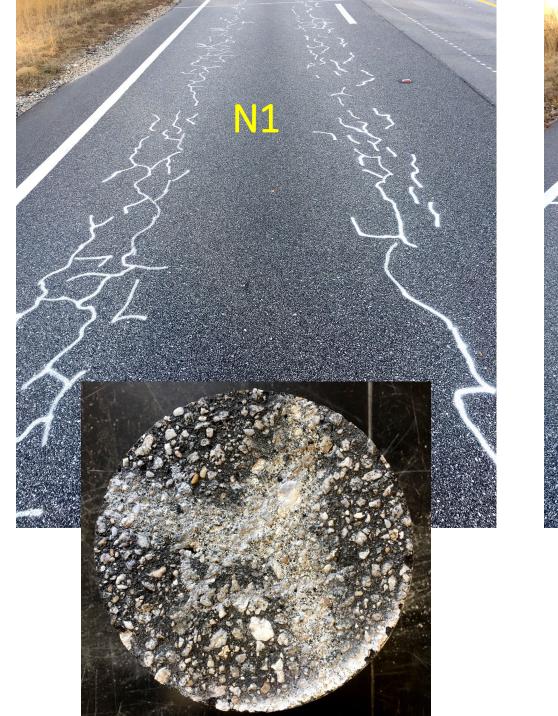

Benchmarking Cracking Resistance of Asphalt Mixtures in Alabama

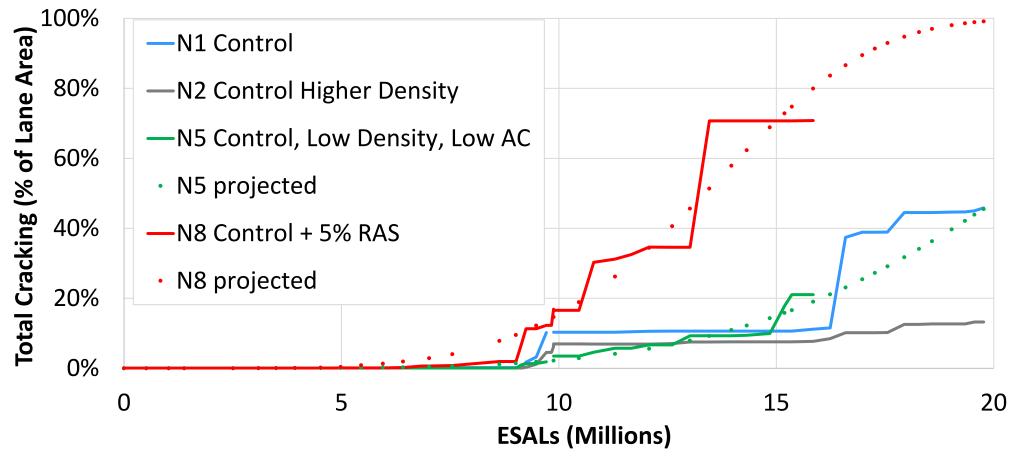
67th Annual Alabama Transportation Conference February 6-7, 2024

Acknowledgements


- Data from two research projects
 - ALDOT Research Project 930-979
 - Cracking Group Experiment at the NCAT Test Track
- Plant mixes sampled with assistance from ALDOT engineers
- Lab mix specimens prepared by contractors and tested by M&T

How Will My Mix Perform?

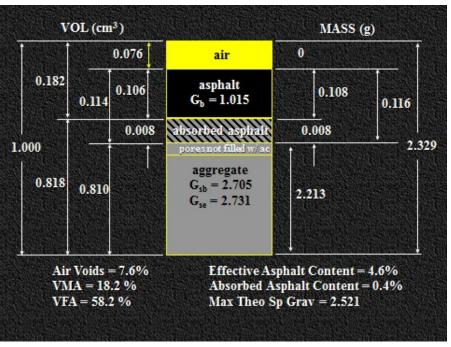
Sect.	Surface Mix Description	Base Binder
N1	20% RAP	PG 67-22
N2	20% RAP w/ high density	PG 67-22
N5	20% RAP w/ low AC, low density	PG 67-22
N8	5% RAS & 20% RAP	PG 67-22
S5	35% RAP	PG 64-28
S6	20% RAP	PG 88-22
S13	15% RAP	AZ rubber



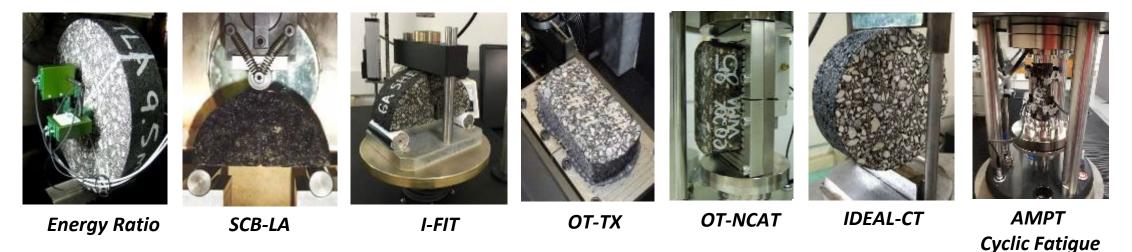
N8 Cores show top-down cracking. Layers below are intact.

Sections S5, S6 and S13

Progression of Cracking


What are the Problems here?

With the volumetric mix design, we can check the quantity but not the quality of the binder in the mix


Source: R. West, BMD Webinar Series, Part 2

Can We Do Differently?

Tests^{*} were conducted on:

- 1. lab prepared mix after short-term aging
- 2. lab prepared mix after short-term and critical aging
- 3. plant mix samples that were reheated
- 4. plant mix samples that were reheated and critically aged

*AMPT Cyclic Fatigue Tests were tested only on plant mix samples

Can One of the Tests Distinguish Performance?

Critically Aged PMLC

AL-CT

(IDEAL-CT)

S13

S6

SG

N2

Ę

NS

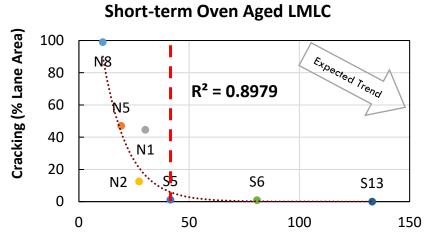
N8

Gap-gr., asphalt-rubber Α Ctrl + HiMA R В 35% RAP PG 58-28 **H** С High Dens. Ctrl. Moderate low severity cracking С 20% RAP Ctrl. С Low Dens./AC Ctrl Failed by topdown cracking Ctrl + 5% RAS D 0 15 30 45 60 75 90

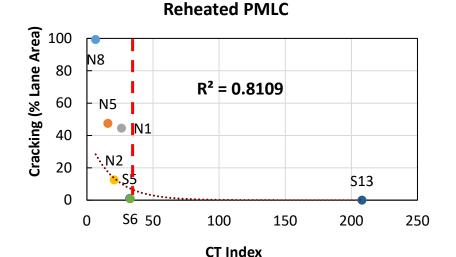
CT Index higher CT_{Index} = better cracking resistance

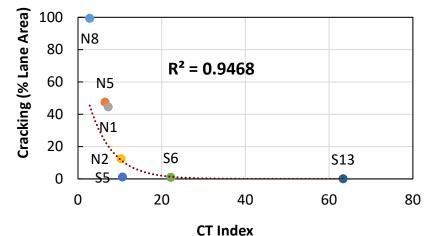
Little to

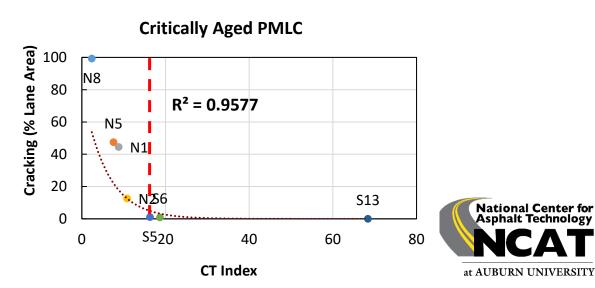
no cracking


105

120

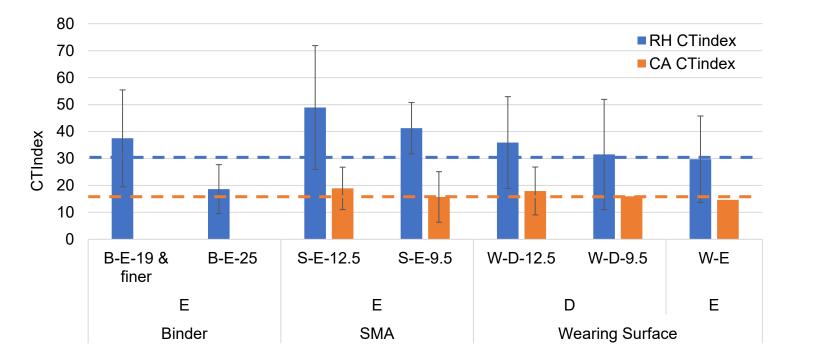

Sorted from best to worst field cracking performance


How About Lab Mix and Aging Condition?



CT Index

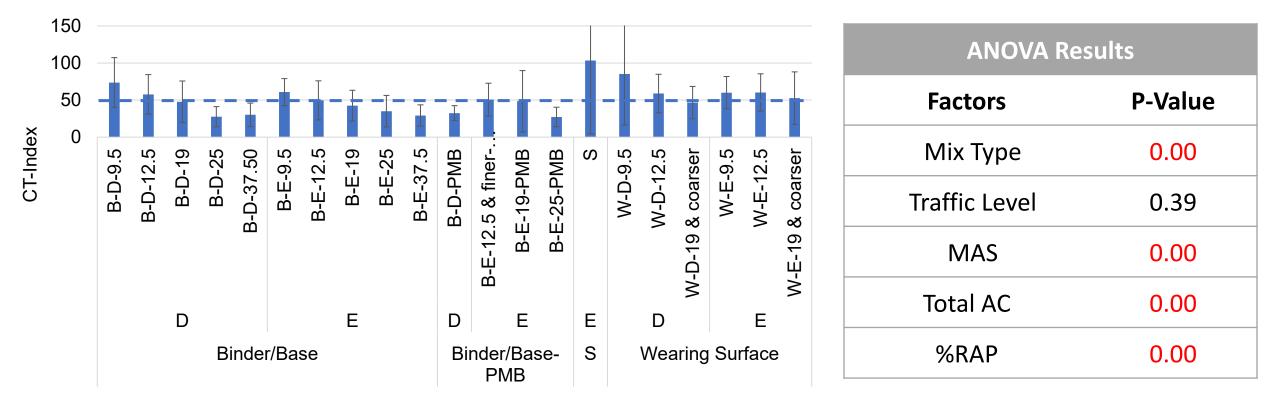
Critically Aged LMLC



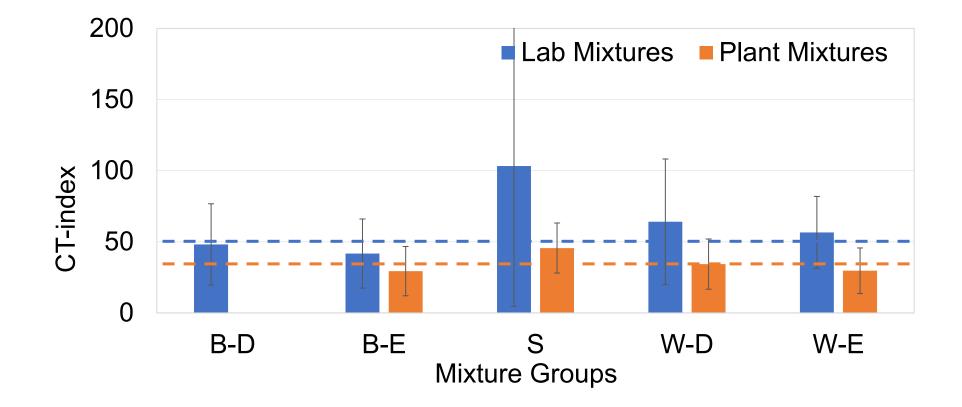
How are Current ALDOT Mixes Compared to the Test Track Mixes?

Mix Type	Traffic	MAS (mm)	Group	Number of Mixes	38
Binder (B) –	A/B, C/D, E (E)	19 and finer	B-E-19 & finer	8	
	A/B, C/D, E (E)	25	B-E-25	6	
SMA (S) –	A/B, C/D, E (E)	12.5	S-E-12.5	4	
	A/B, C/D, E (E)	9.5	S-E-9.5	3	
Wearing Surface (W)	A/B, C/D (D)	12.5	W-D-12.5	9	
	A/B, C/D (D)	9.5	W-D-9.5	5	
	A/B, C/D, E (E)	9.5, 12.5, 19	W-E	3	

How are Current ALDOT Plant Mixes Compared to the Test Track Mixes?


Ę

ANOVA Results				
Factors	P-Value			
Mix Type	0.429			
Traffic Level	0.084			
MAS	0.293			
Total AC (%)	0.823			
Effective AC	0.419			
Recycled AC (%)	0.671			
VMA (%)	0.753			
Dust/asphalt Ratio	0.480			


How About ALDOT Lab Mixes?

Mix Type	Traffic Level	MAS (mm)	Group	Number of Mixtures	456
	A/B, C/D (D)	9.5	B-D-9.5	12	
		12.5	B-D-12.5	34	
		19	B-D-19	25	
		25	B-D-25	20	
Dinder/Dase DC 67 22		37.5	B-D-37.50	8	
Binder/Base-PG 67-22 —		9.5	B-E-9.5	5	
		12.5	B-E-12.5	22	
	A/B, C/D, E (E)	19	B-E-19	34	
		25	B-E-25	38	
		37.5	B-E-37.5	10	
	A/B, C/D (D)	19 and 25	B-D-PMB	4	
Binder/Base- PG 76-22	A/B, C/D, E (E)	9.5 and 12.5	B-E-12.5 & finer-PMB	20	
(PMB)		19	B-E-19-PMB	12	
		25	B-E-25-PMB	12	
SMA	A/B, C/D, E	9.5, 12.5, 19, and 25	S	10	
	A/B, C/D (D)	9.5	W-D-9.5	28	
		12.5	W-D-12.5	50	
Mooring Surface		19, 25, and 37.5	W-D-19 & coarser	24	
Wearing Surface —	A/B, C/D, E (E)	9.5	W-E-9.5	16	
		12.5	W-E-12.5	47	
		19, 25, and 37.5	W-E-19 & coarser	25	15

How About ALDOT Lab Mixes?

ALDOT Lab Mixes Vs. Plant Mixes

Key Takeaways

- Should we continue using the volumetrics as quality indicators?
 - They are good for quantity checks but not for quality checks.
- If not, what are the alternatives?
 - The AL-CT test can separate good cracking resistance mixes from others.
- Is there a preliminary criterion for AL mixes?
 - A CT_{index} of 50 is a reasonable initial threshold.
- Are there differences between lab and plant mixes?
 - Results for plant mixes are typically lower.

Ongoing Work

- Balanced Mix Design (BMD) Field Trial Projects in Alabama
 - Conduct field trial projects constructed with BMD asphalt mixtures to validate the proposed cracking and rutting thresholds
- Strategies for Improving the Cracking Resistance of Alabama Mixes
 - Determine how mix components affect the cracking resistance of asphalt mixtures in Alabama
 - Evaluate changes to mixture composition and the use of additives that can improve the cracking performance of Alabama mixtures.

Thank You

nam.tran@auburn.edu

at AUBURN UNIVERSITY

End-of-Cycle Conference for the 2021 NCAT Pavement Test Track and the MnROAD Pavement Research Partnership

May 7-9, 2024 Auburn, AL