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1 INTRODUCTION 

1.1 Background 

The highway safety performance assessment mainly relies on the analysis of traffic crash data. 
Crash data analysis possesses a notable drawback due to its reactive nature. Consequently, safety 
enhancements are typically implemented in response to past crashes, often resulting in a significant 
time delay. Collecting, analyzing, and responding to crash data can span years, during which 
additional crashes may occur. Relying exclusively on crash data may lead to safety measures to 
prevent the recurrence of specific crash types, but it may overlook emerging or novel safety 
concerns. This approach fails to proactively identify and address potential hazards before they 
escalate into crashes. To address this limitation, road safety professionals and transportation 
agencies increasingly turn to proactive safety system approaches. These methods involve 
leveraging surrogate safety data and analytics to predict the likelihood of future crashes based on 
emerging data, traffic patterns, and other relevant factors. Utilizing traffic video data has proven 
effective in identifying traffic conflicts and undesirable movements like wrong-way driving 
(WWD), red light running, and other illegal turns. 

 Every day, transportation agencies amass a large amount of traffic videos from fixed 
detection cameras, drones, or portable traffic cameras for monitoring traffic conditions, collecting 
traffic volumes or conflict data, or temporarily investigating traffic incidents. If used properly, 
these video data can be valuable for highway safety performance evaluation by identifying 
abnormal traffic movements or recurring traffic conflicts. However, manually sifting through this 
footage to extract relevant information is daunting. 

 The research team possesses expertise in manually extracting WWD incident data from 
over six thousand hours of footage at freeway off-ramp terminals for an Alabama Department of 
Transportation (ALDOT) research project and an National Cooperative Highway Research 
Program (NCHRP) project (Zhou, Xue, et al. 2020, Zhou, Chang, et al. 2023). Recently, the team 
manually captured traffic conflict data from 48-hour videos collected for eight unsignalized 
intersections on divided highways for another ALDOT project (Zhang and Zhou 2019). 
Researchers found that it was very time-consuming to manually extract WWD incident and traffic 
conflict data from traffic videos. Many recently published studies also attest to the labor-intensive 
nature of manually reviewing vast footage to extract crucial data. The time and effort required for 
these manual processes highlights the urgent demand for an automated tool that can efficiently 
detect events like WWD incidents and traffic conflicts from traffic video data. 

 In recent years, with the rapid development of computer vision techniques and the rising 
popularity of high-performance computers, video data analytics have become feasible and popular 
methods for extracting surrogate highway safety measures. While some tools detect general traffic 
movements, a significant gap remains: few existing tools specialize in extracting abnormal traffic 
events (such as WWDs or illegal left turns) from traffic videos. 

 The project aims to bridge this gap by developing an adaptive video analytic method to 
automatically extract surrogate safety measures from traffic videos recorded by portable traffic 
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cameras with varying mounting heights or angles. This method encompasses vehicle recognition, 
trajectory generation, and safety performance measurements for different objectives. Specifically, 
the developed tool can (1) identify abnormal traffic movements (WWD or illegal turns); and (2) 
identify traffic conflicts or near-crash events. The proposed method can significantly reduce labor 
costs for reviewing traffic videos to extract the surrogate safety data. Further analysis of the 
extracted WWD incidents, traffic conflicts, and abnormal traffic movements data can result in 
more targeted and effective engineering improvements for state and local transportation agencies. 

1.2 Research Objectives 

1.2.1 Identifying abnormal vehicle movements (wrong-way driving or illegal turns) 

Recent ALDOT-funded research unveiled multiple interchange terminals with persistent instances 
of WWD incidents (Zhou and Atiquzzaman 2019). In the absence of engineering improvements, 
recurring WWD incidents may lead to crashes on freeways. In rural areas lacking fixed monitoring 
traffic cameras or detection systems, portable traffic cameras are commonly employed to monitor 
these terminals and collect data on WWD incidents. Given the rarity of such events, even one 
incident per weekend is considered a significant safety issue. Manual review of lengthy traffic 
video footage to identify these rare events is time-consuming. The primary goal of this research is 
to develop a traffic video analytic tool that extracts WWD incidents and illegal turns from video 
data collected by portable traffic cameras. The research also aims to develop a machine-learning 
algorithm that distinguishes normal traffic maneuvers from outliers, revealing abnormal vehicle 
movements, including WWD, illegal turns, intentional shortcuts, and other undesirable driving 
behaviors. 

1.2.2 Identifying traffic conflicts or near-crash events 

Activities such as left turns, right turns, and straight movements occur at the intersection, leading 
to potential traffic conflicts (Song, et al. 2022). According to the Federal Highway Administration 
(FHWA), unsignalized intersections are the most common type in the United States, contributing 
to more than 35,000 traffic fatalities between 2016 and 2020 (NHTSA 2023). Unsignalized 
intersections on rural divided highways with wide medians carry an increased risk of severe 
crashes due to numerous conflict points and high speeds. The second objective of this study is to 
enhance tools for automatically extracting the number of traffic conflicts and near-crash events 
(safety performance measures) at unsignalized intersections on rural divided highways. 

1.3 Summary 

Highway safety performance has traditionally been evaluated by examining historical crash data. 
Utilizing traffic video data can provide supplemental surrogate safety measures such as traffic 
conflicts and driver behaviors to enhance highway safety performance evaluation methods. To 
facilitate the traffic video data extraction process, this research seeks to develop a video analytic 
tool in two different application domains: (1) detecting WWD incidents at interchange terminals 
and (2) identifying traffic conflicts at unsignalized intersections. 
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 This report summarizes the research activities and results. Chapter 2 presents the literature 
review results on highway safety performance evaluation methods, existing traffic video analytic 
tools, and data collection processes, highlighting the shortcomings of current tools for video 
analysis. Chapter 3 describes the detailed data collected for calibrating the tools and conducting 
case studies. Chapter 4 delves into the method of developing a traffic video data analytic tool, and 
Chapter 5 summarizes the software's testing results. Finally, Chapter 6 draws the study to a 
conclusion. 

2 LITERATURE REVIEW 

The NCHRP has extensive highway safety research projects spanning several decades. A thorough 
examination of NCHRP safety projects conducted in the last five years reveals that most relied on 
historical crash data provided by state Departments of Transportation (DOTs) and other 
transportation agencies (Srinivasan, Saleem, et al. 2023, Kolody 2020, Srinivasan, Lan, et al. 2021, 
Gross, et al. 2021, Carter, et al. 2021). This reliance on crash data stems from the fact that 
understanding the safety effect of any treatment, e.g., the estimation of crash modification factors 
(CMFs) in the first edition of the Highway Safety Manual (HSM), is predominantly based on crash 
frequency by various collision types and levels of severity. However, there are multiple challenges 
associated with only depending upon crash data to quantify safety performance, which may not 
align with the goal of adopting a safe system approach with proactive road safety strategies. In a 
recent NCHRP research report, a guide was developed for assessing the effectiveness of safety 
treatments without crash data (Porter, et al. 2023). This report states that the second edition of 
HSM is expected to include surrogate measures of safety to evaluate treatments and estimate CMFs 
to establish more effective road safety management approaches. Examples of surrogate measures 
include traffic conflicts and other critical safety events such as lane departures and encroachments, 
traffic control compliance, steering behaviors, stopping behaviors, and so on. 

 The utilization of crash frequency and crash rate methodologies has been widespread for 
pinpointing locations of high crash occurrence and allocating safety funding (Lim and Kweon 
2013). However, several drawbacks are associated with relying solely on crash data for road safety 
analysis. Firstly, there are well-acknowledged issues related to the availability and quality of 
collision data obtained from police crash reports (Sayed and Zein 1999). Secondly, crashes are 
infrequent and random, necessitating prolonged observation to account for their stochastic nature 
and potential confounding factors. This makes it challenging to develop CMFs for novel designs 
and strategies that lack multiple years of crash data. Thirdly, utilizing collision data for safety 
analysis takes a reactive approach, requiring a substantial number of crashes to occur before any 
action can be taken (de Leur and Sayed 2003, Imprialou and Quddus 2019). Fourthly, 
accumulating sufficient historical crash data, especially for rare types of road incidents such as 
WWD crashes, can be time-consuming (Zhou, Chang, et al. 2023). This also presents challenges 
in estimating CMFs for dynamic contexts, such as work zones and various operational strategies 
that fluctuate with traffic and weather conditions. Additionally, any before-and-after study that 
depends on historical crash records to assess the effectiveness of a road safety countermeasure 
may be affected by the regression-to-the-mean (RTM) phenomenon (Elvik 2008). Furthermore, 
significant discrepancies exist in the non-fatal road crash data provided by various data sources 
(Janstrup, et al. 2016). 
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 As safety analysis continues to evolve, researchers are broadening their range of data 
sources and incorporating innovative techniques to enhance the comprehension of highway safety. 
One prominent application in behavioral studies is the proactive assessment of road safety using 
surrogate safety methods. This approach traces back to the 1960s when efforts were made to 
predict the number of collisions based on observations of non-collision events rather than relying 
solely on historical accident records (Perkins and Harris 1968). Numerous surrogate indicators 
have been proposed for consideration, including traffic operating factors like speed variance, 
average traffic density, and critical events such as traffic conflict, lane merging, speeding, and 
violations like running red lights (Kloeden, Ponte and McLean 2001, Sacchi and Sayed 2016). One 
of the earliest proposed methods was the Traffic Conflict Technique (TCT) (Hydén and 
Linderholm 1984). TCT involves the observation of qualitatively defined quasi-collision events, 
such as situations where road users were exposed to probabilities of collision, often referred to as 
"near-misses." Comprehensive user trajectories offer periodic updates on individual vehicles’ 
position, velocity, and acceleration. The swift progress in naturalistic driving study has also led to 
a growing abundance of data collected from sensors within vehicles and smartphones that can 
derive other surrogate safety measures, such as harsh braking/acceleration events (Guido, et al. 
2012, Ziakopoulos, et al. 2022). Therefore, surrogate safety measures represent a burgeoning field 
of study, but additional investigation is required to integrate them into practical procedures for 
data-driven safety analysis. These data have been gathered through various means to evaluate the 
safety of specific road entities (Nikolaou, Ziakopoulos and Yannis 2023), including i) field 
observations, ii) simulation models, iii) video cameras, and iv) open-source crowdsourced data 
and aggregated datasets. Each of these methods comes with its own set of advantages and 
drawbacks. For instance, employing field observers for conflict surveys tends to be costly, and it 
often needs to grapple with inter- and intra-observer variability, posing challenges to repeatability 
and consistency (Ismail, et al. 2009). On the other hand, incorporating traffic conflict 
measurements into simulation models can address some of these limitations. However, these 
models may not accurately capture the diverse and less predictable driver behaviors observed in 
real road traffic scenarios (El-Basyouny and Sayed 2013). 

 Various methods for collecting surrogate safety data include field observations, video 
cameras, traffic detectors, light detection and ranging (Lidar), probe vehicles, and naturalistic 
driving studies, etc. Among those, video cameras are mostly used to collect surrogate measures by 
manual or automated processing. Automated video-camera analysis has proven valuable in 
addressing the significant limitations of collecting safety measures data via field observers and 
simulation models (Kim, et al. 2005). Vehicle-level surrogate measures can be derived from 
continuous tracking of vehicles. This approach offers a complementary solution to tackle data 
collection and reliability issues while providing a more comprehensive analysis. As a result, 
mobile and fixed video sensors for traffic monitoring and data collection have become increasingly 
common on highways and urban streets (Kim, et al. 2005, Gordon, et al. 2012). Numerous recent 
studies have focused on employing computer vision techniques to identify and track vehicles and 
other road users in video footage, examining conflicts within complex traffic environments  
(Sacchi and Sayed 2016, El-Basyouny and Sayed 2013, Laureshyn and Ardö 2006). Commercial 
video analytics software comes with solid capabilities, encompassing tasks such as configuration 
management, experiment execution, and the handling of data storage and analysis. Regarding 
traffic data analysis, its primary functions involve considering vehicle and pedestrian counts, 
evaluating speed and congestion, and overseeing signal timing across different video sources, 
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including temporary, permanent, and drone footage. Table 1 offers a selection of video analytics 
software examples along with their respective functions. 

Table 1 Commercial video analytic software and functions 

Video Analytics Software Functions 
Transoft Solutions 
 

• Utilizes computer vision and artificial intelligence. 
• Encompasses the counting of vehicles and pedestrians, measuring 

speeds, and categorizing various types of road users (TRANSOFT 
SOLUTIONS 2023). 

IntuVision 
 

• Provides comprehensive monitoring of both vehicle and pedestrian 
movements for both short-term traffic surveys and long-term 
deployments (IntuVision VA Traffic Solutions 2023). 

TrafficVision 
 

• Transforms cameras into intelligent sensors to elevate road safety 
and situational awareness. 

• Recognizes potential hazards such as WWD, traffic congestion, 
and debris on the road (TrafficVision-Roadway Monitoring 2023). 

BriefCam 
 

• Specializes in enhancing traffic flow efficiency through the 
utilization of video analytics. 

• Categorizes and quantifies pedestrians and various types of 
vehicles, discerns their movement patterns, identifies congested 
areas, and subsequently optimizes the overall flow of traffic 
(Traffic Optimization Techniques for Modern Cities. 2023). 

CUBIC 
 

• Utilizes GRIDSMART System to provide a solution that combines 
intersection actuation, traffic data analysis, and enhanced 
situational awareness by leveraging the video data gathered from 
multiple cameras (CUBIC Transportation System 2023). 

Azena 
 

• Introduces an innovative real-time traffic monitoring solution for 
smart traffic management and urban planning. 

• Leverages deep learning and traffic data analytics to transform 
how vehicle and pedestrian data is extracted and evaluated 
(Insights on GoodVision 2023). 

 

 Most commercial software is capable of extracting data from videos with precision and 
rapidity. They are versatile enough to interface with various video feeds, including those from 
temporary or permanent cameras and imagery captured by drones. However, a common issue is 
that these programs typically demand a significant investment and more advanced hardware. By 
contrast, the software developed in this project is designed to be cost-effective while running 
smoothly on less sophisticated hardware. Moreover, the software created for this project excels 
specifically in efficiently detecting WWD incidents and undesirable traffic movements. 

 Based on research into the relative contributions of various factors in crashes, it becomes 
evident that the human factor, either on its own or in conjunction with other factors, plays the most 
significant role in causing collisions. Accurate statistics regarding the exact number of violations 
are challenging due to unrecorded violations and the fact that many observable violations go 
unnoticed by traffic officers. As computing power, data storage, sensor technology ubiquity, and 
artificial intelligence continue to advance, identifying and analyzing abnormal or unsafe driving 
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behaviors represents a crucial step in mitigating the crashes caused by reckless drivers. This project 
introduces an innovative video processing tool designed to detect abnormal driving behaviors, 
such as WWD and illegal turns, from video footage by portable traffic cameras. Such a video 
analytic tool holds the potential to enhance highway safety evaluation procedures and provide 
solutions to address risky driving behaviors at specific locations like interchange terminals and 
unsignalized intersections. 

3 DATA COLLECTION 

This section describes the video data collected by portable traffic cameras and fixed detection 
cameras for this project. The collected data was used to validate the developed tool and conduct 
case studies. 

3.1 Video Data by Portable Traffic Cameras 

Two types of video data were collected by portable traffic cameras: video data at interchange 
terminals for detecting WWD incidents and video data at unsignalized intersections for detecting 
illegal left turns. The typical traffic-counting camera can record videos with a resolution of 
480/720P and a frame rate of 10 fps. The video files were often saved at 30-minute intervals for 
72 continuous hours based on the battery limit. 

 Over 400 hours of video data collected at 14 partial cloverleaf interchange terminals were 
applied to test the software’s function of automatically detecting WWD incidents. Portable traffic 
cameras with a 170° wide viewing angle were stationed at off-ramp terminals, targeting the entire 
off-ramp view. A general description of these locations and their respective footage durations is 
listed in Table 2. 

Table 2 Video footage of 14 partial cloverleaf interchanges terminals 

State Location Hours Analyzed 
AL I-65 Exit 284 SB 55 
AL I-65 Exit 208 SB 32 
GA I-85 Exit 147 SB 27 
GA I-75 Exit 61 SB 41 
AR I-40 Exit 260 WB 22 
AR I-40 Exit 94 WB 22 
AR I-40 Exit 55 EB 22 
TN I-40 Exit 172 WB 25 
TN I-40 Exit 182 SB 25 
NC I-77 Exit 79 SB 33 
NC I-77 Exit 79 NB 33 
NC Hwy 421 Exit 234C WB 33 
SC I-85 Exit 106 EB 24 
VA I-81 Exit 141 SB 22 
Total  416 
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 The second type of video data by portable cameras was collected at seven unsignalized 
intersections for a continuous 72-hour from Monday to Thursday to capture typical weekday traffic 
patterns. Table 3 details the types of locations and the number of illegal left-turn movements 
through manual observation. The data was used to evaluate the effects of no left turn signs, 
channelizing island, and median treatment on restricting left turns from the minor road. 

Table 3 Restricted left turn data across selected seven unsignalized intersections in 
Auburn, AL 

 North 
College 
Street/ 
Publix 
Entrance 

Shug 
Jordan 
Parkway/ 
Walmart 
Exit 

South 
College 
Street/ 
Southparke 
Dr 

Glenn 
Avenue/ 
Apartment 
Entrance 

Donahue 
Drive/ 
Baseball 
Field Exit 

Magnolia 
Avenue/ 
Restaurant 
Parking 
Exit  

Wire 
Road/ 
Parking 
lot Exit 

Roadway 
Class 

Principal 
Arterial 

Principal 
Arterial 

Principal 
Arterial 

Minor 
Arterial 

Minor 
Arterial 

Minor 
Arterial Local 

Number of 
Lanes on 
Main Road 

2 4 4 2 2 3 2 

Speed Limit 
(mph) 50 55 45 25 25 25 20 

Median 
Type Undivided Undivided Divided Undivided Undivided TWLTL Undivided 

Type of 
Intersection Three-Leg Three-Leg Four-Leg Three-Leg Three-Leg Three-Leg Four-Leg 

Type of 
Traffic 
Control 
Devices 
Present 

Channeliz
ing Island, 

Right 
Turn Only 

Sign, 
Lane Use 

Arrow 

Channeliz
ing Island, 
Lane Use 

Arrow  

Channelizin
g Island 

Channelizi
ng Island 

Channeliz
ing Island 

Two Right 
Turn Only 

Signs 

Channeliz
ing Island, 

Right 
Turn Only 

Sign, 
Lane Use 

Arrow 
Observation 
Hours 8 6 8 8 8 2.5 2 

Number of 
Illegal Left 
Turns 

341 20 7 149 30 6 1 

 

 Additional traffic video data collected by portable cameras was analyzed to evaluate the 
performance of a new median treatment (Ceramic Raised Channel Markers in Figure 1) on 
restricting the left turns at the Uncommon Apartment on West Glenn Ave. in Auburn, AL. Table 
4 lists the number of observation hours, traffic conflicts, and illegal left turns manually extracted. 
This case study focused on the effects of Ceramic Raised Channel Markers on driver behavior at 
an intersection near downtown Auburn, Alabama. The objective was to reduce illegal left turns 
from the Uncommon Apartment complex, which had been a persistent issue despite previous 
interventions like a raised channel island and additional signage. These markers were chosen for 
their cost-effectiveness and ease of installation. The analysis involved a total of 40 hours of video 
footage captured before and after the installation of the markers. 
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Table 4 Detailed illegal left turn and conflict observations at Uncommon Apartment 

 Footage Duration 
(Hours) 

Number of Illegal Left 
Turns  

Number of Conflicts  

Before Period 20 186 33 
After Period 20 26 10 
Grand Total 40 212 43 

 

 

Figure 1 Ceramic raised channel markers at study site 

3.2 Video Data by Fixed Detection Cameras 

Different from portable traffic cameras, fixed detection cameras can automatically report surrogate 
safety data such as critical safety events (WWD incidents and illegal turns). This section discusses 
the data collected by two detection cameras: the Wrong Way Alert System installed at Heisman 
Dr. of Auburn University campus and GRIDSMART detection cameras at Glenn Ave. and Gay 
St. by the City of Auburn. 

3.2.1 Video data on wrong-way driving 

The "Wrong Way Alert System" is an advanced Intelligent Transportation System (ITS) using 
thermal cameras to detect vehicles traveling in the wrong direction (illustrated in Figure 2). Upon 
detecting an object moving in the wrong direction within the specified detection zone, the system 
activates confirmation cameras to record a 2-minute video clip on the wrong-way movements. 
Every recorded incident is then uploaded to the BlinkLink cloud database, which archives reports 
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on various entities such as vehicles, pedestrians, bicycles, scooters, skateboards, and emergency 
response vehicles. All reports are meticulously timestamped and dated for accuracy. 

 

Figure 2 Wrong-way alert system configuration 

The Wrong Way Alert System collected WWD video data from May 1, 2022, to June 18, 
2023. Each incident captured by the system was subject to manual review to confirm. For every 
detected incident, the system automatically generated 15 consecutive images along with a 2-minute 
video clip for further analysis. To facilitate analysis, all incidents were manually classified into 
four distinct categories: Continued wrong-way (WW), Self-Corrected WW, Authorized Motor 
Vehicles which includes Emergency Response and Maintenance, and Non-Motor Vehicles 
(pedestrians and bicycles). Table 5 provides an overview of the total incident data in these four 
categories for 14 months. 

Table 5 Overall distribution of wrong-way driving incident types  

Resolutions Mon Tue Wed Thu Fri Sat Sun Total 
Continued WW 15 18 22 15 30 237 37 374 
Self-Corrected WW 11 11 7 3 5 16 12 65 
Authorized Vehicles 106 98 85 105 138 347 59 938 
Non-Motor Vehicles 155 143 182 150 172 597 165 1,564 
Total 287 270 296 273 345 1,197 273 2,941 

 

3.2.2 Video data on red-light running and illegal turns 

The City of Auburn employed the GRIDSMART system at some intersections for traffic detection. 
The GRIDSMART detection camera system can track vehicles into and out of the intersection 
while providing surrogate safety measures such as illegal turns and red-light running movement 
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counts. Figure 3 illustrates the GRIDSMART detection camera at the Glenn Ave/Gay St. 
intersection in Auburn, AL. 

 

Figure 3 GRIDSMART bell camera 

 A case study compared incident data that was automatically collected by the camera system 
with manual observations from recorded video footage. It is essential to highlight that the system's 
detection zones require manual calibration. This calibration process involves delineating the frame 
and specifying the operational area for the algorithm. Such calibration provides the necessary 
granularity, designating details like the boundaries of the through lanes, left-turn lane, right-turn 
lane, and the location of stop bars. 

 The analysis of exits-on-red incidents, as shown in Table 6, reveals a notable discrepancy 
between the reports generated by the GRIDSMART system and manual observations. Notably, the 
system consistently records a higher number of incidents throughout various periods. It is 
important to note that right turns on red were included as exits-on-red in the system's reporting and 
were correspondingly counted in manual observations. The difference in reported incidents is 
measured by the percentage of errors, calculated by subtracting the system-reported incidents from 
manual observations and then dividing by the manual observations. A negative percentage 
indicates that the system-reported incidents exceed manual observations. The higher error rate is 
primarily attributed to the increased traffic volume during these peak times. More importantly, 
manual observations by researchers suggested this consistent overreporting was linked to drivers 
not fully stopping at the stop bar and engaging in "false starts." A false start occurs when a driver 
incorrectly assumes it's their turn to move, such as misreading traffic signals or misjudging right-
of-way rules, leading to an initial forward movement followed by a quick stop upon realizing the 
mistake. An interesting finding is that the westbound lane shows the lowest error rate in the data. 
The field observation found that GRIDSMART fisheye camera was mounted directly above the 
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westbound lane. Further investigation is recommended to check if the placement of the camera has 
a direct impact on the errors. 

Table 6 Comparison of manually reviewed and system report results of exits-on-red 
incidents 

 Northbound Eastbound Southbound Westbound Total 
Time Manual System  Manual System  Manual System  Manual System  Manual System  

% of 
Errors 

 True 
exit-
on-
red 

Right 
turn 

on red 

 True 
exit-
on-
red 

Right 
turn 

on red 

 True 
exit-
on-
red 

Right 
turn 

on red 

 True 
exit-
on-
red 

Right 
turn 

on red 

 True 
exit-
on-
red 

Right 
turn 

on red 

  

00:00 0 0 3 1 2 3 0 3 3 0 0 0 1 5 9 -50% 
01:00 0 0 0 0 0 0 0 1 0 0 1 3 0 2 3 -50% 
02:00 0 0 1 0 0 2 0 3 3 0 1 1 0 4 7 -75% 
03:00 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2 NA 
04:00 0 1 2 0 1 5 0 0 1 0 2 2 0 4 10 -150% 
05:00 0 1 6 0 2 6 0 3 3 0 1 2 0 7 17 -143% 
06:00 0 1 6 1 3 10 1 6 7 0 6 6 2 16 29 -61% 
07:00 0 2 4 2 9 18 1 2 5 1 4 7 4 17 34 -62% 
08:00 0 2 9 0 5 13 0 6 6 0 8 7 0 21 35 -67% 
09:00 0 5 12 2 10 16 0 5 6 0 4 4 2 24 38 -46% 
10:00 0 9 27 0 6 16 1 4 8 2 4 8 3 23 59 -127% 
11:00 0 14 38 3 12 26 0 2 6 0 6 4 3 34 74 -100% 
12:00 0 13 37 2 5 15 2 3 6 0 11 8 4 32 66 -83% 
13:00 0 7 17 4 6 16 0 7 10 0 4 2 4 24 45 -61% 
14:00 0 13 32 2 8 11 0 5 7 1 2 4 3 28 54 -74% 
15:00 0 11 31 0 9 14 1 3 5 1 9 12 2 32 62 -82% 
16:00 0 13 33 2 12 15 0 6 9 3 6 12 5 37 69 -64% 
17:00 1 9 42 2 9 26 0 4 3 1 9 12 4 31 83 -137% 
18:00 1 10 34 0 7 11 0 6 12 1 4 7 2 27 64 -121% 
19:00 0 11 37 0 6 16 0 10 10 0 9 7 0 36 70 -94% 
20:00 0 8 31 2 10 15 1 5 6 0 7 5 3 30 57 -73% 
21:00 1 10 35 0 5 13 0 4 6 1 6 9 2 25 63 -133% 
22:00 1 7 23 0 3 9 0 7 7 0 11 7 1 28 46 -59% 
23:00 0 2 11 1 1 3 0 7 13 1 1 1 2 11 28 -115% 
Total 4 149 472 24 131 279 7 102 143 12 116 130 47 498 1,024 -88% 
% of 

Errors -208% -80% -31% -2% -88% 

 

 Similar to the analysis of the exits-on-red incidents, a comparison was made regarding 
illegal turn incidents, defined here as lane changes made near an intersection. Unlike the consistent 
overreporting observed in exits-on-red incidents, the illegal turn incidents revealed varying 
discrepancies across different times and directions, lacking a clear pattern. Notably, the system 
erroneously reported illegal U-turns, which were not observed during manual checks. This 
randomness in reporting discrepancies highlights the critical importance of system calibration, 
particularly in accurately defining traffic lane frames to detect illegal turns. Additionally, the 
system's reporting format, which aggregates incidents into 30-minute intervals, limits the ability 
to ascertain the causes of these discrepancies precisely. This lack of detailed incident timing 
hinders a thorough understanding and analysis of the specific reasons behind the reported 
variances. 

 Both Wrong Way Alert System and GRIDSMART software can detect the surrogate safety 
measures without manually reviewing extensive raw videos. The surrogate safety data collected 
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from these kinds of systems can be used to evaluate the intersection safety performance. However, 
they tend to be more expensive to install and often unavailable at every intersection. The 
subsequent section will delve into the details of the methodology for developing a traffic video 
analysis tool for detecting abnormal movements and conflicts from videos recorded by portable 
traffic cameras. 

Table 7 Comparison of manually reviewed and system report results of illegal turn 
incidents 

 Northbound Eastbound Southbound Westbound Total % of 
Difference Time Manual  System  Manual System  Manual System Manual System Manual System 

00:00 0 0 3 1 0 0 1 0 4 1 75% 
01:00 0 0 2 0 1 0 0 0 3 0 100% 
02:00 1 0 3 0 0 0 0 0 4 0 100% 
03:00 0 0 2 1 0 0 0 0 2 1 50% 
04:00 1 0 3 2 0 0 0 0 4 2 50% 
05:00 0 1 2 0 0 0 0 3 2 4 100% 
06:00 1 0 3 0 0 2 2 2 6 4 33% 
07:00 2 8 7 6 1 2 2 3 12 19 58% 
08:00 2 3 4 0 0 0 0 0 6 3 50% 
09:00 1 1 1 3 0 1 1 0 3 5 67% 
10:00 4 0 0 0 1 3 1 1 6 4 33% 
11:00 4 3 3 9 0 0 1 1 8 13 -63% 
12:00 1 1 5 7 0 2 2 2 8 12 -50% 
13:00 2 5 2 10 1 6 5 1 10 22 -120% 
14:00 5 8 2 3 0 4 2 0 9 15 -67% 
15:00 3 1 4 0 1 4 2 1 10 6 40% 
16:00 1 2 6 1 0 4 0 0 7 7 0% 
17:00 3 10 9 2 1 2 1 4 14 18 -29% 
18:00 3 11 0 0 1 6 2 0 6 17 -183% 
19:00 1 5 5 4 2 1 5 0 13 10 23% 
20:00 0 6 2 2 1 1 0 2 3 11 -267% 
21:00 3 3 3 0 4 2 0 2 10 7 30% 
22:00 2 2 4 3 0 0 2 3 8 8 0% 
23:00 0 7 3 2 3 0 1 1 7 10 -43% 
Total 40 77 78 56 17 40 30 26 165 199 -21% 
% of 

Difference -93% 28% -135% 13% -21% 

 

4 METHODOLOGY 

The proposed method for detecting WWD via videos at interchange terminals comprises four 
sequential steps: video preprocessing, unsupervised learning, abnormal trajectory detection, and 
WWD confirmation, as illustrated in Figure 4. The video input consists of recorded footage by 
portable cameras. During video preprocessing, vehicle trajectories are extracted and converted into 
text files. In the subsequent unsupervised learning step, routine traffic maneuvers are identified 
based on these trajectories, and abnormal vehicle trajectories are filtered out in the third step. 
Finally, WWD trajectories undergo further confirmation. Using these trajectories enables the 
development of accurate traffic volume measurement techniques and effective detection of 
potential conflicts. This trajectory-based approach ensures a more data-driven technique, 
potentially yielding more reliable and insightful results. The detailed operation of these steps is 
elaborated in the following sections. 
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Figure 4 Architecture of the wrong-way driving detection method 

4.1 Video Preprocessing 

The video preprocessing stage was to extract vehicle trajectory details from the video and 
transform them into text-based files for subsequent analysis. In object detection algorithm's initial 
phase, videos must be divided into individual frames. The Opensource Computer Vision Library 
was used to break down continuous frames into images, which were then stored locally for object 
detection (Lee, Han and Whang 2007). 

Numerous well-trained algorithms can be utilized to perform object detection tasks, and 
these algorithms often make a tradeoff between speed and precision. A notable example is Fast R-
CNN, a classical object detection algorithm that prioritizes detection precision at the expense of 
speed (Girshick 2015). In this research, YOLOv3, a versatile algorithm configured for either speed 
or precision based on specific research requirements (Redmon, Divvala, et al. 2016), was selected. 
Notably, YOLOv3 represents the third generation of the YOLO algorithm, showcasing significant 
improvements in both speed and precision compared to its predecessor. YOLOv3, capable of 
identifying 80 object categories from the Common Objects in the Context training dataset, was 
tailored for this study to focus exclusively on vehicle detection. The original YOLOv3 code was 
modified to recognize only the following categories: car, bus, and truck. The images generated in 
the preceding step were input into the YOLOv3 algorithm, which identified and outlined vehicles 
in each image using rectangles, as shown in Figure 5 (a). Subsequently, the coordinates of the all 
the vertices defining each rectangle were recorded into a text file, representing the vehicles' 
positions in each image. 
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Utilizing the vehicle position information in each frame, the SORT algorithm produced 
vehicle trajectories across multiple continuous frames (Redmon and Farhadi 2018). Introduced in 
2016, SORT stands out as a multiple-object tracking algorithm with state-of-the-art performance. 
It takes a sequence of coordinates generated by YOLOv3 as input and employs the intersection 
over union (IOU) distance to correlate each rectangle between frames. IOU distance signifies the 
overlapping ratio between two rectangles, with a higher IOU value indicating a greater likelihood 
that two rectangles from different frames pertain to the exact vehicle. Leveraging the coordinates 
of the rectangles, SORT matches them in the current frame with those from the previous frame, 
enabling the generation of trajectories for each rectangle (representing a vehicle). These 
trajectories are then recorded as a text file, as depicted in Figure 5 (b). At this process stage, the 
vehicle trajectories have been extracted from the videos and presented in a text format. 

 
Figure 5 Vehicle detection and tracking: (a) object detection and (b) object tracking 

4.2 Unsupervised Learning 

 The initial phase in performing WWD detection involves recognizing routine traffic 
maneuvers by analyzing diverse vehicle trajectories—a stage characterized as self-learning. 
Abnormal vehicle trajectories are notably infrequent compared to the common patterns exhibited 
by routine vehicle trajectories. Researchers manually scrutinized several hundred hours of traffic 
videos and observed that most vehicle trajectories adhered to the correct traffic maneuvers at each 
testing location. Therefore, the self-learning stage effectively generated routine vehicle trajectories 
by clustering similar trajectories, contingent upon the input of a substantial volume of data. 

Several trajectory clustering algorithms are capable of grouping similar trajectories into a 
single cluster and generate a representative trajectory for that cluster. This representative trajectory 
can then be utilized to identify routine traffic maneuvers (Bewley, et al. 2016, Yuan, et al. 2017, 
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Won, et al. 2009). However, a crucial consideration precedes the selection of a trajectory clustering 
algorithm: some vehicle trajectories derived from the preceding stage may not always be 
continuous. Instead, a complete trajectory may consist of multiple sub-trajectories. This issue may 
arise from either failure in object detection in specific frames or interruptions in tracking due to 
overlapping vehicles. In such cases, it is vital to consider the sub-trajectories since they constitute 
essential components of the complete trajectories. To address this concern, a trajectory clustering 
algorithm based on a partition-and-group framework was employed (Won, et al. 2009). 

The partition-and-group framework offered the advantage of identifying common sub-
trajectories by dividing a trajectory into a set of line segments based on the minimum description 
length, as shown in Figure 6 (a). Following this partitioning, all trajectories were transformed into 
line segments, and a density-based clustering algorithm was applied to create clusters of similar 
trajectories using these line segments (Lee, Han and Whang 2007) (Figure 6 (b)). Subsequently, 
the representative trajectory that characterizes the overall movement of each cluster was computed 
(Figure 6 (c)). Given the abundance of detailed information on the partition-and-group framework, 
this report provides only the foundational aspects of the theory. Interested readers can refer to the 
work of Won et al. for further insights (Won, et al. 2009). At the end of this process, the algorithm 
had acquired the ability to discern routine traffic maneuvers, contingent upon the availability of 
sufficient training data. 

 

Figure 6 Partition-and-group based trajectory clustering: (a) raw trajectory partition, (b) 
density-based clustering, and (c) representative trajectory. 

4.3 Abnormal Trajectory Detection 

During the unsupervised learning step, representative trajectories were identified for each 
cluster to portray normal traffic maneuvers. Establishing an acceptable range becomes crucial 
when determining whether a new trajectory aligns with normal traffic maneuvers, as new 
trajectories seldom overlap entirely with the representative trajectories. To accomplish this, a set 
of distances was computed for each cluster, encompassing the distances between each trajectory 
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and its representative trajectory. This distance set enables the estimation of the overall dispersion 
for each cluster, and an acceptable range can be established using the mean and standard deviation 
of the distance set. Figure 7, coupled with Equations (1) to (5), visually demonstrates the distance 
calculation between trajectories. Notably, this distance calculation is rooted in part of the trajectory 
clustering algorithm devised by Lee et al. (Lee, Han and Whang 2007). 

The calculation procedure involves partitioning two trajectories, T1 and T2, into line 
segments represented by si and ej, as illustrated in Figure 7 (a). To compute the distance from T1 
and T2, the distance of each line segment from T1 and T2 needs to be considered. As per Equation 
(1), the distance between T1 and T2 is calculated by averaging the distances between si and T2. The 
distance between each line segment si and T2 is determined by finding the minimum distance from 
si to any ej generated by T2, as shown in Equation (2). 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇1,𝑇𝑇2) = 𝐴𝐴𝐴𝐴𝐴𝐴{𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑖𝑖,𝑇𝑇2), 𝑑𝑑𝑖𝑖 ∈ 𝑇𝑇1}   (1) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑖𝑖,𝑇𝑇2) = 𝑚𝑚𝑑𝑑𝑚𝑚{𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑑𝑑𝑖𝑖, 𝑒𝑒𝑗𝑗�, 𝑑𝑑𝑖𝑖 ∈ 𝑇𝑇1, 𝑒𝑒𝑗𝑗 ∈ 𝑇𝑇2}  (2) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑑𝑑𝑖𝑖, 𝑒𝑒𝑗𝑗� = 𝑎𝑎1 ∙ 𝑑𝑑⊥ + 𝑎𝑎2 ∙ 𝑑𝑑𝜃𝜃    (3) 

𝑑𝑑⊥ = 𝐿𝐿⊥12 +𝐿𝐿⊥22

𝐿𝐿⊥1+𝐿𝐿⊥2
       (4) 

𝑑𝑑𝜃𝜃 = �
||𝑒𝑒𝑗𝑗|| ∙ 𝑑𝑑𝑑𝑑𝑚𝑚𝑠𝑠, 𝑑𝑑𝑖𝑖 0° ≤ 𝑠𝑠 ≤ 90°

||𝑒𝑒𝑗𝑗||, 𝑑𝑑𝑖𝑖 90° ≤ 𝑠𝑠 ≤ 180°     (5) 

 

Figure 7 Distance calculation between two trajectories: (a) distance between trajectories 
and (b) distance between line segments 

For computing the distance between line segments, as depicted in Figure 7 (b), a longer 
line segment was designated as ej, and a shorter line segment was denoted as si. The distance 
between si and ej (dist (si, ej)) was composed of two components: the perpendicular distance (𝑑𝑑⊥) 
and the angular distance (𝑑𝑑𝜃𝜃), as expressed in Equation (3). The parameters a1 and a2 represent 
the weights assigned to these two distances, allowing for adjustment based on specific research 
requirements. For instance, if the study aims to discern differences in directions between line 
segments, the parameter a2 could be heightened to increase the sensitivity of 𝑑𝑑𝜃𝜃. Equations (4) 
and (5) were employed to calculate 𝑑𝑑⊥ and 𝑑𝑑𝜃𝜃, where 𝐿𝐿⊥1 and 𝐿𝐿⊥2 denote the Euclidean distances 
from the two endpoints of si to the projection point on ej; k ej k represents the length of ej; and u 
signifies the angle between si and ej. 



17 
 

 

After generating the distance set between each trajectory and the main trajectory for each 
cluster, the mean and standard deviation of this distance set were computed. Following the 
empirical rule, which states that 99.7% of data following a normal distribution fall within the mean 
± 3*standard deviation, this statistical information was utilized. Given that the majority of 
trajectories represent the normal operation of a vehicle, a factor of mean ± 3*standard deviation 
was applied to create a buffer around the main trajectory in each cluster, thereby establishing an 
acceptable range. When a new trajectory was introduced, it was assigned to the nearest cluster 
based on its distance to each representative trajectory. The determination of whether the trajectory 
fell within the category of abnormal trajectories depended on whether it fell within the acceptable 
range. It is important to note that an abnormal trajectory might also occur in the training set; in 
such cases, it would be promptly identified, and the confirmation of WWD would be conducted in 
the subsequent stage. 

As shown in Figure 8, the black curve represents the representative trajectory 
characterizing the paths taken by left-turn vehicles from the crossroad toward the entrance ramp. 
The green band is generated by buffering the representative trajectory using the mean and standard 
deviation of the distance set, allowing for adjustment in various scenarios. Notably, the distance 
between the blue and representative trajectories falls within the green acceptable range. 
Consequently, the blue trajectory is categorized as a routine trajectory. In contrast, the red 
trajectory is identified as abnormal due to its substantial deviation from the representative 
trajectory. At this point, the red trajectory is flagged as a potential WWD incident that necessitates 
confirmation. 

 

Figure 8 Abnormal trajectory detection 
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4.4 Wrong-Way Driving Confirmation 

 After completing the preceding steps, trajectory clustering can extract abnormal trajectories 
from videos. However, since this project aims to identify WWD incidents, further screening of 
abnormal trajectories is necessary. In this stage, a baseline for the potential WWD route is selected, 
and WWD candidates are identified based on whether the abnormal trajectories intersect with this 
baseline. It is important to note that the line segments generated by the trajectory are still utilized 
for this calculation. Before delving into the details of how this calculation is carried out, some 
notations need to be defined: the coordinates of the two ends of the line segment from a trajectory 
are represented as V1(x1, y1) and V2(x2, y2), while the coordinates of the two ends of the baseline 
are represented as B1(w1, z1) and B2(w2, z2). To ascertain whether these two segments intersect, the 
cross product can be employed, as illustrated in Equations (6) and (7). 

�
𝑑𝑑1 = (𝐴𝐴2 − 𝐴𝐴1) ∗ (𝐵𝐵1 − 𝐴𝐴1)
𝑑𝑑2 = (𝐴𝐴2 − 𝐴𝐴1) ∗ (𝐵𝐵2 − 𝐴𝐴1)

𝑑𝑑3=(𝐵𝐵2−𝐵𝐵1)∗(𝑉𝑉2−𝐵𝐵1)
𝑑𝑑4=(𝐵𝐵2−𝐵𝐵1)∗(𝑉𝑉1−𝐵𝐵1)

         (6) 

 

�
𝑌𝑌𝑒𝑒𝑑𝑑    𝑊𝑊ℎ𝑒𝑒𝑚𝑚 𝑑𝑑1 ∗ 𝑑𝑑2 < 0 𝑎𝑎𝑚𝑚𝑑𝑑 𝑑𝑑3 ∗ 𝑑𝑑4 < 0
𝑌𝑌𝑒𝑒𝑑𝑑       𝑊𝑊ℎ𝑒𝑒𝑚𝑚 𝑑𝑑1 ∗ 𝑑𝑑2 = 0 𝑜𝑜𝑜𝑜 𝑑𝑑3 ∗ 𝑑𝑑4 = 0

𝑁𝑁𝑜𝑜 𝑂𝑂𝑑𝑑ℎ𝑒𝑒𝑜𝑜𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒
   (7) 

 

Table 8 Operation and performance of detection function 

Module name Input data Output data 
Time spent 
by computer 
(second) 

Time spent 
by humans 
(second) 

Video split Five 30-min videos 5 × 18,000 frames 229 0 

Object detection 5 × 18,000 frames 
Vehicle coordinates in 
5 × 18,000 frames 2,700 0 

Object tracking 
Vehicle coordinates in 5 × 
18,000 frames 

Vehicle trajectories in 
5 videos 61 0 

Trajectory 
clustering 

Vehicle trajectories from 1 
video (training set) 

5 clusters with the 
representative 
trajectory 74 0 

Abnormal 
trajectory detection 

(1) 5 clusters with 
representative trajectory and 
the correspondence trajectories (1) Acceptable range 9 0 

WWD 
confirmation 

(2) Vehicle trajectories from 
the other 4 videos (testing set) 
Abnormal trajectories 

(2) Abnormal 
trajectories <1 9,000 

 

In the calculation, each line segment produced by the abnormal trajectories needs to be 
considered, as only one segment will intersect with the baseline if the trajectory indicates a WWD 
incident. Ultimately, the abnormal trajectories intersecting with the baseline are identified and 
reported as WWD candidates. Additionally, the timestamps corresponding to these trajectories are 
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reported for further verification. Table 8 summarizes the operational performance of the software 
detection functions, including the input data and output data for each step of the automatic 
detection tool. It also contains the estimated time for analyzing five thirty-minutes videos by both 
the software and human observer. 

4.5 Trajectory-based Off-line Conflict Detection 

The system dissects each trajectory into segments and discerns conflicts by examining the 
intersections of these segments within specific time intervals. This approach enables the precise 
detection of potential traffic conflicts based on movement patterns and timing. Calculating the 
intersection between two directly continuous trajectories poses challenges. To overcome this issue, 
several segments are utilized to approximate the trajectories, as depicted in Figure 9. Through this 
segmented approach, one can systematically pair segments from two trajectories and assess for 
intersections. Identifying any intersecting segment pairs indicates a potential conflict or crossing 
of paths between the original trajectories. This method facilitates a more computationally efficient 
and accurate analysis. 

 

Figure 9 Trajectory segmentation 

For each trajectory, the system follows the process illustrated in Figure 10. In this 
depiction, the red line signifies the target trajectory. At the same time, the black bars represent 
trajectories with timesteps falling within the Potential Conflict Evaluation Time range, 
commencing from the initial timestep of the target trajectory. Initially, the trajectories were 
simplified into several segments for enhanced computational efficiency. Following this, the 
intersection points between the target trajectory and those delineated by the blue lines were 
identified. With all intersection points identified, verifying whether they lie within the conflict area 
becomes straightforward. 
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Figure 10 Conflict detection 

4.6 Program Graphical User Interface 

A user interface was developed to facilitate the process. The user can click the "START" button 
to start this application. Then, the user can select a video file for analysis. A detailed description 
of the user interface is contained in Appendix A. 

5 ANALYSIS RESULTS 

This section presents the results of comparing WWD incident data extracted by the tool and manual 
method. The results of case studies of the effects of channelized islands and no-turn signs on illegal 
left turns are contained in Appendix B. A case study of the effectiveness evaluation of Ceramic 
Raised Channel Markers in restricting illegal left turns is contained in Appendix C. The detailed 
evaluation results of the Wrong-way Alert System are contained in Appendix D. 

In this study, the developed video analytics software was tested by a comprehensive dataset 
encompassing 416 hours of video footage. This footage was sourced from 14 partial cloverleaf 
interchange terminals, as outlined in Chapter 3. The algorithm's performance was evaluated by 
examining two crucial metrics: completeness and precision, serving as indicators of the algorithm's 
detection reliability and accuracy. Table 9 illustrates the counts of manually observed actual 
WWD incidents in comparison to those detected by the software at each location. To evaluate the 
effectiveness of the detection algorithm, several key terms were defined as follows: 

• “WWD incidents” are considered to be a negative class. 
• “True Positive” (TP) refers to instances where the algorithm correctly identified a WWD 

incident. 
• “False Positive” (FP) refers to instances where the algorithm mistakenly flagged a normal 

driving maneuver as a WWD. 
• “False Negative” (FN) refers to instances where the algorithm failed to recognize a WWD 

incident, incorrectly marking it as a normal driving maneuver. 

As normal driving actions were too widespread to quantify in the video data manually, the 
statistics for "True Negative" (TN) are not provided. In evaluating the algorithm, two metrics were 
employed: 
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• Precision – indicates the proportion of actual WWD incidents detected by the algorithm. 
• Completeness – indicates the proportion of all actual WWD incidents that the algorithm 

successfully detected. 

Table 9 Detection results for different locations 

State Location 
No. of WWD 

(manual) 

No. of 
WWD 

(detected) 

TP FP FN Completeness 
(%) 

Precision 

AL I-65 Exit 284 SB 11 15 11 4 0 100 81 
AL I-65 Exit 208 SB 3 6 3 3 0 100 50 
GA I-85 Exit 147 SB 12 15 12 3 0 100 80 
GA I-75 Exit 61 SB 8 11 8 3 0 100 73 
AR I-40 Exit 260 WB 3 5 3 2 0 100 60 
AR I-40 Exit 94 WB 1 2 1 1 0 100 50 
AR I-40 Exit 55 EB 7 7 7 0 0 100 100 
TN I-40 Exit 172 WB 2 2 2 0 0 100 100 
TN I-40 Exit 182 SB 1 1 1 0 0 100 100 
NC I-77 Exit 79 SB 20 24 20 4 0 100 83 
NC I-77 Exit 79 NB 1 1 1 0 0 100 100 
NC Hwy421 Exit 234C WB 8 10 8 2 0 100 80 
SC I-85 Exit 106 EB 3 3 3 0 0 100 100 
VA I-81 Exit 141 SB 3 4 3 1 0 100 75 
Total  83 102 83 23 0 100 80 

Note: TP = True Positive, FP = False Positive, FN = False Negative 

These metrics are mathematically defined in Equations (8) and (9), respectively. 

𝑃𝑃𝑜𝑜𝑒𝑒𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑚𝑚 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
                                                               (8) 

𝐶𝐶𝑜𝑜𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑑𝑑𝑒𝑒𝑚𝑚𝑒𝑒𝑑𝑑𝑑𝑑 =
𝑇𝑇𝑃𝑃

#𝑊𝑊𝑊𝑊𝑊𝑊(𝑀𝑀𝑎𝑎𝑚𝑚𝑀𝑀𝑎𝑎𝐶𝐶𝐶𝐶𝑀𝑀 𝑂𝑂𝑂𝑂𝑑𝑑𝑒𝑒𝑜𝑜𝑂𝑂𝑒𝑒𝑑𝑑)
                                   (9) 

Referring to Table 9, the total completeness of 100% signifies that the algorithm 
successfully detected all manually observed WWD incidents. However, the presence of false alerts 
(FPs) resulted in an average precision of 80% for the algorithm. As explained in the Methodology 
section of Chapter 4, the detection results underwent filtering through the final WWD confirmation 
process, emphasizing the significant impact of the baseline setting on the ultimate output. Figure 
11 visually depicts the design features for each location, including the actual baseline set by the 
researchers. However, despite adjustments to the baseline settings, certain FPs persisted. A 
thorough examination of the source videos revealed that these FPs were frequently associated with 
trucks. Two primary issues related to trucks contributed to these inaccuracies. Firstly, due to their 
larger size than regular passenger vehicles, trucks generate oversized detection rectangle markers, 
particularly those with single or multi-trailers. If the training data lacks sufficient truck examples, 
the SORT algorithm might produce a trajectory significantly deviating from the representative 
trajectory, as depicted in Figure 12a. Consequently, these trajectories are erroneously classified 
as abnormal. Secondly, trucks transporting cars on their flatbeds pose another challenge. The 
detection system may mistakenly identify the carried vehicles as operational individual vehicles 
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on the road, leading to additional abnormal trajectory data intersecting with the baseline, as 
illustrated in Figure 12b. 

Overall, the analysis of the video analytics software's performance in detecting WWD 
incidents reveals significant achievements and areas for improvement. The algorithm achieved a 
100% completeness rate, successfully detecting all manually observed WWD incidents and 
demonstrating its reliability in identifying true incidents. However, the precision rate stood at 80%, 
primarily due to false positives associated with larger vehicles, particularly trucks. Challenges 
included oversized detection rectangles for trucks and the misidentification of vehicles on flatbeds 
as operational vehicles, indicating a need for more diverse training data and refined detection 
algorithms. The impact of baseline settings on the algorithm's output was also evident, suggesting 
that fine-tuning these parameters could enhance precision. These insights highlight the algorithm’s 
potential in traffic monitoring while underscoring the necessity for further development to improve 
accuracy, especially in complex vehicle detection scenarios. 

 

Figure 11 Design features and baseline setting for each location 
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Figure 12 Two types of false alert: (a) oversized vehicle and (b) passenger vehicle carried 
by truck 

6 CONCLUSIONS 

This study represents a significant advancement in the proactive assessment of highway safety 
performance, particularly in WWD incidents and illegal left turns using traffic video data. The 
development and implementation of the video analytics software, tested across a comprehensive 
dataset of 416 hours of footage by portable traffic cameras from various interchange terminals, 
have yielded crucial insights into the potential and challenges of employing technology in 
detecting WWD incident. The software demonstrated exceptional performance in terms of 
completeness, successfully identifying 100% of manually observed WWD incidents. This 
achievement underscores the software’s capability to reliably detect actual traffic safety incidents. 
However, the precision rate of 80%, affected primarily by false positives related to larger vehicles 
like trucks, indicates areas for improvement. Issues such as oversized detection rectangles and 
misidentification of vehicles on flatbeds highlight the need for a more diverse training dataset and 
refined algorithmic approaches to enhance the accuracy of abnormal traffic movement detection. 

 The persistence of false positives despite adjustments in baseline settings further suggests 
that while the software is a significant step forward, there is a need for continuous development 
and refinement. Addressing these challenges will improve the tool’s precision and contribute to 
the broader goal of enhancing road safety through technology-driven solutions. Additionally, a 
significant limitation of the tool is its inability to process footage captured at night effectively. 
This shortcoming is particularly concerning given the known correlation between WWD incidents 
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and impaired driving, often related to alcohol consumption, which tends to be more prevalent 
during nighttime hours. Factors like insufficient lighting and challenges in retroreflectivity further 
exacerbate the risk of WWD movements under low visibility conditions. Recent interdisciplinary 
studies and projects, which combine expertise from transportation and computer science with a 
focus on machine learning, are increasingly addressing the challenge of vehicle identification in 
nighttime conditions. Incorporating advancements from these fields into the development of the 
tool could significantly enhance its effectiveness, particularly in detecting and analyzing nighttime 
traffic incidents, thereby bolstering its overall contribution to highway safety. 

 This study also demonstrates the feasibility and effectiveness of video analytics in traffic 
safety evaluation projects through three case studies in Appendices B-D. It emphasizes the 
importance of adopting proactive strategies in highway safety performance evaluation, moving 
beyond traditional methods to embrace technological innovations. The insights and findings from 
this research provide a solid foundation for more sophisticated and accurate tools for traffic safety 
analysis and intervention. 

 



25 
 

 

REFERENCES 

Bewley, A., Z. Ge, L. Ott, F. Ramos, and B. Upcroft. 2016. "Simple Online and Realtime 
Tracking." 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, 
AZ. 3464-3468. 

Carter, D., R. Srinivasan, F. Gross, S. Himes, T. Le, B. Persaud, C. Lyon, and J. Bonneson. 
2021. "Guidance for the Development and Application of Crash Modification Factors." 
NCHRP research report, 991: 1-454. 

2023. CUBIC Transportation System. Accessed December 2023. 
https://www.cubic.com/transportation/vehicle-pedestrian-detection. 

de Leur, P., and T. Sayed. 2003. "A Framework to Proactively Consider Road Safety within the 
Road Planning Process." Canadian Journal of Civil Engineering, 30(4): 711-719. 
https://doi.org/10.1139/103-034. 

El-Basyouny, K., and T. Sayed. 2013. "Safety Performance Functions Using Traffic Conflicts." 
Safety Science, 51(1): 160-164. 

Elvik, R. 2008. "The Predictive Validity of Empirical Bayes Estimates of Road Safety." Accident 
Analysis & Prevention, 40(6): 1964-1969. https://doi.org/10.1016/j.aap.2008.07.007. 

Girshick, R. 2015. "Fast R-CNN." Proceedings of the IEEE International Conference on 
Computer Vision (ICCV). Santiago. 1440-1448. 

Gordon, F., Z. Bareket, L. Kostyniuk, M. Barnes, M. Hagan, Z. Kim, D. Cody, A. Skabardonis, 
and A. Vayda. 2012. "Site-Based Video System Design and Development." National 
Academies of Sciences, Engineering, and Medicine. https://doi.org/10.17226/22836. 

Gross, F., T. Le, K. Kersavage, C. Chestnutt, B. Persaud, C. Lyon, and J. Gluck. 2021. 
"Application of Crash Modification Factors for Access Management, Volume 1: 
Practitioner's Guide." National Academies of Sciences, Engineering, and Medicine. No. 
Project 17-74. https://doi.org/10.17226/26161. 

Guido, G., A. Vitale, V. Astarita, F. Saccomanno, V.P. Giofré, and V. Gallelli. 2012. "Estimation 
of Safety Performance Measures from Smartphone Sensors." Procedia-Social and 
Behavioral Sciences 54: 1095–1103. https://doi.org/10.1016/j.sbspro.2012.09.824. 

Hydén, C., and L. Linderholm. 1984. "The Swedish Traffic-Conflicts Technique." International 
Calibration Study of Traffic Conflict Techniques, 133–139. https://doi.org/10.1007/978-
3-642-82109-7_12. 

Imprialou, M., and M. Quddus. 2019. "Crash Data Quality for Road Safety Research: Current 
State and Future Directions." Accident Analysis and Prevention, 130: 84-90. 
https://doi.org/10.1016/j.aap.2017.02.022. 

2023. Insights on GoodVision. Accessed December 2023. 
https://www.azena.com/insights/goodvision. 



26 
 

 

2023. IntuVision VA Traffic Solutions. Accessed December 2023. 
https://www.intuvisiontech.com/intuvisionVA_solutions/intuvisionVA_traffic. 

Ismail, K., T. Sayed, N. Saunier, and C. Lim. 2009. "Automated Analysis of Pedestrian-Vehicle 
Conflicts Using Video Data." Transportation Research Record, 2140(1): 44-54. 
https://doi.org/10.3141/2140-05. 

Janstrup, K. H., S. Kaplan, T. Hels, J. Lauritsen, and C. G. Prato. 2016. "Understanding Traffic 
Crash Under-Reporting: Linking Police and Medical Records to Individual and Crash 
Characteristics." Traffic Injury Prevention, 17(6): 580-584. 
https://doi.org/10.1080/15389588.2015.1128533. 

Kim, Z., G. Gomes, R. Hranac, and A. Skanardonis. 2005. "A Machine Vision System for 
Generating Vehicle Trajectories over Extended Freeway Segments." Intelligent 
Transportation Society of America - 12th World Congress on Intelligent Transport 
Systems. 6: 3550–3559. 

Kloeden, C., G. Ponte, and A. McLean. 2001. "Travelling Speed and the Risk of Crash 
Involvement." Australian Transport Safety Bureau, 1(2001): 61. 

Kolody, S. J. K. 2020. "Guide for Quantitative Approaches to Systemic Safety Analysis." 
National Academies of Sciences, Engineering, and Medicine. No. Project 17-77. 
https://doi.org/10.17226/26032. 

Laureshyn, A., and H. Ardö. 2006. "Automated Video Analysis as a Tool for Analysing Road 
User Behaviour." Proceedings of ITS World Congress, London, 8-12 October 2006.  

Lee, J., J. Han, and K. Y. Whang. 2007. "Trajectory Clustering: A Partition-and-Group 
Framework." Proceedings of the 2007 ACM SIGMOD international conference on 
Management of data. Beijing, China. Association for Computing Machinery, New York, 
NY, 2007. 593–604. 

Lim, I. K., and Y. J. Kweon. 2013. "Identifying High-Crash-Risk Intersections: Comparison of 
Traditional Methods with the Empirical Bayes–Safety Performance Function Method." 
Transportation Research Record, 2364(1): 44-50. 

NHTSA. 2023. Motor Vehicle Traffic Crashes. Accessed December 2023. https://www-
fars.nhtsa.dot.gov/Main/index.aspx. 

Nikolaou, D., A. Ziakopoulos, and G. Yannis. 2023. "A Review of Surrogate Safety Measures 
Uses in Historical Crash Investigations." Sustainability (Switzerland), 15(9): 7580. 
https://doi.org/10.3390/su15097580. 

Perkins, S. R., and J. L. Harris. 1968. "Traffic Conflict Characteristics-Accident Potential at 
Intersections." Highway Research Record, 225(1969): 35–44. 

Porter, R. J., M. Dunn, K. Kersavage, V. Gayah, K. Eccles, J. Medina, and B. Persaud. 2023. 
"Estimating Effectiveness of Safety Treatments in the Absence of Crash Data." No. 
NCHRP Project 17-86. 



27 
 

 

Redmon, J., and A. Farhadi. 2018. "YOLOv3: An Incremental Improvement." arXiv preprint 
arXiv: 1804.02767.  

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi. 2016. "You Only Look Once: Unified, 
Real-Time Object Detection." Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR). Las Vegas, NV. 779-788. 

Sacchi, E., and T. Sayed. 2016. "Bayesian Estimation of Conflict-Based Safety Performance 
Functions." Journal of Transportation Safety & Security, 8(3): 266-279. 
https://doi.org/10.1080/19439962.2015.1030807. 

Sayed, T., and S. Zein. 1999. "Traffic conflict standards for intersections." Transportation 
Planning and Technology, 22(4): 309-323. 

Song, Y., M. V. Chitturi, W. F. Bremer, A. R. Bill, and D. A. Noyce. 2022. "Review of United 
States research and guidelines on left turn lane offset: unsignalized intersections and 
signalized intersections with permitted left turns." Journal of traffic and transportation 
engineering (English edition), 9(4): 556-570. 

Srinivasan, R., B. Lan, C. Mozingo, J. Bonneson, C. Lyon, B. Persaud, and G. Bahar. 2021. 
"Understanding and Communicating Reliability of Crash Prediction Models." No. 
NCHRP Project 17-78. https://doi.org/10.17226/26440. 

Srinivasan, R., T. Saleem, F. Gross, T. Le, S. Himes, R. J. Porter, J. Bonneson, B. Persaud, and 
C. Lyon. 2023. "Crash Modification Factors in the Highway Safety Manual: A Review." 
National Academies of Sciences, Engineering, and Medicine. 
https://doi.org/10.17226/27015. 

2023. Traffic Optimization Techniques for Modern Cities. Accessed December 2023. 
https://www.briefcam.com/solutions/traffic-optimization/. 

2023. TrafficVision-Roadway Monitoring. Accessed December 2023. 
https://www.trafficvision.com/roadway-monitoring/. 

2023. TRANSOFT SOLUTIONS. Accessed December 2023. https://www.transoftsolutions.com/. 

Won, J., S. Kim, J. Baek, and J. Lee. 2009. "Trajectory Clustering in Road Network 
Environment." IEEE Symposium on Computational Intelligence and Data Mining. 
Nashville, TN. 299-305. 

Yuan, G., P. Sun, J. Zhao, D. Li, and C. Wang. 2017. "A Review of Moving Object Trajectory 
Clustering Algorithms." Artificial Intelligence Review, 47(2017): 123–144. 

Zhang, B., and H. Zhou. 2019. "Access Control Techniques to Mitigate Wrong-Way Driving 
Activities on Multilane Divided Highways: Case Studies in Alabama." Transportation 
Research Record, 2673(10): 745-754. https://doi.org/10.1177/0361198119850160. 



28 
 

 

Zhou, H., and M. Atiquzzaman. 2019. "Logistic Regression Models to Predict Wrong-Way 
Driving Risk at Freeway Off-Ramp Terminals." Accessed February 12, 2019. 
http://eng.auburn.edu/files/centers/hrc/aldot-wwd-predictive.pdf. 

Zhou, H., C. Xue, Y. Song, Q. Chang, and B. Zhang. 2020. "Field Implementation and 
Evaluation of Low-Cost Countermeasures for Wrong-Way Driving Crashes in Alabama." 
Highway Research Center, Auburn University. No. ALDOT 930-965. 

Zhou, H., Q. Chang, Y. Song, M. Jalayer, P. Hosseini, PS. Lin, C. Chen, and PA. Tobias. 2023. 
"Wrong-Way Driving Solutions, Policy, and Guidelines." No. NCHRP Project 03-135. 

Ziakopoulos, A., E. Vlahogianni, C. Antoniou, and G. Yannis. 2022. "Spatial Predictions of 
Harsh Driving Events Using Statistical and Machine Learning Methods." Safety Science, 
150: 105722. https://doi.org/10.1016/j.ssci.2022.105722. 

 



29 
 

 

APPENDIX A: User Interface Instructions 

 
Figure A-1 shows the user can click the "START" button to start this application. Then, the user 
can select a folder or single video for analysis. If a user selects a single video file, the canvas will 
display the uploaded video's first frame. If the user selects a folder with multiple files for analysis, 
the canvas will list all file names in the same folder. 

 
Figure A-1 Application instruction at the starting stage 
 
 Second, the user clicks the "Next" button to jump to the interface of the progress bar, then 
click on the button "Run Detection," the progress bar starts working to show the user the loading 
status of a file or folder. 
 Then, the user clicks “setting” to enter a page of setting parameters and then clicks “load” 
to select the video to be analyzed (Figure A-2). After the video is selected, the interface will 
display the first frame of the current video (Figure A-3). 
 

 
Figure A-2 User interface of setting 
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Figure A-3 The first frame of the selected video footage 
 
 Then, the user defines the wrong way on the current picture. First, the user marks the road 
section that needs to be tested in the image, as shown in Figure A-4. The user clicks the left mouse 
button on the location that needs to be marked in the picture, and the coordinates of the current 
point will be displayed. Then, the user will continue to click the left mouse button on other 
locations needing marking. 
 After defining the wrong way in the picture, if the user wants to re-mark it, press “C” (c 
means clean) on the keyboard, and if the mark is confirmed, press “Q” (q means quit) on the 
keyboard. Then, these parameters will be saved and applied automatically in the user interface of 
the setting, which means the wrong way movement has been defined.  
Then, the user can click the "START" button and upload the video for analysis by clicking 
“upload.” If a user selects a video, the canvas will display the uploaded video's first frame 
immediately (Figure A-5).  
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Figure A-4 Configuration of coordinates for identifying WWD incident 
 

 
Figure A-5 User interface of the application at the start of analysis 
 
 After that, the user clicks the "Next" button to jump to the interface of the progress bar, 
then clicks the "Run Detection." The progress bar shows the user the loading status of a file and 
displays a piece of information to tell the user how many frames of the wrong-way movement 
were tested. Please see Figure A-6. 
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 The user clicks “Details,” It will jump to the following interface and show the 
corresponding picture (frame) of the detected wrong-way movement (Figure A-7).  

 
Figure A-6 User interface of file loading 
 

 
Figure A-7 User interface of detected incident screenshot 
 
 Finally, click the picture, and the user will see the short video clip of the WWD incidents 
(Figure A-8).  

  
Figure A-8 Detected WWD incident video clip 
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ABSTRACT 

The objective of this study is to study driver behaviors, such as undesirable movements and traffic 
conflicts, at access points with restricted left turn design. Three unsignalized intersections with 
restricted left-turn designs in Auburn, AL, were selected for this study. 72-hour traffic video data 
were collected at each location. The undesirable movements and traffic conflicts were recorded 
for analysis of driver behavior. In addition, eye-tracking devices were used to see what traffic 
control devices drivers use at the study sites. The data analysis showed the impact of pavement 
conditions, traffic signage, and median types on driver behavior. The results recommended that 
channelized islands alone at driveways cannot restrict left-turn movements. It should work together 
with a raised median, enhanced signage, and pavement marking to restrict left turns and make 
right-turn only intersections safer. 

Keywords: driver behaviors, undesirable movements, restricted left-turn design, channelized 
island 
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INTRODUCTION 

Restricted left turn design has been widely implemented by transportation agencies to reduce left-
turn related conflicts and crashes at unsignalized intersections. There have been numerous studies 
(1-6) in the past to study the safety and operational effects of using a right turn followed by U-
turns to replace direct left-turn movements. Most of these studies (2) analyzed the historical crash 
or traffic conflict data before and after the improvements. Few studies investigated driver behavior 
at restricted left-turn access points. Some of these behaviors reflect public perception or acceptance 
of this type of design. Engineers have developed detailed design guidelines on how to apply 
different geometric design elements and traffic control devices to restrict left-turn movements and 
provide an alternative for them. For example, a raised channelized island is often installed on minor 
roads to direct traffic into turning right. A “Right Turn Only” sign is required to convey to 
motorists the need to turn right instead of left when coming out of an access point. The lane-use 
arrows are recommended for providing additional guidance to the driver (7). Sometimes, a “Do 
Not Enter” (DNE) sign is used to keep traffic from driving on the wrong side of the channelized 
island. 
 The objective of this study is to explore driving behavior at restricted left-turn access points 
through case studies in Alabama. Three locations were selected to represent three different general 
types of intersections in Alabama. A 72-hour traffic video was collected at each location. Driver 
behavior data (illegal left-turns), wrong-way movements, and traffic conflict data were recorded 
by manually watching these videos. They will then be analyzed to evaluate how the access control 
strategies affect driver behavior at this type of intersection. 
 

LITERATURE REVIEW 

 Field review results indicated that there are many restricted left-turn access designs using 
the raised channelized island on minor roads in Alabama. Some of them are on undivided highways 
and applied in urban areas. Besides the restricted raised median that prevents traffic flow across 
the major road, channelized island, and traffic control devices (signs and pavement markings) are 
used to restrict the left-turns from the minor roads. Currently, there are no specific design 
guidelines in the ALDOT Access Management Manual (8) on where and how restricted left-turns 
should be installed. Some other states' access management manuals (1, 2, 9-18) provided more 
guidelines on how to use the raised median for a restricted left-turn design. For example, the FDOT 
Median Design Handbook states that “restrictive medians and well-designed median openings are 
also a key component of access management. Raised or restrictive medians are paved or 
landscaped areas that separate vehicular traffic. The documented benefits of raised medians are so 
significant that FDOT requires a raised or restrictive median on divided roadways with a design 
speed of 45 mph or greater, per FDM 210 – Arterials and Collectors. Medians should be installed 
whenever possible on multi-lane arterial roadways”. It also included that “directional median 
openings are designed to restrict certain traffic movements. The main characteristic of a directional 
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median opening is that vehicular traffic from the cross streets cannot conduct left turns or cross 
the arterial. The only movements allowed are right turns onto the arterials” (1). 
 The Manual on Uniform Traffic Control Devices (MUTCD) (7) provided guidance on 
using traffic signs and pavement markings to restrict left turns, including a Right-Turn Only sign, 
lane use arrows, etc. Geometric design guidelines for access points (6) provide information on how 
to use channelized islands to restrict the left-turns. However, a few past studies (4, 5) investigated 
how these signs, pavement markings, and channelized islands affect driver behavior. 
 
METHODOLOGY 

Study Locations 
Restricted left-turns were studied during April, May, and June of 2021 at various locations in 
Auburn, Alabama. Three locations were selected to conduct the study including the Publix 
entrance on North College Street, the Walmart gas station on the Shug Jordan Parkway, and the 
Burger King entrance/exit on South College Street. Table B-1 describes the roadways involved in 
the study. 
 
Table B-1 Roadways studied in Auburn, Alabama 

 North College Street Shug Jordan Parkway South College Street 
Roadway 

Classification (19) 
Principal Arterial Principal Arterial Principal Arterial 

Number of Lanes 2 4 4 
Speed Limit 50 MPH 55 MPH 45 MPH 

Median Type Undivided Undivided Divided 
 
 
Location 1 – Publix Entrance on North College Street 
North College Street is a two-lane principal arterial with a speed limit of 50 miles per hour at the 
Publix entrance. The Publix entrance has one lane coming out of Publix. This lane is designed for 
right-out only traffic. Traffic coming into the Publix is allowed to turn in from both the north and 
southbound directions. Channelized island, right-turn only sign, and lane use arrows are installed 
on the minor road to restrict left-turns from driveways. Figure B-1 and Figure B-2 show this 
location from an aerial and ground view, respectively. 
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Figure B-1 Aerial view of North College Street at the Publix entrance (21) 
 

 
Figure B-2 Ground view of North College Street at the Publix entrance (21) 
 
Location 2 – Walmart Gas Station on Shug Jordan Parkway 
Shug Jordan Parkway is a four-lane undivided principal arterial, with a speed limit of 55 miles per 
hour. There is only one lane for traffic exiting the gas station. There is a channelized island 
encouraging people to turn right out of the gas station. There is a DNE sign and a lane-use arrow 
on the pavement to deter people from driving on the wrong side of the channelized island. Figure 
B-3 and Figure B-4 show this location from an aerial and ground view, respectively. 
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Figure B-3 Aerial view of Shug Jordan Parkway at the Walmart Gas Station entrance (21) 
 

 
Figure B-4 Ground view of Shug Jordan Parkway at the Walmart Gas Station entrance 
(21) 
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Location 3 – Burger King entrance on South College Street 
South College Street is a four-lane undivided principal arterial, with a speed limit of 45 miles per 
hour. The entrance at Burger King is a right-in-right-out only access design. There is a raised 
concrete median separating the two directions of traffic flow on South College Street. Figure B-5 
and Figure B-6 show this location from an aerial and ground view, respectively. 
 

 
Figure B-5 Aerial view of South College Street at the Burger King entrance (21) 
 

 
Figure B-6 Ground View of South College Street at the Burger King entrance (21) 
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Data Collection 
The research team installed portable traffic cameras mounted near the respective locations. The 
videos were recorded for 72 hours during the three weekdays (Monday to Thursday). The videos 
were analyzed by observing the driver's behavior and actions when approaching the restricted left 
turn. The total number of vehicles that approached the restricted left turn was counted, as well as 
the number of vehicles that made an illegal left turn. This would give a percentage of the drivers 
that would make an illegal left turn. Other abnormalities, such as driving on the wrong side of the 
channelized island, were noted. 
 In addition, Tobii pro eye tracking glasses (20) were used by two participants at the Publix 
location and the Walmart gas station location to determine which traffic control devices drivers 
looked at when approaching the intersection. The eye tracking software was used to analyze the 
data collected to determine the time and location where drivers glanced. This technology was used 
during the day and night to study the driver's focus while making the left turn. 
 
Data Analysis 
Driver behavior in this study was defined by the vehicles' actions that were taken at the restricted 
left turn. While making an illegal left turn, the driver's behavior showed vehicles yielding at the 
channelized island and making a large J turn to go around the channelized island and turn left. In 
addition, when there were no pavement markings and few signs to direct drivers, there were 
behaviors of driving on the wrong side of the channelized island. The behaviors were analyzed by 
reviewing the videos recorded by portable traffic cameras and eye-tracking videos. 
 

RESULTS 
From the Publix entrance location on North College St, it was found that roughly 1 in every 3 
vehicles made an illegal left turn. Table B-2 represents a sample of vehicles that approached the 
restricted left turn in 30-minute periods. In addition, it was also determined that 1 in 20 vehicles 
that made an illegal left turn made the left turn from the wrong side of the channelized island. Also, 
there was a close conflict in approximately 1 out of every 33 vehicles turning out of Publix access. 
A close conflict was defined when vehicles made an illegal left turn and would interfere with cars 
on the major road. As shown in Figure B-7, an illegal left turn can be found at this location. In 
addition, in Figure B-8, an example can be seen of a vehicle driving on the wrong side of the 
channelized island. 
 
Table B-2 Count of illegal left turns at Publix entrance on North College Street 

Video 
(30 min. Period) 

Total Vehicles Approached 
Turn Lane 

Total Vehicles that Made 
Wrong Movement 

05/2/21 @ 07:54:36 27 9 
05/2/21 @ 10:24:36 78 26 
05/2/21 @ 20:00:49 55 19 
05/2/21 @ 20:58:14 31 9 

Total 191 63 
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Figure B-7 Illegal left turn onto North College Street at Publix entrance location 
 

 
Figure B-8 Vehicle on the wrong side of the channelized island at Publix entrance location 
 
At the Walmart gas station location on Shug Jordan Parkway, it was found that approximately 1 
in 15 vehicles were making an illegal left turn. Table B-3 represents the number of cars that 
approached the restricted left turn in the 30-minute time intervals. There were some cases at this 
location where drivers drove over the channelized island or waited in the striped median to merge 
into oncoming traffic. At this location, there were no cases of driving on the wrong side of the 
channelized island. This is because this location has a “DNE” sign and pavement markings in the 
entrance lane. An example of an illegal turn at this location can be seen in Figure B-9 below. 
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Figure B-9 Illegal left turn onto Shug Jordan Parkway at the Walmart Gas Station location 
 
Table B-3 Count of illegal left turns at the Walmart Gas Station on Shug Jordan Pkwy 

Video 
(30 min. Period) 

Total Vehicles Approached 
Turn Lane 

Total Vehicles that Made 
Wrong Movement 

05/11/21 @ 15:32:47 44 0 
05/12/21 @ 08:32:17 31 4 
05/12/21 @ 12:32:10 20 1 
05/12/21 @ 13:02:09 25 1 
05/12/21 @ 13:32:08 30 2 
05/12/21 @ 14:02:07 29 1 
05/12/21 @ 14:32:06 19 2 
05/13/21 @ 09:01:30 13 2 
05/13/21 @ 09:31:29 15 1 
05/13/21 @ 10:01:28 27 3 
05/13/21 @ 10:31:27 20 2 
05/13/21 @ 11:01:26 20 1 

Total 293 20 
 
 At the Burger King location on South College Street, 1 in every 60 vehicles made an illegal 
movement. Most illegal movements were made were illegal left turns, but there were a couple of 
cases where drivers illegally drove straight through the intersection. Table B-4 represents a sample 
of vehicles that approached the restricted left turn in 30-minute periods. It was observed at this 
location that drivers would wait in the left turn lane on South College Street to merge into 
oncoming traffic. It was also observed that the small concrete median installed at the major road 
was effective in preventing illegal left turns, but there are still points of improvement. Figure B-
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10 shows an example of a vehicle making an illegal left turn and waiting in the left turn lane to 
yield onto South College Street. 
 
Table B-4 Count of illegal movements at the Burger King on South College Street 

Video 
(30 min. Period) 

Total Vehicles Approached 
Turn Lane 

Total Vehicles that Made 
Wrong Movement 

06/14/21 @ 08:14:32 19 0 
06/14/21 @ 08:44:35 27 0 
06/14/21 @ 09:14:35 20 0 
06/14/21 @ 09:44:35 13 0 
06/14/21 @ 10:14:33 11 1 
06/14/21 @ 10:44:32 26 0 
06/14/21 @ 11:14:31 38 1 
06/14/21 @ 11:44:30 45 1 
06/14/21 @ 12:14:29 35 1 
06/14/21 @ 12:44:28 30 0 
06/14/21 @ 13:14:27 31 1 

Total 295 5 
 

 
Figure B-10 Illegal left turn onto South College Street at Burger King location 
 
Data was also obtained from the eye-tracking software used in the research. Based on this data, it 
was shown that drivers look for traffic control signs and pavement markings during the daytime 
and nighttime. The experiment was done using two participants to see the differences when driving 
at the locations that were being studied. The driver’s eye glance data revealed that drivers noticed 
each sign and pavement markings for approximately 0.5 seconds. This time was measured by 
analyzing the heat maps on the eye tracking software that showed these locations were frequent 
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places that drivers viewed. The data from the experiment is shown in Table B-5 and Table B-6, 
below. 
 
Table B-5 Daytime eye tracking study 

Movement Location 
Right Turn Pavement 

Marking DNE Sign Right Turn Only 
Sign 

User 1 User 2 User 1 User 2 User 1 User 2 
Right Turn Publix 

Entrance Yes Yes   Yes Yes 

Illegal Left 
Turn 

Publix 
Entrance Yes Yes   Yes Yes 

Right Turn Walmart Gas 
Station Yes Yes Yes Yes   

Illegal Left 
Turn 

Walmart Gas 
Station Yes Yes Yes Yes   

 
Table B-6 Nighttime eye tracking study 

Movement Location 
Right Turn Pavement 

Marking DNE Sign Right Turn Only 
Sign 

User 1 User 2 User 1 User 2 User 1 User 2 
Right Turn Publix 

Entrance No No   Yes No 

Illegal Left 
Turn 

Publix 
Entrance No No   Yes No 

Right Turn Walmart Gas 
Station Yes Yes Yes Yes   

Illegal Left 
Turn 

Walmart Gas 
Station Yes Yes Yes Yes   

 
CONCLUSIONS AND RECOMMENDATIONS 
This research examined the effects of driver behavior at access points with restricted left-turn 
movements at three locations in Auburn, Alabama, United States. According to the data that was 
collected from all three locations, it was concluded that the following improvements are 
recommended at these locations to aid driver behavior and create a safer intersection when 
approaching a restricted left turn: 

1. Qwick curb (Figure B-11a) be built as a median along North College Street at the Publix 
access. An opening is recommended to allow for southbound traffic along South College 
to turn into Publix. The justification for this is that approximately 1 illegal left turn is made 
every minute during the peak hours during a typical weekday at the location. 

2. A channelized island is to be built at the Publix location where the striping separates the 
northbound traffic, turning into Publix, from the southbound traffic, turning into Publix 
with a “Do Not Enter” sign on top of the island. This prevents motorists from driving on 
the wrong side of the existing channelized island when leaving Publix. In addition, a “Right 
Turn Only” sign should be mounted on the existing channelized island. Roughly 1 in 20 
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illegal left turns were made from the wrong side of the channelized island. These changes 
are therefore warranted. It is strongly recommended that directional arrows be added to the 
pavement for traffic entering Publix. 

3. Qwick curb be built as a median along Shug Jordan Parkway at the Walmart gas station 
access. An opening is recommended to allow for southbound traffic along Shug Jordan to 
turn into the gas station. The justification for this is that approximately 7 illegal left turns 
are made every hour during a typical weekday at the location. In addition, a “Right Turn 
Only” sign (Figure B-11b) to be mounted on the existing channelized island where no 
signs exist. 

At the Burger King access on South College Street, no improvements are needed as very few 
illegal left turns were made. 

  
Figure B-11 (a) Qwick curb and (b) RIGHT TURN ONLY sign 
 
The study recommended that changes need to be made to the ALDOT access management manual 
regarding access points with restricted left turn movements. For example, when a restricted left 
turn is made, a U-turn needs to be provided for drivers to allow them to safely go in the needed 
direction. Another example would be to require a raised median when building a restricted left 
turn to prohibit illegal left turns. These alternatives would depend on the type of roadway, number 
of lanes, AADT, and speed limit of the road.
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FUTURE RESEARCH 
More research could be done at locations throughout Alabama like those in this report. There are 
some limitations to this paper including the limited data and participants that were used to compile 
this report. The restricted left turn design is not rare in Alabama, and more locations can be 
identified throughout the state. 
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APPENDIX C: Effects of Raised Ceramic Channel Marker on Prohibiting Left Turns from 
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ABSTRACT 1 
The purpose of the study is to analyze driver behavior at an unsignalized intersection with raised 2 
channel markers to prevent left turns from the driveway. The study intersection is located near 3 
downtown Auburn, AL. Traffic volume increased significantly after a new high-rise apartment 4 
(Uncommon) was built. To improve safety at this intersection, the city traffic engineer installed a 5 
new traffic control device (Ceramic Raised Channel Marker) to prohibit direct left turn movement 6 
at one of two exits for the building. Traffic video was recorded at the study location before and 7 
after the channel markers were installed. Data collected for a 15-minute interval includes traffic 8 
conflicts, traffic volumes, and trajectories by direct left turns. The Wilcoxon signed-rank test and 9 
Fisher’s exact test were conducted to examine if there was a statistically significant difference in 10 
traffic volumes and traffic conflicts by the left turns. The analysis results indicated that the channel 11 
markers, although not harmful to the structure of a vehicle, disincentivized drivers from making 12 
illegal left turns and incentivized them to make right turns followed by left turn movements to 13 
reroute. Overall, instances of traffic conflicts caused by left turns decreased significantly after 14 
installing the markers. Additionally, total traffic volumes from the driveway decreased because 15 
some drivers used another exit. The study results can help local transportation agencies better 16 
understand the effectiveness of raised channel markers as a traffic device prohibiting left turns in 17 
small urban areas. 18 
 19 

Keywords: Raised Channel Marker, Access Management, Before and After Study, Prohibition 20 
of Left-Turn21 
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INTRODUCTION 

A novel and low-cost traffic control device, the Ceramic Raised Channel Marker, has been 
introduced at the median of an urban location near downtown Auburn, AL, to enforce a restriction 
on direct left turns from one of two exits of a newly constructed apartment complex, the 
Uncommon Apartment. The yellow ceramic raised channel marker was chosen following a 
thorough evaluation involving longitudinal channelizers and raised medians. The selection was 
motivated by factors such as limited median space, land use considerations, and the inherent 
attributes of the devices—such as cost-effectiveness, straightforward installation, and ease of 
maintenance. Refer to Figure C-1 for a depiction of a ceramic raised channel marker and an 
instance of its installation within the median of the study area. Primarily designed for access 
management within urban roadways and streets equipped with street lighting, ceramic-raised 
channel markers serve a vital role. By utilizing rumble effects, these markers discourage drivers 
from crossing them and offer a sensory and audible alert to those venturing into restricted medians 
or deviating from designated travel lanes.  

 
 

Figure C-1 Ceramic Raised Channel Marker at Study Site 

This study aims to assess the impact of raised channel markers on driver behavior at a specific 
intersection. The investigation takes place at a three-way unsignalized intersection between a 
three-lane major road and a driveway leading to a student apartment building in Auburn, Alabama 
(refer to Figure C-2a). The emergence of the new apartment complex has contributed to an 
upsurge in traffic volume, particularly towards downtown Auburn. As a countermeasure to 
enhance safety, the city of Auburn introduced ceramic raised channel markers to restrict left turns 
at this intersection. Notably, the residential apartment complex features two exits—one that 
prohibits left turns and another that permits them. Figure C-2b presents an alternate exit that 
facilitates left turns. 
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Figure C-2 (a) Restrict Left Turn Exit and (b) Alternative Exit at Study Site 

An overarching objective of implementing ceramic markers is to divert a portion of traffic toward 
the alternative exit. Before adopting raised channel markers, the city's efforts included the 
installation of a raised channelized island and a right-turn-only sign at the driveway (refer to 
Figure C-3), both aimed at prohibiting left turns. Regrettably, the study discerned the 
ineffectiveness of measures in deterring left turns by drivers. This issue has amplified the 
occurrence of unauthorized left turns, becoming a principal factor for vehicle conflicts and 
collisions. The central purpose of introducing ceramic markers is to curtail these conflicts and 
crashes arising from illegal left turns made while exiting the driveway. 

 

Figure C-3 Treatments of Channelized Island 

a b 
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The study examined 40 hours of video footage captured at the targeted intersection. Specifically, 
20 hours of footage were captured before the deployment of the raised markers, and an equal 
duration of 20 hours was documented after their installation. Over this span, the data revealed 587 
instances of right turns, 212 direct left turns, and a further 148 instances where right turns were 
followed by subsequent left turns. 

To delve deeper into the data, the research team conducted a rigorous examination to ascertain any 
discernable shifts in driver behavior following the installation of the raised markers. The study 
utilized a before-and-after approach to evaluate the effectiveness and overall impact of the newly 
implemented ceramic raised channel markers over these two time periods at the study intersection. 

 

LITERATURE REVIEW 

Raised Pavement Markers 

The Manual for Uniform Traffic Control Devices (MUTCD) defines a raised pavement marker 
(RPM) as an apparatus that stands at a minimum of 10 mm (0.4 in) tall, affixed either on or within 
the road's surface. These markers are designed to guide vehicular positioning, either to supplement 
or replace existing pavement markings (1). In accordance with the guidelines established by the 
MUTCD, raise channel markers must adhere to specific color criteria under both daylight and 
nighttime conditions. This entails ensuring that the color of the raised markers corresponds to the 
color of the marking they are meant to guide, supplement, or substitute. 

RPMs exhibit a range of shapes, colors, and sizes tailored to specific road conditions. Diverse 
types of RPMs serve distinct purposes, leading to their classification based on key features: 

1. Various Designed RPMs: 
1.1. Retroreflective RPMs (RRPMs): 

• Purpose: Complements other pavement markings. 
• Benefits: Particularly effective in discouraging wrong-way driving and enhancing 

highway delineation. 
• Research: Numerous studies (2-6) have emphasized their crucial role in preventing 

head-on collisions during nighttime and adverse weather conditions. 
1.2. Snowplowable RPMs: 

• Purpose: Designed to provide enhanced visibility during wet and nighttime conditions. 
• Benefits: Especially beneficial in regions with heavy snowfall, minimizing RPM 

damage and enhancing highway safety (7, 8). 
• Special Feature: Rumble insert markers, part of these RPMs embedded in rumble 

strips, have proven to mitigate damage while improving nighttime centerline 
delineation (9). 

1.3. Post-Mounted Delineators: 
• Research: Investigations by the Kansas Department of Transportation (10) have 

highlighted the safety effectiveness of these delineators. 
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• Benefits: They significantly reduce lane departure crashes and fatal/injury incidents on 
curved rural two-lane roads. 

2. Physical Attributes: Shape, Size, and Materials: 
• Common Types: Standard 4 x 4-in. amber 2-sided markers. 
• Material Variants: Include plastic, ceramic, thermoplastic paint, glass, and 

occasionally metal. RPMs resist submersion, with non-retroreflective ceramic buttons 
serving as supplementary markers (11). 

• Special Type: Surface-Mounted Traffic Spikes, a metallic RPM variant, deter wrong-
way driving. 

• Material Benefits: All these materials enhance retroreflective capability (12, 13), but 
they differ in durability, cost, and retroreflective intensity. 

3. Color Coding: 
• Guidelines: White and yellow markers generally indicate the middle and sides of roads, 

corresponding to road stripe colors. 
• Driver Comprehension: RPMs aid in comprehending directional messages in the 

pavement system (14, 15). 
• Specific Markers: Red or yellow markers are placed at locations where wrong-way 

drivers would encounter them. Two-way red markers indicate no-entry zones, green 
markers show permissible routes and blue markers represent fire hydrant locations, a 
standardized practice. 

This study focused on an 8x8 in. ceramic yellow marker functioning as a raised channel marker. 
The marker was dual sided, emitting amber light, and was situated at the center of the roadway. 
Material acquisition and installation costs per location amounted to approximately $5000. These 
markers have been set up in two distinct locations within Auburn City. Notably, of the two sites, 
only one has video documentation before the marker’s installation. Therefore, the focus of this 
paper will be limited to that specific site. While previous research (16-18) has extensively 
examined the safety aspects of diverse RPM variants, a notable scarcity exists in studies evaluating 
RPM efficacy in mitigating driveway left turns within small urban locales. 

METHODS 

A comparative analysis of driver behavior was conducted to determine the effectiveness of ceramic 
raised channel markers in deterring illegal left turns. Observations were made on a typical weekday 
in September 2021, before marker installation, and again in February 2022, after installation. These 
markers were set up towards the close of 2021. It's notable that most residents at the Uncommon 
Apartment are students, with leases typically expiring in late July. This suggests a consistent driver 
population across the study periods, ensuring drivers had at least two months to familiarize 
themselves with the new traffic feature. Figure C-4 offers a view of these markers from a driver's 
vantage point, taken at the exit of Uncommon Apartments on West Glenn Avenue, Auburn, AL. 
This exit operates on a right-in, right-out system, complemented by a raised channelized island at 
the driveway. To determine any statistically significant shifts in driver behavior, a Signed Rank 
Wilcoxon Test was utilized. The study primarily delved into discerning discrepancies in traffic 
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volumes, conflict rates, and trajectories of left-turning vehicles between the two observation 
periods. 

      

Figure C-4 Driver’s View of Stop Sign and Raised Markers 

Wilcoxon Signed-Rank Test 

To assess the significance of changes between the 'before' and 'after' periods in this study, the 
Wilcoxon Signed-Rank Test was employed. This non-parametric statistical test compares two 
related or matched samples to determine if there are differences in their population mean ranks. It 
was chosen due to the non-normal distribution of the data and the presence of paired samples — 
measurements taken before and after an intervention within a consistent driver population. 

The study's data included paired observations across several categories: the number of vehicles 
exiting the driveway, illegal left turns, right turns to the left-turn lane, and standard right turns 
made by vehicles, along with the number of traffic conflicts resulting from illegal left turns. To 
control potential bias associated with varying traffic volumes, the total number of vehicles exiting 
the driveway was first quantified. Subsequently, all drivers' exit choices, including illegal left 
turns, right turns, and right turns into the left-turn lane, were meticulously recorded. 

Given that the study site features two exits, the analysis was designed to determine whether there 
is a statistically significant reduction in illegal left turns and a corresponding increase in right turns 
following the implementation of raised ceramic channel markers. Such findings indicate that the 
intervention effectively deters illegal left turns from the exit driveway. Additionally, the number 
of traffic conflicts arising from illegal left turns was included as a metric to evaluate the traffic 
safety impact of the new treatment. It is important to note that the measurement of traffic conflicts 
relied on a subjective assessment without the aid of advanced technological tools. Conflicts were 
identified by observing vehicles' temporal and spatial proximity, using parameters like post-
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encroachment time (PET) and headway, following the methodologies outlined by previous studies. 
Evasive actions such as braking and swerving were also considered. 

Fisher’s Exact Test (for distribution of vehicle types) 

To evaluate the differences in the distribution of vehicle types between the before and after periods, 
Fisher's Exact Test was utilized. This test is particularly adept at examining the association 
between two categories of categorical data represented in a contingency table and is especially 
beneficial when dealing with small sample sizes. Fisher's Exact Test was chosen due to the notably 
reduced sample sizes in some vehicle categories in the after-period. This necessitated a more 
accurate assessment method than the Chi-square test for these conditions. 

The dataset comprised counts of different vehicle types (PC, SUV, Pickup-Truck) observed during 
both the before and after periods. The primary hypothesis tested was whether there was a 
significant shift in the proportions of these vehicle types from the before period to the after period. 
This analysis aimed to determine if implementing specific measures or changes in the environment 
had a quantifiable impact on the distribution of vehicle types at the study site. 

DATA COLLECTION 

 The research team installed a traffic camera at a designated study site over three 
consecutive weekdays, from Monday to Wednesday. This installation was for periods before and 
after raising channel markers were placed. Data collection covered the pre-installation period 
(September 13-15, 2021) and the post-installation period (February 7-9, 2022). To ensure 
consistent data, 20-hour video recordings, including peak traffic hours, were used for both periods. 
The study involved manually observing and recording the exiting behaviors of vehicles from a 
driveway. 

Drivers' decisions were categorized into right turns, right turns into the left lane, and left turns. 
Data was methodically recorded in 15-minute intervals (19, 20), providing 79 valid data points for 
each period. This interval length aligns with recommendations from previous traffic studies. 

The study also focused on vehicles making illegal left turns, categorized by vehicle type: passenger 
cars, SUVs, and pick-up trucks. Instances of conflict due to these illegal turns were recorded every 
15 minutes. Detailed summaries of total and average data for both periods are shown in Tables C-
1 and C-2. 
 
Table C-1 Driver Behaviors of Recorded Data for Before and After Periods 

 Right Turns Right Turns to Left Lane Illegal Left Turns 
Before Period Total 313 44 186 
After Period Total 274 104 26 
Before Period Average 
per 15 Minutes 4.0 0.6 2.4 
After Period Average per 
15 Minutes 3.5 1.3 0.3 
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Table C-2 Vehicle Types of Recorded Data for Before and After Periods 

 Illegal Left Turn Vehicle Types 
 Passenger Car SUV Pickup Truck 
Before Period  41 131 14 
After Period  8 15 3 

 

Three distinct illegal left turn trajectories were identified, illustrated in Figure C-5: 

• Type 1 Left Turn: Drivers merged two lanes (through and left turn only lanes) and crossed 
the raised channel markers. 

• Type 2 Left Turn: Drivers turned into the opposite left turn only lane, and went beyond 
pavement markers, and merged into the desired lane. 

• Type 3 Left Turn: Drivers make an illegal turn, leading to an incorrect exit from the island. 
• These classifications provide a detailed understanding of driver behaviors and methods of 

executing illegal left turns. 

 

Figure C-5 Three Types of Illegal Left Turn Trajectories 

Additionally, two primary conflict scenarios were identified from these illegal turns: 

Conflict Scenario 1: Illustrated in Figure C-6, these occur when a vehicle exiting the driveway 
makes an illegal left turn, forcing oncoming vehicles in the through or left turn lane to brake or 
stop, risking head-on or T-angle crashes. 
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Conflict Scenario 2: This involves vehicles making illegal left turns, causing opposite lane vehicles 
to brake or stop, increasing the risk of sideswipes or rear-end crashes. 

 

Figure C-6 Two Scenarios of Conflict 

 

DATA ANALYSIS & RESULTS 

Statistical Tests 

Wilcoxon Signed-Rank tests were performed to assess the impact of ceramic raised channel 
markers on deterring illegal left-turn movements. Traffic volumes for total, right turn, right turn to 
left-turn lane, and illegal left turn were compared pre- and post-installation. The significance level 
was set at α=0.05. Data were derived from 79 paired 15-minute segments of 20-hour video footage, 
as described in the methodology. The outcomes are summarized in Table C-3: 

Table C-3 Hypotheses and Test Results 

Outcome 
Measure 

Sample Size 
(N) 

Shapiro-Wilk Test 
P-value 

Test Statistic 
(W) 

Wilcoxon Test 
P-value 

95% CI for Median 
Difference 

Total Traffic  79 0.002 1385 2.63e-04 (0, 3) 
Illegal Left 
Turn  79 1.35e-06 1401.5 5.32e-10 (1, 3) 
Right Turn 79 0.007 931 0.176 (-1, 1) 
Right Turn to 
Left-turn Lane 79 2.04e-07 87.5 5.29e-06 (-1, 0) 

 

All Shapiro-Wilk test p-values were below 0.05, indicating non-normal distribution and 
justifying the use of the Wilcoxon test. The Wilcoxon test revealed a statistically significant 
decrease in total and illegal left turn traffic volumes post-treatment, as evidenced by their p-values 
and positive median difference intervals. Specifically, the confidence interval for illegal left turns 
(1 to 3) strongly suggests reducing these movements. In contrast, right turn volumes showed no 
significant change (p-value = 0.176; CI = -1 to 1). However, right turn to left-turn lane movements 
significantly increased post-treatment (p-value = 5.29e-06; CI = -1 to 0). 
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These results indicate that installing raised channel markers successfully reduced illegal 
left turns, with a notable shift in driver behavior towards right turn to left-turn lane movements. 
This outcome demonstrates the effectiveness of the implemented traffic control measure. 

 

Figure C-7 Distribution of Types of Vehicles Making Illegal Left Turns 

 

Figure C-7 presents the distribution of vehicle types executing left turns before and after installing 
raised channel markers. Using Fisher's Exact test, the analysis yielded a p-value of 0.418. This 
suggests no significant change in the proportions of different vehicle types making illegal left turns 
after the installation compared to before. This outcome was somewhat unexpected, considering 
the raised channel markers' design, which was anticipated to particularly deter drivers of standard 
passenger cars, such as sedans, coupes, and hatchbacks, due to their height. 

However, this result could be attributed to certain drivers maneuvering around the raised markers 
before merging into the desired lane. Additionally, the limited duration of data collection, 
encompassing only 20 hours before and after the installation, might have affected the robustness 
of these findings. A more extended observation period might clarify the markers' impact on 
different vehicle types. 

Descriptive Statistics 

Descriptive statistics were employed to evaluate changes in the distribution of left turn trajectories 
and conflict types associated with left turns before and after the installation of raised channel 
markers. The goal was to discern any shifts in the frequency and nature of these maneuvers and 
conflicts. 

From Table C-4, there was a notable shift in the distribution of illegal left turn trajectories 
following the installation of the raised channel markers. Specifically, the Type 1 trajectory, which 
was overwhelmingly predominant before the intervention, decreased significantly afterward. In 
contrast, Type 2 trajectory, which was initially rare, became the most common type of illegal left 
turn post-intervention. This shift suggests that drivers frequently making illegal left turns now opt 
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for riskier maneuvers, such as a brief stint of WWD, rather than crossing over the raised channel 
markers and experiencing a bump. 

Regarding conflict scenarios, while Scenario 1 decreased, it remained the more common in both 
periods. Scenario 2, though initially less frequent, saw a relative increase in the after period. This 
change could be attributed to the raised channel markers adding complexity to the decision-making 
process for drivers attempting illegal left turns. Specifically, as more drivers shifted to the Type 2 
trajectory, they needed to pay increased attention to oncoming traffic on their left, potentially 
leading to a higher likelihood of conflicts with vehicles on their right. By complicating the 
maneuver, the raised channel markers appear to have inadvertently increased the risk of certain 
types of conflicts. 

Table C-4 Comparison of Illegal Left Turn Trajectories and Conflict Types in Before/After  

 Before Period After Period 
Illegal Left Turn Trajectory     
Type 1 181 97% 7 27% 
Type 2 4 2% 18 69% 
Type 3 1 1% 1 4% 
Conflict Scenario     
Scenario 1 30 91% 6 60% 
Scenario 2 3 9% 4 40% 

 

CONCLUSIONS AND RECOMMENDATIONS 

This research analyzed the effects of a ceramic raised channel marker on driving behavior at an 
unsignalized intersection with a restricted left turn design in Auburn, Alabama. According to the 
data collected and the statistical tests, the following can be concluded: 

1. Effectiveness of Ceramic Raised Channel Markers: The deployment of raised channel 
markers successfully decreased the total traffic volume and, more notably, the number of 
illegal left turns and increased right turn to left turn lane maneuvers.  

2. Vehicle Type Distribution: Contrary to expectations, there’s no significant change in the 
distribution of vehicle types making illegal left turns post-installation. This finding was 
unexpected, particularly as the markers were assumed to deter standard passenger vehicles 
more effectively. However, this could be due to drivers adapting their maneuvers to avoid 
markers or limitations in the duration of data collection. 

3. The Shift in Driver Behavior: Post-installation, there was a noticeable change in driver 
behavior, especially in the type of left turn trajectories. The predominant pre-treatment 
Type 1 trajectory saw a substantial decrease, while Type 2 trajectory, previously rare, 
became the most common post-treatment. This shift suggests drivers’ preference for riskier 
maneuvers, such as brief WWD, to avoid the discomfort or challenge posed by the raised 
markers. 

4. Impact on Conflict Scenarios: While Scenario 1 conflicts diminished, they remained the 
most common type in both periods. Scenario 2 conflicts, on the other hand, increased 
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relatively in the post-treatment period. This indicates that while the markers dissuaded 
straightforward illegal left turns, they introduced complexities in decision-making for 
drivers, leading to an increased likelihood of certain conflict types. 

In conclusion, this study emphasizes the importance of ceramic raised channel markers treatment 
in deterring illegal left turns from a driveway on one specific urban street. These findings 
underscore the importance of considering unintended behavioral adaptations when implementing 
traffic control measures. For a more comprehensive understanding, further extended observation 
and analysis would be beneficial, particularly to assess the long-term impact on different vehicle 
types and to solidify these initial observations. 

LIMITATIONS AND FUTURE STUDIES 

 Limitations of this study include the lack of multiple sites collected before and after 
installation. Future research could be done at multiple locations, specifically ones with a more 
random location, to prevent repeat drivers at the intersection. In addition, different traffic control 
devices prohibiting left turns could be studied to compare the effectiveness to cost for each.  
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ABSTRACT 
Wrong-way driving (WWD) crashes pose a significant threat to road safety, often resulting in 
severe injuries and fatalities. Traditional WRONG WAY and DO NOT ENTER signs have 
limitations in attracting and forewarning WWD drivers, especially under the influence or on wide 
one-way roads. This study evaluates the effectiveness of light-emitting diodes (LEDs) that enhance 
Blinker Wrong Way signs in deterring WWD incidents. These signs, featuring flashing LEDs as 
auxiliary devices, were installed on a one-way street on the Auburn University campus. Data was 
collected over 162 days before and 122 days after removing the flashing LEDs on Wrong Way 
signs. Statistical analyses reveal a significant improvement in WWD behavior, with turnaround 
rates increasing by 15 % when the flashing LEDs were activated. Implementing LED-enhanced 
Blinker Wrong-Way signs could offer a valuable approach to mitigating WWD incidents and 
enhancing road safety. 
 
Keywords: Flashing LEDs, Wrong-Way Signs, Before and After Study, One-Way Street, 
Effectiveness
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INTRODUCTION 
Wrong-way driving (WWD) is defined as the act of driving a motor vehicle against the direction 
of traffic, typically occurring on one-way streets or divided highways. While WWD crashes occur 
less frequently than other types of crashes, they tend to be more severe, resulting in a higher 
likelihood of injuries and fatalities (1). To address this problem, policymakers and agencies require 
access to comprehensive resources that offer detailed information about WWD countermeasures, 
including their effectiveness and costs, to make informed decisions on suitable systems for their 
specific locations (2). Over the past few decades, various states and local agencies have proposed, 
implemented, and tested different engineering countermeasures to mitigate WWD incidents. 
 Recently, Departments of Transportation (DOTs) have increasingly implemented 
WRONG WAY signs with flashing LEDs around the border. For instance, in 2012, the Illinois 
Center for Transportation analyzed wrong-way crashes on freeways in Illinois over a six-year 
period and recommended installing the enhanced WRONG WAY signs at high-frequency crash 
locations (3). The WisDOT used solar-powered WRONG WAY signs with flashing LEDs around 
the border during the twilight hours at two ramps at the end of 2012 (4). In 2011, the Harris County 
Toll Road Authority (HCTRA) spent approximately $38,788 per mile on the wrong-way driver 
detection system, and flashing LED signs became one of the important features (5). In 2011, 
TxDOT implemented two signs on each exit ramp for the 15-mile selected US 281 corridor from 
I-35 to just north of Loop 1604 (the far north central side of San Antonio) (6). 
 

 

Figure D-1 Wrong-Way Alert System layout plan 

Correct Traffic Flow 
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 Typically, these flashing LEDs are activated by advanced Intelligent Transportation 
Systems (ITS) detection technologies, such as radar, LiDAR, or cameras (2,3). The flashing LED 
on the WRONG WAY sign in this study is activated by a radar detector (at the detector pole), as 
shown in Figure D-1. Once it detects a WWD movement, the flashing LEDs around the three 
WRONG WAY signs (first one at the detector pole, second pair at the red points) border begin to 
blink. A notification alert will immediately be sent to a linked website, and two monitors will start 
to record 2-minute short videos from the front and back of wrong-way vehicles and 15 continuous 
images for officials to check. 

The objective of this study is to quantify the effectiveness of the flashing LEDs around the 
WRONG WAY signs border on mitigating WWD incidents on a one-way road (Heisman Dr.) 
around the Auburn University football stadium. Chi-squared and Welch’s t-test were conducted to 
determine how the results differed after the LED flashing was manually turned off. The collected 
data, from 2021 to 2023, were captured by the Wrong-Way Alert System and first recorded as 
images and 2-minute short video files through a BlinkLink® Remote System Management, then 
manually labeled into various categories. The results of this research provide insights into the 
effects of flashing LEDs on correcting WWD incidents on one-way roads. By virtue of the fact 
that many state DOTs are currently putting ITS into practice, the outcome of this research effort 
may contribute as a significant resource for the economic appraisal before installation. 
 
LITERATURE REVIEW 
Traditional WRONG-WAY, DO-NOT-ENTER, ONE-WAY signs are widely deployed in 
different facilities and roads. Although transportation agencies keep enhancing these traditional 
signs by changing the signs mounting height, adjusting the signs’ size, improving the retro-
reflectiveness of the sign, etc. (7,8), they may still not be as effective in alerting impaired drivers, 
especially during nighttime hours. As most WWD incidents occur during nighttime and are often 
caused by drivers under the influence of alcohol (9-12), more attractive countermeasures for those 
DUI drivers have been pointed out in recent decades. 

In 2015, Pour-Rouholamin (13) in his study found that using border-illuminated signs 
could improve 15.4% the visibility of wrong-way signs; Adding a strip of retroreflective material 
to the sign support could increase 61.5%; Adding a red or yellow flashing beacon could increase 
7.7%.  

In 2022, Yukun Song (14) conducted a driving simulator study by analyzing drivers’ 
behavioral data collected from the driving simulator and eye-tracking device. The result found that 
when highly intoxicated drivers faced a single traffic control device, flashing LED WW signs 
deterred more WWD events than regular WRONG WAY signs. Similarly, in 2018, Melisa Finley 
(15) conducted a simulator study and concluded that normal-size WRONG WAY signs equipped 
with flashing red LEDs around the border were less difficult for drunk drivers to locate the signs. 
In 2018, Imrul Kayes (16) found a significant reduction in WWD events in South Florida due to 
the implementation of LED signs. For instance, a 49% reduction in WWD 911 calls and a 38% 
reduction in combined WWD 911 calls. A similar study had been done by the Texas Transportation 
Institute for LED signs installed in Texas, which found a 38% reduction in WWD 911 calls (17).  

Traditional countermeasures have seen improvements over time, but their effectiveness in 
alerting impaired drivers, especially during nighttime, remains limited. In contrast, Intelligent 
Transportation Systems (ITS) offer a more innovative approach to address this challenge. 
Examples of ITS WWD countermeasures include “Wrong Way” signs equipped with either LEDs 
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or Rectangular Flashing Beacons (RFBs), detection devices, cameras, and communication 
capabilities with Traffic Management Centers. When a wrong-way vehicle is detected, the LEDs 
or RFBs flash to alert the wrong-way driver, and images of the wrong-way vehicle are taken and 
sent to the TMC (18). The Washington State DOT implemented a system to warn and monitor 
wrong-way drivers using LEDs, flashers, and video cameras (19). The Arizona DOT installed 
thermal wrong-way vehicle detection and warning systems at exit ramps on 15 miles of I-17 
between I-10 and State Road (SR) 101 (20). The Rhode Island Department of Transportation 
(RIDOT) installed advanced wrong-way detection systems at 24 locations across the state. These 
systems alert the wrong-way driver, police, and other nearby motorists in the area of a potential 
wrong-way driver (21). Taken as a whole, these results confirm that ITS is an effective strategy 
for addressing WWD at a system level. 

Previous research shows that WWD crashes were severe and hard to eliminate with 
traditional signs. LED signs and advanced WWD ITS technologies were recently implemented to 
help deter WWD incidents and the results were remarkable. However, a comparison experiment, 
especially the before and after cases study has not been conducted due to the difficulties in 
collecting before-period data. This paper will evaluate the performance of the flashing LEDs 
around the WRONG WAY signs’ border on deterring WWD. Approximately 200 WWD incident 
data were collected and analyzed from before and after periods, respectively to evaluate the 
effectiveness of flashing LEDs using various methods. 
 
METHODOLOGY AND DATA COLLECTION 
Before and After Cases Definition 
The study aims to evaluate the effectiveness of LED-enhanced blinker WRONG-WAY signs in 
deterring WWD incidents. The study was conducted in two periods. The before period of the study 
lasted for 162 days, from May 1st, 2022, to February 9th, 2023, when the LED-enhanced blinkers 
were fully operational. The ITS detection system automatically collected data on WWD incidents 
in this period, and researchers then manually reviewed and categorized the data for further analysis.  

The after-period began on February 10th, 2023, and lasted for 122 days until June 18th. 
This period was initiated once enough data from the before period had been collected, reviewed, 
and deemed sufficient for conducting a robust before-and-after comparison experiment. In the 
after-period, the LEDs on the WRONG-WAY signs were manually turned off by the researchers 
to test the effects of the absence of LED-enhanced blinkers on WWD incidents (as shown in Figure 
D-2). This change was the primary difference between the two periods, while all other ITS system 
functions remained operational. The categorization and analysis of the after-period data were 
conducted in the same way as the before-period data. 
 
Data Categorization Process 
In this study, the BlinkLink remote system management was used to identify and categorize 
various incidents detected by the Wrong Way Alert System. When the radar detector senses a 
WWD movement, the detection and confirmation cameras are triggered, recording a 2-minute 
short video, respectively. Figure D-3 shows the WWD ITS configuration, which includes a radar 
sensor, detection and confirmation cameras on the top, LED enhanced Wrong Way sign, an 
illuminator, and a system control cabinet.  

The database encompasses incident reports for a range of entities, including vehicles, 
pedestrians, bikes, scooters, skateboards, and emergency response vehicles. Each report includes 
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accurate timestamps and date information. All incidents were classified into four distinct 
categories: Continued Wrong-Way, Self-Corrected Wrong-Way, Authorized Motor Vehicles 
(which includes Emergency Response and Maintenance vehicles), and Non-Motor Vehicles 
(including pedestrians and bicycles). Analysts followed specific criteria to ensure accurate 
classification, which will be detailed in the following paragraph.  

 

  
(a)                                                                     (b) 

Figure D-2 (a) WRONG WAY sign with flashing LEDs around the border, and (b) 
Flashing LEDs were turned off 
 

Figure D-3 Configuration of the Wrong-Way Alert System 

Pedestrians and bicycles were easily distinguishable, and the presence of the Auburn 
University Logo identified maintenance vehicles. Emergency response vehicles, such as police 

Radar Detector 
&           

Cameras 

Three WRONG WAY signs with 
flashing LEDs around the border 

Correct Traffic Flow 
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cars, fire trucks, and ambulances, were also recognizable. The system monitored two fundamental 
movements: "Continued Wrong-Way" and "Self-Corrected Wrong-Way." For wrong-way 
maneuvers, Continued Wrong-Way is defined as the vehicle that has continued through with no 
evidence of self-correction, and Self-Corrected Wrong-Way is the vehicle that has been visually 
confirmed as self-correcting (as shown in Figure D-4a).  

It's important to note that this research focuses on WWD incidents and the behavior of 
WWD drivers. Manual notes are essential for recording crucial details, such as whether the vehicle 
is braking (as illustrated in Figure D-4b) and the duration of their self-correction (turnaround 
time). 

 

 
(a) 

  
(b) 

Figure D-4 (a) Self-Corrected Wrong-Way vehicles turnaround movements, and (b) Braking 
and not braking vehicles in Continued Wrong-Way vehicles 
 
Verification of Radar Detection Results 
To ensure the radar system’s reliability in detecting all WWD incidents, the research team 
implemented a manual verification process. On a specific high-traffic day (GameDay), when a 
football game was held at Auburn Stadium on September 3rd, 2022, a portable traffic camera was 
employed to record 72 hours of footage at the study location. GameDays are characterized by a 
substantial increase in both traffic and visitor volume, often resulting in a higher number of WWD 
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incidents. Testing the system's accuracy and reliability under these peak conditions provides a 
robust evaluation of its performance. 

Researchers meticulously reviewed the 72 hours of recorded footage, searching for any 
potential WWD incidents that might have been missed by the radar system. This manual review 
was an exhaustive process, ensuring the absence of any unidentified events during the recording 
period. The review results indicated that the system effectively captured all relevant incidents, 
demonstrating the radar system’s reliability in identifying WWD incidents. 
 
Statistical Hypothesis Test 
To determine if it is statistically significant based upon a pre-defined threshold probability (α), 
Chi-Squared tests and Welch's t-test examine the difference between daytime and nighttime WWD 
incidents frequency and before-after cases WWD self-correction rates. The fundamental equations 
for the test are shown in Equation D-1, using Welch’s formula to calculate the degrees of freedom 
for the t-distribution. 
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where: 

 𝜎𝜎𝑑𝑑2is the population variance. 
R and R Studio software was applied to compute the p-value automatically. The confidence 

level in this study was set as default 95 percent (i.e., p-value equals 0.05) for the two-tailed t-test. 
Welch’s t-test is designed for unequal population variance, but the assumption of normality 

is maintained. A paired t-test not only requires normality but also needs the dependent variable to 
be continuous, and the observations are independent of one another. Shapiro-Wilk test was applied 
to ensure the normality for this study. Wilcoxon test was also applied to this study due to the 
unpaired sample size and non-normal distribution. 

 
Daytime and Nighttime Definition 
It needs to be noted that different studies have used varying definitions of daytime and nighttime 
intervals. For example, Zhang et al. (22) defined daytime as the period from 6 a.m. to 5:59 p.m., 
while Liu et al. (23) focused on North Carolina's crashes and defined daytime as 6 a.m. to 5 p.m. 
To ensure consistency in comparing results across studies, researchers have opted to use the 
definition of daytime as 6 a.m. to 5:59 p.m. for conducting paired t-tests. However, it's important 
to be aware of these differences in definitions when interpreting study findings. 
 
RESULTS AND DISCUSSION 
Descriptive Statistics for Incident Analysis 
Descriptive statistics were employed to analyze the dataset after the data-cleaning process. This 
process involved removing unresolved data, such as those incidents that had not been manually 
checked or those not continuously collected due to power shutdowns during campus summer and 
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winter vacations. GameDay incidents were also removed from this set, given that these occasions 
experience a significant surge in traffic volume compared to regular weekends. These GameDay 
incidents were segregated and analyzed separately to better understand their distinct characteristics 
and impacts. 

Table D-1 provides an overview of the overall data, classified into five categories captured 
on weekdays and weekends. The detection accuracy, calculated by dividing the sum of all detected 
vehicles by the total incidents, was 50%. It's crucial to note that this figure represents the 
percentage of incidents correctly identified and classified by the system. Figure D-5 displays all 
the incidents represented in a bar chart format.  
 
Table D-1 Overall incidents distribution 

Resolutions Mon Tue Wed Thu Fri Sat Sun Total 
Continued Wrong-Way 12 14 17 14 26 66 32 181 
Self-Corrected Wrong-Way 8 10 6 3 4 11 9 51 
Total Wrong-Way Incidents 20 24 23 17 30 77 41 232 
Authorized Motor Vehicles 86 88 71 88 125 136 44 638 
Non-Motor Vehicles 108 102 140 115 137 143 125 870 
Total 214 214 234 220 292 356 210 1,740 

 

 
Figure D-5 Overall incidents distribution 

 
Based on the classification of incidents and manual observation of vehicle brake lights 

during the before and after periods, researchers conducted a brief comparison of the turnaround 
rate and braking rate. Turnaround rate refers to the percentage of wrong-way drivers who corrected 
their course, while braking rate represents the proportion of wrong-way drivers who visibly slowed 
or stopped their vehicles. 

Table D-2 presents the results, which indicate a decrease in the turnaround rate from 28% 
in the before period to 13% in the after period. This suggests that the LED-enhanced signs may 
have encouraged more drivers to correct their direction. However, due to a significant difference 
in the number of incidents between the two periods, a statistical test is required to confirm the 
significance of this turnaround rate difference. 
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Similarly, the difference in the braking rate between the two periods was not immediately 
apparent through simple descriptive statistics. This implies that further statistical analysis is 
necessary to understand whether the LED-enhanced signs influenced braking behavior. 

 It is worth noting that the average turnaround time of 55 seconds only represents the 
average of 25 self-corrected incidents. Some WWD drivers promptly returned to the correct 
direction as soon as they noticed the flashing LED alert, resulting in a negligible shorter average 
turnaround time. 

 
Table D-2 Before and after turnaround rate comparison 

 Before Period After Period 
Continued Wrong-Way 98 83 
Self-Corrected Wrong-Way 38 13 
Total Nuber of Wrong-Way Incidents 136 96 
Turnaround Rate 28% 13% 
Change in Turnaround Rate 15% 
Braking Rate 89% 90% 
Avg Turnaround Time 55 seconds 

 
WWD Incident Frequency During Before and After Periods 
As mentioned in the previous section, the descriptive statistics found that there could be differences 
in before and after periods of turn-a-round rate and braking rate. The Chi-Squared Test was 
conducted to statistically calculate whether significant differences existed before and after the 
flashing LEDs were turned off. The test results are presented in four hypotheses, which the 
following are discussed in more detail: 

To conduct the Wilcoxon test, a null hypothesis (i.e., the number of true WWD frequencies 
is not statistically different between before and after periods) was considered. Considering a 
significance level of 95 percent, the null hypothesis is rejected in favor of an alternative. Due to 
the rare and random occurring characteristics of WW incidents, the sample size for the before 
period lasted 162 days, and the after period lasted 122 days. The WWD frequency means the 
number of the sum of continued WWD and self-corrected WWD incidents per day. According to 
the obtained results (Table D-3), a p-value larger than 0.05 indicates no significant difference in 
WWD frequency between the before and after periods. That means although the before and after 
periods were not the same date of different years, the probability of true WWD incidents occurring 
per day is the same, which minimizes the bias for using different dates. 

 
Table D-3 Hypothesis and test results of WWD incidents frequency of before and after 
periods 

 Before Period After Period 
Continued Wrong-Way 0.84 0.79 
Self-Corrected Wrong-Way 162 122 
w 5913.5 
p-value 0.545 
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Turnaround Rate for the Before and After Periods 
As shown in Table D-4, a before and after period matrix was formed. As was mentioned earlier, 
the turn-around rate in the before period is 14% higher than the after period. The obtained p-value 
(0.0144) is less than the commonly used significance level of 0.05. This indicates that there is a 
statistically significant difference in the turnaround rate before the flashing LEDs turn off 
compared to the signs without the assistance of flashing LEDs. In other words, the presence of 
flashing LEDs appears to have a considerable impact on the turnaround rate, leading to higher 
rates compared to situations where such LEDs are not used. 
 
Table D-4 Hypothesis and test results about number of Self-Corrected WWD incidents for 
the before and after periods 

 Before Period After Period 
Continued Wrong-Way 98 83 
Self-Corrected Wrong-Way 38 13 
p-value 0.014 

 
Braking Rate for the Before and After Periods 
As for the braking rate, according to the obtained results (Table D-5), the p-value is higher than 
0.05 which indicates that there’s no significant difference in braking rate between before and after 
periods. 

 
Table D-5 Hypothesis and test results of braking rate for the before and after periods 

 Before Period After Period 
Continued Wrong-Way 49 75 
Self-Corrected Wrong-Way 6 8 
Braking Rate 11% 10% 
p-value 1 

 
Turnaround Rate for Daytime and Nighttime 
Table D-6 presents the results of the hypothesis test, which assesses the impact of flashing LEDs 
on the turnaround rates of WWD incidents based on daily time periods. The analysis reveals a 
notable 19% difference between the before and after daytime periods when comparing the presence 
of flashing LEDs on signs. The obtained p-value (0.0130) is less than the significance level of 
0.05, indicating that the turnaround rate during the daytime is significantly higher when the signs 
are equipped with flashing LEDs compared to signs without flashing LEDs. During the nighttime, 
there is a 7% improvement in the turnaround rates with the presence of flashing LEDs. However, 
the p-value (0.6228) is higher than the significance level, suggesting that there is no significant 
difference in the turnaround rates between the presence and absence of flashing LEDs during 
nighttime. These findings emphasize the effectiveness of flashing LEDs on signs in improving the 
turnaround rates of WWD incidents during both daytime and nighttime hours, with a more 
pronounced impact during the daytime.  
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Table D-6 Hypothesis and test results of Self-Correction rate for daytime and nighttime 
 Before Period Daytime After Period Daytime 
Continued Wrong-Way 60 54 
Self-Corrected Wrong-Way 26 7 
Turnaround Rate 30% 11% 
Change in Turnaround Rate 19%  
p-value 0.013 
 Before Period Nighttime After Period Nighttime 
Continued Wrong-Way 38 29 
Self-Corrected Wrong-Way 12 6 
Turnaround Rate 24% 17% 
Change in Turnaround Rate 7%  
p-value 0.623 

 
Figure D-6 provides a comprehensive comparison of WWD incidents between GameDay 

weekends and regular weekends. Out of 4 GameDay weekends (8 days total), there were 128 
continued WWD incidents, significantly higher than the 47 incidents observed during 25 normal 
weekends (50 days). Conversely, self-corrected WWD incidents showed an opposite trend, with 
only three instances recorded during GameDay weekends compared to 11 during normal 
weekends. This indicates a significantly lower turnaround rate of 2.3% during GameDay events, 
compared to 25.5% on normal weekends. 

Although the likelihood of encountering an intoxicated driver was higher on GameDay 
weekends, a closer examination of Table D-7 reveals a remarkable difference in the turnaround 
rates based on the time of day. During the nighttime, the turnaround rate was substantially higher 
at 8%, compared to the daytime result of 1%. However, even during the GameDay weekends, the 
braking rates remained consistently high at around 94% during the daytime and 100% during the 
nighttime. This implies that flashing LEDs effectively captured the attention of wrong-way drivers, 
prompting them to brake and slow down. 

In summary, the data highlights the significance of GameDay weekends as a unique 
scenario with a higher incidence of continued WWD incidents but a lower turnaround rate. The 
implementation of flashing LEDs demonstrated its effectiveness in improving driver response, 
leading to higher braking rates, and thereby contributing to enhanced road safety during both 
normal and GameDay weekends. 

 
Table D-7 GameDay and normal weekends daytime/nighttime comparison 

 Game Day Weekends Normal Weekends 
 Daytime Nighttime Daytime Nighttime 
Continued Wrong-Way 101 24 27 8 
Self-Corrected Wrong-Way 1 2 10 2 
Turnaround Rate 1% 8% 27% 20% 
Did brake 95 24   
Did not brake 6 0   
Braking Rate 94% 100%   
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Figure D-6 GameDay and normal weekends comparison 
 
CONCLUSIONS 
This research strived to analyze the effects of the flashing perimeter LEDs on WWD movements 
with the assistance of advanced WWD ITS detection technologies at a one-way road in Auburn, 
Alabama. According to the data collected and the statistical tests, some of the key findings are 
listed as follows: 

• The implementation of flashing LEDs has led to a noticeable decrease in continued WW 
movements, demonstrating a 15% increase in the turnaround rate when functional flashing 
LEDs are present around the border of the WRONG WAY signs. 

• Compared to the traditional WRONG WAY signs without flashing LEDs, a significant 
reduction (19%) in turnaround rate in the daytime was found due to the implementation of 
flashing LEDs. However, contrary to expectations, the nighttime comparison did not yield 
a statistically significant difference, despite the anticipation of a significant impact since 
flashing LEDs command more attraction to impaired drivers.  

• There was no observed statistically significant difference in the braking rate between 
flashing LEDs being turned on or off, indicating that the duration of the experiment did 
not have a notable impact on the braking behavior. 

• The overall accuracy of the WWD radar detection stands at 50%, indicating that half of 
the detected objects were motor vehicles, while the remaining half consist of pedestrians, 
bicycles, scooters, and other non-motor vehicles. The system's lower accuracy can be 
attributed to the limitation of the radar sensor, which struggles to accurately identify 
objects. However, recent advancements have introduced thermal and thermal-radar 
sensors as potential solutions to address this issue. 

• Compared to regular weekends, GameDay weekends exhibited a significant increase in 
WWD movements, whereas self-corrected incidents were significantly lower than regular 
weekends. The flashing LEDs demonstrated their potential effectiveness in deterring 
intoxicated drivers’ WWD movements. 
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 The system operates continuously, relying on a consistent supply of AC power and the 
internet, enabling continuous data collection. This presents the opportunity for ongoing updates 
and refinements in future research based on the study's findings. Additionally, by the end of this 
year, the system will gather data for the same period of six months, both before and after the case. 
This aspect is particularly significant as it allows for a reduction in testing bias by comparing data 
collected during the same month in both 2022 and 2023. 
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