

Research Report

STRUCTURAL PAVEMENT DESIGN ADVANCEMENT IN ALABAMA – PHASE I: SOFTWARE DEVELOPMENT AND DESIGN INPUT ASSESSMENT

Submitted to

The Alabama Department of Transportation

Prepared by

Dr. Benjamin F. Bowers, P.E.
Dr. David H. Timm, P.E.
Don Guy Biessan

JUNE 2024

Highway Research Center

Harbert Engineering Center Auburn, Alabama 36849

1.	Report No. 930-994	2. Government Accession No.	3.	Recipient Catalog No.
4.	4. Title and Subtitle STRUCTURAL PAVEMENT DESIGN ADVANCEMENT IN ALABAMA – PHASE I: SOFTWARE DEVELOPMENT AND DESIGN INPUT ASSESSMENT		5.	Report Date June 2024
				Performing Organization Code
7.	7. Author(s) Benjamin F. Bowers, David H. Timm, Don Guy Biessan			Performing Organization Report No.
9.	9. Performing Organization Name and Address		10.	Work Unit No. (TRAIS)
	Highway Research Center Department of Civil Engineering 238 Harbert Engineering Center Auburn, AL 36849		11.	Contract or Grant No.
12.	Sponsoring Agency Name and	Address		Type of Report and Period
	Highway Research Center Department of Civil Engineering 238 Harbert Engineering Center Auburn, AL 36849			Covered
			14.	Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Like many agencies, the Alabama Department of Transportation (ALDOT) uses the AASHTO 1993 Design Guide as the basis for pavement thickness design in Alabama. The design software, DARWin, is no longer supported by AASHTO, causing a need for an Alabama-specific version of the software that can be used by ALDOT and its consultants in modern Windows-based operating systems. Further, there is a need to (1) gather and assess datasets that will support the assessment of current AASHTO 1993 design inputs, (2) compare computed design inputs from those datasets to current default values used by ALDOT, and (3) extract from the datasets information that could be used for future implementation of the AASHTOWare[©] Pavement-ME pavement design software. The outcomes of this project include the development of the Alabama Design and Analysis of Pavement Thickness (ADAPT) software which can be deployed throughout ALDOT and amongst its consultants to design pavements in accordance with the AASHTO 1993 methodology. A sensitivity analysis of design comparing ADAPT to DARWin is provided. A Microsoft Access database of historical data for subgrade, aggregate base, stabilized base, asphalt concrete, and portland cement concrete was also created. This database was then used to statistically compare the current ALDOT default structural inputs with measured values. It is recommended that ALDOT not change its current structural design inputs for aggregate base and reassess the way it currently evaluates Full Depth Reclamation with cement and soil-cement mixtures. Subgrade moduli for 11 AASHTO classified materials are also provided.

17. Key Words Pavement Design; AASHTO 1993; Pavement Materials		18. Distribution Statement	
19. Security Classification (of this report) Unclassified	20. Security Classification (of this page) Unclassified	21. No. of Pages	22. Price None.

Research	Report

STRUCTRUAL PAVEMENT DESIGN ADVANCEMENT IN ALABAMA – PHASE I: SOFTWARE DEVELOPMENT AND DESIGN INPUT ASSESSMENT

Submitted to

The Alabama Department of Transportation

Prepared by

Dr. Benjamin F. Bowers, P.E.
Dr. David H. Timm, P.E.
Don Guy Biessan

JUNE 2024

DISCLAIMERS

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of Alabama DOT, Auburn University, or the Highway Research Center. This report does not constitute a standard, specification, or regulation. Comments contained in this report related to specific testing equipment and materials should not be considered an endorsement of any commercial product or service; no such endorsement is intended or implied.

NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES

Dr. Benjamin F. Bowers, PE Dr. David H. Timm, PE Research Supervisors

ACKNOWLEDGEMENTS

This project was sponsored by the Alabama Department of Transportation. We greatly appreciate the assistance of Scott George, Frank Bell, John Jennings, and the staff at ALDOT who provided data, insight, and tested the software package resulting from this study.

ABSTRACT

Like many agencies, the Alabama Department of Transportation (ALDOT) uses the American Association of State Highway Transportation Officials (AASHTO) 1993 Design Guide as the basis for pavement thickness design in Alabama. The design software, DARWin, is no longer supported by AASHTO, causing a need for an Alabama-specific version of the software that can be used by ALDOT and its consultants in modern Windows-based operating systems. Further, there is a need to (1) gather and assess datasets that will support the assessment of current AASHTO 1993 design inputs, (2) compare computed design inputs from those datasets to current default values used by ALDOT, and (3) extract from the datasets information that could be used for future implementation of the AASHTOWare® Pavement-ME pavement design software. The outcomes of this project include the development of the Alabama Design and Analysis of Pavement Thickness (ADAPT) software which can be deployed throughout ALDOT and amongst its consultants to design pavements in accordance with the AASHTO 1993 methodology. A sensitivity analysis of design comparing ADAPT to DARWin is provided. A Microsoft Access database of historical data for subgrade, aggregate base, stabilized base, asphalt concrete, and portland cement concrete was also created. This database was then used to statistically compare the current ALDOT default structural inputs with measured values. It is recommended that ALDOT not change its current structural design inputs for aggregate base and reassess the way it currently evaluates Full Depth Reclamation with cement and soil-cement mixtures. Subgrade moduli for 11 AASHTO classified materials are also provided.

TABLE OF CONTENTS

1	INTF	RODUCTION	6
	1.1	Overview	6
	1.2	Background	6
	1.3	Research Objectives	10
2	LITE	RATURE REVIEW	11
	2.1	AASHTO 1993	11
	2.2	DARWin	12
	2.3	MEPDG	12
	2.4	Recalibration of structural layer coefficients	15
	2.5	Summary of Literature Review	17
3	DEVI	ELOPMENT OF MATERIALS DATABASE	18
	3.1	Data collection methods	18
	3.2	Comparison of estimated and measured pavement design inputs	26
4	Sof	TWARE DEVELOPMENT	33
	4.1	Development of ADAPT	33
	4.2	Sensitivity Analysis	33
5	FIND	ings, Conclusions, Recommendations, and Implementation	48
	5.1	Findings, Conclusions, and Recommendations	48
	5.2	Implementation Plan	49

REFERENCES	50
APPENDIX A.1 New Design Flexible Pavement	52
APPENDIX A.2 New Design Jointed Plain Concrete Paveme	96
APPENDIX A.3 New Design Jointed Reinforced Concrete Pavement	139
APPENDIX A.4 New Design Continuously Reinforced Concrete Pavement	192
APPENDIX A.5 Overlay Design Flexible Pavement	246
APPENDIX A.6 Overlay Design Rigid Pavement	307

1 INTRODUCTION

1.1 OVERVIEW

The Alabama Department of Transportation (ALDOT) currently uses DARWin 3.1, a software based on the 1993 AASHTO Pavement Design Guide, for structural pavement design. This practice is similar to many other state agencies. However, AASHTO no longer supports DARWin 3.1 as they now consider the Mechanistic-Empirical Pavement Design Guide (MEPDG) and companion software, AASHTOWare® Pavement Mechanistic-Empirical (ME) Pavement Design, the standard for thickness design. Consequently, DARWin 3.1 is increasingly more difficult to distribute and operate in modern operating systems (e.g., Windows 11). ALDOT, like many owner agencies, has extensive experience with the 1993 design process and has not yet transitioned to the Pavement-ME program due to the considerable time and expense required in calibration and implementation of the new system, though adoption of the MEPDG is a long-term consideration. Therefore, there is a need to develop a Windows-based program that will support 1993 AASHTO thickness design by replacing DARWin 3.1 while evaluating the feasibility of a potential transition to the MEPDG and AASHTOWare software.

It is also necessary to gather data on materials to evaluate the default ALDOT inputs used in the 1993 AASHTO design methodology since many are unchanged since the 1990s. Evaluating these inputs will ensure that pavement designs reflect modern materials. In the future, knowledge of the modern inputs will provide for an accurate comparison between the AASHTO 1993 method and the MEPDG to better understand any differences in the final design recommendation between the two approaches. This new software, in conjunction with acquiring needed data to reassess 1993 AASHTO thickness design inputs and compile necessary inputs for MEPDG, is a key step toward the long-term modernization of pavement design.

1.2 BACKGROUND

The official AASHTO method of structural pavement design switched from empirical to mechanistic-empirical with the release of the MEPDG and design software AASHTOWare® Pavement ME in 2013. Though considered a significant advancement in pavement thickness design, it is currently not widely used as state agencies must first execute time- and cost-intensive evaluation, calibration and validation studies with the new software before full implementation. A survey published in 2014 showed that 28 states continued to use the older AASHTO empirical method with very few having begun the transition to the new M-E approach (Pierce and McGovern, 2014). Figure 1 provides the results of 2017 survey on the implementation status of the M-E pavement design methodology for asphalt and concrete pavements. Of the 21 survey respondents, 9 have implemented M-E design for asphalt pavements and overlays, and 7 have implemented for

concrete pavements and overlays. The remaining respondents indicate that they will either implement in the coming year(s) or that they have no implementation plans. The status of the remaining states is unknown.

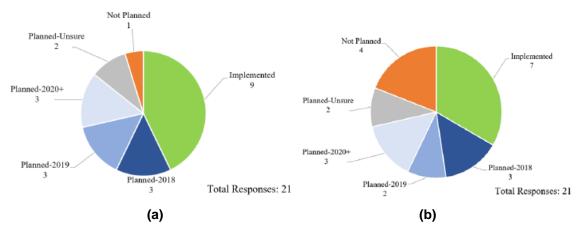


Figure 1. M-E implementation Status for (a) Asphalt Pavements and Overlays and (b) Concrete Pavements and Overlays (Applied Pavement Technology, 2018).

As indicated in the previous discussion, the Alabama Department of Transportation is certainly not alone in having continued with the AASHTO empirical design system. Specifically, ALDOT uses the 1993 AASHTO Design Guide and corresponding software, DARWin 3.1. However, while many states continue to design using input parameters set decades ago, ALDOT implemented a new asphalt concrete structural coefficient in 2009 that updated the empirical system to reflect modern flexible pavement performance (Peters-Davis and Timm 2009). It's notable that only two states (Alabama and Washington State) have updated their asphalt structural coefficients above the default value of 0.44 recommended by American Association of State Highway Officials (AASHO) in 1962 (Li et al. 2011). The remaining states continue to use 0.44 (or less) to represent modern asphalt mixtures (Pierce and McGovern, 2014). This likely leads to overdesigned flexible pavements in many cases.

The issue of updating empirical design inputs is certainly not limited to asphalt structural coefficients. Other design parameters, for both flexible and rigid pavements listed in Table 1, should also be reevaluated for the empirical design system to be effective in continued use.

Table 1. AASHTO Empirical Method Design Inputs.

Input	Symbol	Pavement Type
Equivalent Single Axle Loads	ESALs or W ₁₈	
Reliability, %	R	Both
Input Standard Error	S ₀	Dom
Change in Serviceability	ΔPSI	
Effective Roadbed Soil Resilient Modulus, psi	Mr	
Structural Coefficients	a _i	Flexible
Drainage Coefficients	m _i	
Effective Modulus of Subgrade Reaction, pci	k	
Mean Concrete Modulus of Rupture, psi	S'c	
Load Transfer Coefficient	J	Rigid
Drainage Coefficient	Cd	
Terminal Serviceability	Pt	

Table 2 provides an excerpt of the pavement component design coefficients as provided in ALDOT's Guidelines for Flexible Pavement Design in Alabama (ALDOT 1990). This table has been updated to reflect the 2009 adoption of 0.54 for the asphalt concrete wearing layer and binder layer structural coefficient, but the other coefficients have not changed since the 1990's. It should also be noted that Lime Stabilized Soil Aggregate, for example, does not have a modulus value associated with it, and thus a structural coefficient has been assumed. In the years since this table was assembled, a number of projects and subsequent data points have been generated around the state that may have input parameters that are different from those typically used in pavement design. There is a benefit to acquiring that data to assess whether the estimated modulus and subsequent structural coefficients are still accurate for pavement structures today. The same can be said for key components of rigid pavement, such as the modulus of rupture and related strength properties. Validating or updating these values may lead to cost savings through thinner pavements (e.g., 0.54 adjusted asphalt structural coefficient reduced thickness by as much as 18%) or by mitigating under design if the actual input is lower than that which is currently recommended. While collecting this data and incorporating the findings into the new pavement design software will solve a current problem for ALDOT, the data can also be used to populate an M-E material property database. This database can then be used in the future when ALDOT has had time to perform its due diligence in assessing the feasibility and potential implementation of ME design.

Table 2 Excerpt of pavement component design structural coefficients as provided in ALDOT's Guidelines for Flexible Pavement Design in Alabama (ALDOT 1990)

	Estimated	Structural
Pavement Component	Modulus	Layer
	(psi)	coefficient
Surface Cours	e	
Plant Mix (High Stability)	950,000	0.54*
Sand Asphalt	370,000	0.40
Road mix (Low Stability)	110,000	0.20
L Treatment	130,000	0.23
Double Bituminous Surface Treatments	120,000	0.22
Single Bituminous Surface Treatments	110,000	0.20
Base Course	l	
Crushed Aggregate	Base	
Limestone	30,000	0.14
Slag	30,000	0.14
Sandstone	28,000	0.13
Granite	25,000	0.12
Soil Aggregate Base		
Lime Stabilized Soil Aggregate	-	0.15
Soil + Limestone		0.09
Soil + Slag	19,000	0.09
Soil + Oyster Shells		0.09
Soil + Sandstone		0.08
Soil + Granite	18,000	0.08
Soil + Ocala Limestone		0.08
Soil + Gravel	16 000	0.07
Sand & Chert	16,000	0.07
Cement Treated (No Soi	I-Cement)	1
650 psi or More Crushed Aggregate	850,000	0.23
400 to 650 psi Soil Aggregate	750,000	0.20
400 psi or Less Granular Soil	600,000	0.15

^{*}Updated coefficient in 2009

1.3 RESEARCH OBJECTIVES

Given the needs described above, this project has two primary objectives:

- Develop a modern, ALDOT-customized, pavement thickness design computer program that follows the AASHTO 1993 design procedure. The program will replace DARWin 3.1 which is currently used by ALDOT, but no longer supported by AASHTO.
- 2. Gather the appropriate design inputs from around the state for use in the new, DARWin replacement, thickness design computer program.
 - a. In gathering this information, assess whether or not the inputs need to be updated and/or if new inputs need to be incorporated.
 - b. Populate a database of Pavement-ME inputs for future use as Pavement-ME adoption is considered.

2 LITERATURE REVIEW

2.1 AASHTO 1993

From 1958 to 1960 the AASHO Road Test was conducted in Ottawa, Illinois. The results from this test were used to develop the pavement design guides published from 1962 through 1993 by the American Association of State Highway and Transportation Officials (AASHTO). Since the 1960's, most U.S. pavement thickness design has been empirically-based (Highway Research Board (1962), AASHTO Guide (1993)). The results from the AASHO Road Test depended on the materials properties, cross-sections, construction practices, climate, and traffic applications representing the conditions and technology at the test location. The pavement design guide (AASHTO 1993) was updated several times and the latest edition was published in 1998. Despite the improvements, the pavement performance observed during the road test remains the foundation of the design guides (AASHTO Guide (1993)).

The four principal factors correlated from the observations during the AASHO Road Test for asphalt pavement were: the soil condition represented by the subgrade resilient modulus (M_R), traffic quantified by equivalent single axle loads (ESALs), the change in pavement condition quantified by the change in pavement serviceability index (ΔPSI), and pavement structure represented by a structural number (SN) (Highway Research Board 1962; AASHTO Guide 1993). This relationship is shown in Equation 1, which represents the principal equation for the AASHTO flexible pavement thickness design method:

$$logW_{18} = Z_R S_0 + 9.36 \log(SN + 1) - 0.20 + \frac{log\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 logM_R - 8.07$$
(1)

where, W_{18} = design traffic loading (ESALs), Z_R = standard deviation associated with the reliability level, S_0 = standard error, ΔPSI = allowable change in present serviceability index (ΔPSI = P_i - P_t where, P_i = initial serviceability and P_t = terminal serviceability), M_R = subgrade resilient modulus, and SN = structural number of the pavement (SN = $\Sigma a_i d_i m_i$, a_i = structural layer coefficient, d_i = layer thickness, m_i = drainage coefficient).

The values in the equation are regression coefficients that helped obtain the best match between the independent variables (SN, Δ PSI, M_R) and the performance of the pavement section quantified by ESALs (AASHTO 1993). The outputs from the AASHTO design process are layer thicknesses. Solving for SN algebraically in Equation 1 is a difficult task, therefore there are different means that can be utilized to solve for SN such as the design nomograph published by AASHTO, spreadsheet tools, and the Design, Analysis, and Rehabilitation for Windows (DARWin) software developed for AASHTO (Timm et al. 2014b).

2.2 DARWIN

DARWin is a computerized pavement design tool based on the AASHTO Design Guide for pavement structures. The tool contains three main design modules along with the life cycle cost analysis module that are: (1) Flexible Pavement Structural Design Module used to design and analyze Asphalt Concrete (AC) pavements; (2) Rigid Pavement Structural Design Module used to design and analyze Portland Cement Concrete (PCC) pavements; and (3) Overlay Design Module used to design seven different types of overlays (Khasawneh 2013).

The most popular pavement design procedure in the U.S. is the empirically based AASHTO design guide with approximately 78% states as users (Timm et al. 2014, Pierce and McGovern 2013). Although the empirical AASHTO design procedure is still used and trusted, its fundamental equation is based on observations from a road test where one soil type, one climate, one type of asphalt mix, limited pavement cross-sections were used, and limited load applications were considered. These conditions were specific to the reality at the time and represent the design limitations of the AASHTO method currently. Thus, there is a need to implement a more modern method. In addition, the pavement engineering field (including design, materials, and construction) has experienced significant progress since the test, which leaves the AASHTO design guide increasingly outdated with time. Therefore, designers are forced to extrapolate beyond the original conditions of the road test (Timm et al. 2014b).

2.3 MEPDG

The National Cooperative Highway Research Program (NCHRP) identified the need to improve pavement design and account for modern conditions and technology, thus starting a project in 1998 called "Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures: Phase I." The project ended in 2004 with a product called the Mechanistic Empirical Pavement Design Guide (MEPDG) (Timm et al. 2014). In 2008, a series of transitions from the MEPDG to AASHTOWare® programs (later renamed DARWin-ME) was observed due the regular changes made by the developers to improve the program. The final commercially available product named AASHTOWare® Pavement ME Design was first released in 2013 and represented a major step forward from the AASHTO 1993 design guide and the DARWin software to a more allencompassing pavement design system (AASHTO 2008; AASHTO Guide 1993).

Although the MEPDG is considered a tremendous technological advancement, it is challenging to implement it because of the time and costs associated with software licensing and training, development of multiple large data sets through field and laboratory testing required to run the software, and validation/calibration studies to completely implement the new procedure (Timm et al. 2014b). This is highlighted by the aforementioned 2018 survey of state agencies implementing MEPDG referenced in the introduction of this report. Of the 21 survey respondents, only 9 have

implemented M-E design for asphalt pavements and overlays, and 7 have implemented for concrete pavements and overlays. Others expressed that they plan to implement or are in the early stages.

To determine the design inputs for materials in the MEPDG, a hierarchical approach with three design inputs levels where the level of engineering effort exerted in the design process is dependent on the importance, size and cost of the project. Input Level 1 is used when the designer possesses results from comprehensive laboratory tests. Input Level 2 requires the designer to estimate the input values through correlations with commonly measured material properties from Laboratory or field tests. Level 3 inputs are estimated based on experience with little or no testing. Most MEPDG analysis is performed using Levels 2 and 3 inputs because Level 1 requires testing of the pavement materials that are not yet constructed at the time of the design. The major material types used in the MEPDG are shown in Figure 2 and their design inputs classified by material type are shown in Tables 3 through 5 (AASHTO 2020).

	Asphalt Materials		Non-Stabilized Granular Base/Subbase
+	Stone Matrix Asphalt (SMA)	+	Granular Base/Subbase
•	Asphalt Concrete (AC)	•	Sandy Subbase
	 Dense-Graded 	•	Cold Recycled Asphalt (used as aggregate)
	 Open Graded Asphalt 		 RAP (includes millings)
	 Asphalt Stabilized Base Mixes 		 Pulverized In-Place
	 Sand Asphalt Mixtures 	•	Cold Recycled Asphalt Pavement (AC plus
•	Cold Mix Asphalt		aggregate base/subbase)
	 Central Plant Processed 		Subgrade Soils
	 In-Place Recycled 	+	Gravelly Soils (A-1, A-2)
	PCC Materials		Sandy Soils
+	Intact Slabs—PCC		 Loose Sands (A-3)
	 High Strength Mixes 		 Dense Sands (A-3)
	 Lean Concrete Mixes 		 Silty Sands (A-2-4, A-2-5)
•	Fractured Slabs		 Clayey Sands (A-2-6, A-2-7)
	- Crack/Seat	•	Silty Soils (A-4, A-5)
	Break/Seat	•	Clayey Soils, Low Plasticity Clays (A-6)
	 Rubblized 		- Dry-Hard
	Chemically Stabilized Materials	1	 Moist Stiff
	Cement Stabilized Aggregate		Wet/Sat-Soft
	Soil Cement	•	Clayey Soils, High Plasticity Clays (A-7)
	Lime Cement Fly Ash		- Dry-Hard
	Lime Fly Ash		 Moist Stiff
	Lime Stabilized Soils		- Wet/Sat-Soft
	Open Graded Cement Stabilized		Bedrock
	Aggregate	•	Solid, Massive, and Continuous
		+	Highly Fractured, Weathered

Figure 1. Major Material Types for the MEPDG (AASHTO 2020)

Table 3. Design Inputs for Asphalt Concrete (AC) Materials (adapted from AASHTO 2020)

Measured Property	Input Level
Dynamic modulus	
Tensile strength TS	
Creep compliance, D (t)	Level 2 or 3
Air voids	Level 2 of 3
Effective volumetric asphalt content	
Total unit weight	
Poisson's ratio	
Subsurface shortwave absorptivity	
Thermal conductivity	Level 3
Heat capacity	
Coefficient of thermal contraction	

Table 4. Design Inputs for Portland Cement Concrete (PCC) Materials (adapted from AASHTO 2020)

Measured Property	Input Level
Elastic modulus and flexural strength	
Poisson's ratio	
Unit weight	
Coefficient of thermal expansion	Levels 2 and 3
Surface shortwave absorptivity	Levels 2 and 3
Thermal conductivity	
Heat capacity	
PCC set temperature	
Cement type	
Cementitious material content	
Water to cement ratio	
Aggregate type	Level 3
Curing method	Level 3
Ultimate shrinkage	
Reversible shrinkage	
Time to develop 50 percent of ultimate shrinkage	

Table 5. Design Inputs for Chemically Stabilized Materials (adapted from AASHTO 2020)

Measured Property	Input Level
Elastic / resilient modulus	
Flexural strength	
Poisson's ratio	Levels 2 and 3
Unit weight	Leveis 2 and 3
Thermal conductivity	
Heat capacity	

Table 6. Design Inputs for Unbound Aggregate Base, Subbase, Embankment, and Subgrade Soil Materials (adapted from AASHTO 2020)

Measured Property	Input Level
Resilient modulus	
Maximum dry density	
Optimum moisture content	Levels 2 and 3
Specific gravity	Levels 2 and 3
Saturated hydraulic conductivity	
Soil water characteristic curve parameters	

2.4 RECALIBRATION OF STRUCTURAL LAYER COEFFICIENTS

Since there are numerous data sets such as material properties that both the empirical and mechanistic-empirical approaches share, it is logical to update the AASHTO 1993 design input values while MEPDG is being implemented, especially for states like Alabama that are considering MEPDG (Timm et al. 2014b).

For that, Timm et al. (2014b) recommended procedures to update the empirically-based design method to reflect the performance of modern pavement. The researchers focused on recalibrating the asphalt structural coefficient because it is the most influential variable in the design of pavement thickness. This is a response to the recommendation from AASHTO, which encourages states to develop agency-specific structural coefficients based on their experience. Structural coefficients are empirical values used to relate the load-carrying capacity of different materials. The three general approaches recommended by Timm et al. (2014b) to recalibrating the asphalt structural coefficient are: (1) Deflection-based method that relies on field testing of existing pavements to determine in-place modulus, which is used to obtain a structural coefficient through existing empirical equations; (2) Performance-based method that relies on the actual performance of the material; and (3) Mechanistic-empirical method that relies on the MEPDG locally calibrated with performance data.

In 1962, AASHO recommended a structural coefficient of 0.44 for the asphalt layer although a range of values was reported from the test loops as shown in Table 7. The 1962 report explains that 0.44 was obtained using a weighted average, however there is no clarification regarding how the values were weighted when inspecting the data.

Table 7. HMA Layer Coefficients from AASHO Road Test (Adapted from Highway Research Board 1962).

Loop	Layer Coefficient (a₁)	Test Sections	R ²
2	0.83	44	0.8
3	0.44	60	0.83
4	0.44	60	0.9
5	0.47	60	0.92
6	0.33	60	0.81

In 2006, Timm and Priest, using the data and performance from the instrumentation of all structural sections in the 2003 research cycle of the National Center for Asphalt Technology's (NCAT) Pavement Test Track, determined a relationship between temperature and stiffness. The average HMA modulus of 811,115 psi was calculated using this relationship and the corresponding structural coefficient 0.54 was obtained. This was checked through extrapolation of the curve developed in 1972 relating the layer coefficient to the elastic modulus (E) of the HMA at 70°F, as shown in Figure 3. As a result, the Alabama HMA structural coefficient was changed to 0.54 (Peters-Davis and Timm 2009). Washington State also revised their HMA structural coefficient to 0.50 (Li et al. 2011). The revised structural coefficients reflect better the advances in material properties, field performance, and modern construction practices in these states. The increase in of the structural coefficient helps obtain optimum asphalt design and minimize costs (Peters-Davis and Timm 2009).

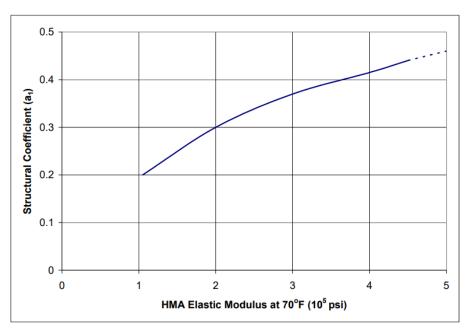


Figure 2. Relationship Between HMA a1 and Modulus (Peters-Davis and Timm 2009).

2.5 SUMMARY OF LITERATURE REVIEW

The predominant method of designing pavements throughout the United States remains the empirical AASHTO methodology. ALDOT continues to use the AASHTO 1993 methodology, with specific default inputs as laid out in ALDOT's 1990 Guidelines for Flexible Pavement Design in Alabama. The DARWin software used to design pavements with this methodology is no longer supported by AASHTO, and there has been some research, including in Alabama, to recalibrate the default inputs. Meanwhile, the mechanistic-empirical pavement design methodology, or MEPDG, has been introduced and has design software supported by AAHSTO, though most agencies have not yet implemented this method due to various challenges.

3 DEVELOPMENT OF MATERIALS DATABASE

To provide the most up-to-date material inputs for empirical-based AASHTO 1993 method and to ease future implementation AASHTOWare® Pavement-ME, a materials database was built in Microsoft Access. This database can be used by ALDOT to (1) easily search and access relevant, location specific materials data for design and (2) to continue to populate with future data collected by the Materials and Tests Bureau. The data collected is usable in either the empirical-based AASHTO 1993 design method or AASHTOWare® Pavement-ME, while some data may be useful to both pavement design tools. Further, the data was used for comparisons to current structural design inputs used in ALDOT's Pavement Design Manual (ALDOT 1990).

3.1 DATA COLLECTION METHODS

3.1.1 Subgrade

Hard copies of the data were provided by ALDOT for the subgrade materials. The data are results of laboratory tests on soils located in different counties of Alabama to determine the resilient modulus of subgrade. Approximately 1040 copies were received, and the data were transferred into a database in Access by hand. The information extracted from documents are provided in Table 8.

Table 8. Extracted subgrade information.

Project Information	 County Division Project Number Laboratory Number Report Date, Material Producer 	 CPMS project reference number Identification marks Source of material Date sampled Remarks
Soil Characterization	 % Passing ¾ % Passing #4 % Passing #10 % Clay % Silt Total sand 	 % Passing #40 % Passing #200 Liquid Limit (LL) Plastic Limit (PL) Plastic Index (PI) Soil Class
Testing Information	 Date tested Layer type Material type Approximate distance from top of subgrade to sample in feet 	 Preconditioning – greater than 5% permanent strain Testing - greater than 5% permanent strain? Number of load sequences completed
Specimen Detail	 % Optimum moisture content Maximum dry density in pcf % Compaction moisture content % Moisture content after resilient modulus testing 	 Compaction dry density in pcf Target dry density in pcf % Target moisture content % Compaction level achieved
Triaxial Shear Test	 Triaxial shear maximum strength in psi 	Specimen fail during triaxial shear?Sequences 6 to 15
Resilient Modulus K-Coefficients Resilient Modulus	K1K2Resilient modulus (Mr) in	K5R2

The final design resilient modulus values were obtained following the procedure from ALDOT for conducting soil surveys and preparing materials reports. According to ALDOT (2012): "The design MR for soils classified as A-1, A-3, A-2-4, and A-2-5 shall be the average of the MR values generated at a confining pressure of 4 psi (0.03 MPa). For all other AASHTO soil classes, the design MR shall be the average of the MR values generated at a confining pressure of 2 psi (0.015 MPa). The MR values generated at both confining pressures shall be averaged to determine the design MR value. Upon computing the average MR value, if there are any values in the MR

data set that exceed the mean value by ± 2 standard deviations, these values shall be discarded and the remaining values shall be re-averaged to determine the final average MR value to be used in the pavement structural design analysis." Figure 4 summarizes the process.

Design Resilient Modulus by AASHTO Soil Classification

AASHTO Group	A-1 A-3			А	-2		A-4	A-5	A-6	A-7 A-7-5 A-7-6	
Classification	A-1-a	A-1-b		A-2-4	A-2-5	A-2-6	A-2-7				A-7-0
Confining Pressure for Design	4 psi	2 psi	2 psi								
Sample Moisture Content	Optimum	Wet side of Optimum	Wet side of Optimum								

Figure 4. Process To Obtain Design Resilient Modulus of Subgrade (ALDOT 2012)

Some of the data was provided in terms of CBR, therefore the subgrade resilient modulus (M_R) was calculated using Equation 2 from the AASHTO 1993 guidelines.

$$M_R(psi) = 1,500 \times CBR \tag{2}$$

Where, CBR = California Bearing Ratio.

3.1.2 Aggregate Base

The data were provided by ALDOT in MS Excel and PDF formats. The data are results of laboratory tests on aggregates, including resilient modulus, from different sources that provide materials to ALDOT. Twenty-one documents (PDFs) were received, and the data were transferred into a database in Access. The information extracted from documents are provided in Table 9.

Table 9. Extracted Aggregate Base Information.

Project Information	 Division Project Number County Type of Material Laboratory Number Date received 	CPMS project reference number Identification marks
Testing Information	 Layer type Material type Approximate distance from top of subgrade to sample in feet Preconditioning – greater than 5% permanent strain? 	Testing – greater than 5% permanent strain? Testing – number of load sequences completed
Specimen Detail	 % Optimum moisture content Maximum dry density in pcf % Compaction moisture content % Moisture content after resilient modulus testing 	Compaction dry density in pcf Target dry density in pcf % Target moisture content % Compaction level achieved
Triaxial Shear Test	 Triaxial shear maximum strength in psi Specimen fail during triaxial shear? 	Sequences 1 to 15
Resilient Modulus K-Coefficients	K1K2	• K5 • R2
Resilient Modulus	Resilient modulus (Mr) in ps	si

In their study, Hossain and Lane (2015) calculated resilient modulus values for aggregates base/subbase using a 5-psi confinement (S_3) and a 15-psi deviator stress (S_{cyclic}) as suggested in NCHRP (2004) Research Results Digest 285. Therefore, the resilient modulus of the aggregates from the data received was obtained at sequence 6 where $S_3 = 5$ psi and $S_{cyclic} = 15$ psi.

The CBR was backcalculated using Equation 3 from the 1990 Holman Report (ALDOT 1990).

$$logE_2 = 3.649084 + 0.421664log (CBR)$$
 (3)

Where, E_2 = modulus of aggregate base.

The structural layer coefficient (a₂) was backcalculated using Equation 4 from the 1990 Holman Report (ALDOT 1990).

$$a_2 = -0.05271 + 0.098133\log(CBR) \tag{4}$$

The classification data of the aggregates were provided in PDF formats. Eight (8) documents (PDFs) that represent the 8 quarries were received, and the data were transferred into a database in Access. The information extracted from documents are provided in Table 10.

Table 10. Extracted aggregate classification information.

Project Information	CountyDivisionProducerSourceType	 LL PL PI Maximum Dry Density (pcf)
Material Properties	 Sampled by % Optimum moisture % Passing 2" % Passing 1 ½" % Passing 3¾" % Passing ½" % Passing ½2" % Passing #4 % Passing #8 % Passing #10 % Passing #16 % Passing #30 % Passing #50 % Passing #100 % Passing #200 	 Unit weight in pcf Gravity bulk Gravity bulk (SSD) % Absorption Uncompacted voids Flat or elongated (3:1) Flat or elongated (5:1) % LA abrasion Sodium Sulfate Soundness % Sound AASHTO T-11

The volumetric properties data of the aggregates were also provided in PDF formats. Around 122 documents (PDFs) were received, and the data were transferred into a database in Access. The information extracted from documents are provided in Table 11.

Table 11. Extracted Aggregate Volumetric Information.

	Source	Date tested
Project Information	County	Sample ID
	Type	 Sample card number
	Unit weight in pcf	Sand Equivalent number
	 Specific gravity bulk 	 % LA abrasion
	 Specific gravity bulk (SSD) 	 Sodium sulfate soundness
	 Specific gravity apparent 	% sound
Material Properties	 % Absorption 	 BPN number
	 % Uncompacted voids 	 Color test
	 Percent deleterious 	 Test-silica
	materials	 AASHTO T-11 (%)
	 Flat or elongated (3:1) 	 Micro deval
	 Flat or elongated (5:1) 	

3.1.3 Stabilized Base (FDR and Soil Cement)

ALDOT provided hard copies of data for stabilized base materials. The data are results of laboratory tests on stabilized base with cement (FDR & soil cement) located in different counties of Alabama to determine the resilient modulus of stabilized base. Around 55 documents were received, and the data were transferred into a database in Access. The information extracted from documents are provided in Table 12.

Table 12. Extracted Stabilized Base information.

Project Information	 Project number County Sample ID Material code Type of stabilization Sample by source 	 Sample type Submitted by: CPMS project reference number Represented quantity Report date 3% Cement maximum dry
Material Properties	 Recommended percent cement Remarks Source of material Description of material Recommended maximum dry density in pcf % Recommended optimum moisture Recommended cement application rate in lbs./yd2 Percent aggregate of composite sample Actual required percent cement Average design compressive strength at 7 days in psi 3% Cement optimum moisture (%) 5% Cement optimum moisture (%) 7% Cement optimum moisture (%) 	density in pcf 5% Cement maximum dry density in pcf 7% Cement maximum dry density in pcf 3% Cement compressive strength in psi 5% Cement compressive strength in psi 7% Cement compressive strength in psi Percent stabilized lime Recommended lime application rate in lbs./yd2 % Gravel % Sand % Fines LL PL PI Soil class Producer Design compressive strength in psi Resilient modulus in psi

The resilient modulus was back calculated using Equation 5 from the 1990 Holman Report (ALDOT 1990).

$$logE_2 = 5.609477 + 0.000362 (COMSTR)$$
(5)

Where, E_2 = modulus of stabilized aggregate base, COMSTR = compressive strength (psi) at 7 days.

The structural coefficient (a₂) was back calculated using Equation 6 from the 1990 Holman Report (ALDOT 1990).

$$a_2 = 0.073237 + 0.000178 (COMSTR)$$
 (6)

3.1.4 Concrete

There was limited data available for concrete pavements. Therefore, data from Alabama's Long-Term Pavement Performance (LTPP) test sections using concrete pavements were extracted. The data are general information and field-testing results on concrete pavements (JPCP, JRCP, CRCP) located in different counties of Alabama to determine the modulus of rupture and elastic modulus of concrete pavements. Only 8 concrete sections were listed in the report. The data for these sections were transferred into a database in Access. The information extracted from documents are provided in Table 13.

Table 13. Extracted Concrete Information.

Project Information	 Section Experiment number County, Route (direction) GPS – Latitudes – Longitudes (degrees) Surface type Date of construction Thickness of unbound (granular) base/subbase layer in inches 	 Thickness of bound (treated) base/subbase layer in inches Thickness of asphalt concrete layer in inches Thickness of Portland cement concrete layer in inches
Material Properties	 Compressive strength in psi 	Modulus of Rupture in psi

The modulus of rupture (E_c) was calculated for only one section using Equation 7. The remaining sections had their modulus of rupture provided.

$$S_C = 9 \times \sqrt{f_c} \tag{7}$$

Where, f_c = compressive strength (psi).

The modulus of rupture was calculated for only one section using Equation 8.

$$E_C = 57,000 \times \sqrt{f_C} \tag{8}$$

Where, f_c = compressive strength (psi).

3.1.5 Asphalt

The data were taken from Microsoft Excel results sheets provided by the National Center for Asphalt Technology (NCAT). The data are laboratory and field-testing results on HMA pavements located in different counties of Alabama to determine the dynamic modulus of HMA pavements.

Around 600 mixtures were tested. The results of those tests were transferred into a database in Access. The information extracted from documents are provided in Table 14.

Table 14. Extracted Asphalt Information.

Drainat Information	County	Project ID
Project Information	Location	Mixture (Mix) ID
	Temperature in degrees	Shift factor
	Celsius	Reduced frequency
Material Properties	 Temperature in degrees 	 Dynamic modulus in ksi
	Fahrenheit	 Dynamic modulus in MPa
	 Frequency in Hertz 	

Additional asphalt data were recorded from three reports on the National Center for Asphalt Technology (NCAT) website. The data are laboratory testing results on HMA mixtures to determine the aggregate gradation. Fourteen mixtures were tested. The results of those tests were transferred into a database in Access. The information extracted from documents are provided in Table 15.

Table 15. Extracted Asphalt Information From NCAT Test Track.

Project Information	County, LocationProject ID	Type of mixturesNMAS in millimeters
Material Properties	 % Passing 1" % Passing 3/4" % Passing 1/2" % Passing 3/8" % Passing #4 % Passing #8 % Passing #16 % Passing #30 % Passing #50 % Passing #100 % Passing #200 	 % ½ in crushed gravel % Shot gravel % Number 78s limestone % Limestone screenings % Sand, % Baghouse fines % M-10 granite % #87 Limestone % #69 gravel % #67 limestone % #8910 limestone % Coarse sand

Asphalt mixture data were also recorded from three reports on the National Center for Asphalt Technology (NCAT) website (Willis et al. 2014; West et al. 2018; and Leiva-Villacorta and Julian 2020). The data are laboratory testing results on HMA mixtures to determine the volumetrics as built. Around 14 mixtures were tested. The results of those tests were transferred into a database in Access. The information extracted from documents are provided in Table 16.

Table 16. Extracted asphalt mixture information from NCAT reports.

Project Information	 County 	Project ID
	 Location 	 Type of mixture
	• %Pb	• Gmm
	 %Va 	%VFA
Material Properties	%VMA	 Gse
	%Vbe	%Pba
	 D/A ratio 	• %Pbe

Asphalt binder property data was also collected from the same three reports. Around 14 binder samples from the 14 mixtures were tested. The results of those tests were transferred into a database in Access. The information extracted from documents are provided in Table 17.

Table 17. Extracted asphalt binder information from NCAT reports.

Project Information	County	Project ID
	 Location 	 Type of mixture
	 Asphalt binder 	 Average % recovery (3200
	 Tcrit high 	Pa)
	 Tcrit int 	 Average Jnr (k/Pa) 100 Pa
	 Tcrit low s-value 	Average Jnr (k/Pa) 3200
Material Properties	 Tcrit low m-value 	Pa
material i repense	 True-grade 	 Difference (% recovery)
	• PG,	 Difference (% Jnr)
	 ΔTc 	 MP 19 Grade
	 Average % recovery (100 	 Nf at applied strain 5/2%
	Pa)	 Nf at Applied Strain 5%

3.2 COMPARISON OF ESTIMATED AND MEASURED PAVEMENT DESIGN INPUTS

3.2.1 Method of Analysis

Using data collected as described in Section 3.1, resilient modulus and/or structural layer coefficients of base materials, stabilized base materials, and subgrade were calculated. These were then statistically compared to the existing layer coefficients using single t-tests, multiple t-tests, or analysis of variance (ANOVA) tests as appropriate. Confidence intervals were also calculated.

The limestone and sandstone aggregate base materials were assessed separately and each had sample sizes below 100. A single hypothesis t-test was conducted with a 95% confidence level to determine whether the average resilient modulus and structural layer coefficient are statistically different than the default ALDOT values. Ninety-five percent confidence intervals were used to obtain ranges within which the structural coefficient values exist and were used to recommend new structural inputs as appropriate for the aggregate base materials. The hypothesis tests for analysis of materials structural properties is provided in Table 18.

The stabilized aggregate base was grouped as two different materials, Full Depth Reclamation with Cement (FDR-C) and soil cement (S-C), both with sample sizes less than 100. It is worth noting that while FDR-C and S-C data were gathered, ALDOT does not have default values for these two products. However, as referenced in Table 2, there are cement treated (no soil-cement) products that have default values. Because all FDR-C and S-C data had 7-day unconfined compaction strength (UCS) below 400 psi, the default ALDOT values for "Cement Treated (No Soil-Cement) 400 psi or Less Granular Soil" was used for comparison. Single hypothesis t-tests were conducted with a 95% confidence level to determine whether the average resilient modulus and structural layer coefficient are statistically different than the assumed default values. The hypothesis tests for analysis of materials structural properties is provided in Table 18. Furthermore, 95% confidence intervals were calculated, allowing for ranges within which the resilient modulus and structural layer coefficient values exist. These confidence intervals were then used to recommend new default structural inputs for the stabilized aggregate base materials.

There are 11 different subgrade categories or groups of samples, each reflecting the AASHTO soil classification A-1-a through A-7-6. Sample sizes for each classification varied from 1 to 42, while others were between 172 to 199. Because there are not ALDOT default values for the resilient modulus for each of the materials, 95% confidence intervals were calculated for each soil class and used to recommend new structural resilient modulus inputs for the different subgrade materials encountered in Alabama.

Further, both laboratory and field collected data was collected for soil types A-2-6 and A-6, both with sample sixes greater than 100. An ANOVA was conducted with a 95% confidence level to understand whether the resilient modulus values from laboratory testing were statistically different than those of the field testing. Then, multiple hypothesis t-tests were conducted at a 95% confidence level to determine whether the laboratory resilient modulus was *greater* than those values measured in the field. Each of the soil classes was grouped separately for the analysis. The hypothesis test assumptions along with what statistical test was conducted for each of the materials is shown below in Table 18.

Table 18. Hypothesis Tests for Analysis of Materials Structural Properties

Material's Type	Statistical Test	Hypothesis	ALDOT default inputs	
Limestone	Single t-test	H_1 : U > 30,000; H_0 : U \leq 30,000 H_1 : U > 0.14; H_0 : U \leq 0.14	resilient modulus = 30,000 psi structural coefficient = 0.14	
Sandstone	Single t-test	H ₁ : U < 28,000; H ₀ : U ≥ 28,000 H ₁ : U < 0.13; H ₀ : U ≥ 0.13	resilient modulus = 28,000 psi structural coefficient = 0.13	
FDR-C	Single t-test	H_1 : U \neq 600,000; H_0 : U = 600,000 H_1 : U \neq 0.15; H_0 : U = 0.15	resilient modulus = 600,000 psi structural coefficient = 0.15	
S-C	Single t-test	H_1 : U \neq 600,000; H_0 : U = 600,000 H_1 : U \neq 0.15; H_0 : U = 0.15	resilient modulus = 600,000 psi structural coefficient = 0.15	
A-6 A-2-6	ANOVA	H ₁ : U _{lab} ≠ U _{field} ; H ₀ : U _{lab} = U _{field}	U _{lab} = mean value of resilient modulus from Lab Testing U _{field} = mean value of resilient modulus from Field Testing	
	Multiple t-test	H ₁ : U _{lab} > U _{field} ; H ₀ : U _{lab} ≤ U _{field}		

3.2.2 Results of Analysis

3.2.1.1 Aggregate Base

The limestone aggregate base had a total of 15 samples. Examining the t-test results, it was concluded with a 95% confidence that the structural layer coefficient of limestone is not statistically greater than the ALDOT default value, with a 95% confidence intervale of 0.13 to 0.15. The resilient modulus, however, did have a statistically higher value of 31,700 psi compared to the ALDOT default value of 30,000 psi. This value was calculated by taking the average of the 95% confidence range of 29,700 to 33,600, rounded to the nearest 100 psi. Given the low practical difference in resilient modulus and the fact that the structural layer coefficient was equivalent, it is recommended that ALDOT *not* change their default values.

The sandstone aggregate base only had a sample size of 6. When assessing the statistically difference using the t-test results with a 95% confidence level, it was found that the resilient modulus and layer coefficient were statistically *less* than the ALDOT default value. The structural layer coefficient was 0.12 with a 95% confidence interval of 0.11 to 0.13, whilst the resilient modulus was 23,800 psi with a 95% confidence interval of 21,600 to 26,000 psi. Considering the low sample size, it is *not* recommended that ALDOT make any changes. However, it is recommended to continue collecting data to assess potential need to change the layer

coefficient and/or design modulus. Figure 5 shows a comparison of the structural properties for both limestone and sandstone.

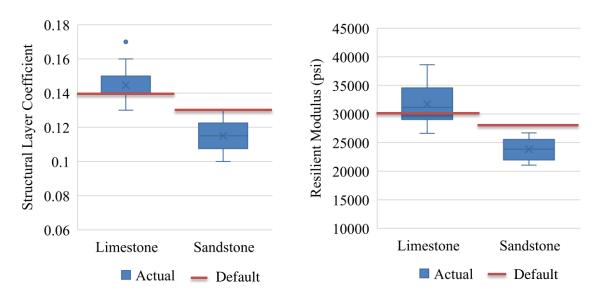


Figure 5. Comparison of structural properties for Aggregate Base Materials.

3.2.1.2 FDR with Cement and Soil-Cement

The conclusions from the conducted single t-tests showed that there is a 95% confidence that the FDR-C resilient modulus and structural coefficient are statistically different from ALDOT default values 600,000 psi and 0.15, respectively. Using 7-days UCS, the average resilient modulus of 553,200 psi and structural layer coefficient 0.14 obtained were slightly lower than the ALDOT default values. In addition, these values are significantly different from the recommended values from previous studies (Reeder et al. 2019; Diefenderfer and Apeagyei 2011) where the minimum recommended structural coefficient is 0.20. For comparison, 28-days UCS were also used to obtain average resilient modulus of 985,300 psi and structural coefficient of 0.26. It was noticed that these values were falling within the range recommended by other researchers for FDR-C (Scullion et al. 2008; Reeder et al. 2019; Diefenderfer and Apeagyei 2011). Consequently, instead of 7-days, the use of 28-days UCS is recommended to estimate the resilient modulus and structural coefficient of FDR-C. As a result, the new recommended structural coefficient for FDR with 4% cement is 0.26 and the 95% confidence interval is 0.22 to 0.30. The recommendations for the resilient modulus are 985,300 psi as the new value and 786,400 to 1,184,200 psi as the 95% confidence interval. The sample size was 43 for 7-days UCS and 10 for 28-days UCS. The summary of the results is shown in Figure 6 and Table 19.

Based on the single t-tests' results, there is a 95% confidence that the S-C resilient modulus and structural layer coefficient are statistically different from ALDOT default inputs 600,000 psi and 0.15, respectively. The average resilient modulus and structural layer coefficient

obtained using 7-days UCS were 544,600 psi and 0.14, respectively. These values were slightly lower than the ALDOT default values and significantly lower than the recommended values from previous studies as well where the minimum recommended structural layer coefficient from the literature of 0.20 (Reeder et al. 2019). However, the average resilient modulus of 775,700 psi and structural layer coefficient of 0.21 obtained using 28-days UCS were found to be within the range recommended by Reeder et al. 2019. As a result, the use of 28-days UCS in lieu of 7-days is recommended to estimate the resilient modulus and structural coefficient of S-C. Therefore, this led to a recommendation of 775,700 psi and 0.21 as for consideration as resilient modulus and structural layer coefficient of S-C with 3% cement. The 95% confidence intervals are 637,400 to 914,100 psi and 0.17 to 0.25, respectively. The sample size was 17 for 7-days UCS and 9 for 28-days UCS. The summary of the results is shown in Figure 6 and Table 19.

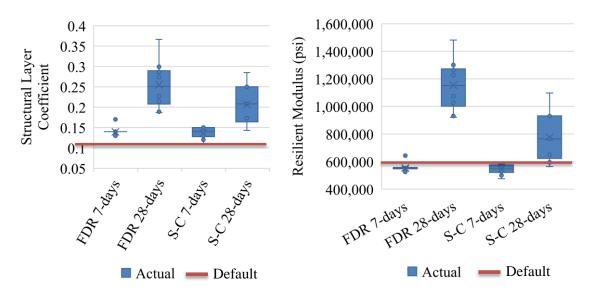


Figure 6. Comparison of structural properties for Stabilized Aggregate Base Materials.

3.2.1.3 Subgrade

As previously mentioned, the subgrade resilient modulus does not have default values. However, Table 19 provides a summary for AASHTO soil classifications of A1-a through A-7-6 using a 95% confidence interval.

Table 19. Calculated Inputs For Pavement Materials' Structural Properties.

	Resilient I	Modulus (psi)	Structural Coefficient	
Material Type	Average 95% CI Value	95% CI	Average 95% CI Value	95% CI
Limestone	31,700	29,700 - 33,600	0.14	0.13 – 0.15
Sandstone	23,800	21,600 - 26,000	0.12	0.11 - 0.13
FDR 7-days	553,200	548,600 - 557,800	0.14	0.138 - 0.142
FDR 28-days	985,300	786,400 – 1,184,200	0.26	0.22 - 0.30
S-C 7-days	544,600	525,400 - 563,700	0.14	0.13 - 0.15
S-C 28-days	775,700	637,400 – 914,100	0.21	0.17 – 0.25
A-1-a	12,800	9,500 – 16,100	-	-
A-1-b	10,000	9,300 - 10,800	-	-
A-2-4	9,400	9,100 - 9,800	-	-
A-2-6	9,000	8,200 - 9,800	-	-
A-2-7	8,600	6,500 - 10,600	-	-
A-3	8,900	7,200 - 10,700	-	-
A-4	7,800	7,600 - 8,100	-	-
A-5	8,200	8,200*	-	-
A-6	8,000	7,600 - 8,300	-	-
A-7-5	7,000	5,400 - 8,700	-	-
A-7-6	8,500	8,000 - 9,000	-	-

^{*}There is only one data point

A comparison was performed between the laboratory and field collected results using falling weight deflectometer (FWD) data for A-2-6 and A-6 soil classifications. First, an ANOVA test was conducted with a 95% confidence level, finding that there is a significant difference tween the resilient modulus measured in the laboratory versus that measured in the field. The Multiple t-test was performed at a 95% confidence level for each soil type, finding that in both cases the field-measured resilient modulus was higher than the laboratory-measured resilient modulus. The higher values may be caused by a number of factors, including increased compaction due to trafficking or the method of measurement. No changes are recommended to ALDOT standard procedures, but this is considered useful information for future design decisions. The final results can be seen in Table 20.

Table 20. Comparison of Subgrade Resilient Modulus From Laboratory and Field Testing

2 !! 2!	Resilient Modulus (psi)		
Soil Class	Laboratory	Field	
A-2-6	9,000	11,000	
A-6 8,000		8,800	

4 SOFTWARE DEVELOPMENT

4.1 DEVELOPMENT OF ADAPT

New software titled Alabama Design and Analysis of Pavement Thickness (ADAPT) was developed for this project to replace the DARWin 3.1 software previously employed by ALDOT to execute structural pavement design using the 1993 AASHTO Design Guide. The software was created in Microsoft Visual C++ and is a Windows-based program.

ADAPT facilitates both new and overlay design according the 1993 AASHTO Design Guide following guidance provided by ALDOT pavement design procedures for both flexible and rigid pavements. Specifically, ADAPT is capable of the following design scenarios:

- New flexible pavement design
- New rigid pavement design
- Asphalt overlay of existing asphalt pavement
- Asphalt overlay of existing asphalt on concrete pavement
- Unbonded concrete overlay of existing concrete pavement

Each scenario listed above has a specific design module in ADAPT corresponding to that pavement type. There is a separate traffic module that performs equivalent single axle load (ESAL) computations that are subsequently used in the various new and overlay design modules. There are also sub-modules that allow the designer to work directly with falling weight deflectometer (FWD) files to establish in situ properties for asphalt overlays of existing asphalt on concrete pavements and unbonded concrete overlays. When designs are complete, ADAPT can generate a formatted output file that includes all the relevant design inputs, computations, and outputs.

A core feature of ADAPT is short training videos that are accessible from each module described above. These videos work through examples and discuss the inputs and outputs of each module and ALDOT-specific recommended values. The videos are also accessible from an ADAPT web page that explains the program in greater detail.

4.2 SENSITIVITY ANALYSIS

4.2.1 Overview

The sensitivity analysis was performed to compare the design results of the newly developed ADAPT software with those of the previously used DARWin 3.1 software and ensure their equivalence. The analysis consisted of conducting six different types of design in the ADAPT and DARWin 3.1 software while varying some design inputs and comparing the results to verify their equivalence. The 6 types of design considered are:

- NDFP New Design Flexible Pavement
- NDJPCP New Design Jointed Plain Concrete Pavement
- NDJRCP New Design Jointed Reinforced Concrete Pavement
- NDCRCP New Design Continuously Reinforced Concrete Pavement
- ODFP Overlay Design Flexible Pavement
- ODRP Overlay Design Rigid Pavement

4.2.2 Methods and Results

4.2.2.1 NDFP - New Design Flexible Pavement

The purpose of the "new design flexible pavement" design was to determine the required thicknesses of the layers that compose a new flexible pavement. Ten design scenarios were simulated in both ADAPT and DARWin to compare their results. An excerpt of the inputs used for the design is shown in Table 21 where the project setting was either an interstate or non-interstate with different annual average daily traffic (AADT), number of lanes, "growth rate, "trucks, and "trucks in design lane. The subgrade modulus was varied between 7,000 psi and 8,000 psi. The number of pavement layers was varied from 1 to 3 layers, which are an AC layer with a modulus of 800,000 psi, a granular base of 40,000 psi, and a stabilized subbase of 15,000 psi.

The results obtained were the required structural number (SN) and required layers' thicknesses. Figure 1 presents the summary of the comparisons which were done using linear inequality graphs where the results from ADAPT are on the x-axis and DARWin results are on the y-axis. The dashed boundary line called the line of equality represents the linear equation x = y, which means that the results match. The regions on the right and left of the line represent the entire set of solutions for the inequalities x > y and y > x, respectively. Examining Figure 7, it can be said that all the design results are located on the line of equality, which means that the values are matching. The average percent difference between the result values rounded to 2 decimal places was 0.2%, with the median being equal to 0.1%. The average difference between the thickness values was 0 in for the AC layer and 0.02 in for the base and stabilized base layers. The detailed list of design inputs and the results are presented in Appendix A.1.

Table 21. NDFP - Design Inputs

Trial	Project Setting	AADT	Number of Lanes	Growth Rate	Truck Percentage	%Truck in Design Lane	Subgrade Modulus (psi)	Layers
1	Interstate	45000	2	4	22	85	8000	1
2	Interstate	45000	2	4	22	85	8000	2
3	Interstate	45000	2	4	22	85	8000	3
4	Interstate	45000	2	4	22	85	7000	2
5	Interstate	45000	2	4	22	85	7000	3
6	Non-Interstate	15000	1	3	5	90	8000	1
7	Non-Interstate	15000	1	3	5	90	8000	2
8	Non-Interstate	15000	1	3	5	90	8000	3
9	Non-Interstate	15000	1	3	5	90	7000	2
10	Non-Interstate	15000	1	3	5	90	7000	3

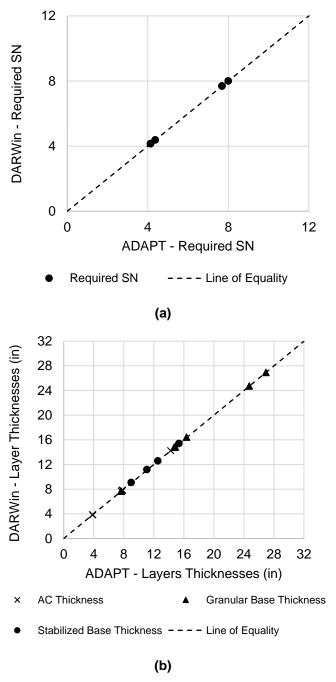
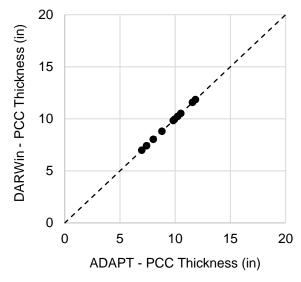


Figure 7. NDFP - Comparison of Design Results For (a) Required SN and (b) Thickness.

4.2.1.2 NDJPCP - New Design Jointed Plain Concrete Pavement


The "New Design Jointed Plain Concrete Pavement" design objective was to determine the required thickness of the Portland Cement Concrete (PCC) layer in a new JPCP. Ten (10) design scenarios were simulated in both ADAPT and DARWin to compare their results. An excerpt of the inputs used for the design is shown in Table 22 where the project setting was an interstate with an

AADT of 15,000, one lane, 3% growth rate, 5% truck, and 100% truck in design lane. The subgrade modulus was kept at 8,000 psi. The type of shoulder was varied between asphalt and tied PCC, with tie bars of 0.75 in. diameter, allowable steel working stress of 30,000 psi, and a distance to nearest free edge of 12 ft. The use of tie bars, dowels, drains, and/or bedrock (120 in deep) was also considered. The number of pavement layers was varied from 1 to 2 layers, which are the PCC with an elastic modulus of 4,200,000 psi and a cement treated aggregate subbase with a modulus of 1,500,000 psi.

The results obtained were the required PCC thickness and tie bar spacing. Figure 8 presents the summary of the comparison. It is important to note that the tie bar spacing values being compared are the computed values, although ALDOT recommends a maximum spacing of 48 in, which is reported in ADAPT. It can be seen in Figure 8 that all the design results are located on the line of equality regardless of the varied design inputs. The average percent difference between the result values rounded to 2 decimal places was 0.2%, with the median being equal to 0.2%. The average difference between the thickness values was 0 in for the PCC layer. The tie bar length obtained was 35 in for ADAPT and 35.1 in for DARWin. The detailed list of design inputs and the results are presented in Appendix A.2.

Table 21. NDJPCP - Design Inputs

Trial	AADT	Shoulder Type	Tie Bars	Dowels	Drains	Bedrock	Depth to Bedrock (in)	Layers
1	15000	Asphalt	Yes	No	No	No	-	1
2	15000	Asphalt	Yes	No	No	No	-	2
3	15000	Asphalt	Yes	Yes	No	No	-	1
4	15000	Asphalt	Yes	Yes	No	No	-	2
5	15000	Tied PCC	Yes	No	No	No	-	1
6	15000	Tied PCC	Yes	No	No	No	-	2
7	15000	Tied PCC	Yes	Yes	No	No	-	1
8	15000	Tied PCC	Yes	Yes	No	No	-	2
9	15000	Tied PCC	Yes	Yes	Yes	No	-	2
10	15000	Tied PCC	Yes	Yes	No	Yes	120	2

PCC Thickness ---- Line of Equality

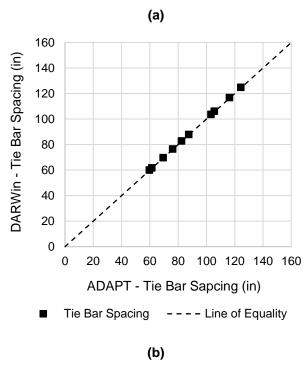


Figure 8. NDJPCP - Comparison of Design Results For (a) Thickness and (b) Tie Bar Spacing

4.2.2.3 NDJRCP - New Design Jointed Reinforced Concrete Pavement

The "New Design Jointed Reinforced Concrete Pavement" design's purpose was the determination of the required thickness of the Portland Cement Concrete (PCC) layer in a new JRCP. Ten (10) design scenarios were simulated in both ADAPT and DARWin to compare their results. An excerpt of the inputs used for the design is shown in Table 23 where the project setting was an interstate

with an AADT of 15,000, one lane, 3% growth rate, 5% truck, and 100% truck in design lane. The subgrade modulus was kept at 8,000 psi. The type of shoulder was varied between asphalt and tied PCC. Tie bars, dowels, drains, and/or bedrock (60 in deep) were also considered. The tie bars had a diameter of 0.625 in., an allowable steel working stress of 30,000 psi, and a distance to nearest free edge of 12 ft. The slab length was 30 ft and the steel mesh had an allowable steel stress of 30,000 psi. The number of pavement layers was varied from 1 to 2 layers, which are the PCC with an elastic modulus of 4,200,000 psi and a cement treated aggregate subbase with a modulus of 1,500,000 psi.

The results obtained were the required PCC thickness, tie bar spacing, longitudinal steel bar spacing, and transverse steel bar spacing. Figure 9 presents the summary of the comparison. It can be seen in Figure 9 that all the design results for PCC thickness are located on the line of equality despite the variation of design inputs. The average difference between the thickness values was 0.01 in for the PCC layer. From Figure 9, it can also be seen that the ADAPT spacing values for tie bars, longitudinal bars, and transverse bars are slightly greater than those of DARWin. Since the input values are the same, this difference could be due to the fact that the calculated PCC thicknesses are slightly greater in ADAPT than in DARWin due to rounding to the nearest 0.5 inch in ADAPT, thus the percent steel required per concrete area is also slightly greater. The average percent difference between the results was 1.1% with the median being equal to 1.2%. The detailed list of design inputs and the results are presented in Appendix A.3.

Table 22. NDJRCP - Design Inputs

Trial	AADT	Shoulder Type	Tie Bars	Dowels	Drains	Bedrock	Depth to Bedrock (in)	Layers
1	15000	Asphalt	Yes	No	No	No	-	1
2	15000	Asphalt	Yes	No	No	No	-	2
3	15000	Asphalt	Yes	Yes	No	No	-	1
4	15000	Asphalt	Yes	Yes	No	No	-	2
5	15000	Tied PCC	Yes	No	No	No	-	1
6	15000	Tied PCC	Yes	No	No	No	-	2
7	15000	Tied PCC	Yes	Yes	No	No	-	1
8	15000	Tied PCC	Yes	Yes	No	No	-	2
9	15000	Tied PCC	Yes	Yes	Yes	No	-	2
10	15000	Tied PCC	Yes	Yes	No	Yes	60	2

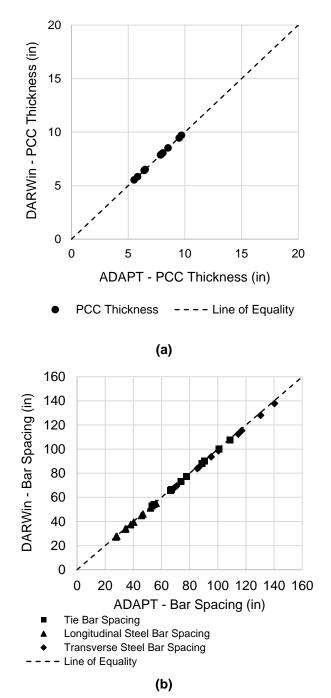
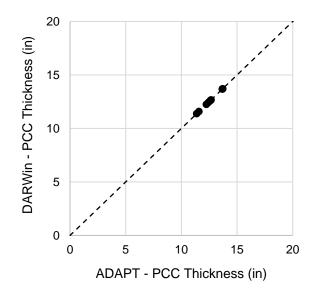


Figure 9. NDJRCP - Comparison of Design Results For (a) PCC Thickness and (b) Bar Spacing

4.2.2.4 NDCRCP - New Design Continuously Reinforced Concrete Pavement


The objective of the "New Design Continuously Reinforced Concrete Pavement" design was to determine the required thickness of the Portland Cement Concrete (PCC) layer in a new CRCP. Ten (10) design scenarios were simulated in both ADAPT and DARWin to compare their results. An excerpt of the inputs used for the design is shown in Table 24 where the project setting was an

interstate with an AADT of 45,000, two lanes, 4% growth rate, 10% truck, and 85% truck in design lane. The subgrade modulus and the type of shoulder were kept at 6,000 psi and tied PCC, respectively. The use of tie bars, drains, and/or bedrock was also considered. The tie bars had a diameter of 0.75 in., an allowable steel working stress of 30,000 psi, and a distance to nearest free edge of 12 ft. The slab width was 12 ft, the concrete shrinkage at 28 days was 0.00036 in/in, the coarse aggregate was gravel, the concrete thermal coefficient was 0.000006 in/in/F, and the tensile stress in slab due to wheel load was 190 psi. The longitudinal steel had a thermal coefficient of 0.000005 in/in/F, an allowable steel stress of 62,180 psi, and a temperature drop of 50 F. The transverse steel had an allowable steel stress of 30,000 psi. The bedrock, when included, had a depth that varied between 30 and 108 in. The number of pavement layers was varied from 1 to 2 layers, which are the PCC with an elastic modulus of 4,200,000 psi and a cement treated aggregate subbase with a modulus of 1,500,000 psi.

The results obtained were the required PCC thickness, tie bar spacing, longitudinal steel number of bars, and transverse steel bar spacing. Figure 10 presents the summary of the comparison. It is seen in Figure 10 that all the design results for PCC thickness, tie bar spacing, and transverse bar spacing are located on the line of equality even though the design inputs were varied. However, the number longitudinal steel bars were slightly higher in ADAPT than in DARWin and is believed to be caused by the slight difference due to rounding as reported for NDJRCP. The average percent difference between the results was 1.8% with the median being equal to 0.4%. The detailed list of design inputs and the results are presented in Appendix A.4.

Table 23. NDCRCP - Design Inputs

Trial	AADT	Shoulder Type	Tie Bars	Drains	Bedrock	Depth to Bedrock (in)	Layers
1	45000	Tied PCC	Yes	No	No	-	1
2	45000	Tied PCC	Yes	No	No	-	2
3	45000	Tied PCC	Yes	Yes	No	-	1
4	45000	Tied PCC	Yes	Yes	No	-	2
5	45000	Tied PCC	Yes	Yes	Yes	60	1
6	45000	Tied PCC	Yes	Yes	Yes	108	2
7	45000	Tied PCC	Yes	No	Yes	96	1
8	45000	Tied PCC	Yes	No	Yes	84	2
9	45000	Tied PCC	Yes	No	Yes	40	1
10	45000	Tied PCC	Yes	No	Yes	30	2

● PCC Thickness ---- Line of Equality

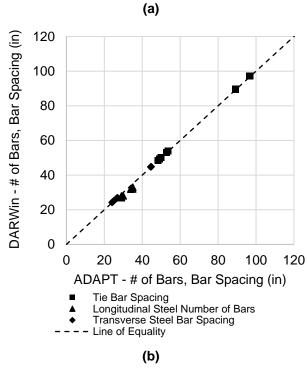


Figure 10. NDCRCP - Comparison of Design Results For (a) PCC Thickness and (b) Bar Spacing

4.2.2.5 ODFP - Overlay Design Flexible Pavement

The purpose of the "Overlay Design Flexible Pavement" design was to determine the required thickness of the asphalt concrete (AC) overlay layer for an existing flexible pavement. Ten design

scenarios were simulated in both ADAPT and DARWin to compare their results. An excerpt of the inputs used for the design is shown in Table 25 where the project setting was an interstate with different annual average daily traffic (AADT), number of lanes, %growth rate, %truck, and %truck in design lane. The subgrade modulus was varied between 5,500 psi and 7,000 psi. The total thickness of existing pavement layers was varied between 11 in. and 24 in. The back-calculated effective pavement modulus and the milling thickness were varied from 200,000 psi to 400,000 psi and 0 in. to 6 in., respectively. The AC overlay structural coefficient was kept at 0.54.

The results obtained were the required overlay thickness and the design SN. Figure 11 presents the summary of the comparison. It is seen in Figure 11 that all the design results are located on the line of equality. The average percent difference between the results was 0% with the median being equal to 0%. The average difference between the overlay thickness values was 0 in. The detailed list of design inputs and the results are presented in Appendix A.5.

Table 24. ODFP - Design Inputs

Trial	AADT	N° of Lanes	Growth Rate	%Truck	%Truck in Design Lane	Subgrade Modulus (psi)	Total Thickness of Existing Pavement Layers (in)	Back- calculated Effective Pavement Modulus (psi)	Milling Thickness (in)
1	45000	2	4	10	85	7000	11	200000	0
2	45000	2	4	10	85	6000	11	200000	0
3	45000	2	4	10	85	6000	16	200000	0
4	45000	2	4	10	85	6000	16	400000	0
5	45000	2	4	10	85	6000	16	400000	4
6	15000	1	3	2	100	6000	16	400000	4
7	15000	1	3	2	100	5500	16	400000	4
8	15000	1	3	2	100	5500	24	400000	4
9	15000	1	3	2	100	5500	11	200000	2
10	15000	1	3	2	100	5500	11	200000	6

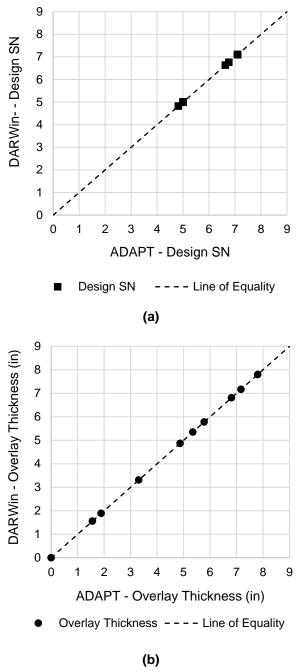


Figure 11. ODFP - Comparison of Design Results For (a) Design SN and (b) Design Thickness

4.2.2.6 ODRP - Overlay Design Rigid Pavement

The purpose of the "Overlay Design Rigid Pavement" design was to determine the required thickness of the PCC or AC overlay layer for an existing rigid pavement. Ten design scenarios were simulated in both ADAPT and DARWin to compare their results. The inputs used for the design are

shown in Tables 26 and 27 where the project setting was an interstate with different annual average daily traffic (AADT), number of lanes, %growth rate, %truck, and %truck in design lane. Two types of overlay were considered: (1) AC over AC/PCC and (2) PCC over PCC. For AC over AC/PCC, the existing AC layer thickness was varied from 3 in. to 6 in., the AC milling thickness was varied from 0 in. to 2 in., and the AC/PCC interface condition (bonded or unbonded) was considered. Additionally, the adjustment factors for PCC durability, AC quality, and joints and cracks were also varied, as listed in Table 27. The existing PCC thickness and the static modulus of subgrade reaction were varied from 4 in. to 12 in. and from 15 pci to 700 pci, respectively.

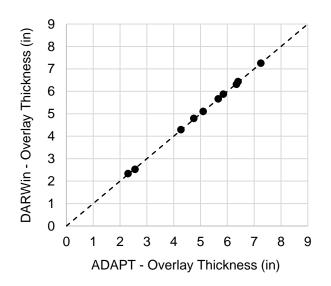

The result obtained was the required overlay thickness and Figure 12 presents the summary of the comparison. It is seen in Figure 12 that all the design results are located on the line of equality. The average percent difference between the results was 0.5% with the median being equal to 0.5%. The average difference between the overlay thickness values was 0.01 in. The detailed list of design inputs and the results are presented in Appendix A.6.

Table 25. ODRP - Design Inputs

Trial	Type of Overlay	AADT	Number of Lanes	Growth Rate	Truck Percentage	%Truck in Design Lane	Existing PCC Thickness (in)	Static Modulus of Subgrade Reaction (pci)
1		45000	2	4	10	85	12	300
2	AC	45000	2	4	10	85	10	100
3	Over	45000	2	4	10	85	12	20
4	AC/PCC	45000	2	4	10	85	10	20
5		45000	2	4	10	85	12	100
6		15000	1	3	2	90	4	700
7	PCC	15000	1	3	2	90	6	400
8	Over	15000	1	3	2	90	8	200
9	PCC	15000	1	3	2	90	5	50
10		15000	1	3	2	90	7	15

Table 26. ODRP - Design Inputs Continued

Trial	Existing AC Thickness (in)	AC Milling Thickness (in)	AC/PCC Interface Condition	Joints and Cracks Adjustment Factor (Fjc)	PCC Durability Adjustment Factor (Fdur)	AC Quality Adjustment Factor (Fac)
1	3	0	Unbonded	0.8	0.9	1
2	3	0	Bonded	0.9	0.9	0.8
3	3	0	Bonded	0.89	0.9	0.8
4	6	2	Unbonded	0.8	1	0.9
5	6	2	Bonded	0.8	1	1
6	-	-	-	0.95	-	-
7	-	-	-	0.9	-	-
8	-	-	-	0.95	=	-
9	-	-	-	0.91	-	-
10	-	-	-	0.95	-	-

• Overlay Thickness ---- Line of Equality

Figure 12. ODRP - Comparison of Design Results

4.2.3 Summary

In the sensitivity analysis of the new software ADAPT, the design results from the software were compared to results from the previous DARWin software. The average percent differences between the design results were 0.2%, 0.2%, 1.1%, 1.8%, 0%, and 0.5% for NDFP, NDJPCP, NDJRCP, NDCRCP, ODFP, and ODRP, respectively. The overall average percent difference for all these design types was 0.8% with a median of 0.3%. The maximum difference between the design thicknesses obtained throughout this analysis for AC and PCC layers was 0.02 in. Based on the extremely low percent difference between the results, it can be concluded that the design results from ADAPT and DARWin are practically equivalent.

5 FINDINGS, CONCLUSIONS, RECOMMENDATIONS, AND IMPLEMENTATION

5.1 FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS

The following findings resulted from this study:

- The structural layer coefficient of the collected limestone data is not statistically different than the ALDOT default value.
- The resilient modulus of collected limestone data was found to be slightly higher than that
 of the ALDOT default value.
- The structural layer coefficient and resilient modulus of the collected sandstone data was statistically equivalent to that of the ALDOT default value.
- Structural layer coefficients and resilient modulus values for both FDR-C and S-C are lower than both that of the ALDOT Default and significantly lower than those found in the literature when using the 7-day UCS.
- Structural layer coefficients and resilient modulus values for both FDR-C and S-C are higher than both that of the ALDOT Default and similar to those found in the literature when using the 28-day UCS.
- The ADAPT software computes similar results to the DARWin software for new design flexible pavement, new design jointed plain concrete pavement, new design jointed reinforced concrete pavement, new design continuously reinforced concrete pavement, overlay design flexible pavement, and overlay design rigid pavement sections.

The following conclusions were formed based on the findings of this study:

- The default structural layer coefficient values and resilient modulus values for limestone and sandstone base materials remained practically the same as the default values.
- The use of the 28-day UCS strength resulted in FDR-C and S-C material inputs similar to that of those found in the literature. At 28-days the FDR-C average resilient modulus was 985,300 psi with a structural layer coefficient of 0.26, and the S-C average resilient modulus was 775,700 psi with a structural layer coefficient of 0.21.
- Resilient modulus data for subgrade soils around Alabama have been collected and can
 be used in the design of pavements when FWD data is not available. However, FWD data
 provides statistically higher resilient modulus values in the two cases investigated by the
 research team, so in this way the resilient modulus from the laboratory could be viewed as
 conservative in design.
- The ADAPT software computes results that are equivalent or practically equivalent to that of DARWin for various material types and locations.

The project team makes the following recommendations to ALDOT for implementation consideration:

- Continue using the default structural layer coefficient values and resilient modulus values for limestone and sandstone base materials.
- Consider the use of 28-day UCS strength for FDR-C and S-C materials. This may
 increase the use of these techniques and save ALDOT money due to their
 relatively inexpensive application and their increased structural contribution.
- Implement the use of ADAPT for all ALDOT pavement designs.
- Use and continue to build upon the Microsoft Access database developed as a part of this research project. This database can be used to extract and compute materials information for locations throughout Alabama.

5.2 IMPLEMENTATION PLAN

The research team will work with Scott George and other ALDOT staff to launch the ADAPT software, which is already partially in use at the time of this report, for pavement design on ALDOT routes. ALDOT will maintain and manage the software use, and has an option to work with the investigators at Auburn University's Highway Research Center to update the software at ALDOT's discretion through future contracts.

ALDOT will continue to update the Microsoft Access database for use in the ADAPT software, along with the ability to assess and consider changes to their default structural design inputs. ALDOT will also consider the impacts, benefits, and drawbacks of adjusting the default structural layer coefficient and default resilient modulus default values for FDR-C and S-C.

REFERENCES

- AASHTO. 1993. "AASHTO Guide for Design of Pavement Structures". Washington D.C.: American Association of State and Highway Transportation Officials.
- AASHTO. 2020. "Mechanistic-Empirical Pavement Design Guide A Manual of Practice". Third Edition.
- AASHTO. 2008. "Mechanistic-Empirical Pavement Design Guide A Manual of Practice". Interim Edition, July 2008.
- ALDOT. 1990. Guidelines for Flexible Pavement Design in Alabama. 1990 Holman Report.
- ALDOT. 2012. "Procedure for Conducting Soil Surveys and Preparing Materials Reports". ALDOT 390. Alabama Department of Transportation.
- Applied Pavement Technology. AASHTO Pavement ME National Users Group Meetings,

 Technical Report: Second Annual Meeting Denver, CO October 11-12, 2017. Submission
 February 15, 2018.
- Davis, K. and D. Timm. Structural Coefficients and Life Cycle Cost. Proc., Transportation and Development Institute Congress 2011: Integrated Transportation and Development for a Better Tomorrow, American Society of Civil Engineers, Chicago, Ill., 2011, pp. 646–655.
- Diefenderfer, B. K., and A. K. Apeagyei. Analysis of Full-Depth Reclamation Trial Sections in Virginia. Virginia Department of Transportation. Richmond, VA, 2011.
- Highway Research Board. 1962. "The AASHO Road Test", Report 5, Pavement Research". Special Report 61E, National Academy of Sciences – National Research Council, Washington, DC.
- Hossain, M. S., and Lane, D. S. 2015. Development of a Catalog of Resilient Modulus Values for Aggregate Base for Use with the Mechanistic-Empirical Pavement Design Guide (MEPDG). Virginia Center for Transportation Innovation and Research.
- Khasawneh, M. A. 2013. "Using DARWin 3.1 in Undergraduate Pavement Design Courses".

 American Society for Engineering Education.
- Leiva-Villacorta, F., and Julian, G. 2020. Laboratory and Field Characterization of Warm Asphalt Mixtures with High Reclaimed Asphalt Pavement Contents in Alabama. National Center for Asphalt Technology. NCAT Report 20 01.
- NCHRP. 2004. Laboratory Determination of Resilient Modulus for Flexible Pavement Design.

 Research Results DIGEST 285. National Cooperative Highway Research Program.
- Reeder, G. D., D. S. Harrington, M. E. Ayers, and W. Adaska. Guide to Full-Depth Reclamation (FDR) with Cement. Portland Cement Association. Skokie, IL, 2019.
- West, R. et al. 2018. Using Recycled Asphalt Shingles with Warm Mix Asphalt Technologies. National Cooperative Highway Research Program. NCHRP Research Report 890.

- Willis, J. R. et al. 2014. Evaluation of a Rubber Modified Mixture in Alabama. National Center for Asphalt Technology. NCAT Report 14 03.
- Li, J. et al. 2011. "Use of the 1993 AASHTO Guide, MEPDG and Historical Performance to Update the WSDOT Pavement Design Catalog". WA-RD 779.1, Washington State Department of Transportation.
- Pavement Design Guide (MEPDG) and Software". Third Draft, NCHRP Project 20-05, Topic 44-06.
- Peters-Davis, K. and D.H. Timm. 2009. "Recalibration of the Asphalt Layer Coefficient". Report No. 09-03, National Center for Asphalt Technology. Auburn University. Pierce, L.M. and G. McGovern. 2013. "Implementation of the AASHTO Mechanistic-Empirical
- Pierce, L. M. and G. McGovern. Implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide and Software. NCHRP Synthesis 457, Transportation Research Board of the National Academies, Washington, D.C., 2014.
- Scullion, T., J. Uzan, S. Hilbrich, and P. Chen. Thickness Design Systems for Pavements Containing Soil-Cement Bases. Portland Cement Association. Skokie, IL, 2008.
- Timm, D.H. and A.L. Priest. 2006. "Material Properties of the 2003 NCAT Test Track Structural Study". Report No. 06-01, National Center for Asphalt Technology. Auburn University.
- Timm, D.H. et al. 2014. "Flexible Pavement Design State of the Practice". NCAT Report 14-04.

 National Asphalt Pavement Association.
- Timm, D. H. et al. 2014*. "Recalibration Procedures for the Structural Asphalt Layer Coefficient in the 1993 AASHTO Pavement Design Guide". National Center for Asphalt Technology. NCAT Report 14-08.

Appendix A.1

New Design Flexible Pavement

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

	A.	
File Location and	Name:	

C:	\Users\dvb0007	\OneDrive	\Documents'	\Master	Degree	Courses\	\Research	\ALDOT	DATA S	SERVER\	,ADAPT	Desig

Project Name:

NDFP1

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

New Design

Pavement Type(s):

Flexible

n Trials\NDFP - New Design Flexible Pavement\NDFP1.xlsx

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 22.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Flexible Pavement Design Parameters

Performance Period (years): 12

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 8,000

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 7.69

Design Structural Number, Rounded: 8

Total Trucks (Classes 5-13): 23,091,498

Total Other Vehicles (Classes 1-4): 81,869,857

Truck Damage Factor: 0.9745

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 3,526,332

Flexible Pavement Total Design ESALs (W18): 22,519,039

	Material	Modulus,	Structural	Drainage		Required	Design	
Layer	Type	psi	Coefficient	Coefficient	Required SN	Thickness, in.	Thickness, in.	Design SN
1	AC	800,000	0.54	1	7.69	14.24	14.24	7.69
2	Soil	8 000						

	Material	Modulus,	Structural	Drainage		Required	Design	
Layer	Type	psi	Coefficient	Coefficient	Required SN	Thickness, in.	Thickness, in.	Design SN
1	AC	800,000	0.54	1	4.23	7.83	7.83	4.23
2	Granular Base	40,000	0.14	1	7.69	24.71	24.71	7.69
3	Soil	8 000						

	Material	Modulus,	Structural	Drainage		Required	Design	
Layer	Type	psi	Coefficient	Coefficient	Required SN	Thickness, in.	Thickness, in.	Design SN
1	AC	800,000	0.54	1	4.23	7.83	7.83	4.23
2	Granular Base	40,000	0.14	1	6.31	14.86	14.86	6.31
3	Improved Roadbed (stabilized w/ agg)	15,000	0.11	1	7.69	12.55	12.55	7.69
4	Soil	8,000						

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location a	٦d	Na	ame:
-----------------	----	----	------

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\NDFP - New Design Flexible Pavement\NDFP2.xlsx

Project Name:

NDFP2

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Non-Interstate

Project Type:

New Design

Pavement Type(s):

Flexible

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 22.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Flexible Pavement Design Parameters

Performance Period (years): 12

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 7,000

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 8

Design Structural Number, Rounded: 8

Total Trucks (Classes 5-13): 23,091,498

Total Other Vehicles (Classes 1-4): 81,869,857

Truck Damage Factor: 0.9745

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 3,526,332

Flexible Pavement Total Design ESALs (W18): 22,519,039

Layer	Material Type	Modulus, psi	Structural Coefficient	Drainage Coefficient	Required SN	Required Thickness, in.	Design Thickness, in.	Design SN
1	AC	800,000	0.54	1	4.23	7.83	7.83	4.23
2	Granular Base	40,000	0.14	1	8	26.93	26.93	8
3	Soil	7 000						

Layer	Material Type	Modulus, psi	Structural Coefficient	Drainage Coefficient	Required SN	Required Thickness, in.	Design Thickness, in.	Design SN
Layer	Турс	Рэг	Cocmicicin	Cocmicicin	ricquired 514	11110011033, 111.	THICKINGS, III.	DC3Ig11 314
1	AC	800,000	0.54	1	4.23	7.83	7.83	4.23
2	Granular Base	40,000	0.14	1	6.31	14.86	14.86	6.31
3	Improved Roadbed (stabilized w/ agg)	15,000	0.11	1	8	15.36	15.36	8
4	Soil	7,000						

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\NDFP - New Design Flexible Pavement\NDFP3.xlsx

Project Name:

NDFP3

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Non-Interstate

Project Type:

New Design

Pavement Type(s):

Flexible

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 5.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 90.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Flexible Pavement Design Parameters

Performance Period (years): 12

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 90.00%

Standard Normal Deviate: -1.282

Subgrade Modulus, psi: 8,000

Initial Serviceability: 4.2

Terminal Serviceability: 3

Change in Serviceability: 1.2

Design Structural Number: 4.14

Design Structural Number, Rounded: 5

Total Trucks (Classes 5-13): 1,749,478

Total Other Vehicles (Classes 1-4): 33,240,084

Truck Damage Factor: 1.0088

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 277,389

Flexible Pavement Total Design ESALs (W18): 1,771,522

	Material	Modulus,	Structural	Drainage		Required	Design	
Layer	Type	psi	Coefficient	Coefficient	Required SN	Thickness, in.	Thickness, in.	Design SN
1	AC	800,000	0.54	1	4.14	7.67	7.67	4.14
2	Soil	8,000						

	Material	Modulus,	Structural	Drainage		Required	Design	
Layer	Type	psi	Coefficient	Coefficient	Required SN	Thickness, in.	Thickness, in.	Design SN
1	AC	800,000	0.54	1	2.08	3.85	3.85	2.08
2	Granular Base	40,000	0.14	1	4.14	14.71	14.71	4.14
3	Soil	8.000						

	Material	Modulus,	Structural	Drainage		Required	Design		
Layer	Туре	psi	Coefficient	Coefficient	Required SN	Thickness, in.	Thickness, in.	Design SN	
1	AC	800,000	0.54	1	2.08	3.85	3.85	2.08	
2	Granular Base	40,000	0.14	1	3.15	7.64	7.64	3.15	
3	Improved Roadbed (stabilized w/ agg)	15,000	0.11	1	4.14	9	9	4.14	
4	Soil	8,000							

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\NDFP - New Design Flexible Pavement\NDFP4.xlsx

Project Name:

NDFP4

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Non-Interstate

Project Type:

New Design

Pavement Type(s):

Flexible

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 5.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 90.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Flexible Pavement Design Parameters

Performance Period (years): 12

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 90.00%

Standard Normal Deviate: -1.282

Subgrade Modulus, psi: 7,000

Initial Serviceability: 4.2

Terminal Serviceability: 3

Change in Serviceability: 1.2

Design Structural Number: 4.37

Design Structural Number, Rounded: 5

Total Trucks (Classes 5-13): 1,749,478

Total Other Vehicles (Classes 1-4): 33,240,084

Truck Damage Factor: 1.0088

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 277,389

Flexible Pavement Total Design ESALs (W18): 1,771,522

Flexible Pavement Design Option 1

Trial 9

Layer	Material Type	Modulus, psi	Structural Coefficient	Drainage Coefficient	Required SN	Required Thickness, in.	Design Thickness, in.	Design SN
1	AC	800,000	0.54	1	2.08	3.85	3.85	2.08
2	Granular Base	40,000	0.14	1	4.37	16.36	16.36	4.37
3	Soil	7,000						

Flexible Pavement Design Option 2

Trial 10

	Material	Modulus,	Structural	Drainage		Required	Design	
Layer	Туре	psi	Coefficient	Coefficient	Required SN	Thickness, in.	Thickness, in.	Design SN
1	AC	800,000	0.54	1	2.08	3.85	3.85	2.08
2	Granular Base	40,000	0.14	1	3.15	7.64	7.64	3.15
3	Improved Roadbed (stabilized w/ agg)	15,000	0.11	1	4.37	11.09	11.09	4.37
4	Soil	7,000						

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Flexible Structural Design Module

NDFP-Trial 1

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	22,519,039
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	8,000 psi
Stage Construction	1
Calculated Design Structural Number	7.69 in
6	

Simple ESAL Calculation

Performance Period (years)	12
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

*Note: This value is not represented by the inputs or an error occurred in calculation.

Performance Period (years)	12
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	Factor	<u>Period</u>
1	78	4	0.0002	0	16,374
2	22	4	0.9745	0	22,502,665

	_		Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
Total	100	-	-	-	22,519,039

Total Calculated Cumulative ESALs 22,519,039

Thickness precision

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	<u>SN (in)</u>
Total	-	-	-	_	-	-

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

Layered Thickness Design

1								
	Struct	Drain	Spec	Min	Elastic		Calculated	
	Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated

Actual

		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	(Mi)	(Di)(in)	(Di)(in)	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)
1	AC	0.54	1	-	-	800,000	12	14.24	7.69
Total	-	-	-	-	-	-	-	14.24	7.69

Optimized Layer Design

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
<u>Layer</u>	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
Total	-	-	-	-	-	-	-	-	-	

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Flexible Structural Design Module

NDFP-Trial 2

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	22,519,039
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	8,000 psi
Stage Construction	1
Calculated Design Structural Number	7.69 in

Simple ESAL Calculation

Performance Period (years)	12
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

*Note: This value is not represented by the inputs or an error occurred in calculation.

Performance Period (years)	12
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	Factor	<u>Period</u>
1	78	4	0.0002	0	16,374
2	22	4	0.9745	0	22,502,665

	Percent	Annual	Average Initial Truck Factor	Annual % Growth in	Accumulated 18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	<u>Factor</u>	<u>Period</u>
Total	100	-	-	-	22,519,039

Total Calculated Cumulative ESALs 22,519,039

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	<u>SN (in)</u>
Total	-	-	-	_	-	-

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

Layered Thickness Design

Thickness precision Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	(Mi)	(Di)(in)	(Di)(in)	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)
1	AC	0.54	1	7.83	-	800,000	-	7.83	4.23
2	Granular Base	0.14	1	-	-	40,000	-	24.73	3.46
Total	-	-	-	-	-	-	-	32.56	7.69

Optimized Layer Design

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
Total	-	-	-	-	-	-	-	-	-	

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Flexible Structural Design Module

NDFP-Trial 3

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	22,519,039
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	8,000 psi
Stage Construction	1
Calculated Design Structural Number	7.69 in

Simple ESAL Calculation

Performance Period (years)	12
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

*Note: This value is not represented by the inputs or an error occurred in calculation.

Performance Period (years)	12
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	Factor	<u>Period</u>
1	78	4	0.0002	0	16,374
2	22	4	0.9745	0	22,502,665

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
Total	100	-	- '	-	22,519,039

Total Calculated Cumulative ESALs 22,519,039

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	<u>SN (in)</u>
Total	-	-	-	_	-	-

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

Layered Thickness Design

Thickness precision Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	(Mi)	(Di)(in)	(Di)(in)	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)
1	AC	0.54	1	7.83	-	800,000	-	7.83	4.23
2	Granular Base	0.14	1	-	-	40,000	-	14.85	2.08
3	Improved Roadbed	0.11	1	-	-	15,000	-	12.58	1.38
Total	_	_	_	_	_	_	_	35.25	7.69

Optimized Layer Design

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
<u>Layer</u>	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	<u>SN (in)</u>	<u>(sq yd)</u>
Total	-	-	-	-	_	-	-	-	-	

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Flexible Structural Design Module

NDFP-Trial 4

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	22,519,039
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	7,000 psi
Stage Construction	1
Calculated Design Structural Number	8.00 in

Simple ESAL Calculation

Performance Period (years)	12
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple
	•

Total Calculated Cumulative ESALs

Performance Period (years)	12
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	<u>Factor</u>	<u>Period</u>
1	78	4	0.0002	0	16,374
2	22	4	0.9745	0	22,502,665

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

	Percent	Annual	Average Initial Truck Factor	Annual % Growth in	Accumulated 18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	<u>Factor</u>	<u>Period</u>
Total	100	-	-	-	22,519,039

Total Calculated Cumulative ESALs 22,519,039

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	<u>SN (in)</u>
Total	-	-	-	-	-	-

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

Layered Thickness Design

Thickness precision Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	(Mi)	(Di)(in)	(Di)(in)	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)
1	AC	0.54	1	7.83	-	800,000	-	7.83	4.23
2	Granular Base	0.14	1	-	-	40,000	-	26.94	3.77
Total	_	_	_	_	_	_	_	34.77	8.00

Optimized Layer Design

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
Total	-	-	-	-	-	-	-	-	-	

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Flexible Structural Design Module

NDFP-Trial 5

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	22,519,039
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	7,000 psi
Stage Construction	1
Calculated Design Structural Number	8.00 in

Simple ESAL Calculation

Performance Period (years)	12
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

*Note: This value is not represented by the inputs or an error occurred in calculation.

Performance Period (years)	12
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	Factor	<u>Period</u>
1	78	4	0.0002	0	16,374
2	22	4	0.9745	0	22,502,665

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
Total	100	-	-	-	22,519,039

Total Calculated Cumulative ESALs 22,519,039

Layered Thickness Design

Thickness precision Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	(Mi)	(Di)(in)	(Di)(in)	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)
1	AC	0.54	1	7.83	-	800,000	-	7.83	4.23
2	Granular Base	0.14	1	-	-	40,000	-	14.85	2.08
3	Improved Roadbed	0.11	1	-	-	15,000	-	15.40	1.69
Total	_	_	_	_	_	_	_	38.07	8 00

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Flexible Structural Design Module

NDFP-Trial 6

Flexible Structural Design

1,771,522
4.2
3
90 %
0.49
8,000 psi
1
4.15 in

Simple ESAL Calculation

Performance Period (years)	12
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

Performance Period (years)	12
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	6,648
2	5	3	1.0088	0	1,764,874

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
Total	100	-	-	-	1,771,522

Total Calculated Cumulative ESALs 1,771,522

Layered Thickness Design

Thickness precision Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	(Mi)	(Di)(in)	(Di)(in)	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)
1	AC	0.54	1	-	-	800,000	-	7.69	4.15
Total	_	_	_	_	_	_	_	7 69	4 15

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Flexible Structural Design Module

NDFP-Trial 7

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	1,771,522
Initial Serviceability	4.2
Terminal Serviceability	3
Reliability Level	90 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	8,000 psi
Stage Construction	1
Calculated Design Structural Number	4.15 in

Simple ESAL Calculation

Performance Period (years)	12
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

Performance Period (years)	12
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	Factor	<u>Period</u>
1	95	3	0.0002	0	6,648
2	5	3	1.0088	0	1,764,874

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
Total	100	-	-	-	1,771,522

Total Calculated Cumulative ESALs 1,771,522

Layered Thickness Design

Thickness precision Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	(Mi)	(Di)(in)	(Di)(in)	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)
1	AC	0.54	1	3.85	-	800,000	-	3.85	2.08
2	Granular Base	0.14	1	-	-	40,000	-	14.79	2.07
Total	-	-	-	-	-	-	-	18.64	4.15

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Flexible Structural Design Module

NDFP-Trial 8

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	1,771,522
Initial Serviceability	4.2
Terminal Serviceability	3
Reliability Level	90 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	8,000 psi
Stage Construction	1
Calculated Design Structural Number	4.15 in

Simple ESAL Calculation

Performance Period (years)	12
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

*Note: This value is not represented by the inputs or an error occurred in calculation.

Performance Period (years)	12
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	Factor Factor	<u>Period</u>
1	95	3	0.0002	0	6,648
2	5	3	1.0088	0	1,764,874

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
Total	100	-	-	-	1,771,522

Total Calculated Cumulative ESALs 1,771,522

Layered Thickness Design

Thickness precision Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	(Ai)	(Mi)	(Di)(in)	(Di)(in)	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)
1	AC	0.54	1	3.85	-	800,000	-	3.85	2.08
2	Granular Base	0.14	1	-	-	40,000	-	7.66	1.07
3	Improved Roadbed	0.11	1	-	-	15,000	-	9.08	1.00
Total	-	-	-	-	-	-	-	20.59	4.15

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Flexible Structural Design Module

NDFP-Trial 9

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	1,771,522
Initial Serviceability	4.2
Terminal Serviceability	3
Reliability Level	90 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	7,000 psi
Stage Construction	1
Calculated Design Structural Number	4.38 in

Simple ESAL Calculation

Performance Period (years)	12
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

Performance Period (years)	12
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	Factor	<u>Period</u>
1	95	3	0.0002	0	6,648
2	5	3	1.0088	0	1,764,874

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
Total	100	-	-	-	1,771,522

Total Calculated Cumulative ESALs 1,771,522

Layered Thickness Design

Thickness precision Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	(Mi)	(Di)(in)	(Di)(in)	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)
1	AC	0.54	1	3.85	-	800,000	-	3.85	2.08
2	Granular Base	0.14	1	-	-	40,000	-	16.44	2.30
Total	-	-	-	-	-	-	-	20.29	4.38

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Flexible Structural Design Module

NDFP-Trial 10

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	1,771,522
Initial Serviceability	4.2
Terminal Serviceability	3
Reliability Level	90 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	7,000 psi
Stage Construction	1
Calculated Design Structural Number	4.38 in

Simple ESAL Calculation

Performance Period (years)	12
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

Performance Period (years)	12
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	6,648
2	5	3	1.0088	0	1,764,874

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
Total	100	-	-	-	1,771,522

Total Calculated Cumulative ESALs 1,771,522

Layered Thickness Design

Thickness precision Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	(Mi)	(Di)(in)	(Di)(in)	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)
1	AC	0.54	1	3.85	-	800,000	-	3.85	2.08
2	Granular Base	0.14	1	-	-	40,000	-	7.66	1.07
3	Improved Roadbed	0.11	1	-	-	15,000	-	11.17	1.23
Total	- -	_	_	_	_	_	_	22.68	4 38

Appendix A.2

New Design Jointed Plain Concrete Pavement

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\NDJPCP - New Design Jointed Plain Concrete Pavement\NDJPCP.xlsx

Project Name:

NDJPCP1

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

New Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 5.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 100.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Rigid Pavement Design Option 1

Trial 1

Design Features

Construction Stages: 1

Pavement Type: JPCP (Jointed Plain)

Tie Bars Between Lanes: Yes
Shoulder Type: Asphalt

Dowels: No Load Transfer Coefficient: 2.8
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 1092

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 90 Terminal Serviceability: 3
Standard Normal Variate: -1.282 Change in Serviceability: 1.5

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 3,680,402 Total Other Vehicles (Class 1-4) in Performance Period: 69,927,631

Truck (Class 5-13) Damage Factor: 1.6246

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 446,080

Total Design ESALs: 5,993,166

Slab Thickness

Required Slab Thickness, in.: 11.84 Design Slab Thickness, in.: 11.84

Rigid Pavement Design Option 1 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 103.23

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

Rigid Pavement Design Option 2

Trial 2

Design Features

Construction Stages: 1

Pavement Type: JPCP (Jointed Plain)

Tie Bars Between Lanes: Yes Shoulder Type: Asphalt

> Dowels: No Load Transfer Coefficient: 2.8 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 12

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 1092

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 90 Terminal Serviceability: 3 Standard Normal Variate: -1.282 Change in Serviceability: 1.5

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 3,680,402 Total Other Vehicles (Class 1-4) in Performance Period: 69,927,631

Truck (Class 5-13) Damage Factor: 1.5821

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 434,437

Total Design ESALs: 5,836,749

Slab Thickness

Required Slab Thickness, in.: 10.23 Design Slab Thickness, in.: 10.23

Rigid Pavement Design Option 2 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 59.74

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

Rigid Pavement Design Option 3

Trial 3

Design Features

Construction Stages: 1

Pavement Type: JPCP (Jointed Plain)

Tie Bars Between Lanes: Yes

Shoulder Type: Asphalt

Dowels: Yes Load Transfer Coefficient: 2.8
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 1092

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 90 Terminal Serviceability: 3
Standard Normal Variate: -1.282 Change in Serviceability: 1.5

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 3,680,402 Total Other Vehicles (Class 1-4) in Performance Period: 69,927,631

Truck (Class 5-13) Damage Factor: 1.6093

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 441,889

Total Design ESALs: 5,936,856

Slab Thickness

Required Slab Thickness, in.: 10.51 Design Slab Thickness, in.: 10.51

Rigid Pavement Design Option 3 - Steel

Dowel Bars

Diameter: 1+3/8" Spacing, in: 12 Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 116.29

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

Rigid Pavement Design Option 4

Trial 4

Design Features

Construction Stages: 1

Pavement Type: JPCP (Jointed Plain)

Tie Bars Between Lanes: Yes Shoulder Type: Asphalt

> Dowels: Yes Load Transfer Coefficient: 2.8 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 12

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 1092

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 90 Terminal Serviceability: 3 Standard Normal Variate: -1.282 Change in Serviceability: 1.5

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 3,680,402 Total Other Vehicles (Class 1-4) in Performance Period: 69,927,631

Truck (Class 5-13) Damage Factor: 1.5385

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 422,494

Total Design ESALs: 5,676,283

Slab Thickness

Required Slab Thickness, in.: 8.8 Design Slab Thickness, in.: 8.8

Rigid Pavement Design Option 4 - Steel

Dowel Bars

Diameter: 1+1/8" Spacing, in: 12 Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 69.44

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

Rigid Pavement Design Option 5

Trial 5

Design Features

Construction Stages: 1

Pavement Type: JPCP (Jointed Plain)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.8

Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 1092

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 90 Terminal Serviceability: 3
Standard Normal Variate: -1.282 Change in Serviceability: 1.5

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 3,680,402 Total Other Vehicles (Class 1-4) in Performance Period: 69,927,631

Truck (Class 5-13) Damage Factor: 1.6246

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 446,080

Total Design ESALs: 5,993,166

Slab Thickness

Required Slab Thickness, in.: 11.57 Design Slab Thickness, in.: 11.57

Rigid Pavement Design Option 5 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 105.64

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

Rigid Pavement Design Option 6

Trial 6

Design Features

Construction Stages: 1

Pavement Type: JPCP (Jointed Plain)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.8
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 12

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 1092

Variability & Reliability

Reliability Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 90 Terminal Serviceability: 3
Standard Normal Variate: -1.282 Change in Serviceability: 1.5

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 3,680,402 Total Other Vehicles (Class 1-4) in Performance Period: 69,927,631

Truck (Class 5-13) Damage Factor: 1.5821

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 434,437

Total Design ESALs: 5,836,749

Slab Thickness

Required Slab Thickness, in.: 9.95 Design Slab Thickness, in.: 9.95

Rigid Pavement Design Option 6 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 61.42

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

Rigid Pavement Design Option 7

Trial 7

Design Features

Construction Stages: 1

Pavement Type: JPCP (Jointed Plain)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: Yes Load Transfer Coefficient: 2.8
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 1092

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 90 Terminal Serviceability: 3
Standard Normal Variate: -1.282 Change in Serviceability: 1.5

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 3,680,402 Total Other Vehicles (Class 1-4) in Performance Period: 69,927,631

Truck (Class 5-13) Damage Factor: 1.5821

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 434,437

Total Design ESALs: 5,836,749

Slab Thickness

Required Slab Thickness, in.: 9.83 Design Slab Thickness, in.: 9.83

Rigid Pavement Design Option 7 - Steel

Dowel Bars

Diameter: 1+1/4" Spacing, in: 12 Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 124.34

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

Rigid Pavement Design Option 8

Trial 8

Design Features

Construction Stages: 1

Pavement Type: JPCP (Jointed Plain)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: Yes Load Transfer Coefficient: 2.8 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 12

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 1092

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 90 Terminal Serviceability: 3 Standard Normal Variate: -1.282 Change in Serviceability: 1.5

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 3,680,402 Total Other Vehicles (Class 1-4) in Performance Period: 69,927,631

Truck (Class 5-13) Damage Factor: 1.485

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 407,838

Total Design ESALs: 5,479,382

Slab Thickness

Required Slab Thickness, in.: 8.02 Design Slab Thickness, in.: 8.02

Rigid Pavement Design Option 8 - Steel

Dowel Bars

Diameter: 1+1/8" Spacing, in: 12 Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 76.2

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

Rigid Pavement Design Option 9

Trial 9

Design Features

Construction Stages: 1

Pavement Type: JPCP (Jointed Plain)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: Yes Load Transfer Coefficient: 2.8
Drains: Yes Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 12

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 1092

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 90 Terminal Serviceability: 3
Standard Normal Variate: -1.282 Change in Serviceability: 1.5

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 3,680,402 Total Other Vehicles (Class 1-4) in Performance Period: 69,927,631

Truck (Class 5-13) Damage Factor: 1.4573

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 400,250

Total Design ESALs: 5,377,435

Slab Thickness

Required Slab Thickness, in.: 6.98 Design Slab Thickness, in.: 6.98

Rigid Pavement Design Option 9 - Steel

Dowel Bars

Diameter: 7/8" Spacing, in: 12 Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 87.55

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

Rigid Pavement Design Option 10

Trial 10

Design Features

Construction Stages: 1

Pavement Type: JPCP (Jointed Plain)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: Yes Load Transfer Coefficient: 2.8
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 12

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: Yes

Depth to Bedrock, in: 120

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 1092

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 90 Terminal Serviceability: 3
Standard Normal Variate: -1.282 Change in Serviceability: 1.5

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 3,680,402 Total Other Vehicles (Class 1-4) in Performance Period: 69,927,631

Truck (Class 5-13) Damage Factor: 1.4573

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 400,250 $\,$

Total Design ESALs: 5,377,435

Slab Thickness

Required Slab Thickness, in.: 7.41 Design Slab Thickness, in.: 7.41

Rigid Pavement Design Option 10 - Steel

Dowel Bars

Diameter: 1"
Spacing, in: 12
Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 82.47

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJPCP-Trial 1

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	5,993,166
Initial Serviceability	4.5
Terminal Serviceability	3
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	18 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	4.1
Overall Drainage Coefficient, Cd	1

Simple ESAL Calculation

11.84 in

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Calculated Design Thickness

Total Calculated Cumulative ESALs

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	13,986
2	5	3	1.6246	0	5,979,180
Total	100	-	-	-	5,993,166

Growth Compound

Total Calculated Cumulative ESALs 5,993,166

Tie Bar Steel Design

Steel Grade30 ksiDistance to Free Edge12 ftSlab Thickness11.84 inFriction Factor (F)0.9Percent of Yield Strength100Bar Diameter0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Recommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results
103.6 in
48.0 in
0.051 in
0.051 sq in/ft

Layer Information

Joint Spacing - ft
Dowel Material Dowel Diameter - in
Dowel Length - in
Dowel Space - in
Dowel Coating -

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JPCP	11.8445667	12
Total	-	11.84	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJPCP-Trial 2

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	5,836,749
Initial Serviceability	4.5
Terminal Serviceability	3
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	709 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	4.1
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness 10.23 in

Effective Modulus of Subgrade Reaction

		Roadbed Soil	Base Elastic
		Resilient	Modulus
<u>Period</u>	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	8,000	1,500,000

Base Type Cement Treated Granular Base

Base Thickness12 inDepth to Bedrock1,000 ftProjected Slab Thickness9 inLoss of Support Category0.5

Effective Modulus of Subgrade Reaction 709 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	13,986
2	5	3	1.5821	0	5,822,763
Total	100	-	-	-	5,836,749

Growth Compound

Total Calculated Cumulative ESALs 5,836,749

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	10.23 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing 60.0 in
Recommended Maximum Tie Bar Spacing 48.0 in
Calculated Tie Bar Length 35.1 in
Calculated Area of Steel 0.088 sq in/ft

Layer Information

Joint Spacing	- ft
Dowel Material	-
Dowel Diameter	- in
Dowel Length	- in
Dowel Space	- in
Dowel Coating	-

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JPCP	10.2327423	12
2	Cement Treated Granular Base	12	12
Total	-	22.23	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJPCP-Trial 3

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	5,936,856
Initial Serviceability	4.5
Terminal Serviceability	3
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	18 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	3.2
Overall Drainage Coefficient, Cd	1

Simple ESAL Calculation

10.51 in

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple
	_

Calculated Design Thickness

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

Total Calculated Cumulative ESALs -*

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	13,986
2	5	3	1.6093	0	5,922,870
Total	100	-	-	-	5,936,856

Growth Compound

Total Calculated Cumulative ESALs 5,936,856

Tie Bar Steel Design

Steel Grade30 ksiDistance to Free Edge12 ftSlab Thickness10.51 inFriction Factor (F)0.9Percent of Yield Strength100Bar Diameter0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Recommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results

116.8 in
48.0 in
0.045 sq in/ft

Layer Information

Joint Spacing - ft
Dowel Material Dowel Diameter 1.375 in
Dowel Length 18 in
Dowel Space 12 in
Dowel Coating -

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JPCP	10.5130357	12
Total	-	10.51	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJPCP-Trial 4

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	5,676,283
Initial Serviceability	4.5
Terminal Serviceability	3
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	709 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	3.2
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

8.80 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
<u>Period</u>	<u>Description</u>	<u>Modulus (psi)</u>	<u>(psi)</u>
1	-	8,000	1,500,000

Base Type Cement Treated Granular Base

Base Thickness12 inDepth to Bedrock1,000 ftProjected Slab Thickness9 inLoss of Support Category0.5

Effective Modulus of Subgrade Reaction 709 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	Truck)	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	13,986
2	5	3	1.5385	0	5,662,298
Total	100	-	-	-	5,676,283

Growth Compound

Total Calculated Cumulative ESALs 5,676,283

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	8.8 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing 69.7 in
Recommended Maximum Tie Bar Spacing 48.0 in
Calculated Tie Bar Length 35.1 in
Calculated Area of Steel 0.076 sq in/ft

Layer Information

Joint Spacing	- ft
Dowel Material	-
Dowel Diameter	1.125 in
Dowel Length	18 in
Dowel Space	12 in
Dowel Coating	-

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JPCP	8.8020232	12
2	Cement Treated Granular Base	12	12
Total	-	20.80	_

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJPCP-Trial 5

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	5,993,166
Initial Serviceability	4.5
Terminal Serviceability	3
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	18 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	3.9
Overall Drainage Coefficient, Cd	1

Simple ESAL Calculation

11.57 in

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Calculated Design Thickness

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

Total Calculated Cumulative ESALs -*

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	13,986
2	5	3	1.6246	0	5,979,180
Total	100	-	-	-	5,993,166

Growth Compound

Total Calculated Cumulative ESALs 5,993,166

Tie Bar Steel Design

Steel Grade30 ksiDistance to Free Edge12 ftSlab Thickness11.57 inFriction Factor (F)0.9Percent of Yield Strength100Bar Diameter0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Recommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results
106.1 in
48.0 in
0.050 sq in/ft

Layer Information

Joint Spacing - ft
Dowel Material Dowel Diameter - in
Dowel Length - in
Dowel Space - in
Dowel Coating -

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JPCP	11.5676355	12
Total	-	11.57	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJPCP-Trial 6

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	5,836,749
Initial Serviceability	4.5
Terminal Serviceability	3
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	709 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	3.9
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

9.95 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
Period	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	8,000	1,500,000

Base Type Cement Treated Granular Base

Base Thickness12 inDepth to Bedrock1,000 ftProjected Slab Thickness9 inLoss of Support Category0.5

Effective Modulus of Subgrade Reaction 709 psi/in

Simple ESAL Calculation

20
15,000
1
100 %
50 %
- %
-
- %
- %
Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	13,986
2	5	3	1.5821	0	5,822,763
Total	100	-	-	-	5,836,749

Growth Compound

Total Calculated Cumulative ESALs 5,836,749

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	9.95 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
61.7 in
Recommended Maximum Tie Bar Spacing
48.0 in
Calculated Tie Bar Length
Calculated Area of Steel
0.086 sq in/ft

Layer Information

Joint Spacing	- ft
Dowel Material	-
Dowel Diameter	- in
Dowel Length	- in
Dowel Space	- in
Dowel Coating	-

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JPCP	9.9462838	12
2	Cement Treated Granular Base	12	12
Total	<u>-</u>	21.95	_

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJPCP-Trial 7

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	5,836,749
Initial Serviceability	4.5
Terminal Serviceability	3
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	18 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1
Calculated Design Thickness	9.83 in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs -*

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	13,986
2	5	3	1.5821	0	5,822,763
Total	100	=	-	-	5,836,749

Growth Compound

Total Calculated Cumulative ESALs 5,836,749

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	9.83 in
Friction Factor (F)	0.9
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Recommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results

124.8 in
48.0 in
0.042 sq in/ft

Layer Information

Joint Spacing - ft
Dowel Material Dowel Diameter 1.25 in
Dowel Length 18 in
Dowel Space 12 in
Dowel Coating -

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JРСР	9.8328445	12
Total	-	9.83	=

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJPCP-Trial 8

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	5,479,382
Initial Serviceability	4.5
Terminal Serviceability	3
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	709 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

8.02 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
Period	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	8,000	1,500,000

Base Type Cement Treated Granular Base

Base Thickness12 inDepth to Bedrock1,000 ftProjected Slab Thickness9 inLoss of Support Category0.5

Effective Modulus of Subgrade Reaction 709 psi/in

Simple ESAL Calculation

20
15,000
1
100 %
50 %
- %
-
- %
- %
Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	13,986
2	5	3	1.485	0	5,465,396
Total	100	-	-	-	5,479,382

Growth Compound

Total Calculated Cumulative ESALs 5,479,382

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	8.02 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Recommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Results
Calculated Tie Bar Spacing
Calculated Tie Bar Length

Layer Information

Joint Spacing	- ft
Dowel Material	-
Dowel Diameter	1.125 in
Dowel Length	18 in
Dowel Space	12 in
Dowel Coating	-

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JPCP	8.0211328	12
2	Cement Treated Granular Base	12	12
Total	-	20.02	_

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJPCP-Trial 9

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	5,377,435
Initial Serviceability	4.5
Terminal Serviceability	3
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	709 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1.2

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

6.98 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
Period	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	8,000	1,500,000

Base Type Cement Treated Granular Base

Base Thickness12 inDepth to Bedrock1,000 ftProjected Slab Thickness9 inLoss of Support Category0.5

Effective Modulus of Subgrade Reaction 709 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	13,986
2	5	3	1.4573	0	5,363,449
Total	100	-	-	-	5,377,435

Growth Compound

Total Calculated Cumulative ESALs 5,377,435

Tie Bar Steel Design

30 ksi
12 ft
6.98 in
1.8
100
0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Recommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results
87.9 in
48.0 in
0.060 sq in/ft

Layer Information

Joint Spacing	- ft
Dowel Material	-
Dowel Diameter	0.875 in
Dowel Length	18 in
Dowel Space	12 in
Dowel Coating	-

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JPCP	6.976792	12
2	Cement Treated Granular Base	12	12
Total	<u>-</u>	18.98	_

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJPCP-Trial 10

Rigid Structural Design

Pavement Type	JPCP
18-kip ESALs Over Initial Performance Period	5,377,435
Initial Serviceability	4.5
Terminal Serviceability	3
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	1,092 psi/in
Reliability Level	90 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness 7.41 in

Effective Modulus of Subgrade Reaction

		Roadbed Soil	Base Elastic
		Resilient	Modulus
<u>Period</u>	<u>Description</u>	<u>Modulus (psi)</u>	<u>(psi)</u>
1	-	8,000	1,500,000

Base Type Cement Treated Granular Base

Base Thickness12 inDepth to Bedrock10 ftProjected Slab Thickness9 inLoss of Support Category0.5

Effective Modulus of Subgrade Reaction 1,092 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	95	3	0.0002	0	13,986
2	5	3	1.4573	0	5,363,449
Total	100	-	-	-	5,377,435

Growth Compound

Total Calculated Cumulative ESALs 5,377,435

Tie Bar Steel Design

30 ksi
12 ft
7.41 in
1.8
100
0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Recommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results
82.8 in
48.0 in
0.064 sq in/ft

Layer Information

Joint Spacing	- ft
Dowel Material	-
Dowel Diameter	1 in
Dowel Length	18 in
Dowel Space	12 in
Dowel Coating	-

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JPCP	7.4123603	12
2	Cement Treated Granular Base	12	12
Total	-	19.41	-

Appendix A.3

New Design Jointed Reinforced Concrete Pavement

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\NDJRCP - New Design Jointed Reinforced Concrete Pavement\NDJRCP.xlsx

Project Name:

NDJRCP1

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

New Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 100.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Rigid Pavement Design Option 1

Trial 1

Design Features

Construction Stages: 1

Pavement Type: JRCP (Jointed Reinforced)

Tie Bars Between Lanes: Yes Shoulder Type: Asphalt

> Dowels: No Load Transfer Coefficient: 4.1 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 2.9 Modulus of Subgrade Reaction, pci: 18

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 85 Terminal Serviceability: 2.5 Standard Normal Variate: -1.038 Change in Serviceability: 2

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 1,472,161 Total Other Vehicles (Class 1-4) in Performance Period: 72,135,871

Truck (Class 5-13) Damage Factor: 1.6066

Other Vehicles (Class 1-4) Damage Factor: 0.0002 ESALs in Both Lanes and All Directions During First Year: 177,117

Total Design ESALs: 2,379,600

Slab Thickness

Required Slab Thickness, in.: 9.7 Design Slab Thickness, in.: 9.7

Rigid Pavement Design Option 1 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 88.77

Diameter: #5 (0.625")

Recommended Spacing, in: 48

Length, in: 30

Temperature Steel Mesh

Allowable Steel Working Stress, psi: 30,000 Type of Material Beneath Slab: Subgrade

> Friction Factor: 0.9 Slab Length, ft: 30

Slab Width, ft: 12

Longitudinal Required % Steel: 0.045 Transverse Required % Steel: 0.018

Longitudinal Transverse

Diameter: #4 (0.500") #4 (0.500")

Maximum Bar Spacing: 45.8 114.5

Trial 2

Design Features

Construction Stages: 1

Pavement Type: JRCP (Jointed Reinforced)

Tie Bars Between Lanes: Yes Shoulder Type: Asphalt

Dowels: No Load Transfer Coefficient: 4.1
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 12

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 709

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 85 Terminal Serviceability: 2.5
Standard Normal Variate: -1.038 Change in Serviceability: 2

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 1,472,161 Total Other Vehicles (Class 1-4) in Performance Period: 72,135,871

Truck (Class 5-13) Damage Factor: 1.5457

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 170,444

Total Design ESALs: 2,289,946

Slab Thickness

Required Slab Thickness, in.: 7.86 Design Slab Thickness, in.: 7.86

Rigid Pavement Design Option 2 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 54.78

Diameter: #5 (0.625")

Recommended Spacing, in: 48

Length, in: 30

Temperature Steel Mesh

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8 Slab Length, ft: 30 Slab Width, ft: 12

Longitudinal Required % Steel: 0.09 Transverse Required % Steel: 0.036

Longitudinal Transverse

Diameter: #4 (0.500") #4 (0.500")

Maximum Bar Spacing: 28.3 70.7

Trial 3

Design Features

Construction Stages: 1

Pavement Type: JRCP (Jointed Reinforced)

Tie Bars Between Lanes: Yes Shoulder Type: Asphalt

> Dowels: Yes Load Transfer Coefficient: 3.2 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 2.9 Modulus of Subgrade Reaction, pci: 18

Variability & Reliability

Serviceability Standard Deviation: 0.39 Initial Serviceability: 4.5

Reliability, %: 85 Terminal Serviceability: 2.5 Standard Normal Variate: -1.038 Change in Serviceability: 2

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 1,472,161 Total Other Vehicles (Class 1-4) in Performance Period: 72,135,871

Truck (Class 5-13) Damage Factor: 1.5797

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 174,169

Total Design ESALs: 2,339,999

Slab Thickness

Required Slab Thickness, in.: 8.52 Design Slab Thickness, in.: 8.52

Rigid Pavement Design Option 3 - Steel

Dowel Bars

Diameter: 1+1/8" Spacing, in: 12 Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 101.07

Diameter: #5 (0.625")

Recommended Spacing, in: 48

Length, in: 30

Temperature Steel Mesh

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9 Slab Length, ft: 30

Slab Width, ft: 12

Longitudinal Required % Steel: 0.045 Transverse Required % Steel: 0.018

Longitudinal Transverse

Diameter: #4 (0.500") #4 (0.500")

Maximum Bar Spacing: 52.2 130.4

Trial 4

Design Features

Construction Stages: 1

Pavement Type: JRCP (Jointed Reinforced)

Tie Bars Between Lanes: Yes Shoulder Type: Asphalt

> Dowels: Yes Load Transfer Coefficient: 3.2 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 12

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 709

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 85 Terminal Serviceability: 2.5 Standard Normal Variate: -1.038 Change in Serviceability: 2

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 1,472,161 Total Other Vehicles (Class 1-4) in Performance Period: 72,135,871

Truck (Class 5-13) Damage Factor: 1.5609

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 172,109

Total Design ESALs: 2,312,323

Slab Thickness

Required Slab Thickness, in.: 6.5 Design Slab Thickness, in.: 6.5

Rigid Pavement Design Option 4 - Steel

Dowel Bars

Diameter: 7/8"
Spacing, in: 12
Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 66.24

Diameter: #5 (0.625")

Recommended Spacing, in: 48

Length, in: 30

Temperature Steel Mesh

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8 Slab Length, ft: 30 Slab Width, ft: 12

Longitudinal Required % Steel: 0.09

Transverse Required % Steel: 0.036

Longitudinal Transverse

Diameter: #4 (0.500") #4 (0.500")

Maximum Bar Spacing: 34.2 85.5

Trial 5

Design Features

Construction Stages: 1

Pavement Type: JRCP (Jointed Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 3.9
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 2.9 Modulus of Subgrade Reaction, pci: 18

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 85 Terminal Serviceability: 2.5
Standard Normal Variate: -1.038 Change in Serviceability: 2

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 1,472,161 Total Other Vehicles (Class 1-4) in Performance Period: 72,135,871

Truck (Class 5-13) Damage Factor: 1.6066

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 177,117

Total Design ESALs: 2,379,600

Slab Thickness

Required Slab Thickness, in.: 9.5 Design Slab Thickness, in.: 9.5

Rigid Pavement Design Option 5 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 90.64

Diameter: #5 (0.625")

Recommended Spacing, in: 48

Length, in: 30

Temperature Steel Mesh

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9 Slab Length, ft: 30

Slab Width, ft: 12

Longitudinal Required % Steel: 0.045 Transverse Required % Steel: 0.018

Longitudinal Transverse

Diameter: #4 (0.500") #4 (0.500")

Maximum Bar Spacing: 46.8 117

Trial 6

Design Features

Construction Stages: 1

Pavement Type: JRCP (Jointed Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 3.9
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 6

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 435

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 85 Terminal Serviceability: 2.5
Standard Normal Variate: -1.038 Change in Serviceability: 2

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 1,472,161 Total Other Vehicles (Class 1-4) in Performance Period: 72,135,871

Truck (Class 5-13) Damage Factor: 1.5457

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 170,444

Total Design ESALs: 2,289,946

Slab Thickness

Required Slab Thickness, in.: 8.06 Design Slab Thickness, in.: 8.06

Rigid Pavement Design Option 6 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 53.42

Diameter: #5 (0.625")

Recommended Spacing, in: 48

Length, in: 30

Temperature Steel Mesh

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8 Slab Length, ft: 30 Slab Width, ft: 12

Longitudinal Required % Steel: 0.09 Transverse Required % Steel: 0.036

Longitudinal Transverse

Diameter: #4 (0.500") #4 (0.500")

Maximum Bar Spacing: 27.6 68.9

Trial 7

Design Features

Construction Stages: 1

Pavement Type: JRCP (Jointed Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: Yes Load Transfer Coefficient: 2.8
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 2.9 Modulus of Subgrade Reaction, pci: 18

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 85 Terminal Serviceability: 2.5
Standard Normal Variate: -1.038 Change in Serviceability: 2

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 1,472,161 Total Other Vehicles (Class 1-4) in Performance Period: 72,135,871

Truck (Class 5-13) Damage Factor: 1.5457

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 170,444

Total Design ESALs: 2,289,946

Slab Thickness

Required Slab Thickness, in.: 7.92 Design Slab Thickness, in.: 7.92

Rigid Pavement Design Option 7 - Steel

Dowel Bars

Diameter: 1"
Spacing, in: 12
Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 108.73

Diameter: #5 (0.625")

Recommended Spacing, in: 48

Length, in: 30

Temperature Steel Mesh

Allowable Steel Working Stress, psi: 30,000 Type of Material Beneath Slab: Subgrade

> Friction Factor: 0.9 Slab Length, ft: 30

Slab Width, ft: 12

Longitudinal Required % Steel: 0.045 Transverse Required % Steel: 0.018

Longitudinal Transverse

Diameter: #4 (0.500") #4 (0.500")

Maximum Bar Spacing: 56.1 140.3

Trial 8

Design Features

Construction Stages: 1

Pavement Type: JRCP (Jointed Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: Yes Load Transfer Coefficient: 2.8 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 6

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 435

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 85 Terminal Serviceability: 2.5

Standard Normal Variate: -1.038 Change in Serviceability: 2

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 1,472,161 Total Other Vehicles (Class 1-4) in Performance Period: 72,135,871

Truck (Class 5-13) Damage Factor: 1.5609

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 172,109

Total Design ESALs: 2,312,323

Slab Thickness

Required Slab Thickness, in.: 6.41 Design Slab Thickness, in.: 6.41

Rigid Pavement Design Option 8 - Steel

Dowel Bars

Diameter: 7/8"
Spacing, in: 12
Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 67.17

Diameter: #5 (0.625")

Recommended Spacing, in: 48

Length, in: 30

Temperature Steel Mesh

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8 Slab Length, ft: 30 Slab Width, ft: 12

Longitudinal Required % Steel: 0.09

Transverse Required % Steel: 0.036

Longitudinal Transverse

Diameter: #4 (0.500") #4 (0.500")

Maximum Bar Spacing: 34.7 86.7

Trial 9

Design Features

Construction Stages: 1

Pavement Type: JRCP (Jointed Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: Yes Load Transfer Coefficient: 2.8 Drains: Yes Drainage Coefficient: 1.2

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 6

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 435

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 85 Terminal Serviceability: 2.5 Standard Normal Variate: -1.038 Change in Serviceability: 2

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 1,472,161 Total Other Vehicles (Class 1-4) in Performance Period: 72,135,871

Truck (Class 5-13) Damage Factor: 1.5609

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 172,109

Total Design ESALs: 2,312,323

Slab Thickness

Required Slab Thickness, in.: 5.53 Design Slab Thickness, in.: 5.53

Rigid Pavement Design Option 9 - Steel

Dowel Bars

Diameter: 3/4"
Spacing, in: 12
Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 77.86

Diameter: #5 (0.625")

Recommended Spacing, in: 48

Length, in: 30

Temperature Steel Mesh

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8 Slab Length, ft: 30 Slab Width, ft: 12

Longitudinal Required % Steel: 0.09

Transverse Required % Steel: 0.036

Longitudinal Transverse

Diameter: #4 (0.500") #4 (0.500")

Maximum Bar Spacing: 40.2 100.5

Trial 10

Design Features

Construction Stages: 1

Pavement Type: JRCP (Jointed Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: Yes Load Transfer Coefficient: 2.8
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 6

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 8,000

Bedrock: Yes

Depth to Bedrock, in: 60

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 671

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 85 Terminal Serviceability: 2.5
Standard Normal Variate: -1.038 Change in Serviceability: 2

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 1,472,161 Total Other Vehicles (Class 1-4) in Performance Period: 72,135,871

Truck (Class 5-13) Damage Factor: 1.5609

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 172,109

Total Design ESALs: 2,312,323

Slab Thickness

Required Slab Thickness, in.: 5.83 Design Slab Thickness, in.: 5.83

Rigid Pavement Design Option 10 - Steel

Dowel Bars

Diameter: 3/4"
Spacing, in: 12
Length, in: 18

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 73.85

Diameter: #5 (0.625")

Recommended Spacing, in: 48

Length, in: 30

Temperature Steel Mesh

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8 Slab Length, ft: 30 Slab Width, ft: 12

Longitudinal Required % Steel: 0.09

Transverse Required % Steel: 0.036

Longitudinal Transverse

Diameter: #4 (0.500") #4 (0.500")

Maximum Bar Spacing: 38.1 95.3

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJRCP-Trial 1

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	2,379,600
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	18 psi/in
Reliability Level	85 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	4.1
Overall Drainage Coefficient, Cd	1
Calculated Design Thickness	9.70 in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	14,427
2	2	3	1.6066	0	2,365,173
Total	100	_	-	_	2,379,600

Growth Compound

Total Calculated Cumulative ESALs 2,379,600

JRCP Longitudinal Steel Design

_	Width	Calculated Number
<u>Lane</u>	<u>(ft)</u>	of Bars/Lane
1	12	3.20
2	-	-
3	-	-
4	-	-
5	-	-
Tied PCC Outer Shoulder Width	- ft	
Friction Factor (F)	0.9	
Steel Working Stress	30	
Bar or Wire Diameter	0.5 in	
	Calculated Results*	
Calculated Percent Steel	0.04	
Calculated Area of Steel	0.052 sq in/ft	
Calculated Bar Spacing	45.0 in	

^{*}Note: These values are not represented by the inputs or an error occurred in calculation.

JRCP Transverse Steel Design

Friction Factor (F)	0.9
Steel Working Stress	30
Bar or Wire Diameter	0.5

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	=	-	-
2	12	-	3.2	0.018	0.021	112.49
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	-	-	-	-	-	-
6	-	-	-	-	-	-

^{*}Note: These values are not represented by the inputs or an error occurred in calculation.

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	9.7 in
Friction Factor (F)	0.9
Percent of Yield Strength	100

Calculated Maximum Tie Bar Spacing 87.9 in
Recommended Maximum Tie Bar Spacing 48.0 in
Calculated Tie Bar Length 29.8 in
Calculated Area of Steel 0.042 sq in/ft

Layer Information

Joint Spacing 30 ft
Dowel Material Dowel Diameter - in
Dowel Length - in
Dowel Space - in
Dowel Coating -

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JRCP	9.6968646	12
Total	_	9.70	_

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJRCP-Trial 2

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	2,289,946
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	709 psi/in
Reliability Level	85 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	4.1
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

7.86 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
<u>Period</u>	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	8,000	1,500,000

Base Type Cement Treated Granular Base

Base Thickness12 inDepth to Bedrock1,000 ftProjected Slab Thickness9 inLoss of Support Category0.5

Effective Modulus of Subgrade Reaction 709 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)20Two-Way Traffic (ADT)15,000Number of Lanes in Design Direction1Percent of All Trucks in Design Lane100 %Percent Trucks in Design Direction50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	14,427
2	2	3	1.5457	0	2,275,519
Total	100	-	-	-	2,289,946

Growth Compound

Total Calculated Cumulative ESALs 2,289,946

JRCP Longitudinal Steel Design

<u>Lane</u> 1	Width (<u>ft)</u> 12	Calculated Number of Bars/Lane 5.19
2	-	-
3	-	-
4	-	-
5	-	-
Tied PCC Outer Shoulder Width	- ft	
Friction Factor (F)	1.8	
Steel Working Stress	30	
Bar or Wire Diameter	0.5 in	
	Calculated Results	
Calculated Percent Steel	0.09	

Calculated Percent Steel 0.09
Calculated Area of Steel 0.085 sq in/ft
Calculated Bar Spacing 27.8 in

JRCP Transverse Steel Design

Friction Factor (F) 1.8
Steel Working Stress 30
Bar or Wire Diameter 0.5

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-	-
2	12	-	5.2	0.036	0.034	69.43
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	-	-	-	-	-	-

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
6	_	_	_	_	_	_

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	7.86 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.625 in

Calculated Results
Calculated Maximum Tie Bar Spacing 54.2 in
Recommended Maximum Tie Bar Spacing 48.0 in
Calculated Tie Bar Length 29.8 in
Calculated Area of Steel 0.068 sq in/ft

Layer Information

Joint Spacing 30 ft
Dowel Material Dowel Diameter - in
Dowel Length - in
Dowel Space - in
Dowel Coating -

		Thickness	One Dir Width
		THICKHOSS	
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JRCP	7.8555559	12
2	Cement Treated Granular Base	12	12
Total	-	19.86	=

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJRCP-Trial 3

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	2,339,999
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	18 psi/in
Reliability Level	85 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	3.2
Overall Drainage Coefficient, Cd	1
Calculated Design Thickness	8.52 in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs -*

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	14,427
2	2	3	1.5797	0	2,325,572
Total	100	-	-	-	2,339,999

Growth Compound

Total Calculated Cumulative ESALs 2,339,999

JRCP Longitudinal Steel Design

<u>Lane</u> 1	Width (<u>ft)</u> 12	Calculated Number <u>of Bars/Lane</u> 2.81
2	-	-
3	-	-
4	-	-
5	-	-
Tied PCC Outer Shoulder Width	- ft	
Friction Factor (F)	0.9	
Steel Working Stress	30	
Bar or Wire Diameter	0.5 in	
	Calculated Results	
Calculated Percent Steel	0.04	
Calculated Area of Steel	0.046 sq in/ft	
Calculated Bar Spacing	51.2 in	

JRCP Transverse Steel Design

Friction Factor (F) 0.9 Steel Working Stress 30 Bar or Wire Diameter 0.5

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-	-
2	12	-	2.8	0.018	0.018	128.01
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	-	-	-	-	-	-
6	_	_	_	_	-	-

Tie Bar Steel Design

Steel Grade 30 ksi Distance to Free Edge 12 ft Slab Thickness 8.52 in Friction Factor (F) 0.9 Percent of Yield Strength 100 Bar Diameter 0.625 in

Calculated Results

Calculated Maximum Tie Bar Spacing

100.0 in

Layer Information

Joint Spacing	30 ft
Dowel Material	-
Dowel Diameter	1.125 in
Dowel Length	18 in
Dowel Space	12 in
Dowel Coating	-

		Thickness	One Dir Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JRCP	8.5216316	12
Total	-	8.52	-

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJRCP-Trial 4

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	2,312,323
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	709 psi/in
Reliability Level	85 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	3.2
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

6.50 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
<u>Period</u>	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	<u>-</u>	8,000	1,500,000

Base Type Cement Treated Granular Base

Base Thickness12 inDepth to Bedrock1,000 ftProjected Slab Thickness9 inLoss of Support Category0.5

Effective Modulus of Subgrade Reaction 709 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)

Two-Way Traffic (ADT)

Number of Lanes in Design Direction

Percent of All Trucks in Design Lane

Percent Trucks in Design Direction

100 %

Percent Trucks in Design Direction

50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	14,427
2	2	3	1.5609	0	2,297,896
Total	100	-	-	-	2,312,323

Growth Compound

Total Calculated Cumulative ESALs 2,312,323

JRCP Longitudinal Steel Design

	Width	Calculated Number
Lane	<u>(ft)</u>	of Bars/Lane
1	12	4.29
2	-	-
3	-	-
4	-	-
5	-	-
Tied PCC Outer Shoulder Width	- ft	
Friction Factor (F)	1.8	
Steel Working Stress	30	
Bar or Wire Diameter	0.5 in	
	Calculated Results	
Calculated Percent Steel	0.09	
Calculated Area of Steel	0.070 as in/ft	

Calculated Area of Steel
Calculated Bar Spacing

0.070 sq in/ft
33.6 in

JRCP Transverse Steel Design

Friction Factor (F) 1.8
Steel Working Stress 30
Bar or Wire Diameter 0.5

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-	-
2	12	-	4.3	0.036	0.028	83.94
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	_	_	_	_	_	_

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
6	_	_	<u>_</u>	_	_	_

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	6.5 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.625 in

Calculated Results
Calculated Maximum Tie Bar Spacing 65.6 in
Recommended Maximum Tie Bar Spacing 48.0 in
Calculated Tie Bar Length 29.8 in
Calculated Area of Steel 0.056 sq in/ft

Layer Information

Joint Spacing 30 ft
Dowel Material Dowel Diameter 0.875 in
Dowel Length 18 in
Dowel Space 12 in
Dowel Coating -

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JRCP	6.4978852	12
2	Cement Treated Granular Base	12	12
Total	-	18.50	-

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJRCP-Trial 5

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	2,379,600
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	18 psi/in
Reliability Level	85 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	3.9
Overall Drainage Coefficient, Cd	1
Calculated Design Thickness	9.45 in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	14,427
2	2	3	1.6066	0	2,365,173
Total	100	_	-	-	2,379,600

Growth Compound

Total Calculated Cumulative ESALs 2,379,600

JRCP Longitudinal Steel Design

Width (<u>ft)</u> 12	Calculated Number of Bars/Lane 3.12
-	5.12
- -	- -
-	-
-	-
- ft	
0.9	
30	
0.5 in	
Calculated Results	
0.04	
0.051 sq in/ft	
46.2 in	
	(ft) 12 Calculated Results 0.04 0.051 sq in/ft

JRCP Transverse Steel Design

Friction Factor (F) 0.9
Steel Working Stress 30
Bar or Wire Diameter 0.5

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-	-
2	12	-	3.1	0.018	0.020	115.38
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	-	-	-	-	-	-
6	_	_	-	_	_	_

Tie Bar Steel Design

Steel Grade30 ksiDistance to Free Edge12 ftSlab Thickness9.45 inFriction Factor (F)0.9Percent of Yield Strength100Bar Diameter0.625 in

Calculated Maximum Tie Bar Spacing

Calculated Results

90.2 in

175

Page 2

Layer Information

Joint Spacing	30 ft
Dowel Material	-
Dowel Diameter	- in
Dowel Length	- in
Dowel Space	- in
Dowel Coating	-

		Thickness	One Dir Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JRCP	9.454593	12
Total	-	9.45	-

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJRCP-Trial 6

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	2,289,946
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	435 psi/in
Reliability Level	85 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	3.9
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

8.05 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
Period	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	<u>-</u>	8,000	1,500,000

Base Type Cement Treated Granular Base

Base Thickness6 inDepth to Bedrock1,000 ftProjected Slab Thickness9 inLoss of Support Category0.5

Effective Modulus of Subgrade Reaction 435 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

177

Page 1

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)20Two-Way Traffic (ADT)15,000Number of Lanes in Design Direction1Percent of All Trucks in Design Lane100 %Percent Trucks in Design Direction50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	14,427
2	2	3	1.5457	0	2,275,519
Total	100	-	-	-	2,289,946

Growth Compound

Total Calculated Cumulative ESALs 2,289,946

JRCP Longitudinal Steel Design

Width	Calculated Number
<u>(ft)</u>	of Bars/Lane
12	5.32
-	-
-	-
-	-
-	-
- ft	
1.8	
30	
0.5 in	
Calculated Results	
0.09	
	(ft) 12 1.8 30 0.5 in Calculated Results

JRCP Transverse Steel Design

Friction Factor (F) 1.8
Steel Working Stress 30
Bar or Wire Diameter 0.5

Calculated Area of Steel

Calculated Bar Spacing

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-	-
2	12	-	5.3	0.036	0.035	67.72
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	_	_	_	_	_	_

0.087 sq in/ft

27.1 in

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
6	_	_	<u>_</u>	_	_	_

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	8.05 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.625 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Secommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results
52.9 in
48.0 in
29.8 in
Calculated Area of Steel

0.070 sq in/ft

Layer Information

Joint Spacing 30 ft
Dowel Material Dowel Diameter - in
Dowel Length - in
Dowel Space - in
Dowel Coating -

		Thickness	Width
Layer	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JRCP	8.0538652	12
2	Cement Treated Granular Base	6	12
Total	-	14.05	-

One Dir

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJRCP-Trial 7

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	2,289,946
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	18 psi/in
Reliability Level	85 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1
Calculated Design Thickness	7.92 in

Simple ESAL Calculation

Performance Period (years)	20
,	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs -*

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	14,427
2	2	3	1.5457	0	2,275,519
Total	100	-	_	-	2,289,946

Growth Compound

Total Calculated Cumulative ESALs 2,289,946

JRCP Longitudinal Steel Design

<u>Lane</u> 1	Width <u>(ft)</u> 12	Calculated Number of Bars/Lane 2.61
2	-	-
3	-	-
4	-	-
5	-	-
Tied PCC Outer Shoulder Width	- ft	
Friction Factor (F)	0.9	
Steel Working Stress	30	
Bar or Wire Diameter	0.5 in	
	Calculated Results	
Calculated Percent Steel	0.04	
Calculated Area of Steel	0.043 sq in/ft	
Calculated Bar Spacing	55.1 in	

JRCP Transverse Steel Design

Friction Factor (F) 0.9
Steel Working Stress 30
Bar or Wire Diameter 0.5

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-	-
2	12	-	2.6	0.018	0.017	137.75
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	-	-	-	-	-	-
6	_	_	-	_	-	_

Tie Bar Steel Design

Steel Grade30 ksiDistance to Free Edge12 ftSlab Thickness7.92 inFriction Factor (F)0.9Percent of Yield Strength100Bar Diameter0.625 in

Calculated Results

Calculated Maximum Tie Bar Spacing

107.6 in

Layer Information

Joint Spacing	30 ft
Dowel Material	-
Dowel Diameter	1 in
Dowel Length	18 in
Dowel Space	12 in
Dowel Coating	-

		Thickness	One Dir Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
ĺ	JRCP	7.9186802	12
Total	-	7.92	-

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJRCP-Trial 8

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	2,312,323
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	435 psi/in
Reliability Level	85 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

6.41 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
Period	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	8,000	1,500,000

Base Type Cement Treated Granular Base
Base Thickness 6 in

Base Thickness 6 in
Depth to Bedrock 1,000 ft
Projected Slab Thickness 9 in
Loss of Support Category 0.5

Effective Modulus of Subgrade Reaction 435 psi/in

Simple ESAL Calculation

20
15,000
1
100 %
50 %
- %
-
- %
- %
Simple

183

Page 1

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)

Two-Way Traffic (ADT)

Number of Lanes in Design Direction

Percent of All Trucks in Design Lane

Percent Trucks in Design Direction

100 %

Percent Trucks in Design Direction

50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	14,427
2	2	3	1.5609	0	2,297,896
Total	100	-	-	-	2,312,323

Growth Compound

Total Calculated Cumulative ESALs 2,312,323

JRCP Longitudinal Steel Design

<u>Lane</u> 1	Width (ft) 12	Calculated Number of Bars/Lane 4.23
2	-	-
3	-	-
4	-	-
5	-	-
Tied PCC Outer Shoulder Width	- ft	
Friction Factor (F)	1.8	
Steel Working Stress	30	
Bar or Wire Diameter	0.5 in	
	Calculated Results	
Calculated Percent Steel	0.09	

Calculated Percent Steel 0.09
Calculated Area of Steel 0.069 sq in/ft
Calculated Bar Spacing 34.0 in

JRCP Transverse Steel Design

Friction Factor (F) 1.8
Steel Working Stress 30
Bar or Wire Diameter 0.5

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-	-
2	12	-	4.2	0.036	0.028	85.10
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	-	-	_	_	_	_

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
6	_	_	_	_	_	_

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	6.41 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.625 in

Calculated Results
Calculated Maximum Tie Bar Spacing 66.5 in
Recommended Maximum Tie Bar Spacing 48.0 in
Calculated Tie Bar Length 29.8 in
Calculated Area of Steel 0.055 sq in/ft

Layer Information

Joint Spacing 30 ft
Dowel Material Dowel Diameter 0.875 in
Dowel Length 18 in
Dowel Space 12 in
Dowel Coating -

		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JRCP	6.4092927	12
2	Cement Treated Granular Base	6	12
Total	-	12.41	-

One Dir

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJRCP-Trial 9

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	2,312,323
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	435 psi/in
Reliability Level	85 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1.2
Calculated Design Thickness	5.53 in

Effective Modulus of Subgrade Reaction

		Roadbed Soil	Base Elastic
		Resilient	Modulus
Period	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	8,000	1,500,000

Base Type Cement Treated Granular Base Base Thickness 6 in

Depth to Bedrock 1,000 ft
Projected Slab Thickness 9 in
Loss of Support Category 0.5

Effective Modulus of Subgrade Reaction 435 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

186

Page 1

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years) 20 Two-Way Traffic (ADT) 15,000 Number of Lanes in Design Direction 1 Percent of All Trucks in Design Lane 100 % Percent Trucks in Design Direction 50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	14,427
2	2	3	1.5609	0	2,297,896
Total	100	-	-	-	2,312,323

Growth Compound

Total Calculated Cumulative ESALs 2,312,323

JRCP Longitudinal Steel Design

Long	Width	Calculated Number
<u>Lane</u>	<u>(ft)</u>	of Bars/Lane
1	12	3.65
2	-	-
3	-	-
4	-	-
5	-	-
Tied PCC Outer Shoulder Width	- ft	
Friction Factor (F)	1.8	
Steel Working Stress	30	
Bar or Wire Diameter	0.5 in	
	Calculated Results	
Calculated Percent Steel	0.09	
Calculated Area of Steel	0.060 sq in/ft	

Calculated Area of Steel 0.060 sq in/ft 39.5 in Calculated Bar Spacing

JRCP Transverse Steel Design

Friction Factor (F) 1.8 Steel Working Stress 30 Bar or Wire Diameter 0.5

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-	-
2	12	-	3.6	0.036	0.024	98.65
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	-	-	_	_	_	_

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
6	_	_	_	_	_	_

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	5.53 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.625 in

Calculated Results
Calculated Maximum Tie Bar Spacing
77.1 in
Recommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results
77.1 in
48.0 in
29.8 in
0.048 sq in/ft

Layer Information

Joint Spacing 30 ft
Dowel Material Dowel Diameter 0.75 in
Dowel Length 18 in
Dowel Space 12 in
Dowel Coating -

		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JRCP	5.5287987	12
2	Cement Treated Granular Base	6	12
Total	-	11.53	-

One Dir

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDJRCP-Trial 10

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	2,312,323
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	671 psi/in
Reliability Level	85 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

5.83 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
<u>Period</u>	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	8,000	1,500,000

Base Type	Cement Treated Granular Ba
Base Thickness	6 in
Depth to Bedrock	5 ft
Projected Slab Thickness	9 in
Loss of Support Category	0.5

Effective Modulus of Subgrade Reaction 671 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

189

Page 1

_ *

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)20Two-Way Traffic (ADT)15,000Number of Lanes in Design Direction1Percent of All Trucks in Design Lane100 %Percent Trucks in Design Direction50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	14,427
2	2	3	1.5609	0	2,297,896
Total	100	-	-	-	2,312,323

Growth Compound

Total Calculated Cumulative ESALs 2,312,323

JRCP Longitudinal Steel Design

<u>Lane</u> 1	Width (ft) 12	Calculated Number of Bars/Lane 3.85
2	-	-
3	-	-
4	-	-
5	-	-
Tied PCC Outer Shoulder Width	- ft	
Friction Factor (F)	1.8	
Steel Working Stress	30	
Bar or Wire Diameter	0.5 in	
	Calculated Results	
Calculated Percent Steel	0.09	

JRCP Transverse Steel Design

37.4 in

0.063 sq in/ft

Friction Factor (F) 1.8
Steel Working Stress 30
Bar or Wire Diameter 0.5

Calculated Area of Steel

Calculated Bar Spacing

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-	-
2	12	-	3.8	0.036	0.025	93.58
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	_	_	_	_	_	_

	Width	Tied to	Number of	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	Bars/Slab Length	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
6	_	_	<u>_</u>	_	_	_

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	5.83 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.625 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Recommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results
73.1 in
48.0 in
29.8 in
Calculated Area of Steel

0.050 sq in/ft

Layer Information

Joint Spacing 30 ft
Dowel Material Dowel Diameter 0.75 in
Dowel Length 18 in
Dowel Space 12 in
Dowel Coating -

		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	JRCP	5.8282935	12
2	Cement Treated Granular Base	6	12
Total	-	11.83	-

One Dir

Appendix A.4

New Design Continuously Reinforced Concrete Pavement

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

Eila	Lacation	and Name:	
rne	Location	and Name:	

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design

Project Name:

NDCRCP1

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

New Design

Pavement Type(s):

Rigid

n Trials\NDCRCP - New Design Continuously Reinforced Concrete Pavement\NDCRCP.xlsx	

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Trial 1

Design Features

Construction Stages: 1

Pavement Type: CRCP (Continuously Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.6 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 6,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 2.9 Modulus of Subgrade Reaction, pci: 15

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 95 Terminal Serviceability: 3.5 Standard Normal Variate: -1.647 Change in Serviceability: 1

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 20,801,198 Total Other Vehicles (Class 1-4) in Performance Period: 187,210,779

Truck (Class 5-13) Damage Factor: 1.6339

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 2,688,477

Total Design ESALs: 34,024,519

Slab Thickness

Required Slab Thickness, in.: 13.72 Design Slab Thickness, in.: 13.72

Rigid Pavement Design Option 1 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 89.08

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

CRCP Steel

Concrete Properties

28 Day Concrete Modulus of Rupture, psi: 650 28 Day Concrete Indirect Tensile Strenth, psi: 559

> 28 Day Concrete Shrinkage, in/in: 0.00036 Type of Coarse Aggregate: Gravel

Concrete Thermal Coefficient, in/in/F: 0.000006

Width of Slab, ft: 12

Tensile Stress in Slab due to Wheel Load, psi: 161

Longitudinal Steel Parameters and Design

Steel Thermal Coefficient, in/in/F: 0.000005 Computed Crack Width, in: 0.034

Allowable Steel Stress, psi: 62,180 Computed Steel Stress, psi: 57,922

Design Temperature Drop, F: 50 Computed Crack Spacing, ft: 4.2

Longitudinal Bar Diameter, in: #5 (0.625") Number of Bars: 34

Transverse Steel Parameters and Design

Allowable Steel Working Stress, psi: 30,000 Type of Material Beneath Slab: Subgrade

> Friction Factor: 0.9 Slab Width, ft: 12

Transverse Required % Steel: 0.018

Transverse Bar Diameter, in: #3 (0.375") Maximum Spacing, in: 44.5

Trial 2

Design Features

Construction Stages: 1

Pavement Type: CRCP (Continuously Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.6
Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 6

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 6,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 350

Variability & Reliability

oility Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 95 Terminal Serviceability: 3.5

Standard Normal Variate: -1.647 Change in Serviceability: 1

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 20,801,198 Total Other Vehicles (Class 1-4) in Performance Period: 187,210,779

Truck (Class 5-13) Damage Factor: 1.6269

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 2,676,972

Total Design ESALs: 33,878,911

Slab Thickness

Required Slab Thickness, in.: 12.67 Design Slab Thickness, in.: 12.67

Rigid Pavement Design Option 2 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 48.23

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

CRCP Steel

Concrete Properties

28 Day Concrete Modulus of Rupture, psi: 650 28 Day Concrete Indirect Tensile Strenth, psi: 559

28 Day Concrete Shrinkage, in/in: 0.00036

Type of Coarse Aggregate: Gravel

Concrete Thermal Coefficient, in/in/F: 0.000006

Width of Slab, ft: 12

Tensile Stress in Slab due to Wheel Load, psi: 124

Longitudinal Steel Parameters and Design

Steel Thermal Coefficient, in/in/F: 0.000005 Computed Crack Width, in: 0.034

Allowable Steel Stress, psi: 62,180 Computed Steel Stress, psi: 57,708

Design Temperature Drop, F: 50 Computed Crack Spacing, ft: 4.2

Longitudinal Bar Diameter, in: #5 (0.625") Number of Bars: 35

Transverse Steel Parameters and Design

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8 Slab Width, ft: 12

Transverse Required % Steel: 0.036

Transverse Bar Diameter, in: #3 (0.375") Maximum Spacing, in: 24.1

Trial 3

Design Features

Construction Stages: 1

Pavement Type: CRCP (Continuously Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.6
Drains: Yes Drainage Coefficient: 1.2

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 6,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 2.9 Modulus of Subgrade Reaction, pci: 15

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 95 Terminal Serviceability: 3.5
Standard Normal Variate: -1.647 Change in Serviceability: 1

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 20,801,198 Total Other Vehicles (Class 1-4) in Performance Period: 187,210,779

Truck (Class 5-13) Damage Factor: 1.6269

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 2,676,972

Total Design ESALs: 33,878,911

Slab Thickness

Required Slab Thickness, in.: 12.64 Design Slab Thickness, in.: 12.64

Rigid Pavement Design Option 3 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 96.69

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

CRCP Steel

Concrete Properties

28 Day Concrete Modulus of Rupture, psi: 650 28 Day Concrete Indirect Tensile Strenth, psi: 559

28 Day Concrete Shrinkage, in/in: 0.00036

Type of Coarse Aggregate: Gravel Concrete Thermal Coefficient, in/in/F: 0.000006

Width of Slab, ft: 12

Tensile Stress in Slab due to Wheel Load, psi: 193

Longitudinal Steel Parameters and Design

Steel Thermal Coefficient, in/in/F: 0.000005 Computed Crack Width, in: 0.034

Allowable Steel Stress, psi: 62,180 Computed Steel Stress, psi: 57,186

Design Temperature Drop, F: 50 Computed Crack Spacing, ft: 4.1

Longitudinal Bar Diameter, in: #5 (0.625")

Number of Bars: 29

Transverse Steel Parameters and Design

Allowable Steel Working Stress, psi: 30,000 Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9 Slab Width, ft: 12

Transverse Required % Steel: 0.018

Transverse Bar Diameter, in: #3 (0.375") Maximum Spacing, in: 48.3

Trial 4

Design Features

Construction Stages: 1

Pavement Type: CRCP (Continuously Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.6 Drains: Yes Drainage Coefficient: 1.2

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 6

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 6,000

Bedrock: No

Depth to Bedrock, in: NA

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 350

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 95 Terminal Serviceability: 3.5 Standard Normal Variate: -1.647 Change in Serviceability: 1

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 20,801,198 Total Other Vehicles (Class 1-4) in Performance Period: 187,210,779

Truck (Class 5-13) Damage Factor: 1.6141

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 2,655,934

Total Design ESALs: 33,612,655

Slab Thickness

Required Slab Thickness, in.: 11.58 Design Slab Thickness, in.: 11.58

Rigid Pavement Design Option 4 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 52.77

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

CRCP Steel

Concrete Properties

28 Day Concrete Modulus of Rupture, psi: 650 28 Day Concrete Indirect Tensile Strenth, psi: 559

28 Day Concrete Shrinkage, in/in: 0.00036

Type of Coarse Aggregate: Gravel

Concrete Thermal Coefficient, in/in/F: 0.000006

Width of Slab, ft: 12

Tensile Stress in Slab due to Wheel Load, psi: 148

Longitudinal Steel Parameters and Design

Steel Thermal Coefficient, in/in/F: 0.000005 Computed Crack Width, in: 0.034

Allowable Steel Stress, psi: 62,180 Computed Steel Stress, psi: 57,909

Design Temperature Drop, F: 50 Computed Crack Spacing, ft: 4.2

Longitudinal Bar Diameter, in: #5 (0.625") Number of Bars: 30

Transverse Steel Parameters and Design

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8 Slab Width, ft: 12

Transverse Required % Steel: 0.036

Transverse Bar Diameter, in: #3 (0.375") Maximum Spacing, in: 26.4

Trial 5

Design Features

Construction Stages: 1

Pavement Type: CRCP (Continuously Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.6 Drains: Yes Drainage Coefficient: 1.2

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 6,000

Bedrock: Yes

Depth to Bedrock, in: 60

Loss of Support: 2.9 Modulus of Subgrade Reaction, pci: 17

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 95 Terminal Serviceability: 3.5 Standard Normal Variate: -1.647 Change in Serviceability: 1

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 20,801,198 Total Other Vehicles (Class 1-4) in Performance Period: 187,210,779

Truck (Class 5-13) Damage Factor: 1.6269

Other Vehicles (Class 1-4) Damage Factor: 0.0002 ESALs in Both Lanes and All Directions During First Year: 2,676,972

Total Design ESALs: 33,878,911

Slab Thickness

Required Slab Thickness, in.: 12.61 Design Slab Thickness, in.: 12.61

Rigid Pavement Design Option 5 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 96.92

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

CRCP Steel

Concrete Properties

28 Day Concrete Modulus of Rupture, psi: 650 28 Day Concrete Indirect Tensile Strenth, psi: 559

28 Day Concrete Shrinkage, in/in: 0.00036

Type of Coarse Aggregate: Gravel

Concrete Thermal Coefficient, in/in/F: 0.000006

Width of Slab, ft: 12

Tensile Stress in Slab due to Wheel Load, psi: 190

Longitudinal Steel Parameters and Design

Steel Thermal Coefficient, in/in/F: 0.000005 Computed Crack Width, in: 0.034

Allowable Steel Stress, psi: 62,180 Computed Steel Stress, psi: 57,640

Design Temperature Drop, F: 50 Computed Crack Spacing, ft: 4.2

Longitudinal Bar Diameter, in: #5 (0.625")

Number of Bars: 29

Transverse Steel Parameters and Design

Allowable Steel Working Stress, psi: 30,000 Type of Material Beneath Slab: Subgrade

> Friction Factor: 0.9 Slab Width, ft: 12

Transverse Required % Steel: 0.018

Transverse Bar Diameter, in: #3 (0.375") Maximum Spacing, in: 48.5

Trial 6

Design Features

Construction Stages: 1

Pavement Type: CRCP (Continuously Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.6
Drains: Yes Drainage Coefficient: 1.2

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 6

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 6,000

Bedrock: Yes

Depth to Bedrock, in: 108

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 469

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5
Reliability, %: 95 Terminal Serviceability: 3.5
Standard Normal Variate: -1.647 Change in Serviceability: 1

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 20,801,198 Total Other Vehicles (Class 1-4) in Performance Period: 187,210,779

Truck (Class 5-13) Damage Factor: 1.5906

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 2,617,308

Total Design ESALs: 33,123,827

Slab Thickness

Required Slab Thickness, in.: 11.38 Design Slab Thickness, in.: 11.38

Rigid Pavement Design Option 6 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 53.7

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

CRCP Steel

Concrete Properties

28 Day Concrete Modulus of Rupture, psi: 650 28 Day Concrete Indirect Tensile Strenth, psi: 559

28 Day Concrete Shrinkage, in/in: 0.00036

Type of Coarse Aggregate: Gravel

Concrete Thermal Coefficient, in/in/F: 0.000006

Width of Slab, ft: 12

Tensile Stress in Slab due to Wheel Load, psi: 147

Longitudinal Steel Parameters and Design

Steel Thermal Coefficient, in/in/F: 0.000005 Computed Crack Width, in: 0.035

Allowable Steel Stress, psi: 62,180 Computed Steel Stress, psi: 59,107

Design Temperature Drop, F: 50 Computed Crack Spacing, ft: 4.3

Longitudinal Bar Diameter, in: #5 (0.625") Number of Bars: 29

Transverse Steel Parameters and Design

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8 Slab Width, ft: 12

Transverse Required % Steel: 0.036

Transverse Bar Diameter, in: #3 (0.375") Maximum Spacing, in: 26.9

Trial 7

Design Features

Construction Stages: 1

Pavement Type: CRCP (Continuously Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.6 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 6,000

Bedrock: Yes

Depth to Bedrock, in: 96

Loss of Support: 2.9 Modulus of Subgrade Reaction, pci: 16

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 95 Terminal Serviceability: 3.5 Standard Normal Variate: -1.647 Change in Serviceability: 1

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 20,801,198 Total Other Vehicles (Class 1-4) in Performance Period: 187,210,779

Truck (Class 5-13) Damage Factor: 1.6339

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 2,688,477

Total Design ESALs: 34,024,519

Slab Thickness

Required Slab Thickness, in.: 13.7 Design Slab Thickness, in.: 13.7

Rigid Pavement Design Option 7 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 89.21

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

CRCP Steel

Concrete Properties

28 Day Concrete Modulus of Rupture, psi: 650 28 Day Concrete Indirect Tensile Strenth, psi: 559

28 Day Concrete Shrinkage, in/in: 0.00036

Type of Coarse Aggregate: Gravel Concrete Thermal Coefficient, in/in/F: 0.000006

Width of Slab, ft: 12

Tensile Stress in Slab due to Wheel Load, psi: 161

Longitudinal Steel Parameters and Design

Steel Thermal Coefficient, in/in/F: 0.000005 Computed Crack Width, in: 0.034

Allowable Steel Stress, psi: 62,180 Computed Steel Stress, psi: 57,922

Design Temperature Drop, F: 50 Computed Crack Spacing, ft: 4.2

Longitudinal Bar Diameter, in: #5 (0.625") Number of Bars: 34

Transverse Steel Parameters and Design

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9 Slab Width, ft: 12

Transverse Required % Steel: 0.018

Transverse Bar Diameter, in: #3 (0.375") Maximum Spacing, in: 44.6

Trial 8

Design Features

Construction Stages: 1

Pavement Type: CRCP (Continuously Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.6 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 6

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 6,000

Bedrock: Yes

Depth to Bedrock, in: 84

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 503

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 95 Terminal Serviceability: 3.5 Standard Normal Variate: -1.647 Change in Serviceability: 1

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 20,801,198 Total Other Vehicles (Class 1-4) in Performance Period: 187,210,779

Truck (Class 5-13) Damage Factor: 1.6141

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 2,655,934

Total Design ESALs: 33,612,655

Slab Thickness

Required Slab Thickness, in.: 12.44 Design Slab Thickness, in.: 12.44

Rigid Pavement Design Option 8 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 49.12

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

CRCP Steel

Concrete Properties

28 Day Concrete Modulus of Rupture, psi: 650 28 Day Concrete Indirect Tensile Strenth, psi: 559

28 Day Concrete Shrinkage, in/in: 0.00036

Type of Coarse Aggregate: Gravel Concrete Thermal Coefficient, in/in/F: 0.000006

Width of Slab, ft: 12

Tensile Stress in Slab due to Wheel Load, psi: 122

Longitudinal Steel Parameters and Design

Steel Thermal Coefficient, in/in/F: 0.000005 Computed Crack Width, in: 0.033

Allowable Steel Stress, psi: 62,180 Computed Steel Stress, psi: 57,043

Design Temperature Drop, F: 50 Computed Crack Spacing, ft: 4.1

Longitudinal Bar Diameter, in: #5 (0.625") Number of Bars: 35

Transverse Steel Parameters and Design

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8
Slab Width, ft: 12

Transverse Required % Steel: 0.036

Transverse Bar Diameter, in: #3 (0.375") Maximum Spacing, in: 24.6

Trial 9

Design Features

Construction Stages: 1

Pavement Type: CRCP (Continuously Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.6 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: None (or Surface Treatment)

Subbase Thickness, in: NA Subbase Modulus, psi: NA Subgrade Modulus, psi: 6,000

Bedrock: Yes

Depth to Bedrock, in: 40

Loss of Support: 2.9 Modulus of Subgrade Reaction, pci: 18

Variability & Reliability

Serviceability

Standard Deviation: 0.39 Initial Serviceability: 4.5 Reliability, %: 95 Terminal Serviceability: 3.5 Standard Normal Variate: -1.647 Change in Serviceability: 1

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 20,801,198 Total Other Vehicles (Class 1-4) in Performance Period: 187,210,779

Truck (Class 5-13) Damage Factor: 1.6339

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 2,688,477

Total Design ESALs: 34,024,519

Slab Thickness

Required Slab Thickness, in.: 13.68 Design Slab Thickness, in.: 13.68

Rigid Pavement Design Option 9 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000
Distance to Nearest Free Edge, ft: 12
Type of Material Beneath Slab: Subgrade

Friction Factor: 0.9

Required Steel, % of Concrete Area: 0.04 Calculated Tie Bar Spacing, in: 89.34

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

CRCP Steel

Concrete Properties

28 Day Concrete Modulus of Rupture, psi: 650 28 Day Concrete Indirect Tensile Strenth, psi: 559

28 Day Concrete Shrinkage, in/in: 0.00036

Type of Coarse Aggregate: Gravel

Concrete Thermal Coefficient, in/in/F: 0.000006

Width of Slab, ft: 12

Tensile Stress in Slab due to Wheel Load, psi: 158

Longitudinal Steel Parameters and Design

Steel Thermal Coefficient, in/in/F: 0.000005 Computed Crack Width, in: 0.033

Allowable Steel Stress, psi: 62,180 Computed Steel Stress, psi: 56,353

Design Temperature Drop, F: 50 Computed Crack Spacing, ft: 4

Longitudinal Bar Diameter, in: #5 (0.625") Number of Bars: 35

Transverse Steel Parameters and Design

Allowable Steel Working Stress, psi: 30,000 Type of Material Beneath Slab: Subgrade

> Friction Factor: 0.9 Slab Width, ft: 12

Transverse Required % Steel: 0.018

Transverse Bar Diameter, in: #3 (0.375") Maximum Spacing, in: 44.7

Trial 10

Design Features

Construction Stages: 1

Pavement Type: CRCP (Continuously Reinforced)

Tie Bars Between Lanes: Yes

Shoulder Type: Tied PCC

Dowels: No Load Transfer Coefficient: 2.6 Drains: No Drainage Coefficient: 1

Concrete Properties

Modulus of Rupture, psi: 650 Elastic Modulus, psi: 4,200,000

Pavement Foundation

Subbase Type: Cement Treated Granular Base

Subbase Thickness, in: 6

Subbase Modulus, psi: 1,500,000 Subgrade Modulus, psi: 6,000

Bedrock: Yes

Depth to Bedrock, in: 30

Loss of Support: 0.5 Modulus of Subgrade Reaction, pci: 669

Variability & Reliability

Standard Deviation: 0.39

Initial Serviceability: 4.5 Reliability, %: 95 Terminal Serviceability: 3.5 Standard Normal Variate: -1.647 Change in Serviceability: 1

Traffic & ESALs

Performance Period, years: 20

Total Trucks (Class 5-13) in Performance Period: 20,801,198 Total Other Vehicles (Class 1-4) in Performance Period: 187,210,779

Truck (Class 5-13) Damage Factor: 1.6141

Other Vehicles (Class 1-4) Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 2,655,934

Total Design ESALs: 33,612,655

Serviceability

Slab Thickness

Required Slab Thickness, in.: 12.25 Design Slab Thickness, in.: 12.25

Rigid Pavement Design Option 10 - Steel

No Dowel Bars

Diameter: NA Spacing, in: NA Length, in: NA

Tie Bars

Allowable Steel Working Stress, psi: 30,000 Distance to Nearest Free Edge, ft: 12

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8

Required Steel, % of Concrete Area: 0.07 Calculated Tie Bar Spacing, in: 49.89

Diameter: #6 (0.750")

Recommended Spacing, in: 48

Length, in: 35

CRCP Steel

Concrete Properties

28 Day Concrete Modulus of Rupture, psi: 650 28 Day Concrete Indirect Tensile Strenth, psi: 559

28 Day Concrete Shrinkage, in/in: 0.00036

Type of Coarse Aggregate: Gravel

Concrete Thermal Coefficient, in/in/F: 0.000006

Width of Slab, ft: 12

Tensile Stress in Slab due to Wheel Load, psi: 121

Longitudinal Steel Parameters and Design

Steel Thermal Coefficient, in/in/F: 0.000005 Computed Crack Width, in: 0.034

Allowable Steel Stress, psi: 62,180 Computed Steel Stress, psi: 58,195

Design Temperature Drop, F: 50 Computed Crack Spacing, ft: 4.2

Longitudinal Bar Diameter, in: #5 (0.625") Number of Bars: 34

Transverse Steel Parameters and Design

Allowable Steel Working Stress, psi: 30,000

Type of Material Beneath Slab: Cement Treated Granular Base

Friction Factor: 1.8 Slab Width, ft: 12

Transverse Required % Steel: 0.036

Transverse Bar Diameter, in: #3 (0.375") Maximum Spacing, in: 24.9

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDCRCP-Trial 1

Rigid Structural Design

Pavement Type	CRCP
18-kip ESALs Over Initial Performance Period	34,024,519
Initial Serviceability	4.5
Terminal Serviceability	3.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	15 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.6
Overall Drainage Coefficient, Cd	1

Simple ESAL Calculation

13.71 in

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Calculated Design Thickness

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

Total Calculated Cumulative ESALs -*

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6339	0	33,987,077
Total	100	-	-	-	34,024,519

Growth Compound

Total Calculated Cumulative ESALs 34,024,519

CRCP Longitudinal Steel Design

28-day Concrete Indirect Tensile Strength	559 psi
Concrete Shrinkage at 28 Days	0.00036 in/in
Thermal Coefficient of Concrete	6 (10^-6 in/in)/F
Thermal Coefficient of Reinforced Steel	5 (10^-6 in/in)/F
Design Temperature Drop	50 F
Tensile Stress Due to Wheel Load	161 psi
Allowable Steel Stress	62.18 ksi
Allowable Crack Width	0.48 in
Bar Diameter	0.625 in

<u>Lane</u>	Width (ft)
1	12
2	12
3	-
4	-
5	-

Lane 2

	Calculated Results*
Calculated Minimum % Steel	0.49 %
Calculated Maximum % Steel	0.59 %
Calculated Actual % Steel	0.50 %
Calculated Minimum # of Bars	31.6
Calculated Maximum # of Bars	38.1
Calculated Actual # of Bars	32

^{*}Note: These values are not represented by the inputs or an error occurred in calculation.

CRCP Transverse Steel Design

Friction Factor (F) 0.9
Steel Working Stress 30
Bar or Wire Diameter 0.375

	Width	Tied to	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-
2	12	-	0.018	0.030	44.74
3	12	-	0.018	0.030	44.74
4	-	-	-	-	-
5	-	-	-	-	-
6	-	-	-	-	-

Distance to Free Edge	12 ft
Slab Thickness	13.71 in
Friction Factor (F)	0.9
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Maximum Tie Bar Spacing Recommended Maximum Tie Bar Spacing Calculated Tie Bar Length Calculated Area of Steel Calculated Results 89.5 in 48.0 in 35.1 in

Layer Information

0.059 sq in/ft

		Thickness	One Dir Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	CRCP	13.7139995	12
Total	-	13.71	=

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDCRCP-Trial 2

Rigid Structural Design

Pavement Type	CRCP
18-kip ESALs Over Initial Performance Period	33,878,911
Initial Serviceability	4.5
Terminal Serviceability	3.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	350 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.6
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

12.67 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
Period	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	6,000	1,500,000

Base Type Cement Treated Granular Base Base Thickness 6 in

Base Thickness 6 in
Depth to Bedrock 1,000 ft
Projected Slab Thickness 9 in
Loss of Support Category 0.5

Effective Modulus of Subgrade Reaction 350 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

219

Page 1

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6269	0	33,841,468
Total	100	-	-	-	33,878,911

Growth Compound

Total Calculated Cumulative ESALs 33,878,911

CRCP Longitudinal Steel Design

28-day Concrete Indirect Tensile Strength	559 psi
Concrete Shrinkage at 28 Days	0.00036 in/in
Thermal Coefficient of Concrete	6 (10^-6 in/in)/F
Thermal Coefficient of Reinforced Steel	5 (10^-6 in/in)/F
Design Temperature Drop	50 F
Tensile Stress Due to Wheel Load	124 psi
Allowable Steel Stress	62.18 ksi
Allowable Crack Width	0.53 in
Bar Diameter	0.625 in

<u>Lane</u>	Width (ft)
1	12
2	12
3	-
4	-
5	-

Lane 2

Calculated Results
0.55 %
0.65 %
0.56 %
32.5
38.7
33

CRCP Transverse Steel Design

Friction Factor (F)	1.8
Steel Working Stress	30

	Width	Tied to	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-
2	12	-	0.036	0.055	24.22
3	12	-	0.036	0.055	24.22
4	-	-	-	-	-
5	-	-	-	-	-
6	-	-	-	-	-

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	12.67 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing 48.4 in
Recommended Maximum Tie Bar Spacing 48.0 in
Calculated Tie Bar Length 35.1 in
Calculated Area of Steel 0.109 sq in/ft

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	CRCP	12.6661054	12
2	Cement Treated Granular Base	6	12
Total	-	18.67	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDCRCP-Trial 3

Rigid Structural Design

Pavement Type	CRCP
18-kip ESALs Over Initial Performance Period	33,878,911
Initial Serviceability	4.5
Terminal Serviceability	3.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	15 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.6
Overall Drainage Coefficient, Cd	1.2
Calculated Design Thickness	12.64 in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs -*

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6269	0	33,841,468
Total	100	-	-	-	33,878,911

Growth Compound

Total Calculated Cumulative ESALs 33,878,911

CRCP Longitudinal Steel Design

28-day Concrete Indirect Tensile Strength 559 psi Concrete Shrinkage at 28 Days 0.00036 in/in Thermal Coefficient of Concrete 6 (10^-6 in/in)/F Thermal Coefficient of Reinforced Steel 5 (10^-6 in/in)/F Design Temperature Drop 50 F Tensile Stress Due to Wheel Load 193 psi Allowable Steel Stress 62.18 ksi Allowable Crack Width 0.44 in Bar Diameter 0.625 in

Lane	Width (ft)
1	12
2	12
3	-
4	-
5	<u>-</u>

Lane 2

	Calculated Results
Calculated Minimum % Steel	0.45 %
Calculated Maximum % Steel	0.54 %
Calculated Actual % Steel	0.46 %
Calculated Minimum # of Bars	26.4
Calculated Maximum # of Bars	32.2
Calculated Actual # of Bars	27

CRCP Transverse Steel Design

Friction Factor (F) 0.9
Steel Working Stress 30
Bar or Wire Diameter 0.375

	Width	Tied to	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	<u>Steel</u>	<u>(sq in/ft)</u>	<u>(in)</u>
1	-	-	-	-	-
2	12	-	0.018	0.027	48.56
3	12	-	0.018	0.027	48.56
4	-	=	-	-	-
5	-	-	-	-	-
6	_	-	_	_	-

Tie Bar Steel Design

Friction Factor (F)	0.9
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Maximum Tie Bar Spacing Recommended Maximum Tie Bar Spacing Calculated Tie Bar Length Calculated Area of Steel Calculated Results

97.1 in 48.0 in 35.1 in 0.055 sq in/ft

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	CRCP	12.6359648	12
Total	-	12.64	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDCRCP-Trial 4

Rigid Structural Design

Pavement Type	CRCP
18-kip ESALs Over Initial Performance Period	33,612,655
Initial Serviceability	4.5
Terminal Serviceability	3.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	350 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.6
Overall Drainage Coefficient, Cd	1.2

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

11.58 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
<u>Period</u>	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	6,000	1,500,000

Base Type Cement Treated Granular Base

Base Thickness6 inDepth to Bedrock1,000 ftProjected Slab Thickness9 inLoss of Support Category0.5

Effective Modulus of Subgrade Reaction 350 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6141	0	33,575,213
Total	100	-	-	-	33,612,655

Growth Compound

Total Calculated Cumulative ESALs 33,612,655

CRCP Longitudinal Steel Design

28-day Concrete Indirect Tensile Strength	559 psi
Concrete Shrinkage at 28 Days	0.00036 in/in
Thermal Coefficient of Concrete	6 (10^-6 in/in)/F
Thermal Coefficient of Reinforced Steel	5 (10^-6 in/in)/F
Design Temperature Drop	50 F
Tensile Stress Due to Wheel Load	148 psi
Allowable Steel Stress	62.18 ksi
Allowable Crack Width	0.5 in
Bar Diameter	0.625 in

<u>Lane</u>	Width (ft)
1	12
2	12
3	-
4	-
5	-

Lane 2

Calculated Results
0.51 %
0.61 %
0.52 %
27.7
33.2
28

CRCP Transverse Steel Design

Friction Factor (F)	1.8
Steel Working Stress	30

	Width	Tied to	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	<u>Steel</u>	<u>(sq in/ft)</u>	<u>(in)</u>
1	-	-	-	-	-
2	12	-	0.036	0.050	26.50
3	12	-	0.036	0.050	26.50
4	-	-	-	-	-
5	-	-	-	-	-
6	-	-	-	-	-

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	11.58 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Sacommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results
53.0 in
48.0 in
0.100 sq in/ft

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	CRCP	11.5756468	12
2	Cement Treated Granular Base	6	12
Total	-	17.58	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDCRCP-Trial 5

Rigid Structural Design

Pavement Type	CRCP
18-kip ESALs Over Initial Performance Period	33,878,911
Initial Serviceability	4.5
Terminal Serviceability	3.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	17 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.6
Overall Drainage Coefficient, Cd	1.2
Calculated Design Thickness	12.61 in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45.000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6269	0	33,841,468
Total	100	-	-	-	33,878,911

Growth Compound

Total Calculated Cumulative ESALs 33,878,911

CRCP Longitudinal Steel Design

28-day Concrete Indirect Tensile Strength 559 psi Concrete Shrinkage at 28 Days 0.00036 in/in Thermal Coefficient of Concrete 6 (10^-6 in/in)/F Thermal Coefficient of Reinforced Steel 5 (10^-6 in/in)/F Design Temperature Drop 50 F Tensile Stress Due to Wheel Load 190 psi Allowable Steel Stress 62.18 ksi Allowable Crack Width 0.44 in Bar Diameter 0.625 in

Lane	Width (ft)
1	12
2	12
3	-
4	-
5	<u>-</u>

Lane 2

	Calculated Results
Calculated Minimum % Steel	0.45 %
Calculated Maximum % Steel	0.55 %
Calculated Actual % Steel	0.46 %
Calculated Minimum # of Bars	26.6
Calculated Maximum # of Bars	32.4
Calculated Actual # of Bars	27

CRCP Transverse Steel Design

Friction Factor (F) 0.9
Steel Working Stress 30
Bar or Wire Diameter 0.375

	Width	Tied to	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	<u>Steel</u>	<u>(sq in/ft)</u>	<u>(in)</u>
1	-	-	-	-	-
2	12	-	0.018	0.027	48.65
3	12	-	0.018	0.027	48.65
4	-	=	-	-	-
5	-	-	-	-	-
6	_	_	_	<u>-</u>	_

Tie Bar Steel Design

Friction Factor (F) 0.9
Percent of Yield Strength 100
Bar Diameter 0.75 in

Calculated Maximum Tie Bar Spacing Recommended Maximum Tie Bar Spacing Calculated Tie Bar Length Calculated Area of Steel Calculated Results

97.3 in 48.0 in 35.1 in 0.054 sq in/ft

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	CRCP	12.6115214	12
Total	-	12.61	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDCRCP-Trial 6

Rigid Structural Design

Pavement Type	CRCP
18-kip ESALs Over Initial Performance Period	33,123,827
Initial Serviceability	4.5
Terminal Serviceability	3.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	469 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.6
Overall Drainage Coefficient, Cd	1.2

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

11.38 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
Period	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	<u>-</u>	6,000	1,500,000

Base Type	Cement Treated Granular Base
Base Thickness	6 in
Depth to Bedrock	9 ft
Projected Slab Thickness	9 in
Loss of Support Category	0.5

Effective Modulus of Subgrade Reaction 469 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	Truck)	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.5906	0	33,086,385
Total	100	-	-	-	33,123,827

Growth Compound

Total Calculated Cumulative ESALs 33,123,827

CRCP Longitudinal Steel Design

28-day Concrete Indirect Tensile Strength	559 psi
Concrete Shrinkage at 28 Days	0.00036 in/in
Thermal Coefficient of Concrete	6 (10^-6 in/in)/F
Thermal Coefficient of Reinforced Steel	5 (10^-6 in/in)/F
Design Temperature Drop	50 F
Tensile Stress Due to Wheel Load	147 psi
Allowable Steel Stress	62.18 ksi
Allowable Crack Width	0.5 in
Bar Diameter	0.625 in

<u>Lane</u>	Width (ft)
1	12
2	12
3	-
4	-
5	-

Lane 2

Calculated Results
0.51 %
0.61 %
0.52 %
27.3
32.7
28

CRCP Transverse Steel Design

Friction Factor (F)	1.8
Steel Working Stress	30

	Width	Tied to	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	<u>Steel</u>	<u>(sq in/ft)</u>	<u>(in)</u>
1	-	-	-	-	-
2	12	-	0.036	0.049	26.97
3	12	-	0.036	0.049	26.97
4	-	-	-	-	-
5	-	-	-	-	-
6	-	-	-	-	-

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	11.38 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Sa.9 in
Recommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results

53.9 in
48.0 in
0.098 sq in/ft

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	CRCP	11.3759224	12
2	Cement Treated Granular Base	6	12
Total	-	17.38	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDCRCP-Trial 7

Rigid Structural Design

Pavement Type	CRCP
18-kip ESALs Over Initial Performance Period	34,024,519
Initial Serviceability	4.5
Terminal Serviceability	3.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	16 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.6
Overall Drainage Coefficient, Cd	1

13.70 in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple
	-

Calculated Design Thickness

Total Calculated Cumulative ESALs

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6339	0	33,987,077
Total	100	-	-	-	34,024,519

Growth Compound

Total Calculated Cumulative ESALs 34,024,519

CRCP Longitudinal Steel Design

28-day Concrete Indirect Tensile Strength 559 psi Concrete Shrinkage at 28 Days 0.00036 in/in Thermal Coefficient of Concrete 6 (10^-6 in/in)/F Thermal Coefficient of Reinforced Steel 5 (10^-6 in/in)/F Design Temperature Drop 50 F Tensile Stress Due to Wheel Load 161 psi Allowable Steel Stress 62.18 ksi Allowable Crack Width 0.48 in Bar Diameter 0.625 in

Lane	Width (ft)
1	12
2	12
3	-
4	<u>-</u>
5	-

Lane 2

	Calculated Results
Calculated Minimum % Steel	0.49 %
Calculated Maximum % Steel	0.59 %
Calculated Actual % Steel	0.50 %
Calculated Minimum # of Bars	31.6
Calculated Maximum # of Bars	38.0
Calculated Actual # of Bars	32

CRCP Transverse Steel Design

Friction Factor (F) 0.9
Steel Working Stress 30
Bar or Wire Diameter 0.375

	Width	Tied to	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	<u>Steel</u>	<u>(sq in/ft)</u>	<u>(in)</u>
1	-	-	-	-	-
2	12	-	0.018	0.030	44.78
3	12	-	0.018	0.030	44.78
4	-	-	-	-	-
5	-	-	-	-	-
6	-	-	_	_	-

Tie Bar Steel Design

Friction Factor (F) 0.9
Percent of Yield Strength 100
Bar Diameter 0.75 in

Calculated Maximum Tie Bar Spacing Recommended Maximum Tie Bar Spacing Calculated Tie Bar Length Calculated Area of Steel Calculated Results

89.6 in 48.0 in 35.1 in 0.059 sq in/ft

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	CRCP	13.7014526	12
Total	-	13.70	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDCRCP-Trial 8

Rigid Structural Design

Pavement Type	CRCP
18-kip ESALs Over Initial Performance Period	33,612,655
Initial Serviceability	4.5
Terminal Serviceability	3.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	503 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.6
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

12.44 in

		Roadbed Soil Resilient	Base Elastic Modulus
Period	<u>Description</u>	<u>Modulus (psi)</u>	(<u>psi)</u>
1		6,000	1,500,000

Base Type Cement Treated Granular Base
Base Thickness 6 in
Depth to Bedrock 7 ft
Projected Slab Thickness 9 in
Loss of Support Category 0.5

Effective Modulus of Subgrade Reaction 503 psi/in

Simple ESAL Calculation

20
45,000
2
85 %
50 %
- %
-
- %
- %
Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	Truck)	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6141	0	33,575,213
Total	100	-	-	_	33,612,655

Growth Compound

Total Calculated Cumulative ESALs 33,612,655

CRCP Longitudinal Steel Design

28-day Concrete Indirect Tensile Strength	559 psi
Concrete Shrinkage at 28 Days	0.00036 in/in
Thermal Coefficient of Concrete	6 (10^-6 in/in)/F
Thermal Coefficient of Reinforced Steel	5 (10^-6 in/in)/F
Design Temperature Drop	50 F
Tensile Stress Due to Wheel Load	122 psi
Allowable Steel Stress	62.18 ksi
Allowable Crack Width	0.54 in
Bar Diameter	0.625 in

<u>Lane</u>	Width (ft)
1	12
2	12
3	-
4	-
5	-

Lane 2

	Calculated Results
Calculated Minimum % Steel	0.55 %
Calculated Maximum % Steel	0.65 %
Calculated Actual % Steel	0.57 %
Calculated Minimum # of Bars	32.1
Calculated Maximum # of Bars	38.2
Calculated Actual # of Bars	33

CRCP Transverse Steel Design

Friction Factor (F)	1.8
Steel Working Stress	30

	Width	Tied to	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	<u>Steel</u>	<u>(sq in/ft)</u>	<u>(in)</u>
1	-	-	-	-	-
2	12	-	0.036	0.054	24.66
3	12	-	0.036	0.054	24.66
4	-	-	-	-	-
5	-	-	-	-	-
6	-	-	-	-	-

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	12.44 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing 49.3 in
Recommended Maximum Tie Bar Spacing 48.0 in
Calculated Tie Bar Length 35.1 in
Calculated Area of Steel 0.107 sq in/ft

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	CRCP	12.43865	12
2	Cement Treated Granular Base	6	12
Total	-	18.44	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDCRCP-Trial 9

Rigid Structural Design

Pavement Type	CRCP
18-kip ESALs Over Initial Performance Period	34,024,519
Initial Serviceability	4.5
Terminal Serviceability	3.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	18 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.6
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness 13.68 in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs -*

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6339	0	33,987,077
Total	100	-	-	-	34,024,519

Growth Compound

Total Calculated Cumulative ESALs 34,024,519

CRCP Longitudinal Steel Design

28-day Concrete Indirect Tensile Strength 559 psi Concrete Shrinkage at 28 Days 0.00036 in/in Thermal Coefficient of Concrete 6 (10^-6 in/in)/F Thermal Coefficient of Reinforced Steel 5 (10^-6 in/in)/F Design Temperature Drop 50 F Tensile Stress Due to Wheel Load 158 psi Allowable Steel Stress 62.18 ksi Allowable Crack Width 0.48 in Bar Diameter 0.625 in

Lane	Width (ft)
1	12
2	12
3	-
4	-
5	<u>-</u>

Lane 2

	Calculated Results
Calculated Minimum % Steel	0.50 %
Calculated Maximum % Steel	0.60 %
Calculated Actual % Steel	0.50 %
Calculated Minimum # of Bars	31.8
Calculated Maximum # of Bars	38.3
Calculated Actual # of Bars	32

CRCP Transverse Steel Design

Friction Factor (F) 0.9
Steel Working Stress 30
Bar or Wire Diameter 0.375

	Width	Tied to	Percent	Area of Steel	Bar Spacing
<u>Lane</u>	<u>(ft)</u>	Next Lane	<u>Steel</u>	<u>(sq in/ft)</u>	<u>(in)</u>
1	-	-	-	-	-
2	12	-	0.018	0.030	44.86
3	12	-	0.018	0.030	44.86
4	-	-	-	-	-
5	-	-	-	-	-
6	_	_	_	-	_

Tie Bar Steel Design

Friction Factor (F) 0.9
Percent of Yield Strength 100
Bar Diameter 0.75 in

Calculated Maximum Tie Bar Spacing Recommended Maximum Tie Bar Spacing Calculated Tie Bar Length Calculated Area of Steel Calculated Results

89.7 in 48.0 in 35.1 in 0.059 sq in/ft

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	CRCP	13.6778958	12
Total	-	13.68	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Rigid Structural Design Module

NDCRCP-Trial 10

Rigid Structural Design

Pavement Type	CRCP
18-kip ESALs Over Initial Performance Period	33,612,655
Initial Serviceability	4.5
Terminal Serviceability	3.5
28-day Mean PCC Modulus of Rupture	650 psi
28-day Mean Elastic Modulus of Slab	4,200,000 psi
Mean Effective k-value	669 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.6
Overall Drainage Coefficient, Cd	1

Calculated Design Thickness

Effective Modulus of Subgrade Reaction

12.25 in

		Roadbed Soil	Base Elastic
		Resilient	Modulus
<u>Period</u>	<u>Description</u>	Modulus (psi)	<u>(psi)</u>
1	-	6,000	1,500,000

Base Type Cement Treated Granular Base
Base Thickness 6 in

Depth to Bedrock 2.5 ft
Projected Slab Thickness 9 in
Loss of Support Category 0.5

Effective Modulus of Subgrade Reaction 669 psi/in

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

*

*Note: This value is not represented by the inputs or an error occurred in calculation.

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6141	0	33,575,213
Total	100	-	-	-	33,612,655

Growth Compound

Total Calculated Cumulative ESALs 33,612,655

CRCP Longitudinal Steel Design

559 psi
0.00036 in/in
6 (10^-6 in/in)/F
5 (10^-6 in/in)/F
50 F
121 psi
62.18 ksi
0.54 in
0.625 in

Lane	Width (ft)
1	12
2	12
3	-
4	-
5	-

Lane 2

	Calculated Results
Calculated Minimum % Steel	0.55 %
Calculated Maximum % Steel	0.66 %
Calculated Actual % Steel	0.56 %
Calculated Minimum # of Bars	31.7
Calculated Maximum # of Bars	37.7
Calculated Actual # of Bars	32

CRCP Transverse Steel Design

Friction Factor (F)	1.8
Steel Working Stress	30

	Width	Tied to	Percent	Area of Steel	Bar Spacing
Lane	<u>(ft)</u>	Next Lane	<u>Steel</u>	(sq in/ft)	<u>(in)</u>
1	-	-	-	-	-
2	12	-	0.036	0.053	25.05
3	12	-	0.036	0.053	25.05
4	-	-	-	-	-
5	-	-	-	-	-
6	_	_	_	_	_

Tie Bar Steel Design

Steel Grade	30 ksi
Distance to Free Edge	12 ft
Slab Thickness	12.25 in
Friction Factor (F)	1.8
Percent of Yield Strength	100
Bar Diameter	0.75 in

Calculated Results
Calculated Maximum Tie Bar Spacing
Secommended Maximum Tie Bar Spacing
Calculated Tie Bar Length
Calculated Area of Steel

Calculated Tie Bar Length
Calculated Area of Steel

Calculated Area of Steel

Calculated Results
50.1 in
48.0 in
0.106 sq in/ft

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	CRCP	12.2478258	12
2	Cement Treated Granular Base	6	12
Total	-	18.25	-

Appendix A.5

Overlay Design Flexible Pavement

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 1.xlsx

Project Name:

ODFP-Trial 1

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Flexible

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Flexible Pavement Design Parameters

Performance Period (years): 8

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 7,000

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 6.76

Design Structural Number, Rounded: 7

Total Trucks (Classes 5-13): 6,436,511

Total Other Vehicles (Classes 1-4): 57,928,602

Truck Damage Factor: 0.9783

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 1,610,917

Flexible Pavement Total Design ESALs (W18): 6,308,425

AC Overlay AC Design

Future Design ESALs over Design Period, Nf: 6,308,425

Structural Number for Future Traffic, SNf: 6.76

Total Thickness of All Existing Pavement Layers (H1+H2), in: 11

Backcalculated Effective Pavement Modulus, psi: 200,000

Milling Thickness, in: 0

Existing Pavement Effective Structural Number, SNeff: 2.89

AC Overlay Structural Coefficient: 0.54

Required Overlay Thickness, in: 7.17

Design Structural Number, SNdes: 6.76

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 2.xlsx

Project Name:

ODFP-Trial 2

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Non-Interstate

Project Type:

Overlay Design

Pavement Type(s):

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Performance Period (years): 8

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 6,000

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 7.1

Design Structural Number, Rounded: 8

Total Trucks (Classes 5-13): 6,436,511

Total Other Vehicles (Classes 1-4): 57,928,602

Truck Damage Factor: 0.9745

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 1,604,671

Flexible Pavement Total Design ESALs (W18): 6,283,966

Future Design ESALs over Design Period, Nf: 6,283,966

Structural Number for Future Traffic, SNf: 7.1

Total Thickness of All Existing Pavement Layers (H1+H2), in: 11

Backcalculated Effective Pavement Modulus, psi: 200,000

Milling Thickness, in: 0

Existing Pavement Effective Structural Number, SNeff: 2.89

AC Overlay Structural Coefficient: 0.54

Required Overlay Thickness, in: 7.8

Design Structural Number, SNdes: 7.1

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 3.xlsx

Project Name:

ODFP-Trial 3

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00% Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Performance Period (years): 8

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 6,000

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 7.1

Design Structural Number, Rounded: 8

Total Trucks (Classes 5-13): 6,436,511

Total Other Vehicles (Classes 1-4): 57,928,602

Truck Damage Factor: 0.9745

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 1,604,671

Flexible Pavement Total Design ESALs (W18): 6,283,966

Future Design ESALs over Design Period, Nf: 6,283,966

Structural Number for Future Traffic, SNf: 7.1

Total Thickness of All Existing Pavement Layers (H1+H2), in: 16

Backcalculated Effective Pavement Modulus, psi: 200,000

Milling Thickness, in: 0

Existing Pavement Effective Structural Number, SNeff: 4.21

AC Overlay Structural Coefficient: 0.54

Required Overlay Thickness, in: 5.35

Design Structural Number, SNdes: 7.1

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 4.xlsx

Project Name:

ODFP-Trial 4

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Performance Period (years): 8

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 6,000

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 7.1

Design Structural Number, Rounded: 8

Total Trucks (Classes 5-13): 6,436,511

Total Other Vehicles (Classes 1-4): 57,928,602

Truck Damage Factor: 0.9745

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 1,604,671

Flexible Pavement Total Design ESALs (W18): 6,283,966

Future Design ESALs over Design Period, Nf: 6,283,966

Structural Number for Future Traffic, SNf: 7.1

Total Thickness of All Existing Pavement Layers (H1+H2), in: 16

Backcalculated Effective Pavement Modulus, psi: 400,000

Milling Thickness, in: 0

Existing Pavement Effective Structural Number, SNeff: 5.31

AC Overlay Structural Coefficient: 0.54

Required Overlay Thickness, in: 3.31

Design Structural Number, SNdes: 7.1

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 5.xlsx

Project Name:

ODFP-Trial 5

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Performance Period (years): 8

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 6,000

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 7.1

Design Structural Number, Rounded: 8

Total Trucks (Classes 5-13): 6,436,511

Total Other Vehicles (Classes 1-4): 57,928,602

Truck Damage Factor: 0.9745

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 1,604,671

Flexible Pavement Total Design ESALs (W18): 6,283,966

Future Design ESALs over Design Period, Nf: 6,283,966

Structural Number for Future Traffic, SNf: 7.1

Total Thickness of All Existing Pavement Layers (H1+H2), in: 16

Backcalculated Effective Pavement Modulus, psi: 400,000

Milling Thickness, in: 4

Existing Pavement Effective Structural Number, SNeff: 3.98

AC Overlay Structural Coefficient: 0.54

Required Overlay Thickness, in: 5.78

Design Structural Number, SNdes: 7.1

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 6.xlsx

Project Name:

ODFP-Trial 6

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 100.00%

Performance Period (years): 8

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 6,000

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 4.82

Design Structural Number, Rounded: 5

Total Trucks (Classes 5-13): 487,189

Total Other Vehicles (Classes 1-4): 23,872,254

Truck Damage Factor: 1.0529

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 116,445

Flexible Pavement Total Design ESALs (W18): 517,736

Future Design ESALs over Design Period, Nf: 517,736

Structural Number for Future Traffic, SNf: 4.82

Total Thickness of All Existing Pavement Layers (H1+H2), in: 16

Backcalculated Effective Pavement Modulus, psi: 400,000

Milling Thickness, in: 4

Existing Pavement Effective Structural Number, SNeff: 3.98

AC Overlay Structural Coefficient: 0.54

Required Overlay Thickness, in: 1.56

Design Structural Number, SNdes: 4.82

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 7.xlsx

Project Name:

ODFP-Trial 7

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

C:\Users\bfb0014\Box\Shared with Grad Students\Biessan\ALDOT - Pavement Software Project\ADAPT Trials\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 7 Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 100.00%

Trials\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 7 Flexible Pavement Design Parameters

Performance Period (years): 8

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 5,500

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 5

Design Structural Number, Rounded: 5

Total Trucks (Classes 5-13): 487,189

Total Other Vehicles (Classes 1-4): 23,872,254

Truck Damage Factor: 1.0529

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 116,445

Flexible Pavement Total Design ESALs (W18): 517,736

Future Design ESALs over Design Period, Nf: 517,736

Structural Number for Future Traffic, SNf: 5

Total Thickness of All Existing Pavement Layers (H1+H2), in: 16

Backcalculated Effective Pavement Modulus, psi: 400,000

Milling Thickness, in: 4

Existing Pavement Effective Structural Number, SNeff: 3.98

AC Overlay Structural Coefficient: 0.54

Required Overlay Thickness, in: 1.89

Design Structural Number, SNdes: 5

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 8.xlsx

Project Name:

ODFP-Trial 8

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 100.00%

Performance Period (years): 8

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 5,500

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 5

Design Structural Number, Rounded: 5

Total Trucks (Classes 5-13): 487,189

Total Other Vehicles (Classes 1-4): 23,872,254

Truck Damage Factor: 1.0529

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 116,445

Flexible Pavement Total Design ESALs (W18): 517,736

Future Design ESALs over Design Period, Nf: 517,736

Structural Number for Future Traffic, SNf: 5

Total Thickness of All Existing Pavement Layers (H1+H2), in: 24

Backcalculated Effective Pavement Modulus, psi: 400,000

Milling Thickness, in: 4

Existing Pavement Effective Structural Number, SNeff: 6.63

AC Overlay Structural Coefficient: 0.54

Required Overlay Thickness, in: 0

Design Structural Number, SNdes: 6.63

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 9.xlsx

Project Name:

ODFP-Trial 9

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 100.00%

Performance Period (years): 8

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 5,500

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 5

Design Structural Number, Rounded: 5

Total Trucks (Classes 5-13): 487,189

Total Other Vehicles (Classes 1-4): 23,872,254

Truck Damage Factor: 1.0529

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 116,445

Flexible Pavement Total Design ESALs (W18): 517,736

Future Design ESALs over Design Period, Nf: 517,736

Structural Number for Future Traffic, SNf: 5

Total Thickness of All Existing Pavement Layers (H1+H2), in: 11

Backcalculated Effective Pavement Modulus, psi: 200,000

Milling Thickness, in: 2

Existing Pavement Effective Structural Number, SNeff: 2.37

AC Overlay Structural Coefficient: 0.54

Required Overlay Thickness, in: 4.87

Design Structural Number, SNdes: 5

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODFP - Overlay Design Flexible Pavement\ODFP Trial 10.xlsx

Project Name:

ODFP-Trial 10

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 100.00%

Performance Period (years): 8

Construction Stages: 1 Standard Deviation: 0.49

Reliability: 95.00%

Standard Normal Deviate: -1.647

Subgrade Modulus, psi: 5,500

Initial Serviceability: 4.2

Terminal Serviceability: 3.5

Change in Serviceability: 0.7

Design Structural Number: 5

Design Structural Number, Rounded: 5

Total Trucks (Classes 5-13): 487,189

Total Other Vehicles (Classes 1-4): 23,872,254

Truck Damage Factor: 1.0529

Other Damage Factor: 0.0002

ESALs in Both Lanes and All Directions During First Year: 116,445

Flexible Pavement Total Design ESALs (W18): 517,736

Future Design ESALs over Design Period, Nf: 517,736

Structural Number for Future Traffic, SNf: 5

Total Thickness of All Existing Pavement Layers (H1+H2), in: 11

Backcalculated Effective Pavement Modulus, psi: 200,000

Milling Thickness, in: 6

Existing Pavement Effective Structural Number, SNeff: 1.32

AC Overlay Structural Coefficient: 0.54

Required Overlay Thickness, in: 6.81

Design Structural Number, SNdes: 5

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODFP-Trial 1

AC Overlay of AC Pavement

Structural Number for Future Traffic 6.76 in

Effective Existing	Overlay
Structural Number (in)	Structural Number (in)
-	-
-	-
2.89	3.87
	Structural Number (in)

Structural Number for Future Traffic

Future 18-kip ESALs Over Design Period	6,308,425
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Subgrade Resilient Modulus	7,000 psi
Calculated Structural Number for Future Traffic	6.76 in

Effective Structural Number - Non-Destructive Testing

Total Pavement Thickness Backcalculated Effective Pavement Modulus Milling Thickness	11 in 200,000 psi 0 in
Effective Existing Pavement SN (SNEff)	2.89 in

Performance Period (years)	8
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Future Rigorous ESAL Calculation

Performance Period (years)	8
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	11,586
2	10	4	0.9783	0	6,296,839
Total	100	-	-	-	6,308,425

Growth Compound

Total Calculated Cumulative ESALs 6,308,425

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	SN (in)
Total	_	_	_	_	_	_

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
1	AC Overlay	0.54	1	\$54.00	1	120	12	7.17	3.87	\$387.00
Total	-	-	-	-	-	_	-	7.17	3.87	\$387.00

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODFP-Trial 2

AC Overlay of AC Pavement

Structural Number for Future Traffic 7.1 in

D ' M 4 1	Effective Existing	Overlay
<u>Design Method</u>	Structural Number (in)	Structural Number (in)
Component Analysis	-	-
Remaining Life	-	-
Non-Destructive Testing	2.89	4.21

Structural Number for Future Traffic

Future 18-kip ESALs Over Design Period	6,283,966
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Subgrade Resilient Modulus	6,000 psi
-	_
Calculated Structural Number for Future Traffic	7.10 in

Effective Structural Number - Non-Destructive Testing

Total Pavement Thickness Backcalculated Effective Pavement Modulus Milling Thickness	11 in 200,000 psi 0 in
Effective Existing Pavement SN (SNEff)	2.89 in

Performance Period (years)	8
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Future Rigorous ESAL Calculation

Performance Period (years)	8
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	11,586
2	10	4	0.9745	0	6,272,380
Total	100	-	-	-	6,283,966

Growth Compound

Total Calculated Cumulative ESALs 6,283,966

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
Layer	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	<u>SN (in)</u>
Total	_	_	_	_	_	_

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	(Ai)	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	(sq yd)
1	AC Overlay	0.54	1	\$54.00	1	120	12	7.80	4.21	\$421.00
Total	-	_	-	_	-	-	_	7.80	4.21	\$421.00

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODFP-Trial 3

AC Overlay of AC Pavement

Structural Number for Future Traffic 7.1 in

	Effective Existing	Overlay
Design Method	Structural Number (in)	Structural Number (in)
Component Analysis	-	-
Remaining Life	-	-
Non-Destructive Testing	4.21	2.89

Structural Number for Future Traffic

Future 18-kip ESALs Over Design Period	6,283,966
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Subgrade Resilient Modulus	6,000 psi
	_
Calculated Structural Number for Future Traffic	7.10 in

Effective Structural Number - Non-Destructive Testing

Total Pavement Thickness Backcalculated Effective Pavement Modulus Milling Thickness	16 in 200,000 psi 0 in
Effective Existing Pavement SN (SNEff)	4.21 in

Performance Period (years)	8
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Future Rigorous ESAL Calculation

Performance Period (years)	8
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	11,586
2	10	4	0.9745	0	6,272,380
Total	100	-	-	-	6,283,966

Growth Compound

Total Calculated Cumulative ESALs 6,283,966

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
Layer	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	<u>SN (in)</u>
Total	_	_	_	_	_	_

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
<u>Layer</u>	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
1	AC Overlay	0.54	1	\$54.00	1	120	12	5.35	2.89	\$289.00
Total	-	-	-	-	-	-	-	5.35	2.89	\$289.00

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODFP-Trial 4

AC Overlay of AC Pavement

Structural Number for Future Traffic 7.1 in

	Effective Existing	Overlay
Design Method	Structural Number (in)	Structural Number (in)
Component Analysis	-	-
Remaining Life	-	-
Non-Destructive Testing	5.31	1.79

Structural Number for Future Traffic

Future 18-kip ESALs Over Design Period	6,283,966
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Subgrade Resilient Modulus	6,000 psi
-	_
Calculated Structural Number for Future Traffic	7.10 in

Effective Structural Number - Non-Destructive Testing

Total Pavement Thickness Backcalculated Effective Pavement Modulus Milling Thickness	16 in 400,000 psi 0 in
Effective Existing Pavement SN (SNEff)	5.31 in

Performance Period (years)	8
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Future Rigorous ESAL Calculation

Performance Period (years)	8
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	11,586
2	10	4	0.9745	0	6,272,380
Total	100	-	-	-	6,283,966

Growth Compound

Total Calculated Cumulative ESALs 6,283,966

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	SN (in)
Total	_	_	_	_	_	_

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	(Ai)	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
1	AC Overlay	0.54	1	\$54.00	1	120	12	3.31	1.79	\$179.00
Total	-	-	-	_	-	_	_	3.31	1.79	\$179.00

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODFP-Trial 5

AC Overlay of AC Pavement

Structural Number for Future Traffic 7.1 in

Effective Existing	Overlay
Structural Number (in)	Structural Number (in)
-	-
-	-
3.98	3.12
	Structural Number (in)

Structural Number for Future Traffic

Future 18-kip ESALs Over Design Period	6,283,966
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Subgrade Resilient Modulus	6,000 psi
	_
Calculated Structural Number for Future Traffic	7.10 in

Effective Structural Number - Non-Destructive Testing

Total Pavement Thickness Backcalculated Effective Pavement Modulus Milling Thickness	16 in 400,000 psi 4 in
Effective Existing Pavement SN (SNEff)	3.98 in

Performance Period (years)	8
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Future Rigorous ESAL Calculation

Performance Period (years)	8
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	11,586
2	10	4	0.9745	0	6,272,380
Total	100	-	-	-	6,283,966

Growth Compound

Total Calculated Cumulative ESALs 6,283,966

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
Layer	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	<u>SN (in)</u>
Total	_	_	_	_	_	_

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
1	AC Overlay	0.54	1	\$54.00	1	120	12	5.78	3.12	\$312.00
Total	-	-	-	_	-	-	_	5.78	3.12	\$312.00

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODFP-Trial 6

AC Overlay of AC Pavement

Structural Number for Future Traffic 4.82 in

	Effective Existing	Overlay
Design Method	Structural Number (in)	Structural Number (in)
Component Analysis	-	-
Remaining Life	-	-
Non-Destructive Testing	3.98	0.84

Structural Number for Future Traffic

Future 18-kip ESALs Over Design Period	517,736
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Subgrade Resilient Modulus	6,000 psi
Calculated Structural Number for Future Traffic	4.82 in

tained for factor frame

Effective Structural Number - Non-Destructive Testing

Total Pavement Thickness Backcalculated Effective Pavement Modulus Milling Thickness	16 in 400,000 psi 4 in
Effective Existing Pavement SN (SNEff)	3.98 in

Performance Period (years)	8
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Future Rigorous ESAL Calculation

Performance Period (years)	8
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	4,774
2	2	3	1.0529	0	512,961
Total	100	-	-	-	517,736

Growth Compound

Total Calculated Cumulative ESALs 517,736

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	SN (in)
Total	_	_	_	_	_	_

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
1	AC Overlay	0.54	1	\$54.00	1	120	12	1.56	0.84	\$84.00
Total	-	-	-	_	-	-	_	1.56	0.84	\$84.00

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODFP-Trial 7

AC Overlay of AC Pavement

Structural Number for Future Traffic 5 in

	Effective Existing	Overlay
Design Method	Structural Number (in)	Structural Number (in)
Component Analysis	-	-
Remaining Life	-	-
Non-Destructive Testing	3.98	1.02

Structural Number for Future Traffic

Future 18-kip ESALs Over Design Period	517,736
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Subgrade Resilient Modulus	5,500 psi
Colorlate I State Aven I New London Con Festival Traces	5.00

Calculated Structural Number for Future Traffic 5.00 in

Effective Structural Number - Non-Destructive Testing

Total Pavement Thickness Backcalculated Effective Pavement Modulus Milling Thickness	16 in 400,000 psi 4 in
Effective Existing Pavement SN (SNEff)	3.98 in

Performance Period (years)	8
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Future Rigorous ESAL Calculation

Performance Period (years)	8
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	4,774
2	2	3	1.0529	0	512,961
Total	100	-	-	-	517,736

Growth Compound

Total Calculated Cumulative ESALs 517,736

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	SN (in)
Total	_	_	_	_	_	_

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
1	AC Overlay	0.54	1	\$54.00	1	120	12	1.89	1.02	\$102.00
Total	-	-	-	_	-	_	_	1.89	1.02	\$102.00

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODFP-Trial 8

AC Overlay of AC Pavement

Structural Number for Future Traffic 5 in

	Effective Existing	Overlay
Design Method	Structural Number (in)	Structural Number (in)
Component Analysis	-	-
Remaining Life	-	-
Non-Destructive Testing	6.63	0.00

Structural Number for Future Traffic

Future 18-kip ESALs Over Design Period	517,736
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Subgrade Resilient Modulus	5,500 psi
Calandata J Cton atomal Normalian fan Entrona Tonffia	5 00 :

Calculated Structural Number for Future Traffic 5.00 in

Effective Structural Number - Non-Destructive Testing

Total Pavement Thickness Backcalculated Effective Pavement Modulus Milling Thickness	24 in 400,000 psi 4 in
Effective Existing Pavement SN (SNEff)	6.63 in

Performance Period (years)	8
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Future Rigorous ESAL Calculation

Performance Period (years)	8
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	4,774
2	2	3	1.0529	0	512,961
Total	100	-	-	-	517,736

Growth Compound

Total Calculated Cumulative ESALs 517,736

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	SN (in)
Total	_	_	_	_	_	_

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
1	AC Overlay	0.54	1	\$54.00	0	120	12	0.00	0.00	\$0.00
Total	-	-	-	_	-	-	_	0.00	0.00	\$0.00

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODFP-Trial 9

AC Overlay of AC Pavement

Structural Number for Future Traffic 5 in

	Effective Existing	Overlay
Design Method	Structural Number (in)	Structural Number (in)
Component Analysis	-	-
Remaining Life	-	-
Non-Destructive Testing	2.37	2.63

Structural Number for Future Traffic

Future 18-kip ESALs Over Design Period	517,736
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Subgrade Resilient Modulus	5,500 psi
Calculated Structural Number for Future Traffic	5.00 in

5.00 in

Effective Structural Number - Non-Destructive Testing

Total Pavement Thickness Backcalculated Effective Pavement Modulus Milling Thickness	11 in 200,000 psi 2 in
Effective Existing Pavement SN (SNEff)	2.37 in

Performance Period (years)	8
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Future Rigorous ESAL Calculation

Performance Period (years)8Two-Way Traffic (ADT)15,000Number of Lanes in Design Direction2Percent of All Trucks in Design Lane100 %Percent Trucks in Design Direction50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	4,774
2	2	3	1.0529	0	512,961
Total	100	-	-	-	517,736

Growth Compound

Total Calculated Cumulative ESALs 517,736

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	SN (in)
Total	_	_	_	_	_	_

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
1	AC Overlay	0.54	1	\$54.00	0	120	12	4.87	2.63	\$263.00
Total	-	_	_	-	_	_	_	4.87	2.63	\$263.00

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODFP-Trial 10

AC Overlay of AC Pavement

Structural Number for Future Traffic 5 in

	Effective Existing	Overlay
Design Method	Structural Number (in)	Structural Number (in)
Component Analysis	-	-
Remaining Life	-	-
Non-Destructive Testing	1.32	3.68

Structural Number for Future Traffic

Future 18-kip ESALs Over Design Period	517,736
Initial Serviceability	4.2
Terminal Serviceability	3.5
Reliability Level	95 %
Overall Standard Deviation	0.49
Subgrade Resilient Modulus	5,500 psi
Colorlate I State Aven I New London Con Festival Traces	5.00

Calculated Structural Number for Future Traffic 5.00 in

Effective Structural Number - Non-Destructive Testing

Total Pavement Thickness	11 in
Backcalculated Effective Pavement Modulus	200,000 psi
Milling Thickness	6 in
Effective Existing Pavement SN (SNEff)	1.32 in

Performance Period (years)	8
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Future Rigorous ESAL Calculation

Performance Period (years)8Two-Way Traffic (ADT)15,000Number of Lanes in Design Direction1Percent of All Trucks in Design Lane100 %Percent Trucks in Design Direction50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	4,774
2	2	3	1.0529	0	512,961
Total	100	-	-	-	517,736

Growth Compound

Total Calculated Cumulative ESALs 517,736

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(ft)</u>	SN (in)
Total	_	_	_	_	_	_

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

		Struct	Drain		Min	Max		Optimum		Calculated
		Coef.	Coef.	Cost	Thick	Thick	Width	Thick	Calculated	Cost
Layer	Material Description	<u>(Ai)</u>	(Mi)	(sq yd/in)	(Di)(in)	<u>(in)</u>	<u>(ft)</u>	<u>(in)</u>	SN (in)	<u>(sq yd)</u>
1	AC Overlay	0.54	1	\$54.00	0	120	12	6.81	3.68	\$368.00
Total	-	-	_	-	_	-	_	6.81	3.68	\$368.00

Appendix A.6

Overlay Design Rigid Pavement

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP AC-PCC-Trial 1.xlsx

Project Name:

ODRP AC-PCC--Trial 1

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

AC Overlay of AC-PCC

Future Required Structural Capacity Variability and Reliability

Standard Deviation: 0.39

Reliability, %: 95

Standard Normal Variate: -1.647

Serviceability

Initial: 4.5

Terminal: 3

Change in Serviceability: 1.5

Existing Asphalt Properties

Existing AC Thickness, in: 3

AC Milling Thickness, in: 0

AC-PCC Interface Condition: Unbonded

Existing Concrete Properties

Existing PCC Thickness, in: 12

Modulus of Rupture, psi: 650

Elastic Modulus, psi: 4,200,000

Load Transfer Coefficient: 2.8

Subsurface Properties

Static Modulus of Subgrade Reaction, pci: 300

Drainage Coefficient: 1

Traffic Information

Total Design Trucks (Classes 5 - 13): 20,801,198

Truck Damage Factor: 1.6246

Total Other Vehicles (Classes 1 - 4): 187,210,779

Other Vehicle Damage Factor: 0.0002

Percent Trucks (Classes 5-13) in Design Lane: 85

Percent Trucks (Classes 5-13) in Design Direction: 50

ESALs in all lanes and both directions during first year: 2,673,192

Total Rigid Design ESALs: 33,831,068

Future Required Structural Capacity

Slab Thickness for Future Traffic, in: 12.35

Existing Structural Capacity

Number of Unrepaired Deteriorated Reflection Cracks, per mile: 30

AC Overlay of AC-PCC

Number of Unrepaired Punchouts, per mile: 28 Number of Expansion Joints, Exceptionally Wide Joints (>1in) or Full Depth, Full-Lane-Width AC Patches, per mile: 25

Total Joints, Cracks, Punchouts, Patches per mile: 83

Joints and Cracks Adjustment Factor: 0.8
PCC Durability Adjustment Factor: 0.9
AC Quality Adjustment Factor: 1

Effective Existing Pavement Thickness, in: 10.14

Overlay Design Thickness

AC Overlay Thickness, in: 4.27

:

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP AC-PCC-Trial 2.xlsx

Project Name:

ODRP AC-PCC-Trial 2

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Rigid

C:\Users\bfb0014\Box\Shared with Grad Students\Biessan\ALDOT - Pavement Software Project\ADAPT Trials\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP AC-PCC-Trial 2 Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

AC Overlay of AC-PCC-Trial 2 Trials\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP AC-PCC-Trial 2

Future Required Structural Capacity

Variability and Reliability

Standard Deviation: 0.39 Reliability, %: 95

Standard Normal Variate: -1.647

Serviceability

Initial: 4.5

Terminal: 3

Change in Serviceability: 1.5

Existing Asphalt Properties

Existing AC Thickness, in: 3

AC Milling Thickness, in: 0

AC-PCC Interface Condition: Bonded

Existing Concrete Properties

Existing PCC Thickness, in: 10

Modulus of Rupture, psi: 650

Elastic Modulus, psi: 4,200,000

Load Transfer Coefficient: 2.8

Subsurface Properties

Static Modulus of Subgrade Reaction, pci: 100

Drainage Coefficient: 1

Traffic Information

Total Design Trucks (Classes 5 - 13): 20,801,198

Truck Damage Factor: 1.6329

Total Other Vehicles (Classes 1 - 4): 187,210,779

Other Vehicle Damage Factor: 0.0002

Percent Trucks (Classes 5-13) in Design Lane: 85

Percent Trucks (Classes 5-13) in Design Direction: 50

ESALs in all lanes and both directions during first year: 2,686,834

Total Rigid Design ESALs: 34,003,718

Future Required Structural Capacity

Slab Thickness for Future Traffic, in: 12.85

Existing Structural Capacity

Number of Unrepaired Deteriorated Reflection Cracks, per mile: 15

$C: \label{thm:linear_continuous$

Trials\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP AC-PCC-Trial 2 AC Overlay of AC-PCC

Number of Unrepaired Punchouts, per mile: 10 Number of Expansion Joints, Exceptionally Wide Joints (>1in) or Full Depth, Full-Lane-Width AC Patches, per mile: 13 Total Joints, Cracks, Punchouts, Patches per mile: 38

> Joints and Cracks Adjustment Factor: 0.9 PCC Durability Adjustment Factor: 0.9 AC Quality Adjustment Factor: 0.8

Effective Existing Pavement Thickness, in: 9.3

Overlay Design Thickness

AC Overlay Thickness, in: 6.4

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP AC-PCC-Trial 3.xlsx

Project Name:

ODRP AC-PCC-Trial 3

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

AC Overlay of AC-PCC

Future Required Structural Capacity Variability and Reliability

Standard Deviation: 0.39

Reliability, %: 95

Standard Normal Variate: -1.647

Serviceability

Initial: 4.5

Terminal: 3

Change in Serviceability: 1.5

Existing Asphalt Properties

Existing AC Thickness, in: 3

AC Milling Thickness, in: 0

AC-PCC Interface Condition: Bonded

Existing Concrete Properties

Existing PCC Thickness, in: 12

Modulus of Rupture, psi: 650

Elastic Modulus, psi: 4,200,000

Load Transfer Coefficient: 2.8

Subsurface Properties

Static Modulus of Subgrade Reaction, pci: 20

Drainage Coefficient: 1

Traffic Information

Total Design Trucks (Classes 5 - 13): 20,801,198

Truck Damage Factor: 1.6329

Total Other Vehicles (Classes 1 - 4): 187,210,779

Other Vehicle Damage Factor: 0.0002

Percent Trucks (Classes 5-13) in Design Lane: 85

Percent Trucks (Classes 5-13) in Design Direction: 50

ESALs in all lanes and both directions during first year: 2,686,834

Total Rigid Design ESALs: 34,003,718

Future Required Structural Capacity

Slab Thickness for Future Traffic, in: 13.31

Existing Structural Capacity

Number of Unrepaired Deteriorated Reflection Cracks, per mile: 15

AC Overlay of AC-PCC

Number of Unrepaired Punchouts, per mile: 15 Number of Expansion Joints, Exceptionally Wide Joints (>1in) or Full Depth, Full-Lane-Width AC Patches, per mile: 12 Total Joints, Cracks, Punchouts, Patches per mile: 42

> Joints and Cracks Adjustment Factor: 0.89 PCC Durability Adjustment Factor: 0.9 AC Quality Adjustment Factor: 0.8

Effective Existing Pavement Thickness, in: 10.81

Overlay Design Thickness

AC Overlay Thickness, in: 4.75

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP AC-PCC-Trial 4.xlsx

Project Name:

ODRP AC-PCC-Trial 4

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

AC Overlay of AC-PCC

Future Required Structural Capacity Variability and Reliability

Standard Deviation: 0.39

Reliability, %: 95

Standard Normal Variate: -1.647

Serviceability

Initial: 4.5

Terminal: 3

Change in Serviceability: 1.5

Existing Asphalt Properties

Existing AC Thickness, in: 6

AC Milling Thickness, in: 2

AC-PCC Interface Condition: Unbonded

Existing Concrete Properties

Existing PCC Thickness, in: 10

Modulus of Rupture, psi: 650

Elastic Modulus, psi: 4,200,000

Load Transfer Coefficient: 2.8

Subsurface Properties

Static Modulus of Subgrade Reaction, pci: 20

Drainage Coefficient: 1

Traffic Information

Total Design Trucks (Classes 5 - 13): 20,801,198

Truck Damage Factor: 1.6329

Total Other Vehicles (Classes 1 - 4): 187,210,779

Other Vehicle Damage Factor: 0.0002

Percent Trucks (Classes 5-13) in Design Lane: 85

Percent Trucks (Classes 5-13) in Design Direction: 50

ESALs in all lanes and both directions during first year: 2,686,834

Total Rigid Design ESALs: 34,003,718

Future Required Structural Capacity

Slab Thickness for Future Traffic, in: 13.31

Existing Structural Capacity

Number of Unrepaired Deteriorated Reflection Cracks, per mile: 30

AC Overlay of AC-PCC

Number of Unrepaired Punchouts, per mile: 27 Number of Expansion Joints, Exceptionally Wide Joints (>1in) or Full Depth, Full-Lane-Width AC Patches, per mile: 25

Total Joints, Cracks, Punchouts, Patches per mile: 82

Joints and Cracks Adjustment Factor: 0.8 PCC Durability Adjustment Factor: 1 AC Quality Adjustment Factor: 0.9

Effective Existing Pavement Thickness, in: 9.8

Overlay Design Thickness

AC Overlay Thickness, in: 6.34

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP AC-PCC-Trial 5.xlsx

Project Name:

ODRP AC-PCC-Trial 5

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 45,000

Number of Lanes in Design Direction: 2

Growth Rate (%): 4.00%

Truck Percentage (Classes 5 - 13): 10.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 85.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

AC Overlay of AC-PCC

Future Required Structural Capacity Variability and Reliability

Standard Deviation: 0.39

Reliability, %: 95

Standard Normal Variate: -1.647

Serviceability

Initial: 4.5

Terminal: 3

Change in Serviceability: 1.5

Existing Asphalt Properties

Existing AC Thickness, in: 6

AC Milling Thickness, in: 2

AC-PCC Interface Condition: Bonded

Existing Concrete Properties

Existing PCC Thickness, in: 12

Modulus of Rupture, psi: 650

Elastic Modulus, psi: 4,200,000

Load Transfer Coefficient: 2.8

Subsurface Properties

Static Modulus of Subgrade Reaction, pci: 100

Drainage Coefficient: 1

Traffic Information

Total Design Trucks (Classes 5 - 13): 20,801,198

Truck Damage Factor: 1.6329

Total Other Vehicles (Classes 1 - 4): 187,210,779

Other Vehicle Damage Factor: 0.0002

Percent Trucks (Classes 5-13) in Design Lane: 85

Percent Trucks (Classes 5-13) in Design Direction: 50

ESALs in all lanes and both directions during first year: 2,686,834

Total Rigid Design ESALs: 34,003,718

Future Required Structural Capacity

Slab Thickness for Future Traffic, in: 12.85

Existing Structural Capacity

Number of Unrepaired Deteriorated Reflection Cracks, per mile: 30

AC Overlay of AC-PCC

Number of Unrepaired Punchouts, per mile: 27 Number of Expansion Joints, Exceptionally Wide Joints (>1in) or Full Depth, Full-Lane-Width AC Patches, per mile: 25 Total Joints, Cracks, Punchouts, Patches per mile: 82

Joints and Cracks Adjustment Factor: 0.8
PCC Durability Adjustment Factor: 1
AC Quality Adjustment Factor: 1

Effective Existing Pavement Thickness, in: 11.6

Overlay Design Thickness

AC Overlay Thickness, in: 2.56

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP PCC-PCC-Trial 6.xlsx

Project Name:

ODRP PCC-PCC-Trial 6

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 90.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Future Required Structural Capacity Variability and Reliability

Standard Deviation: 0.39

Reliability, %: 95

Standard Normal Variate: -1.647

Serviceability

Initial: 4.5

Terminal: 3

Change in Serviceability: 1.5

Concrete Overlay Properties

Modulus of Rupture, psi: 650

Elastic Modulus, psi: 4,200,000

Load Transfer Coefficient: 2.8

Subsurface Properties

Static Modulus of Subgrade Reaction, pci: 700

Drainage Coefficient: 1

Traffic Information

Total Design Trucks (Classes 5 - 13): 1,324,945

Truck Damage Factor: 1.4573

Total Other Vehicles (Classes 1 - 4): 64,922,284

Other Vehicle Damage Factor: 0.0002

Percent Trucks (Classes 5-13) in Design Lane: 90

Percent Trucks (Classes 5-13) in Design Direction: 50

ESALs in all lanes and both directions during first year: 160,757

Total Rigid Design ESALs: 1,943,826

Future Required Structural Capacity

Slab Thickness for Future Traffic, in: 6.82

Existing Structural Capacity

Existing PCC Thickness, in: 4

Number of Unrepaired Deteriorated Joints, per mile: 20

Number of Unrepaired Deteriorated Cracks, per mile: 15

Number of Unrepaired Punchouts, per mile: 15

Number of Expansion Joints, Exceptionally Wide Joints

(>1in) or Full Depth, Full-Lane-Width AC Patches, per mile: 15

Total Joints, Cracks, Punchouts, Patches per mile: 65

Joints and Cracks Adjustment Factor: 0.95

Effective Existing Pavement Thickness, in: 3.8

Overlay Design Thickness

Unbonded PCC Overlay Thickness, in: 5.66

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP PCC-PCC-Trial 7.xlsx

Project Name:

ODRP PCC-PCC Trial 7

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 90.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Future Required Structural Capacity Variability and Reliability

Standard Deviation: 0.39

Reliability, %: 95

Standard Normal Variate: -1.647

Serviceability

Initial: 4.5

Terminal: 3

Change in Serviceability: 1.5

Concrete Overlay Properties

Modulus of Rupture, psi: 650

Elastic Modulus, psi: 4,200,000

Load Transfer Coefficient: 2.8

Subsurface Properties

Static Modulus of Subgrade Reaction, pci: 400

Drainage Coefficient: 1

Traffic Information

Total Design Trucks (Classes 5 - 13): 1,324,945

Truck Damage Factor: 1.4573

Total Other Vehicles (Classes 1 - 4): 64,922,284

Other Vehicle Damage Factor: 0.0002

Percent Trucks (Classes 5-13) in Design Lane: 90

Percent Trucks (Classes 5-13) in Design Direction: 50

ESALs in all lanes and both directions during first year: 160,757

Total Rigid Design ESALs: 1,943,826

Future Required Structural Capacity

Slab Thickness for Future Traffic, in: 7.43

Existing Structural Capacity

Existing PCC Thickness, in: 6

Number of Unrepaired Deteriorated Joints, per mile: 50

Number of Unrepaired Deteriorated Cracks, per mile: 50

Number of Unrepaired Punchouts, per mile: 50

Number of Expansion Joints, Exceptionally Wide Joints

(>1in) or Full Depth, Full-Lane-Width AC Patches, per mile: 50

Total Joints, Cracks, Punchouts, Patches per mile: 200

Joints and Cracks Adjustment Factor: 0.9

Effective Existing Pavement Thickness, in: 5.4

Overlay Design Thickness

Unbonded PCC Overlay Thickness, in: 5.1

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP PCC-PCC-Trial 8.xlsx

Project Name:

ODRP PCC-PCC Trial 8

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 90.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Future Required Structural Capacity Variability and Reliability

Standard Deviation: 0.39

Reliability, %: 95

Standard Normal Variate: -1.647

Serviceability

Initial: 4.5

Terminal: 3

Change in Serviceability: 1.5

Concrete Overlay Properties

Modulus of Rupture, psi: 650

Elastic Modulus, psi: 4,200,000

Load Transfer Coefficient: 2.8

Subsurface Properties

Static Modulus of Subgrade Reaction, pci: 200

Drainage Coefficient: 1

Traffic Information

Total Design Trucks (Classes 5 - 13): 1,324,945

Truck Damage Factor: 1.485

Total Other Vehicles (Classes 1 - 4): 64,922,284

Other Vehicle Damage Factor: 0.0002

Percent Trucks (Classes 5-13) in Design Lane: 90

Percent Trucks (Classes 5-13) in Design Direction: 50

ESALs in all lanes and both directions during first year: 163,793

Total Rigid Design ESALs: 1,980,527

Future Required Structural Capacity

Slab Thickness for Future Traffic, in: 7.94

Existing Structural Capacity

Existing PCC Thickness, in: 8

Number of Unrepaired Deteriorated Joints, per mile: 20

Number of Unrepaired Deteriorated Cracks, per mile: 20

Number of Unrepaired Punchouts, per mile: 20

Number of Expansion Joints, Exceptionally Wide Joints

(>1in) or Full Depth, Full-Lane-Width AC Patches, per mile: 20

Total Joints, Cracks, Punchouts, Patches per mile: 80

Joints and Cracks Adjustment Factor: 0.95

Effective Existing Pavement Thickness, in: 7.6

Overlay Design Thickness

Unbonded PCC Overlay Thickness, in: 2.3

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP PCC-PCC-Trial 9.xlsx

Project Name:

ODRP PCC-PCC Trial 9

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 90.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Future Required Structural Capacity Variability and Reliability

Standard Deviation: 0.39

Reliability, %: 95

Standard Normal Variate: -1.647

Serviceability

Initial: 4.5

Terminal: 3

Change in Serviceability: 1.5

Concrete Overlay Properties

Modulus of Rupture, psi: 650

Elastic Modulus, psi: 4,200,000

Load Transfer Coefficient: 2.8

Subsurface Properties

Static Modulus of Subgrade Reaction, pci: 50

Drainage Coefficient: 1

Traffic Information

Total Design Trucks (Classes 5 - 13): 1,324,945

Truck Damage Factor: 1.5385

Total Other Vehicles (Classes 1 - 4): 64,922,284

Other Vehicle Damage Factor: 0.0002

Percent Trucks (Classes 5-13) in Design Lane: 90

Percent Trucks (Classes 5-13) in Design Direction: 50

ESALs in all lanes and both directions during first year: 169,655

Total Rigid Design ESALs: 2,051,412

Future Required Structural Capacity

Slab Thickness for Future Traffic, in: 8.56

Existing Structural Capacity

Existing PCC Thickness, in: 5

Number of Unrepaired Deteriorated Joints, per mile: 45

Number of Unrepaired Deteriorated Cracks, per mile: 45

Number of Unrepaired Punchouts, per mile: 45

Number of Expansion Joints, Exceptionally Wide Joints

(>1in) or Full Depth, Full-Lane-Width AC Patches, per mile: 45

Total Joints, Cracks, Punchouts, Patches per mile: 180

Joints and Cracks Adjustment Factor: 0.91

Effective Existing Pavement Thickness, in: 4.55

Overlay Design Thickness

Unbonded PCC Overlay Thickness, in: 7.25

ADAPT Version 3.03 - BETA TESTING VERSION

Alabama Design & Analysis of Pavement Thickness

File Location and Name:

C:\Users\dvb0007\OneDrive\Documents\Master Degree Courses\Research\ALDOT DATA SERVER\ADAPT Design Trials\ODRP - Overlay Design Rigid Pavement\ODRP PCC-PCC-Trial 10.xlsx

Project Name:

ODRP PCC-PCC Trial 10

Project Description:

Describe Project Here...

Project Setting:

Urban

Route Type:

Interstate

Project Type:

Overlay Design

Pavement Type(s):

Rigid

Traffic Inputs

Two Way Annual Average Daily Traffic (AADT): 15,000

Number of Lanes in Design Direction: 1

Growth Rate (%): 3.00%

Truck Percentage (Classes 5 - 13): 2.00%

Percent Trucks (Classes 5 - 13) in Design Lane: 90.00%

Percent Trucks (Classes 5 - 13) in Design Direction: 50.00%

Future Required Structural Capacity Variability and Reliability

Standard Deviation: 0.39

Reliability, %: 95

Standard Normal Variate: -1.647

Serviceability

Initial: 4.5

Terminal: 3

Change in Serviceability: 1.5

Concrete Overlay Properties

Modulus of Rupture, psi: 650

Elastic Modulus, psi: 4,200,000

Load Transfer Coefficient: 2.8

Subsurface Properties

Static Modulus of Subgrade Reaction, pci: 15

Drainage Coefficient: 1

Traffic Information

Total Design Trucks (Classes 5 - 13): 1,324,945

Truck Damage Factor: 1.5385

Total Other Vehicles (Classes 1 - 4): 64,922,284

Other Vehicle Damage Factor: 0.0002

Percent Trucks (Classes 5-13) in Design Lane: 90

Percent Trucks (Classes 5-13) in Design Direction: 50

ESALs in all lanes and both directions during first year: 169,655

Total Rigid Design ESALs: 2,051,412

Future Required Structural Capacity

Slab Thickness for Future Traffic, in: 8.86

Existing Structural Capacity

Existing PCC Thickness, in: 7

Number of Unrepaired Deteriorated Joints, per mile: 20

Number of Unrepaired Deteriorated Cracks, per mile: 20

Number of Unrepaired Punchouts, per mile: 20

Number of Expansion Joints, Exceptionally Wide Joints

(>1in) or Full Depth, Full-Lane-Width AC Patches, per mile: 20

Total Joints, Cracks, Punchouts, Patches per mile: 80

Joints and Cracks Adjustment Factor: 0.95

Effective Existing Pavement Thickness, in: 6.65

Overlay Design Thickness

Unbonded PCC Overlay Thickness, in: 5.85

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODRP AC/PCC-Trial 1

AC Overlay of AC/PCC Pavement

Pavement Thickness for Future Traffic 12.35 in

Effective Existing Overlay

Design Method Overlay Thickness (in)
Condition Survey 10.13 4.29

Pavement Thickness for Future Traffic

Future 18-kip ESALs Over Design Period	33,831,068
Initial Serviceability	4.5
Terminal Serviceability	3
PCC Modulus of Rupture	650 psi
PCC Elastic Modulus	4,200,000 psi
Static k-value	300 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1

Calculated Thickness for Future Traffic 12.35 in

Effective Pavement Thickness - Condition Survey Method

Existing PCC Thickness	12 in
Existing AC Thickness	3 in
AC Milling Thickness	0 in
Rut Depth	- in
Durability Adjustment Factor	0.9
Fatigue Damage Adjustment Factor	-
AC Quality Adjustment Factor	1
Number of Deteriorated Joints	- per mi
Number of Deteriorated Cracks	30 per mi
Number of Unrepaired Punchouts	28 per mi
Number of Expansion Joints,	-
Exceptionally Wide Joints, or AC Full Depth Patches	25 per mi

Calculated Results

Calculated Joints and Cracks Adjustment Factor
Calculated Effective Pavement Thickness
10.13 in

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs -*

Future Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6246	0	33,793,626
Total	100	_	_	_	33,831,068

Growth Compound

Total Calculated Cumulative ESALs 33,831,068

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	AC Overlay	4.2880258	12
2	AC	3	12
3	PCC	12	12
Total	-	19.29	=

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODRP AC/PCC-Trial 2

AC Overlay of AC/PCC Pavement

Pavement Thickness for Future Traffic 12.85 in

Effective Existing Overlay

Design Method Overlay Thickness (in)
Condition Survey 9.28 6.43

Pavement Thickness for Future Traffic

Future 18-kip ESALs Over Design Period 34,003,718 Initial Serviceability 4.5 Terminal Serviceability 3 PCC Modulus of Rupture 650 psi 4,200,000 psi PCC Elastic Modulus Static k-value 100 psi/in Reliability Level 95 % Overall Standard Deviation 0.39 Load Transfer Coefficient, J 2.8 Overall Drainage Coefficient, Cd

Calculated Thickness for Future Traffic 12.85 in

Effective Pavement Thickness - Condition Survey Method

Existing PCC Thickness	10 in
Existing AC Thickness	3 in
AC Milling Thickness	0 in
Rut Depth	- in
Durability Adjustment Factor	0.9
Fatigue Damage Adjustment Factor	-
AC Quality Adjustment Factor	0.8
Number of Deteriorated Joints	- per mi
Number of Deteriorated Cracks	15 per mi
Number of Unrepaired Punchouts	10 per mi
Number of Expansion Joints,	-
Essentianalla Wida Lainta an A.C. Esti Danth Datahan	12

Exceptionally Wide Joints, or AC Full Depth Patches 13 per mi

Calculated Results

Calculated Joints and Cracks Adjustment Factor 0.90
Calculated Effective Pavement Thickness 9.28 in

350

Page 1

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

Future Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6329	0	33,966,276
Total	100	-	_	-	34,003,718

Growth Compound

Total Calculated Cumulative ESALs 34,003,718

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	AC Overlay	6.4325563	12
2	AC	3	12
3	PCC	10	12
Total	-	19.43	-

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODRP AC/PCC-Trial 3

AC Overlay of AC/PCC Pavement

Pavement Thickness for Future Traffic 13.31 in

Effective Existing Overlay

Design Method Overlay Thickness (in)
Condition Survey 10.79 4.79

Pavement Thickness for Future Traffic

Future 18-kip ESALs Over Design Period	34,003,718
Initial Serviceability	4.5
Terminal Serviceability	3
PCC Modulus of Rupture	650 psi
PCC Elastic Modulus	4,200,000 psi
Static k-value	20 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1

Calculated Thickness for Future Traffic 13.31 in

Effective Pavement Thickness - Condition Survey Method

Existing PCC Thickness	12 in
Existing AC Thickness	3 in
AC Milling Thickness	0 in
Rut Depth	- in
Durability Adjustment Factor	0.9
Fatigue Damage Adjustment Factor	-
AC Quality Adjustment Factor	0.8
Number of Deteriorated Joints	- per mi
Number of Deteriorated Cracks	15 per mi
Number of Unrepaired Punchouts	15 per mi
Number of Expansion Joints,	-
Exceptionally Wide Joints, or AC Full Depth Patches	12 per mi

Calculated Results

Calculated Joints and Cracks Adjustment Factor
Calculated Effective Pavement Thickness
10.79 in

352

Page 1

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs

Future Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6329	0	33,966,276
Total	100	-	_	-	34,003,718

Growth Compound

Total Calculated Cumulative ESALs 34,003,718

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	AC Overlay	4.7869944	12
2	AC	3	12
3	PCC	12	12
Total	-	19.79	-

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODRP AC/PCC-Trial 4

AC Overlay of AC/PCC Pavement

Pavement Thickness for Future Traffic 13.31 in

Effective Existing Overlay

Design Method Overlay Thickness (in) Thickness (in)

Condition Survey 9.82 6.31

Pavement Thickness for Future Traffic

Future 18-kip ESALs Over Design Period Initial Serviceability	34,003,718 4.5
Terminal Serviceability	3
PCC Modulus of Rupture	650 psi
PCC Elastic Modulus	4,200,000 psi
Static k-value	20 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1

Calculated Thickness for Future Traffic 13.31 in

Effective Pavement Thickness - Condition Survey Method

Existing PCC Thickness	10 in
Existing AC Thickness	6 in
AC Milling Thickness	2 in
Rut Depth	- in
Durability Adjustment Factor	1
Fatigue Damage Adjustment Factor	-
AC Quality Adjustment Factor	0.9
Number of Deteriorated Joints	- per mi
Number of Deteriorated Cracks	30 per mi
Number of Unrepaired Punchouts	27 per mi
Number of Expansion Joints,	-
Exceptionally Wide Joints, or AC Full Depth Patches	25 per mi

Calculated Results

Calculated Joints and Cracks Adjustment Factor
Calculated Effective Pavement Thickness
9.82 in

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple

Total Calculated Cumulative ESALs - *

Future Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6329	0	33,966,276
Total	100	-	-	-	34,003,718

Growth Compound

Total Calculated Cumulative ESALs 34,003,718

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	AC Overlay	6.3117243	12
2	AC	6	12
3	PCC	10	12
Total	-	22.31	-

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODRP AC/PCC-Trial 5

AC Overlay of AC/PCC Pavement

Pavement Thickness for Future Traffic 12.85 in

Effective Existing Overlay

Design Method Overlay Thickness (in) Thickness (in)

Condition Survey 11.62 2.52

Pavement Thickness for Future Traffic

Future 18-kip ESALs Over Design Period	34,003,718
Initial Serviceability	4.5
Terminal Serviceability	3
PCC Modulus of Rupture	650 psi
PCC Elastic Modulus	4,200,000 psi
Static k-value	100 psi/in
Reliability Level	95 %
Overall Standard Deviation	0.39
Load Transfer Coefficient, J	2.8
Overall Drainage Coefficient, Cd	1

Calculated Thickness for Future Traffic 12.85 in

Effective Pavement Thickness - Condition Survey Method

Existing PCC Thickness	12 in
Existing AC Thickness	6 in
AC Milling Thickness	2 in
Rut Depth	- in
Durability Adjustment Factor	1
Fatigue Damage Adjustment Factor	-
AC Quality Adjustment Factor	1
Number of Deteriorated Joints	- per mi
Number of Deteriorated Cracks	30 per mi
Number of Unrepaired Punchouts	27 per mi
Number of Expansion Joints,	-
Exceptionally Wide Joints, or AC Full Depth Patches	25 per mi

Calculated Results

Calculated Joints and Cracks Adjustment Factor 0.80
Calculated Effective Pavement Thickness 11.62 in

356

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple
	_

Total Calculated Cumulative ESALs

Future Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	45,000
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	85 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	Growth	Truck)	<u>Factor</u>	<u>Period</u>
1	90	4	0.0002	0	37,442
2	10	4	1.6329	0	33,966,276
Total	100	-	-	-	34,003,718

Growth Compound

Total Calculated Cumulative ESALs 34,003,718

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	AC Overlay	2.5210027	12
2	AC	6	12
3	PCC	12	12
Total	-	20.52	-

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODRP PCC-PCC-Trial 6

Unbonded PCC Overlay of PCC or AC/PCC Pavement

Pavement Thickness for Future Traffic

6.82 in

Effective Existing Overlay

Design Method Overlay Thickness (in)
Condition Survey
Remaining Life

Design Method Overlay Thickness (in)
3.81
5.66

Remaining Life

Pavement Thickness for Future Traffic

Future 18-kip ESALs Over Design Period 1,943,826 Initial Serviceability 4.5 Terminal Serviceability 3 PCC Modulus of Rupture 650 psi **PCC** Elastic Modulus 4,200,000 psi Static k-value 700 psi/in Reliability Level 95 % Overall Standard Deviation 0.39 Load Transfer Coefficient, J 2.8 Overall Drainage Coefficient, Cd 1

Calculated Thickness for Future Traffic 6.82 in

Effective Pavement Thickness - Condition Survey Method

Existing PCC Thickness 4 in
Existing AC Thickness - in
AC Milling Thickness - in
Rut Depth - in
Durability Adjustment Factor Fatigue Damage Adjustment Factor AC Quality Adjustment Factor -

Number of Deteriorated Joints 20 per mi Number of Deteriorated Cracks 15 per mi Number of Unrepaired Punchouts 15 per mi

Number of Expansion Joints,

Exceptionally Wide Joints, or AC Full Depth Patches 15 per mi

Calculated Results

Calculated Joints and Cracks Adjustment Factor 0.95
Calculated Effective Pavement Thickness 3.81 in

358

Page 1

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple
Total Calculated Cumulative ESALs	- *

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

Future Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	12,984
2	2	3	1.4573	0	1,930,842
Total	100	-	-	-	1,943,826

Growth Compound

Total Calculated Cumulative ESALs 1,943,826

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	Unbonded PCC Overlay	5.6565272	12
2	PCC	4	12
Total	-	9.66	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODRP PCC-PCC-Trial 7

Unbonded PCC Overlay of PCC or AC/PCC Pavement

Pavement Thickness for Future Traffic 7.43 in

Pavement Thickness for Future Traffic

Future 18-kip ESALs Over Design Period 1,943,826 Initial Serviceability 4.5 Terminal Serviceability 3 PCC Modulus of Rupture 650 psi PCC Elastic Modulus 4,200,000 psi Static k-value 400 psi/in Reliability Level 95 % Overall Standard Deviation 0.39 Load Transfer Coefficient, J 2.8 Overall Drainage Coefficient, Cd 1

Calculated Thickness for Future Traffic 7.43 in

Effective Pavement Thickness - Condition Survey Method

Existing PCC Thickness 6 in
Existing AC Thickness - in
AC Milling Thickness - in
Rut Depth - in
Durability Adjustment Factor Fatigue Damage Adjustment Factor AC Quality Adjustment Factor -

Exceptionally Wide Joints, or AC Full Depth Patches 50 per mi

Calculated Results

Calculated Joints and Cracks Adjustment Factor 0.90
Calculated Effective Pavement Thickness 5.40 in

360

Page 1

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple
Total Calculated Cumulative ESALs	- *

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

Future Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	12,984
2	2	3	1.4573	0	1,930,842
Total	100	-	-	-	1,943,826

Growth Compound

Total Calculated Cumulative ESALs 1,943,826

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	Unbonded PCC Overlay	5.1034204	12
2	PCC	6	12
Total	-	11.10	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODRP PCC-PCC-Trial 8

Unbonded PCC Overlay of PCC or AC/PCC Pavement

7.93 in

Pavement Thickness for Future Traffic

Effective Existing Overlay

Design Method Overlay Thickness (in)
Condition Survey 7.58 2.33

Remaining Life - -

Pavement Thickness for Future Traffic

1,980,527 Future 18-kip ESALs Over Design Period Initial Serviceability 4.5 Terminal Serviceability 3 PCC Modulus of Rupture 650 psi **PCC** Elastic Modulus 4,200,000 psi Static k-value 200 psi/in Reliability Level 95 % Overall Standard Deviation 0.39 Load Transfer Coefficient, J 2.8 Overall Drainage Coefficient, Cd 1

Calculated Thickness for Future Traffic 7.93 in

Effective Pavement Thickness - Condition Survey Method

Existing PCC Thickness 8 in
Existing AC Thickness - in
AC Milling Thickness - in
Rut Depth - in
Durability Adjustment Factor Fatigue Damage Adjustment Factor AC Quality Adjustment Factor -

Exceptionally Wide Joints, or AC Full Depth Patches 20 per mi

Calculated Results

Calculated Joints and Cracks Adjustment Factor 0.95
Calculated Effective Pavement Thickness 7.58 in

362

Page 1

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple
Total Calculated Cumulative ESALs	- *

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

Future Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	12,984
2	2	3	1.485	0	1,967,543
Total	100	-	-	-	1,980,527

Growth Compound

Total Calculated Cumulative ESALs 1,980,527

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	Unbonded PCC Overlay	2.3299142	12
2	PCC	8	12
Total	-	10.33	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODRP PCC-PCC-Trial 9

Unbonded PCC Overlay of PCC or AC/PCC Pavement

Pavement Thickness for Future Traffic

8.56 in

Effective Existing Overlay

Design Method Overlay Thickness (in)
Condition Survey

Remaining Life

Design Method Overlay Thickness (in)
4.55

7.25

Remaining Life

Pavement Thickness for Future Traffic

Future 18-kip ESALs Over Design Period 2,051,412 Initial Serviceability 4.5 Terminal Serviceability 3 PCC Modulus of Rupture 650 psi PCC Elastic Modulus 4,200,000 psi Static k-value 50 psi/in Reliability Level 95 % Overall Standard Deviation 0.39 Load Transfer Coefficient, J 2.8 Overall Drainage Coefficient, Cd 1

Calculated Thickness for Future Traffic 8.56 in

Effective Pavement Thickness - Condition Survey Method

Existing PCC Thickness 5 in
Existing AC Thickness - in
AC Milling Thickness - in
Rut Depth - in
Durability Adjustment Factor Fatigue Damage Adjustment Factor AC Quality Adjustment Factor -

Number of Deteriorated Joints 45 per mi
Number of Deteriorated Cracks 45 per mi
Number of Unrepaired Punchouts 45 per mi
Number of Expansion Joints, -

Exceptionally Wide Joints, or AC Full Depth Patches 45 per mi

Calculated Results

Calculated Joints and Cracks Adjustment Factor
Calculated Effective Pavement Thickness
4.55 in

364

Page 1

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple
Total Calculated Cumulative ESALs	- *

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

Future Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	12,984
2	2	3	1.5385	0	2,038,427
Total	100	-	-	-	2,051,412

Growth Compound

Total Calculated Cumulative ESALs 2,051,412

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	Unbonded PCC Overlay	7.2505931	12
2	PCC	5	12
Total	-	12.25	-

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Auburn University

Overlay Design Module

ODRP PCC-PCC-Trial 10

Unbonded PCC Overlay of PCC or AC/PCC Pavement

Pavement Thickness for Future Traffic

8.86 in

Effective Existing Overlay

Design Method Overlay Thickness (in)
Condition Survey
Remaining Life

Design Method Overlay Thickness (in)
6.64
5.87

Remaining Life

Pavement Thickness for Future Traffic

Future 18-kip ESALs Over Design Period 2,051,412 Initial Serviceability 4.5 Terminal Serviceability 3 PCC Modulus of Rupture 650 psi PCC Elastic Modulus 4,200,000 psi Static k-value 15 psi/in Reliability Level 95 % Overall Standard Deviation 0.39 Load Transfer Coefficient, J 2.8 Overall Drainage Coefficient, Cd 1

Calculated Thickness for Future Traffic 8.86 in

Effective Pavement Thickness - Condition Survey Method

Existing PCC Thickness 7 in
Existing AC Thickness - in
AC Milling Thickness - in
Rut Depth - in
Durability Adjustment Factor Fatigue Damage Adjustment Factor AC Quality Adjustment Factor -

Number of Deteriorated Joints

Number of Deteriorated Cracks

Number of Unrepaired Punchouts

20 per mi

20 per mi

20 per mi

Number of Expansion Joints,

Exceptionally Wide Joints, or AC Full Depth Patches 20 per mi

Calculated Results

Calculated Joints and Cracks Adjustment Factor 0.95
Calculated Effective Pavement Thickness 6.64 in

366

Page 1

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	- %
Average Initial Truck Factor (ESALs/truck)	-
Annual Truck Factor Growth Rate	- %
Annual Truck Volume Growth Rate	- %
Growth	Simple
Total Calculated Cumulative ESALs	- *

^{*}Note: This value is not represented by the inputs or an error occurred in calculation.

Future Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	15,000
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %

			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	<u>ADT</u>	<u>Growth</u>	<u>Truck)</u>	<u>Factor</u>	<u>Period</u>
1	98	3	0.0002	0	12,984
2	2	3	1.5385	0	2,038,427
Total	100	-	-	-	2,051,412

Growth Compound

Total Calculated Cumulative ESALs 2,051,412

			One Dir
		Thickness	Width
<u>Layer</u>	Material Description	<u>(in)</u>	<u>(ft)</u>
1	Unbonded PCC Overlay	5.8660038	12
2	PCC	7	12
Total	-	12.87	-