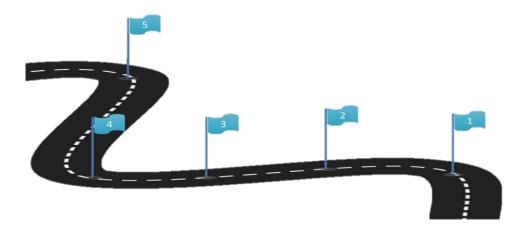
CAPRODO

PAVEMENT RESEARCH AND IMPLEMENTATION

Balanced Mix Design in Missouri


Why Balanced Mix Design?

> Agency not creating specifications for mix components & additives
 > Allows innovation and flexibility for contractors

BMD History in Missouri

- > 2017 2019 Started Performance Testing and Developed Benchmarks
 - DCT, I-FIT, SCB, CT_{Index}
 - Hamburg
- > 2019 Selected Final BMD Tests, Developed JSP, and Started Shadow Projects
 - CT_{Index}
 - Hamburg
- > 2020 2022 45 Pilot/Shadow Projects Revised JSP
 - No Reheating of Material
 - QC/QA made fabricated at the plant
- > 2023 34 Pilot/Shadow Projects
 - Need for a Final Draft Specification
 - Move to RT_{Index} instead of Hamburg

MòDO

Research Review

https://spexternal.modot.mo.gov/site s/cm/CORDT/Forms/By%20Year.aspx

Support for Balanced Asphalt Mixture Design Specification Development in Missouri

September 2020	Project number TR201811
Final Report	MoDOT Research Report number cmr 20-010

PREPARED BY:

William G. Buttlar

Loreto Urra-Contreras

Behnam Jahangiri

Punyaslok Rath

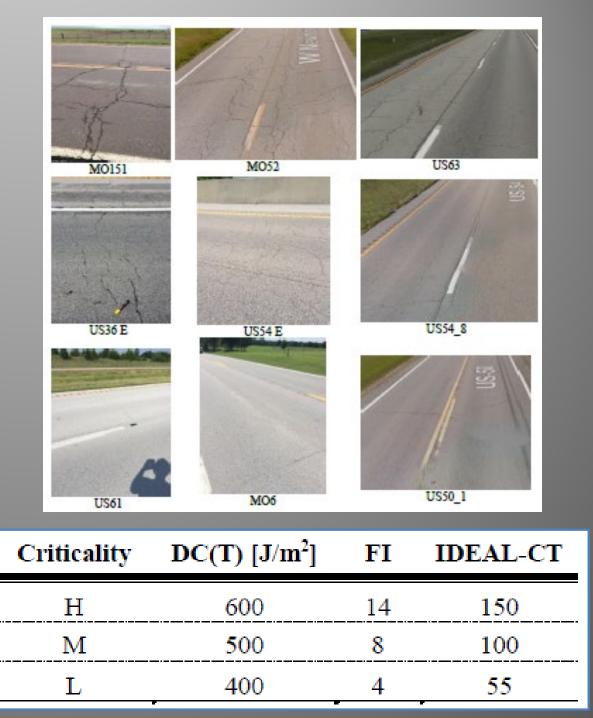
Hamod Majidifard

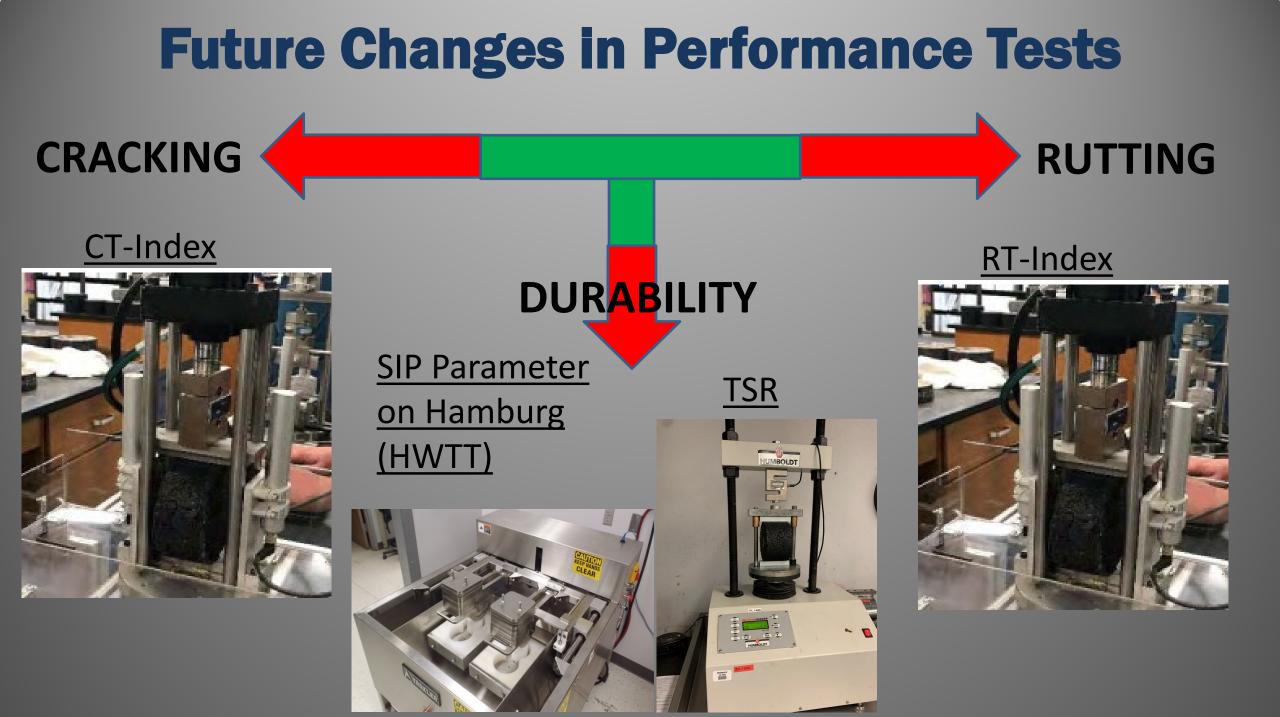
University of Missouri-Columbia

PREPARED FOR:

Missouri Department of Transportation

Construction and Materials Division, Research Section




Table 5-1. Field sections with significant time in service

	Section #	Constr. Year	Virgin Binder Grade	Asphalt Content (%)	ABR (%)	ABR by RAP (%)	ABR by RAS (%)
	MO52_1	2010	PG64-22	4.8	33.5	0	33.5
	US 54_8	2006	PG70-22	5.6	8.6	8.6	0
Phase I	US50_1	2011	PG64-22	5.0	24.6	24.6	0
	US63_2	2008	PG64-22	5.6	29.9	19.9	10
	US54_7	2003	PG64-22	6.2	0	0	0
	MO 151	2010	PG64-22	4.7	30.6	15.9	14.7
	US 36 E	2011	PG64-22	51	24.7	24.7	0
Phase II	US 54 E	2010	PG70-22	5.7	11.8	11.8	0
	MO 94	2005	PG64-22	5.6	0	0	0
	MO 6 W	2015	PG58-28	5.9	29.6	29.6	0
	US 61 N	2013	PG64-22H	5.3	29.6	29.6	0

US 50 – Good Performance ~ FI = 7.84; CT = 96.0

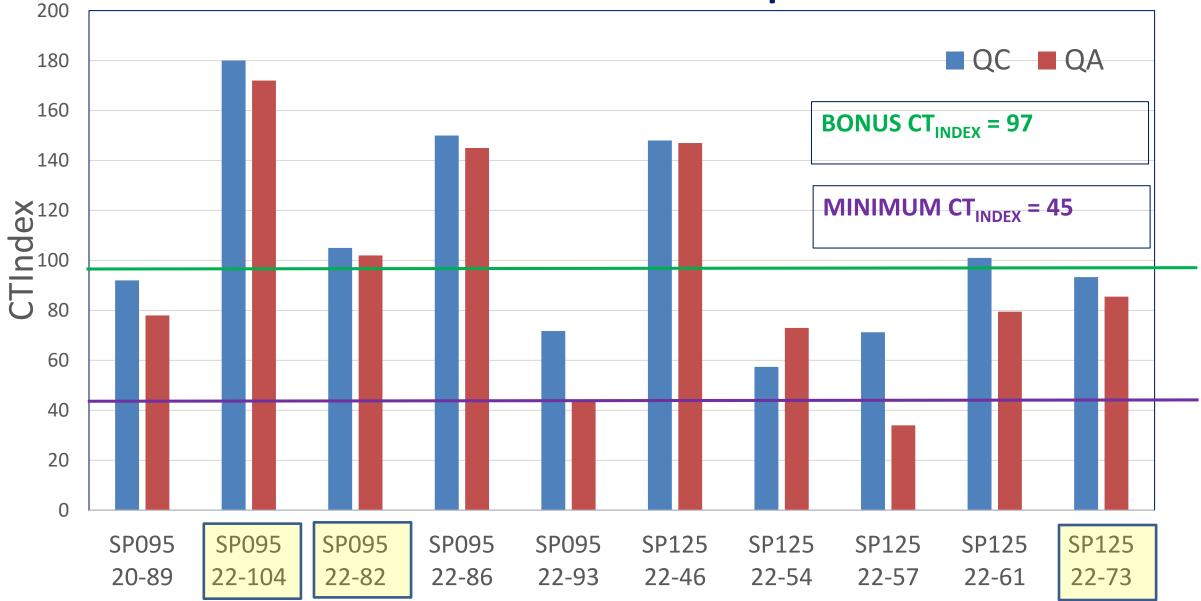
US 36 – Poor Performance ~ FI = 1.12; CT = 20.2

Flexibility Index	Ideal CT	Percent of Contract
NMAS	NMAS	Price
<190	<190	
< 2.0	< 32	98%
2.0 - 3.9	32 - 60	100%
4.0 - 7.9	60 - 97	102%
>8.0	> 97	103%

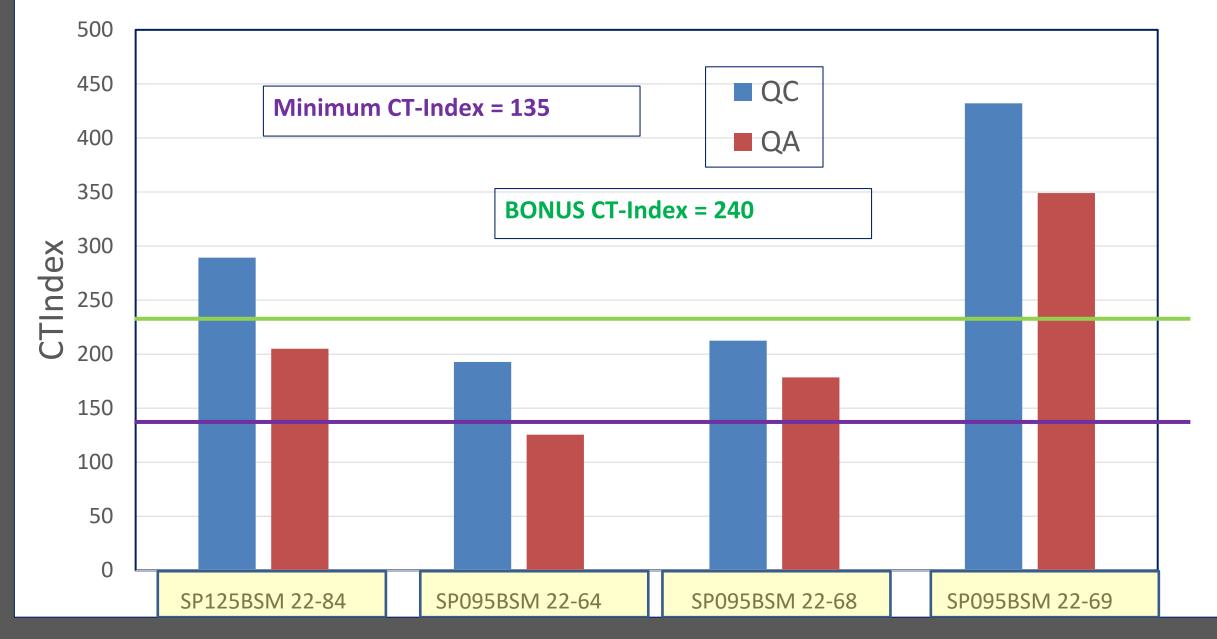
Future Performance Specifications

	CT-Index						
	SuperPave CT _{Index}	_	MΑ Γ _{Inde}		PWL		
	< 50	< 50 < 135		PWL (Modified)			
	50 - 100	100 135 - 240					
	> 100	> 240					
Tensile Stre	Strength Ratio (TSR)				RT-I	ndex	
TSR	% Pa	у		PG High N		Μ	inimum
85 % or Aboy	Use PW	'L or		Ten	np. Grade	[RT _{Index}
	Full Ince	entive		58	H & 64S		50
84 - 75 %	100	100			64H		65
70 - 74 %	98	98			0411		05
< 70 %	Remo	Remove			64V		80

Hamburg Wheel Track						
PG High Temp. Grade	Minimum Wheel Passes	Maximum Rut Depth (mm)				
58S	5,000	12.5				
64S	7,500	12.5				
64H	15,000	12.5				
64V	20,000	12 5				

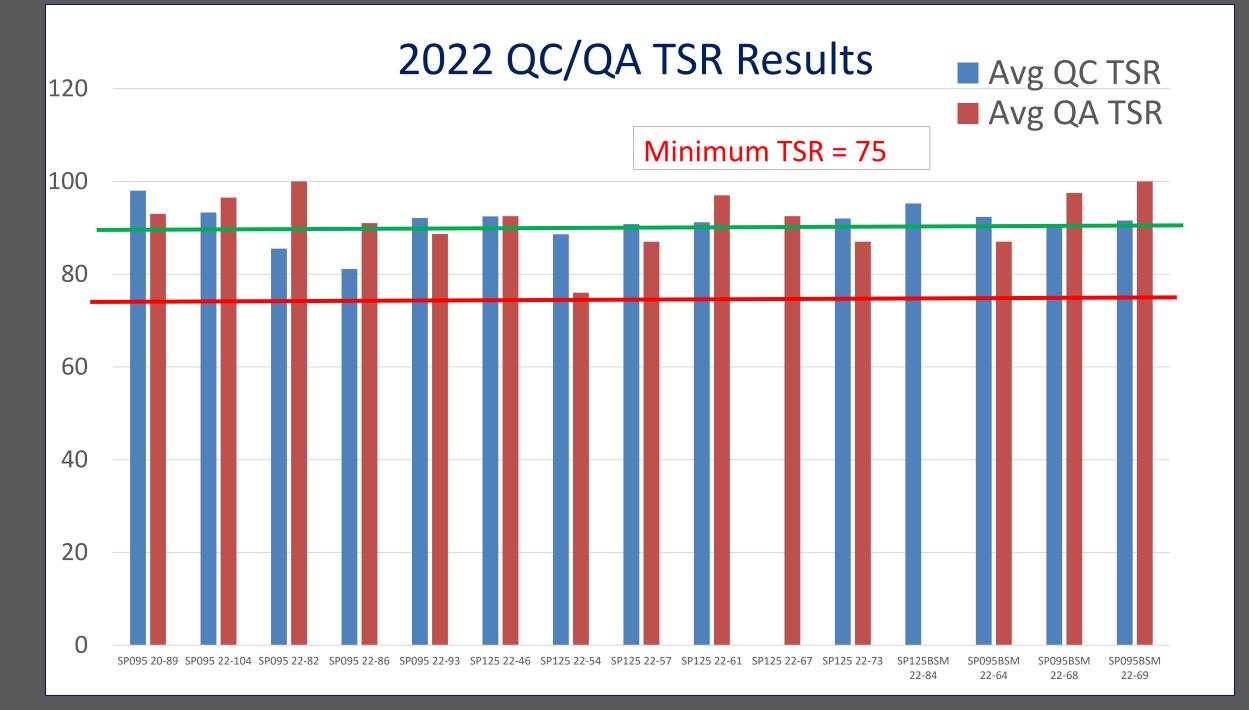

Construction Year 2022

- >16 Projects Selected
- > 8 Projects with BMD QC/QA production sampling and testing
- > 8 Projects with BMD testing for Job Mix Approval Only
- >1 QC Set / 10,000 tons
- >1 QA Set / 20,000 tons

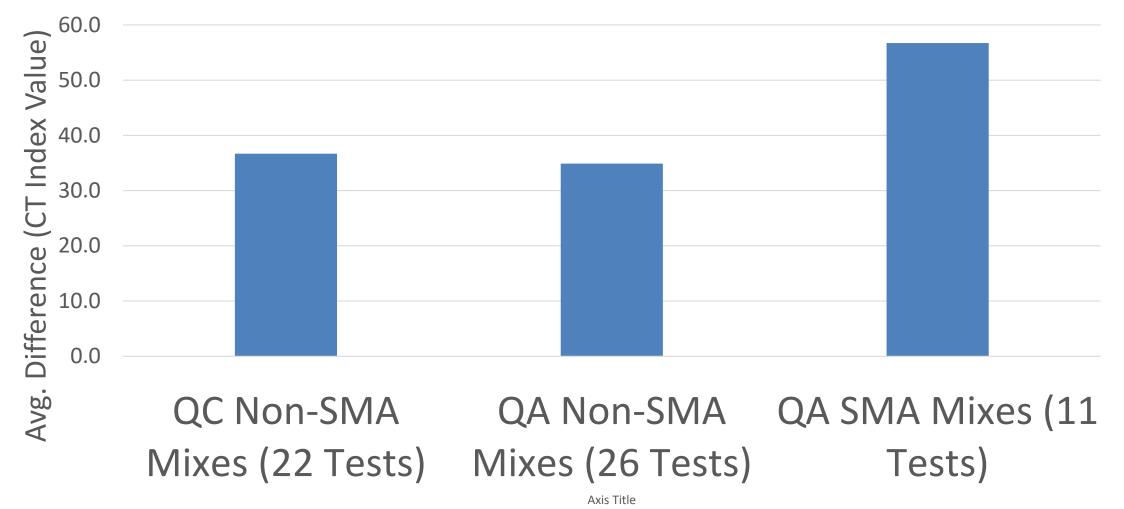

<u>Dist</u>	<u>County</u>	<u>Route</u>	Job Number
NW	Atchison	IS 29	1 3231
NW	Daviess	IS 35	1 3232
NW	Livingston	US 36	1P3277
NE	Audrain	US 54	2P3258
NE	Lincoln	US 61	2P3259
INE	LINCOIN	MO 79	2P3241
КС	Platte	IS 635	4 3331
КС	Cass	IS 49	413332
CD	Cooper	IS 70	513252
CD	Boone	US 63	5P3409
SL	St. Charles	US 61	6P3307
SL	Franklin	US 50	6P3560
SL	St. Louis	US 61	6\$3281
SW	Bates	IS 49	713258
SW	Christian	US 65	7P3210
SE	Pemiscot	IS 155	913597
SE	Wayne	US 67	9P3705

MODOT

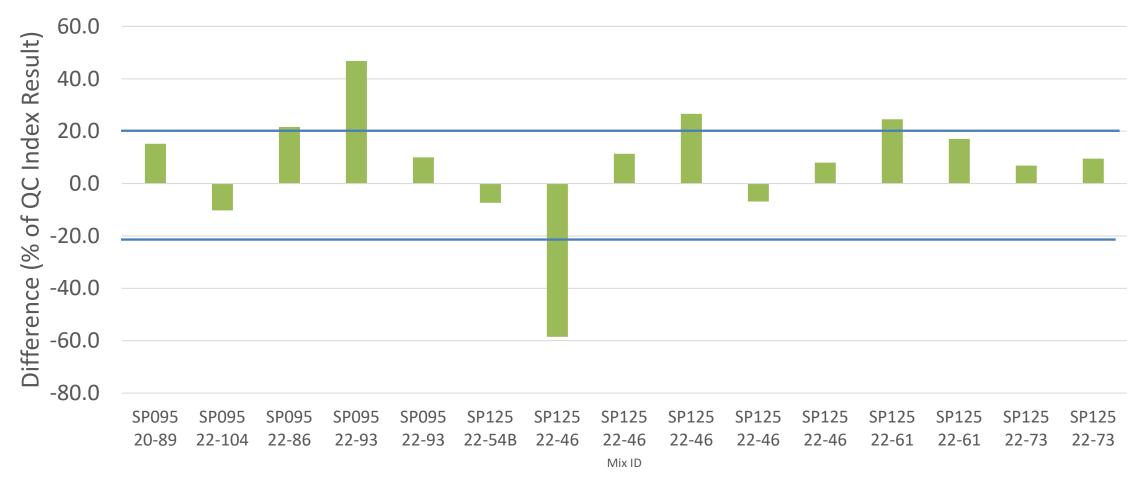

2022 CT-Index Test Results for SuperPave Mixes

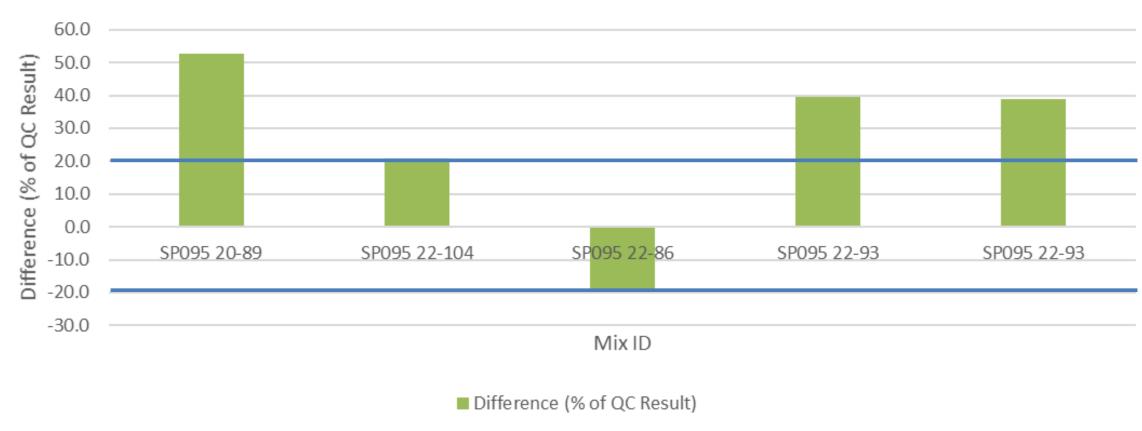


2022 CT-Index Test Results for SMA Mixes



2022 Hamburg Test Results (All Mixtures)



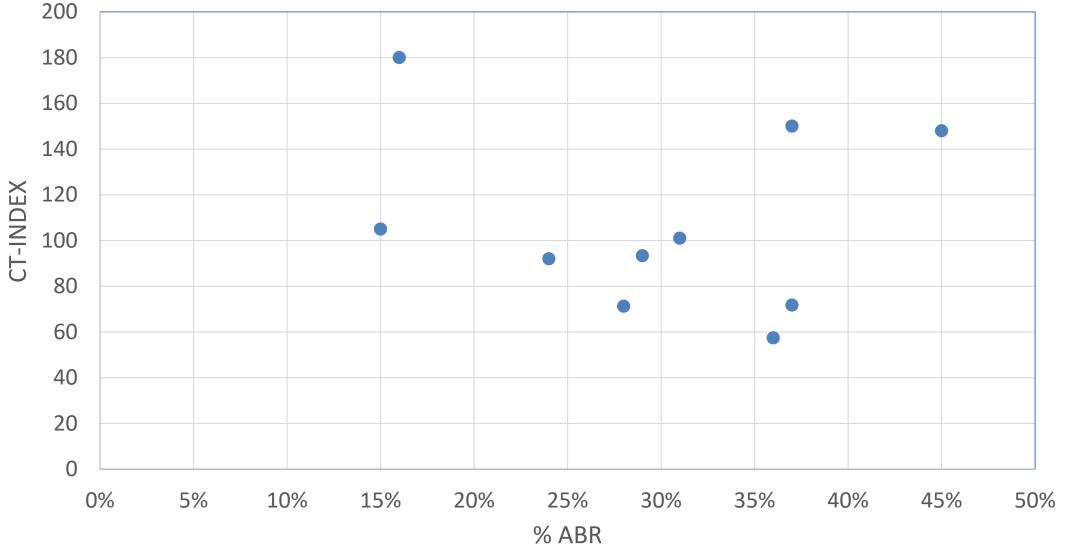

Avg. Difference of Individual Pucks for 1 test

QC vs. QA Individual Results Non-SMA Mixes

Difference (% of QC Result)

QC vs. QA Individual Results SP095 SMA Mixes

CT_{Index} - JMF vs QC Field Comparison



% Difference of QC Results

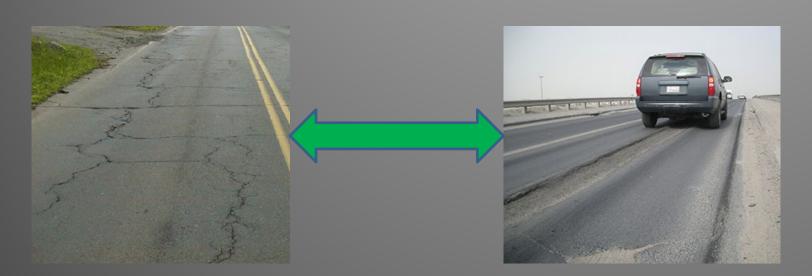
% Asphalt Binder vs CT-INDEX

Percent Asphalt Binder Replacement

BMD LESSONS LEARNED

- Reheating significantly affects CT_{Index}
 - QC and QA specimens fabricated by the contractor at the plant
- Dwell Time can affect CT_{Index}
 - Specimens need to be tested within a week
- Rejuvenators/Warm Mix additives can affect CT_{Index} and Hamburg results
 - 30 minute wait time before specimen fabrication.
- Variability in CT_{Index} results
 - Fabricate 5 CT_{Index} specimens, throw out high and low value, average remaining three

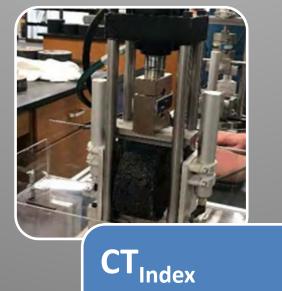
Industry/Agency/ Academia Partnership


- MAPA Quarterly Meetings
- Bituminous Technical Team Meetings
- BMD Group

1 Challenge - Incorporating BMD & IC into Specifications for Pay Factors

Performance Pay Factors

- ? CT-Index
- ? Hamburg / RT Index
- ? Paver Mounted Profiler
- ? Intelligent Compaction

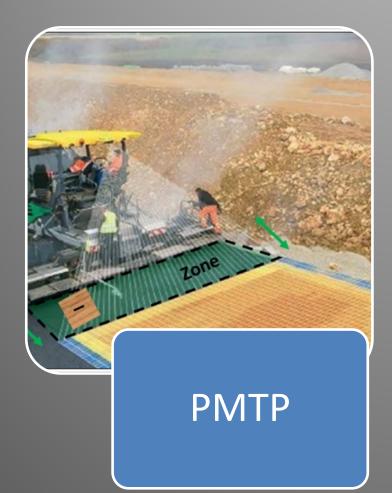


Proposed New Pay Factors

Density

- Cores or Nuclear Gage
- Intelligent Compaction

• RT_{Index}


• TSR

% AC

New Pay Factors Cont.....

New Pay Factors Formulas

403.23.2 Pay Factors. The total pay factor (PF_T) for each lot will be equal to the weighted sum of the pay factors (PF) for each pay factor item for each lot, and is determined as follows:

 $PF_T = + (0.5) PF_{Density} + (0.25) PF_{CTindex} + (0.25) PF_{AC}$

The PF_T for each lot, on the shoulder or otherwise when the density pay factor is not directly included, will be equal to the weighted sum of the PF for each pay factor item for each lot, and will be determined as follows:

 $PF_T = (0.5) PF_{CTindex} + (0.5) PF_{AC}$

Getting the CT_{Index} into PWL_t Calculations

The PF for each pay factor item for each lot will be based on the PWL_t of each pay factor item of each lot and will be determined as follows:

When PWL_t is greater than or equal to 90: $PF = 0.6 PWL_t + 46$;

When PWLt is greater than or equal to 70 and PWLt is less than 90: PF = 0.5 PWLt + 55;

When PWL_t is less than 70: $PF = 2 PWL_t - 50$;

When all CT_{Index} results are above 100 for SuperPave mixes and above 240 for SMA mixes; maximum CT_{Index} incentives shall be given regardless of PWL.

When all CT_{Index} results are above 80 for SuperPave mixes and above 190 for SMA mixes; a minimum of 100 percent pay for CT_{Index} shall be provided regardless of PWL.

INCENTIVES/DISINCENTIVES

MODOT

□ 6 % PWL

Density, CT_{Index}, %AC

- □ 2% PMTP
- □ 3 5% Smoothness
- □ <u>TOTAL 11 13 %</u>

- Sublot 1 Day Production/Paving Shift
- Lot Size 5 Days
 Production/Paving Shifts
- Random Numbering Discussion
 - Field Density by Tonnage
 - Plant Sampling by Time Frame
- Increased Time and Effort in Performance Testing
 - 10 Specimens vs 2 Specimens

Tested Property	Test Method	Contractor Frequency (Minimum)	Engineer Frequency (Minimum)
	Pay 1	Factors	
Mat Density (% of theoretical maximum density) ^(a)	MoDOT TM 41, AASHTO T 166 or AASHTO T 331	1 Sample / 1000 tons	1 Sample / Lot
$\mathrm{CT}_{\mathrm{Index}}$	ASTM D 8225	1 Sample /Sublot	1 Sample / Lot
Asphalt content	AASHTO T 164, or MoDOT Test Method TM-54, or AASHTO T 287, or AASHTO T 308	1 Sample / Sublot	1 Sample / Lot

Pav Factor Adjustments

Performance Test	Minimum Number of Specimens	Molded Specimen Height (mm)
Cracking Tolerance Index (CT _{Index})	5	62
Rutting Tolerance Index (RT _{Index})	3	62
Volumetrics	2	\mathbf{N}_{Design}
% Asphalt Content	Loose Mix as needed	N/A
Retained Loose Mix ^(a)	2 boxes to retain	N/A

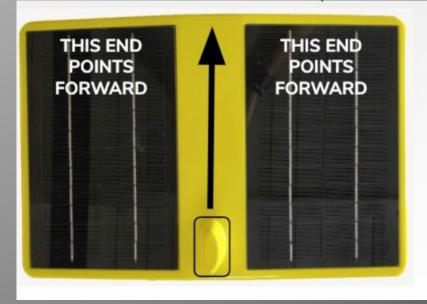
(a) Loose mix sampling is for Hamburg verification of mixture not meeting minimum RT_{index} thresholds, volumetric, or % asphalt content testing.

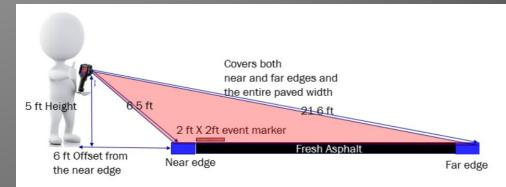
Equipment and Training

CT-Index & RT-Index

□ Total Equipment needed - \$300,000

- 3 Load Frames and 6 Water Baths on Order
 - SL, KC, and SW Districts
 - Central Laboratory
- Arrange State-Wide Training at each District when equipment arrives


MODOT


- Part of the Contract
- Working with Linn State to incorporate into SuperPave Training

Intelligent Compaction/Paver Mounted Thermal Profiler

- > PMTP/Intelligent Compaction Continuation of ~ 14 projects/yr
 - Recognize the need of on-site technical support and training.
 - Proposal of Hiring a Consultant
 - Continue with annual IC/PMTP Trainings
 - MoDOT IC/PMTP 101 Training
 - MoDOT IC/PMTP Advanced Training

Implementation Goals

MODOT

- Finishing a Final "Draft" BMD Specification for Pilot Projects
 - 7 14 Pilot Projects per Year
 - No Spec Changes for 2024 Construction Season; but working toward final "Draft" Specification for 2025 Construction Season
- > Working on Interim BMD Specification
 - Allow Contractors to select BMD Spec or Regular SuperPave Spec
 - Interim Spec will NOT have IC; but will have PMTP requirement
- Starting Research on BMD Validation

BMD Validation

- > Missouri Supplemental Test Sections
 - MO 740 (Stadium Project) in Central Missouri
 - NRRA Reflective Cracking Challenge on I-155, SE Missouri
- More Test Sections Needed
 - BMD Validation Guide

Appendix A: Plant Modified Plant Compacted Mixture Results

Mix Name	CT- Index	RT- Index	Hamburg at 20k passes (mm)
SP-Control	111.0	100	2.2
SP+PPA	113.6	63.6	5.6
SP-MDPE	90.5	94.8	2.8
SP-LDPE	136.4	76.3	3.5
SP-ECR	151.6	62.3	4.3
SP+SBS	75.6	90.7	3.7
SMA-ECR	232.1	44.6	5.3
SMA-LDPE	371.3	42.3	5.2
SMA-			
Control	274.1	34.4	14.1

QUESTIONS

MÒE