1 points along the 
_-bar and 3-bar simple beams -- also the same at all points 
along the 1 -bar and 3-bar continuous beams. Compression steel 
was not included as a variable in the current experimental 
program. 

5.1 Shrinkage Warping 

Primary interest wi,:,h regard to analytical methods for com
puting shrinkage warping centers around the basic assumptions and 
hence t,he per t inent variables involved . For example, the quasi 
ela_,tic "tensile force" method given b,v Eq . (16) includes a 
flexural rigidity expression not found i n Mi.ller 1 s method given 
by Eq. (18) . 

T e where T (As +AJ.)EhE (16) 
</>sh 

s s = .:. 8 S =-
Ee~ 1 ct 

lp c'r. 
:= 

c~h (1 - Es/ 6. sh) (18) 
cl 

The latter equation resul~s in a warping expression as a function 
of t he free shrinkage effective depth and a constant (paren
thesis) which was specified in a general way to be 0 . 9 for heavily 
reinforced members and 0 . 7 .for moderat.ely rein.forced members. 
The method is applicable to singly-reinforced beams only whereas 
Eq . (16) is applicable to bot1 singly - and doubly- reinforced beams . 
Basic to Miller's approach is the assump t ion that a concrete member 
restrained at, some point outside the kern limit on one side~ will 
not shrink more (but rather will undergo an equal shrinkage) than 
the free shrinkage on the opposite extreme fiber , as the tensile 
force method of Eq. (16) predicts. 
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The curvea of the currant inveatigation abown in Pig. 8 
indic~te that tbe extra e fiber doea abrink more than th free 
abrinkage of tba co• panion •pecimen, but not auch more. Hence 
the effect• of the eccentric • teal re1i1tanc1, out 1d the kern 
li11it of th section, do aee to produce "greater than fraa" 
•brinkage of the oppo• lte extreme fiber. But Killer'• pproacb 
would certainly appear to be a cloee approxieation. Of cour e, 
in deeper beam• (greater eccentricity) the a••u• ption would t ud 
to be further i'o error, but in tbeae ca•• tbe increaa d depth 
greatly reduce• the ahrinkaga-warping curvature• nyway. 

The current and other ahrinkag~ data have been tabulated 
in Tables 5 and 6 and the reeult compared with the following 
procedure• for computing ahrlnkage w rping: 

Eq. (16) ia modified to uae the simpler expreasiona 
(Ec/2) (lg) in place of !er; let and eg which refer• to the 
gross section. This Eq. (27) is applicable to both aingly
and doub y-reinforced. bea e. Cloeer agreement with teat 
re ulte was found aa a result of thi.a canvenient modiflcation. 

{27) 

Miller' e Eq. (18) ia applicable. on°ly to singly-reinforced 
beam. 

The following new empirical expreHions, which provide the 
closest agreement with te8t re•ult•~ re introduced. Bq1. (28) 
and (29) are applicable to both aingly- and doubly-reinforced 

bea1111. (~ A-.. (O. 7) €
0

,h (p-p 1 ) l/ 3 P- '· 112 , for (p-p 1 ) '€ 3 .o~ (28) 
'// •b : 

and 

</J b = f.!.g , for (p•p') > 3.0't 
D 

(29) 

For lingly-reinforced beams, p 1 = 0, and Eq. (28) reduce• to 

(0.7) £..!h pl/3 
D 

With regard to comparisons with 
lowing agreements were found and are 
in Table 6 : 

(30) 

16 test results, the fol
sbown in Cola. K, N, and P 

Using Eq. (27) Reaults agreed with test data in 25? of the 
cases within 1O~. 
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Using Eq. (18) Results agreed with test data lo 23~ of the 
cases within 101. 

Using Eqs. (28).(29),(30) Results agreed with te1t data in 69-X, 
of the cases within lOt. 

Keeping in mind the nature of the problem, the latter agreement 
is thought to be reasonably good. 

Eq. (28) is an adaption of Miller's approach. For example. 
his method results in the following expreasiona for aingly
reinforced beams only: 

</) = 0.7 
ah 

A... • 0.9 
'I" sh 

€sh 
d 

for moderately reinforced beams . 

for heavily reinforced beams. 

Eq. (30) for singly- reinforced beams re1ults in the following: 

¢;sh = 0.56 
= • 70 
.. . 80 
= .88 
= • 96 
• 1.01 

Csh/D 
II 

II 

It 

" ,, 

when (p - p') = 0 .5 
1.0 
l.5 
2.0 
2.5 
3.0 

The use of the 110re convenient overall depth D instead 
of the effective depth d was found to provide cloaer agreement 
with the data. The difference is negligible for all but shallow 
beams and for these, the use of D seemed to provide the beat 
fit. It is , of course, assumed that abnormal covers (abnormal 
differences in D ~nd d) are excluded from consideration. 

Eqs. (28) and (29) refer to both singly- and doubly
reinforced beams. The expression in the last parenthesis 
of Eq. (28), 

(31) 

was found to be required in order to produce a somewhat smaller 
curvature for doubly-reinforced members than for singly-reinforced 
members when (p - p') for the doubly-reinforced members is equal 
top for the singly-reinforced members; other conditions being 
the same . It is seen that the modifier of Eq. (31) becomes unity 
when p' • O. Eqs, (28) ,(29), and (30) provide very simple ex
pressions for computing shrinkage warping in terms of only two 
section properties (D and p or (p - p')) and the free shrinkage 
~ sh· However, the data in Tables 5 and 6 tend to indicate 

that the methods discussed should be used with caution when 
dealing with high-strength concrete. 
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It abould be aentioned that consideration has not been given 
to effect• of cracking on shrinkage warping in either the experi
lD8ntal atudiea of the current investigation and other• reported 
in the literature or in the analytical methods di1cu11ed, At 
leaat according to the tensile force method, cracking would tend 
to incTea1e the eccentricity of the te~•ile 1teel in aingly-rein
forcad beam1 and would therefore • eem to increase shrinkage warp
ina. However, according to tbe other approach discussed, effecta 
of cracking abquld play a minor role in producing shrinkage warp
ing since the extre• e fiber is atill aasumed to shrink an amount 
equal to the free shrinkage, and the resistance factor provided by 
the eapirical constant (0.7) and the steel percentage term or term• 
would not 1eem to be much different in the ca1e of warping of crack
ed aec tions. 

Witb regard to shrinkage deflection, of continuous beams, if 
the effect of 110ment redistribution resulting from shrinkage cur
vature• are neglected, the effecta of shrinkage on deflection• can 
be deter• ined using any moment-ar ea technique or numerical proced
ure and the curvature expre11iona discussed herein (by 1ubetituting 
tbe curvature ¢> for M/EI). Rqs. (18), (27), (28), (29), and (30) all 
define abrinkage cuntaturea at individual aections, although the1e 
e.xprea1ions are usually con1tant for a considerable length of a 
reinforced concrete beu. 

3.2 Deformational Behavior of Test Beame 

In addition to the shrinkage strain and curvature data for the 
abrinkage specimens •hown in Figs. A.2 and A.3, the total (instan
taneoua plu• time-dependent) and instantaneous plus creep strain 
data are ahown in Fig1. A,4 through A,7 . Since the curves have 
markedly "leveled off", and willh the additional information ehown 
in Pig. 9 for projecting 2-inonth values to 20-yea-c or "ultimate" 
values, certain quantitative aa well as qualitative concluaione 
can be drawn with regard to ultimate deformational behavior. 

In Pige, A.6 and A,7, the tension-gage strains are seen to 
decrea1e with time in ca1e• where shrinkage etraine exceed the 
creep atraina . The basic curvature and deflection data for the 
te1t beam• are abown in Fige, A.8, A.9, and A. 10, and further 
repreeented in Fig. 11 and Table 7. The te1ting period reported 
for the beams of tbi1 investigation waa 2 monthe . 

Average valuea for the creep coefficients (defined as rat io 
of creep strain to i nitial atrain) shown in Fig. 10 were virtually 
the 1ua f or the ten• ion and compresaion gages, although the great
er variation wae obaerved for the tension gagea . Thia was probably 

due to the random cracking at eome of the gage locations 
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on the t ension s i de of the beams. The average values for the 
time-dependent (shrinkage plus creep) deflection coefficients 
(defined as ratio of time- dependent deflection to initial 
deflection) are shown in Fig . 11. 

At 2 months the average tensile and compressive creep coef
f icient was about 0 . 9 while the average time-dependent deflection 
coefficient was about 1.5. Projecting these values to 20- year 
values using Fig. 9 (multiplying by 2) results in corresponding 
coefficients of 1.8 and 3.0 re spectively , Results in Table 7 
indicate that shrinkage curvatures varied from 11% to 19% of the 
total time- dependent curvature, so that the corresponding average 
creep deflection coel'ficient ( defined as ratio of creep deflection 
to initial deflection) would be about 2 ,6 . By comparing t.he 
ultimate creep strain coefficient of 1.8 with the ultimate creep 
deflection coefficient of 2 .6, it i s suggested that other effects 
seem to have a definite influence on so called creep deflections 
other than direct concrete creep strains . Undoubtedly one of t he 
principal explanations is that of a shifting neutral axis and 
time- dependent adjustments in the stress as well as strain dis
tributions along the beam. Thi s is also discussed wi th regard 
to ~he experimental curvatures obtained . 

For relatively high strengt h concrete, l oads applied at age 
28- days (considered an average loading age -- not particularly 
early or late), and 59% average relat ive humidi ty t he value for 
the ultimat e creep coefficient given in Table 1 is about 2 . 5. 

Thus suggested in the previous paragraphs i s the nature of 
the theoretical as well as empirical vagueness of the approaches 
available for applying creep or shrinkage plus creep coefficients 
to instantaneous deflections when computing creep or shrinkage 
plus creep def l ections . 

The effects of cracking on insta1:itaneous deflections were 
studied in Sect.ion IV and are further evident with regard to 
t ime-dependent deflection s in Fig . ~.10. For example, the 
maximum moment for the simple beam SB- J was about twice the 
moment corresponding to .first cracking, while the simple beam 
SB-1 was uncracked. However, the time-dependent deflection 
coefficients at 2 months were 0.146/0.153 = 0 . 95 for SB- J and 
0 . 0435/0.0410 = 1.06 f or SB- 1, indicating that extent of 
cracking does not seen1 to mat erially affect one's choice of 
time - dependent deflection coefficients . 

Tabulated in Table 7 are t he instantaneous curvatures . 
and curvatures at t he end of the testing period f or all of the 
gage locati ons . These curvatures were obtained by dividing the 
algebraic difference in the top and bottom gage readings by the 
distance between them at each gage l ocation . 
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From Table 7, Cols. D and E, it can be seen that even though 
the desi gn stresses for the 1-bar beams were the same, the ratio 
of experimental instantaneous curvatures to moment for the 3-bar 
beams were of t he order of twice that of the l - bar beams, which 
were 0ubjected to the correGpondingly smaller loads. This demon
strates ·the tendency for relat ively large steel-percentage beams 
to undergo considerably greater curvatures and deflections when 
designed for the same allowable stresses by elastic theory. 
Similar behavio_r is seen for t he instantaneous pl us creep curva
tures in Table 7, Cols. Land M but to a slightly lesser degree . 

Interesting results are shown in Table 7, Cols.Hand I where 
in every case t he ratios of time- dependent to initial curvatures 
are larger in the smaller moment regi~ns. The same is true for 
the c-:r eep rati.os (with one exception i n eight cases -- and it 
thought to be insignificant) of Table 7, Cols . N and O. This 
would suggest that in regions of higher moment (within working 
stress ranges -- that is, below any high overload range) larger 
early creep strains tend to cause greater reductions in concrete 
stresses with accompanying greater reductions in creep curva
tures with time. Involved is the phenomenon of the shifting 
neutral axis with time as a result of the shrinkage and creep 
behavior of a nonhomogeneous (particularl y so when cracked), 
composite steel- concrete structural member, 

The brief discussion of this section serves only to demon
strate a number of fundamental phenomena-regarding instantaneous 
and time -dependent characteristics of reinforced concrete beams 
as observed in a limited munber of test results . Methods for 
computing defl ecti ons that take into account most of these 
effects have been discussed in thi-s report and in the case of 
cracking effects and shrinka ge warp::j.ng, new procedures set forth. 
It appears that the gap between fundamental answers related to 
deformational behavior of such beams and empirical approaches 
for controlling structural defl ections remains a formidable but 
not impossible one to materially close in the not too distant 
future. 
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Concrete Age in Days (initial 
readings taken at age 4 days) 

0 A--Shrk. Spec. With No Steel (pcO), All Gages Used 

A 

0 B--Shrk. Spec. With One Bar {p•0.69%), All Gages Used 
'P C--Shrk. Spec.' With Three Bars (p•2.07%), All Gages Used 

Fig. 8--Comparison of shrinkage strains at the top fiber 
for the specimens with different steel percentages 
(strains proportioned to extreme fiber using a 
linear distribution with the top and bottom gages) 
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Time in Days (time zero taken at 
age 28 days--age beams were loaded) 

Lower 

20 40 
Time in Days· ( time zero taken at 
age 28 days--age beams were loaded) 

Creep Coefficients Defined as Ratio of 
Creep Strain to Initial Strain 

Fig. 10--Compression and tension gage creep coefficient 
versus time curves for four test beams 
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Time in Days (time zero taken at 
age 28 days--age beams were loaded) 
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Ti.me-Depen~ent Deflection Coefficient Defined as Ratio 
of Time-Dependent Deflection to Initial Deflection 

Fig. ll--Time-dependent deflection coefficient 
versus ti.me curves for four test beams 



TABLE 5. BEAM DETAILS AND CONCRETE PROPERTIES FOR SHRINKAGE SPECIMENS 

Age 
Beam Initial 

Refer- Desig- Readings Duration 
ence nation Section Details and Pro;eerties Sean Taken of ~est 

b d D eg I A Al 
~ aE, T 

fj s 5 _, 

in in in- in in4 in 2 in 
2 % % ft dazs months 

A B C D E F G H I J K L M N 

Current B-1 4 h > 1.5 hl.7 0.11 0 0.69 0 9 L 3 
Investi- B- 3 4 4 5 L.5 41.7 0.33 0 2.07 0 9 h 3 V, 

a.tion 0-, 

Mil er18 
3eries 1. 2 

3n 3.25 2 . 25 3 o. 75 7. 3 0.22 0 3.01 0 3.5 1 3 
u" 3.25 3.25 4 1 . 25 17 .4 0.22 0 2.08 0 3.5 1 3 
5" 3. 25 4. 25 5 1.75 33 . 9 0 . 22 0 1.60 0 3.5 1 3 
6 ' 3.25 5.25 6 2.25 58 . 5 0 . 22 0 1.29 0 3.5 1 3 

Series 3-~ 
"')fl 3.25 2 . 25 3 0 .75 7 . 3 0 .11 0 1.50 0 3.5 1 3 ..J 

h" 3.25 3 . 25 4 1. 25 17. h 0 .11 0 l . Oh 0 3 .5 l 3 
511 3.25 4.25 5 1. 75 33 . 9 0 .11 0 0,80 0 3 .5 1 3 
'I I 3. _5 5.25 6 2.25 58 .5 0.11 0 0 .65 0 3.5 1 3 

Wa ha c2 .c5 12 !.t. 00 5 0.50 125 .80 1.,; .ho 1.67 '" .8£i 20 . " 1h 30 
and D2.D.5 12 4. 00 s a.so 125 0 . 80 0 .40 1.67 0.84 12 .5 14 JO 

Fluck23 E2,E.5 12 2 . 31 3 0 . 27 27 .0 O.u4 0 . 22 1.59 0 .80 17 , .5 14 30 
C3.C6 12 4.00 5 1 .5 125 0 . 80 0 1.67 0 20 . 8 14 30 
D3,D6 12 4 .00 5 1.5 125 0.80 0 1.67 0 12 .5 14 30 
E3,E6 12 2 .;l 3 0 .81 27 . 0 0 . 41.i 0 1.59 0 17 .S 14 30 

a p , [ A~ ) 100, p ' =( A~ ) 100 
6d 



TABLE r; _ (Continued) 

Concrete Properties 

Relative Humidity Measured 
Free 

Beam Strength Modulus Of Shrinkage 
Refer - Desig- At Elasticity At End 
ence nation Extremes Avg . 28 Da;y:s At 28 days Of Test 

f 1 c bE 
C sh 

{ % ESi psi x 10b inLin x 10-

A B 0 p Q R s 

Current B-1 32-72 59 5130 4.1 245 1.11 ....., 
Investi- B- 3 32- 72 59 5130 4.1 245 
gation 

Miller18 
3eri es 1. 2 

3" 50 50 3500 3.4 650 
4" so so 3500 3.4 650 
5, 50 50 3500 3.4 650 
6" so so 3500 3.4 650 

Series 3.4 
)1' 50 so 3500 3.4 550 
4" so so 3500 3.4 550 
5" 50 so 3500 3.4 550 
6" 50 50 3500 3.4 550 

Washa C2,C5 20-80 50 3290 3.3 750 
and D2,D5 20-80 50 3530 3.4 750 

Fluck23 E2,ES 20-80 so 3660 3.5 750 
C3 C6 20-80 50 3290 3.3 750 
DJ,D6 20-80 50 3530 3.4 750 
EJ .E6 20-80 50 3660 3.5 750 

bcomputed using Ee = 57 700 {ff 



 



TABLE 6. COMPUTED SlffiINKAGE WARPING COMPARED WITH TEST DATA 

Beam Concrete Over-
Refer- Desig- Strength Span all 
ence nation At 28 Days . Depth 

f C L D E P' 
esi ft in % % 

A B C D E F G 

Curre. i:. B-1 5130 0 5 o.69 0 / 

Investi- B- 3 5130 9 5 2 .07 0 
gation 

Millerl8 
Series 1,2 

")! 3500 3.5 3 3 .01 0 .) 

411 3500 3.5 4 2 . 08 0 
V, 
c» 

511 3500 3.5 5 1.60 0 
6" 3500 3.5 6 1 . 29 0 

Series 3 4 
3' 3500 3. 5 3 1.50 0 
4· 3500 3.5 4 1. 04 0 

5' 3500 3.5 5 0.80 0 
6" 3500 3.5 6 0 .65 0 

Washa c2,c5 3290 20 .8 i:' 1.67 o.Bh ,/ 

and D2,D5 3530 12.5 5 1.67 0 . 84 
Fluck23 E2,E5 3660 17 .S 3 1.59 0.80 

CJ,C6 3290 20.8 5 1.67 0 
DJ D6 3530 12,5 5 1 .67 0 
E3.E6 3660 17 . .5 3 1.59 0 



 



TABLE 6. (Continued) 

Experimental Valuee Coweuted Deflections And Conpariaona 
Average els/ €eh 

Beam Curvature aMidspan b,a Selected d,a e,a 
Refer- Deaig- Along Deflec- Using Col.I For Use Using Col.I Using Col.I 
ence nation Beam tioo Eq. (27) Col.J In Eq. (18) Eq. (18) Col.M Kq. (28), Col.O 

(29) 

1 X 10- 6 in in in in 
in 

A B H I J K L M N 0 p 

Current B-1 9 0.013 0 .. 020 0 43 0.4 0.053 0.25 0.043 0.30 
Investi- B-3 20 0.029 0.060 0.33 0.2 0.071 0.41 0.064 0.45 

atio.n. 
Series 1,2 V1 

Millerl8 '° 3'' 225 0.050 0.055 0.91 0.1 0.064 0.78 0.049 l.02 
4" 1.50 0.033 0.038 0.87 0 2 0 .039 0.85 0.032 1.03 
5'' 108 0.024 0.028 0.86 0.3 0.026 0.92 0.024 1.00 
6" 80 0.018 0.021 O.S6 0.3 0.019 0.95 0.018 1.00 

Series 314 
l" 130 0.029 0.023 1.26 0.3 0.042 0.69 0.032 o.91 
4rr 88 0.019 0.016 1.19 0.3 0.026 0.73 0.022 0.86 
5t• 66 0.015 0.012 1.25 0 3 0.023 0.65 0.016 0.94 
6'' 57 0.013 0.009 1.44 0.4 0 .015 0.87 0.012 1.08 

Wa•ha C2,C5 0. 50 0.49 1.02 0.54 0.93 
.aud D2,D5 0.20 0-17 1.18 0.20 1.00 

Plu.ck23 B2,R5 0.45 0.45 1.00 0 .. 63 0.71 
C3,C6 1.20 0.98 1.22 0 . 3 1.00 1.20 0.97 1.24 
D3,D6 0.35 o.34 1.03 0.3 0.36 0.97 0.35 1.00 
E3 1B6 1.20 0.90 1.33 0.3 o. 72 1.67 1.13 1.06 



 



TABLE 6. (Continued) 

aoeflections determined using A = (/:> L2 when curvatures and not deflections were reported; also used to 
8 

colllpute deflections from curvatures in Cols. J, M, and 0. 

bEq. (27), A, 
'f' sh 

, where Ts - €. sh 

cusing Miller's suggested value a of Es/ E sb - .3 for moderately reinforced members and f.. s/ Esh = . l for 
heavily reinforced members. 

~q. (18) • 

eEq. (28) 

Eq. (29), 

<P = 
sh 

(0. 7) ~h 
D 

Applies only to singly-reinforced beams. 

(p-p') l/3 ( ~l/2 < , when (p - pf) :::. 3 • 07. 

4> - € sh , when (p -p') '7 3.01. 
sh D 

CJ\ 
0 



 



TABLE 7. BEAM MOMENTS AND EXPERIBENTAL CURVATURES AT ALL GAGE LOCATIONS FOR THE TEsr BEAMS OF THE 
CURRENT INVESTIGA'rION. 

a 
Beam 

Designation 

A 

Simple Beam, SB-1 

Continuous Beam, LB-1 

Simple Beam, SB-3 

Continuous Beam, Ll3- 3 

~ax. Mom . (At 
Midspan of 
Simple Beams 
And At Center 
Support of 
Cont . Beams) 
Under Dead-Load 
Plus Super-
imposed-::Load 

in- kips 
B 

7,6 

7.6 

16.h 

16 .L 

~om. At¼-
Point of Simple 
Beams and At 
Point of Max, 
Elastic Defl. of 
Cont. Beams 
Under Dead-Load 
Plus Super-
im;Eosed-Load 

in -kips 
C 

S.7 

4,3 

12,3 

9.2 

c,drnstantaneo~s 
Beam Curvatures Under 
Dead-Load Plus Super-
imposed-Load. 

Same Same 
Poi nts Points 
As Col. B As Col. C 
1 -6 1 -6 
in X 10 In x 10 

D E 

31 20 
4.1 J.S 
30 iL 
4.0 3.3 

122 80 
7.4 6.S 

136 5L 
8.J 5. 9 

a Note that t he cross-secti ons of the 1-bar beams (SB-1 and LB-1) were identical; also tAat the cross-
sections of the 3-bar beams (SB-3 and LB-3 ) were identical. 

b Redundant moments were determined by elastic theory for prismatic members in cols.Band C. 

c All beams were loaded at age 28- days. According to Fig. 9, 60-day test values can be projected t 
20- year values by multiplying by a f actor of about 2.0. 

d Bottom numbers are ratios of curvatures to moments; Col. D/ Col . B, Col. E/ Col. C, Col. L/ Col. B, 
Col . M/ Col. C. 

Ct• ...... 



 



TABLE 7. (Continued) 

e 

Beam Curvatures Under Dead-Load Plus Superimposed-Load.Values At End of 2-Months Loading Period. 

Total (Instan
taneous Plus 
Time-Dependent) 

A 

SB-1 

Same 
Points 
As Col. B 

! -6 
in X 10 

F 

60 

LB-1 85 

SB-3 210 

LB-3 220 

Same 
Points 
As Col. C 
1 - -6 in X 10 

G 

50 

40 

165 

105 

e Time Dependent 
(Shrinkage 
Plus Creep) 

Same 
Points 
As Col. B 
1 - -6 in X 10 

H 

29 
0.9 

1.8 

0.7 

o.6 

Same 
Points 
As Col. C 
1 - -6 in X 10 

I 

30 
1.5 

1.9 

l.l 

0.9 

Shrinkage 

Same Same 
Points Points 
As Col. B As Col. C 
1 1 
- -6 In x 10-6 in X 10 

J K 

5 5 

5 5 

8 8 

8 8 

d Instantaneous 
Plus Creep 

Same Same 
Points Points 
As Col. B As Col. C 
1 1 - -6 - -6 in X 10 in X 10 

L M 

55 45 
7.2 7.9 
0 3 

10.6 8.2 
202 1 7 
12.J 12.8 
212 97 
12.9 10.6 

e Creep 

Same Same 
Points Points 
As Col. B As Col. C 
1 1 - - 6 In x 10-6 in X 10 

N 0 

24 25 
0.8 1.2 

0 21 
l.7 1.5 

0 77 
0.7 1.0 
7b 3 
o.6 0.8 

Q\ 
N 

Bottom numbers are ratios of curvatures at end of 2 months to initial curvatures; Col. H/ Col. D, Col. I/ Col. E, 
Col. N/ Col. D, Col. 0/ Col. E. 
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VI. CONCLUDING REMARKS 

An attempt has been made to study the complex deforma
tional behavior of reinforced concrete flexural members as 
influenced by the interrelated effects of cracking~ shrink
age warping, creep, tensile and compressive steel percent
age, continuity, moment redistribution in statically 
indeterminate beams, etc. Initially, a detailed review 
and discussion of existing methods, guides and rules of 
thumb for predicting deflections was presented for the 
purpose of examining the nature of the deflection problem. 

A new and practical method was presented for computing 
shrinkage warping which agrees more closely with test data 
than previous methods advanced. See Eqs. (28), (29), or 
(30) for the appropriate curvature expressions to be inter
grated acros~ the span. For example, the mid span deflec-
t ion A = q;, L /8 for a simple span. However, only shrinkage 
warping of uncracked specimens has been investigated experi
mentally to the writer ' s knowledge, and effects of cracking 
on shrinkage curvature in unsymmetrical sections represents 
an area requiring further study . A number of interesting 
observations related to effects of steel percentage, crack
ing and the phenomenon of the shifting neutral axis with 
time on deflections were made from the experimental 
curvatures and deflections. 

Consideration was given to the effects of cracking on 
deflections and recommended design procedures presented for 
predicting these effects. A method was demonstrated for 
including the effect of moment redistribution due to crack
ing in computing deflections of statically indeterminate 
beams . Deflections computed by these procedures compared 
reasonably well with the experimental data obtained in this 
investigation and other data on deflections of simple and 
continuous reinforced concrete beams. See Eqs. (23) through 
(26). Comparisons are tabulated to show the nature of the 
agreement that can be expected between analytical and 
experimental deflections. 

It appears that future studies should concentrate on 
the effect s of random cracking on deflections since both 
instantaneous- load cracks and progressive cracking under 
sustained l oads in many cases play a dominant role in 
determining deflection behavior. In the case of statically 
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indeterminate beams, moment redistribution effects 
resulting from shrinkage, creep and cracking also 
drastically influence deflections in many cases and 
represent an area that has not been extensively explored . 

The problem of deflection prediction and control of 
reinforced concrete flexural members involves a number of 
complex and interrelated influences herein discussed. In 
addition to the largely empirical approaches that constitute 
the main tools for present-day prediction of deflections, 
more attention should undoubtedly be given in the future to 
the stat~stical aspects of the problem as related to 
statist ically optimum designs, confidence intervals for 
computed deflections, etc. 
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VIII. APPENDIX 

e,1 Specimen Details and Experimental Data Obtained in the Investigation 

TABLE A. l. DESIGN DETAILS FOR THE TEST BEAMS OF THE CURRENT INVESTIGATION 

Pne # 3 Bar, p = o.69%, w81/wn1 = 2.0 Three# 3 Bars, p = 2.07%, w8JwDL = 5.5 

Beams 411 ' x 5n, b = 411 , d = .~", L = 91 , Beams 411 x 511 , b =- 411 , d = 411 , L = 9 1 , 

Descriptiou tf 1 : 500011psit A~ = o .. ~ tn , n: 6, . Li fl = 5000 psit A 5 = O.J~ tn2, n =- 6, . h 
kg - 1.00, Ifr - 7.27 in, 10 - 41.7 in, led = 1. 5611 , Icr = 24. 7 in , IJ = 41.. 7 1 n , 
~DL = 20.8 #/ t, WsL = 41.6 #;ft WDL = 20.8 #/ft, WsL = ll.4.4 /ft 

Simple Beam Continuous Beam Simple Beam Continuous Beam 

aMax Positive Mom. 0.1250 wL2 at ~ 0.0703 wL2 at .)751 0.1250 wL2 at i 0.0703 wL2 at .J751 
br-1aX: Pos. Mom~ , in-lb 2530 + 5060 = '590 1420 + 2840 = 4260 2530 + 13,920= 6,450 1420 + 78~0 = 9240 
a Negative Mom. 0,1250 wL2 at Suppt. ~ax, --- 0.1250 wL at Suppt. 

ax. Neg. Mom., in-lb --- 2530 + 5060 = 7590 --- 2530 + 13,920=16,450 
CMax. Pos. Mom. fc., psi 348 + 696 = 1044-:-- 196 + 391 = 58Y 160 + 879 = 1039~ 90 + 495,.. 585* 
CMax. Neg. Morn. fc, psi --- 348 + 696 = 1044 * -- 160 * 8 79 = 1039* 
Cfux. Pos. Mom. fs, psi )250 + 12500 ~ 18,750 3510 + 7020::: 10,,30 1500 + 8250 = 9,750 843 + L527 = 5,370 
cMax:. Neg. Mom. f~p psi --- 6250 + 12500 ~ 18,750 --- 1500 + 8250 = 9,7~0 
dMax. v, psi 14 18 JO 38 
~ax. u, psi 68 85 148 185 
eMax. Pa.s .. Morn. ft, psi 149 + 297 = 4L6 84 + 167 = 251 142 + 778 = 920 80 + 437 = 527 
9Max. Neg. Mom. ft, psi --- 149 * 297 = 446 --- 142 + 778 = 920 

* Note that the computed maximum concrete compressive stresses are the &a.me for the -- cont. 



 



Table A.1--Continued 

corresponding simple and continuous beams (t e 1-bar beams--also the 3-bar 
beams); also that the computed ma.:ximum concrete compressive stresses are the 
same at all points along the 1-bar and 3-bar simple beams--also the same at 
all points along the 1-bar and 3-bar continuous beams. 

8 In the case of the continuous beams, all moments are computed by elastic 
theory for prismatic members. 

bwhere 3 numbers appear, they refer to DL +SL= Total Load effects, re
spectively . One number refers to total load effects. 

~aximum stresses fc and f were computed using the cracked transformed 
section properties and a ~odular ratio of 6, according to the A.ASHO 
Specifications. 

dcomputed using v = V/bd and u = V/2 0 j d . 

6Maxi..mum concrete tensile stresses ft were computed using the uncracked 
transformed section properties. 
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4000 
7 1 

,/ 

3000 

l 1/ Ekf 

V 
I 

I 
I 

1000 I 
V 

I 
0 
7 I 

0 2 4 6 8 10 12 

Concrete Strain, in/in x 10-4 

t6 • 5130 psi; E • 4.4 x 106 psi 

Fig. A.1--Average 28-day concrete stress-strain 
curve (6" x 12 11 cylinder tests) 
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0 
With No Steel 

200 

0 Shrinkage Specimen With One Bar, B-l,(p=0.69%) 

200 

300--------- ---------------
0 

Three Bars B-3 ( =2.07%) 

200 

300------------------_. 
0 30 60 

Concrete Age in Days (initial 
readings taken at age u days) 

0 A--Top Gages at Quarter-Point of Span 
o B- -Bottom Gages at Quarter-Point of Span 
A C--Top Gages at Midspan 
t1 D--Bottom Gages at Midspan 

90 

Fig. A.2--Concrete shrinkage versus time curves for 
specimens containing different steel percentages 
(duplicate shrinkage specimens were used) 
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0"'-4!!1-----------------i.------~ 
0 30 60 

Concrete Age in Days (initial 
readings taken at age 4 days) 

90 

0 A--Shrinkage Specimen With Three Bars, B-3, (p=2.07%) 
0 B--Shrinkage Specimen With One Bar, B-1, (p=0.67t) 

Fig. A.J--A11erage shrinkage curvature along 
members versus time curves 
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600 Mi':1/J_p~ Gag~s ( Simple Beams) 

4 Quarter-Point Gages (Simple Beams) oo .....,;;...,_ ____ .,... ________ ..,.. ______ _,, 

20 

Time in Days (time zero taken at 
age 28 days--age beams were l oaded) 

60 

--Bottom Ga~e (Tension) For Three-Bar Simple Beam, 
SB-3, (p = 2.07%, wSL/wDL =5.5) 

--Top Gage (Compression) For Three-Bar Simple Beam, 
SB-J, (p = 2.07%, w81/wDL =5.5) 

--Bottom Gage (Tension) For One- Bar Simple Beam, 
SB-1, (p = 0.61%, w8r!wn1 =2Ao) 

--Top Gage (Compression) For One-Bar Simple Beam, 
SB-1, (p = o.67%, ~81/wDL x2.0) 

Fig. A.h--Total (instantaneous plus time-dependent) concrete 
strain versus time curves for two simple beams 
with different steel percentages and loading, 
but the same computed elastic concrete stresses 



74 

I 
400 

Midspan Gages (Simple Beams) 
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(l) 
,:, ~ 
,;:::-,-i 
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c,j -0 
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P..'"O 
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Cl) Ol 
S.. o 

<:) it 
Quarte le Beams ~ ·c 400 

~ Q.) 
11.. P. 

:;j 
(f) U) 

~ 
0 (/) 

§~ 
~ ~ 
~ 0 
o:i ....:I 
i:: 

H 0 
0 20 40 60 

Time in Daya (time zero taken at 
age 28 days--age beams were loaded) 

0 --Bottom Gage (Tension) For Three-Bar Simple Beam, 
SB-3, (p ~ 2. 07%, Ws1/WnL e 5.S) 

0 --Top Gage (Compression) For Three-Bar Simple Beam, 
SB-3, (pc 2.07%, w8L/wDL e 5.5) 

8 --Bottom Gage (Tension) For One-Bar Simple Beam, 
SB-1, (p: 0.67%, Wsr/Wn1 s 2.0) 

tl --Top Gage (Compression) For One-Bar Simple Beam, 
SB-1, (p == 0.67%, w81/wDL "' 2.0) 

Fig. A.6--Instantaneous plus creep strain versus time curves for 
two simple beams with different steel percentages and 
loading,but the same computed elastic concrete stresses 
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Middle Support Gages (Continuous Beams ) 
--Negative Moment Region 

600-----------------------

I 
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~ ~ Point of Max. Elastic Defl. Gages (Cont.Beams) 
~ J5 400--Positive Moment Region 

0(1) r:::~-~~~-(J--cr-Q) ;:I 

@~ 
+l 
§~ 
~s 
C: 

H 

0 
0 20 40 

Time in Days (time zero taken at 
age 29 days--age beams were loaded) 

0 --Bottom Gage (Tension-Pos. Mom., Compression-Neg.Mom.) 

60 

Por Three-Bar Continuous Beam,LB-J,(p=2.07%,w81/wD1=5.5) 
0 --Top Gage (Compression- Pos .Mom., Tension-Neg.Mom.) For 

Three-Bar Continuous Beam, LB-3,(p=2 .07%,w51/w01=5.5) 
& --Bottom Gage (Tension- Pas.Mom., Compression-Neg.Morn.) 

For One- Bar Continuous Bearn,LD-l,(p=0.67,w81/wD1~2.0) 

O --Top Gage ( Compression-Pos .Mom., Tension -Neg.Mom.) r'or 
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L INffiODUCTION 

Part II of this study consists of a rerun of tests 
in Part I and an analysis of the resulting data. 

The tests of Part I were rerun because some of the 
beams were honeycombed and one of the beams (L-Bl) was 
cracked while being moved into position for loading. 

Concrete for the beams of Part II was vibrated 
during pouring in order to minimize the honeycomb. 

It was judged desirable to determine the ei'fect, if 
any, of the condition of the beams of Part I upon the 
results of the study. 

II• DESCRIPTION OF EXPERIMENTAL INVESTIGATION 

A total of four beams was tested, two simple beams 
and two continuous beams ( each with two equal spans 
contimious aver a center support). One simple beam 
(SB - 1) and one continuous beam (LB - 1) were rein.forced 
with one #3 bar. The other simple beam (SB - 3) and 
contimious beam (LB - 3) were reinforced with three #3 bars. 
ill spans were 9' long, the continuous beams having an 
overall length of 18 1 • In addition to the four test 
beams, six shrinkage specimens were tested. The shrinkage 
specimens were the same size as the simple beams. Two 
were reinforced with three #3 bars, two with one #3 bar, 
and two were without reinforcement. The shrinkage specimens 
were placed on one side on a smooth, oiled, plywood surface 
in an attempt to eliminate any frictional effects which might 
influence the shrinkage measurements. Details of the test 
beams are shown in Fig. 3 of Part I of this study. 

The properties of the materials were as follows: 

Concrete SlUlllp ••••• - •••• 
28 day concrete cylinder strength • 
Concrete modulus of elasticity •• 
Tensile yield point of the steel. 

21.n 
• 2 

.44SO psi 
• J.) X 106 psi 
• L9 ,ooo psi 
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The concrete strains were measured by using a Whittemore 
mechanical strain gage with a 1011 gage length. Gage point s 
were imbedded near the top and bottom of each bearn at six 
different l ocations giving a total of 12 gages and 24 gage 
points for each beam. Six gages and 12 gage points were used 
on each shrinkage specimen. Temperature effects on strains 
were eliminated through the use of a temperature bar made of 
invar metal having the same coef fici ent of thermal expansi on 
as the concrete. 

III. TESTING PROCEDURES 

All beams were loaded at age 28 days with iron bricks. 
The bricks were spaced continuously in the 3 - bar beams and 
unifornly in t he 1 - bar beams . The loading was the same as 
in Part I of this study and can be seen i n Fig. 4 of Part I. 

The deflection and strain readings reported were the 
average of t hose on each side of the beam in t he same 
position in order to eliminate any torsional effects. Also, 
only the average of corresponding strain readings on the 
shrinkage specimP.ns :uirl test beams were reportP.d. 

IV. COMPARISON OF TEST RESULTS 

Figures in Part II correspond to figures in Part I as 
follows: 

Part II Part I 

Fig, 1 corresponds to Fig. 8 
Fig. 2 II II Fig . 10 
Fig. 3 II IT Fig. 11 
Fig . 4 II II Fig. A-1 
Fig. 5 II II Fig. A- 2 
Fig. 6 ,, II Fig. A-3 
Fig. 7 It II Fig. A-4 
Fig .. 8 II " Fig. A-5 
Fig. 9 II II Fig. A-6 
Fig. 10 II II Fig. A-7 
Fig. 11 11 II Fig . A-8 
Fig. 12 II II Fig. A-9 
Fig. 13 ti II Fig. A-10 

A comparison of Fig . 4 of Part II with Fig . A-1 of 
Part I shows that both fc and E were somewhat higher in 
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tests conducted in Part I as opposed to those of Part II. 
The modulus of elasticity was 26% higher in Part I as 
compared to the modulus of elasticity of the concrete in 
Part II. 

Figures 1 and, of Part II and Figures 8 and A-2 of 
Part I show that the shrinkage was about 20% greater in 
Part I than in Part II. This was to be expected because 
a rich concrete will tend to shrink more than a lean one. 
In general, all other curves for strains and deflections 
ran higher in Part II than in Part I by amounts ranging 
from 15% t o about 40%. Since the modulus of elasticity 
of the concrete in Part I was 26% higher than in Part II, 
these larger strains and deflections appear quite reaaonable. 
The only exceptions to this occur in the tension gage 
creep coefficients of Fig. 2 and the concrete strains 
in the positive moment region of Fig. 8. These were about 
the same to slightly lower in Part II as compared to Part 
I. In the writer ' s opinion, this was probably caused by 
tension cracking of the concrete and a redistribution of 
momenta in the continuous beams. 

V. CONCLUSIONS 

The test results in Part II agree quite well with 
those of Part I. Strains and deflections are somewhat higher 
in the second set of tests than in the first, but this is 
caused by the lower modulus of elasticity of the concrete 
in Part II. Because of the close agreement of the test 
results, it is the writer 1 s opinion that neither the 
honeycomb of the test beams in Pa.rt I or the hairline 
crack of beam L - Bl had any effect on the data. 
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