Upcoming Changes to Section 10 of the AASHTO LRFD Bridge Design Specifications

J. Erik Loehr, Ph.D., P.E.

Alabama Transportation Conference Birmingham, Alabama February 6-7, 2024

AASHTO Soil Structures Committee

Name	Agency	Designation	Concentration
Hidden, Scott	NCDOT	Chair	Geotech
Hastings, Jason	DelDOT	Vice Chair	Structures
Scott, Dave	NHDOT	Vice Chair	Structures
Nichols, Silas	FHWA	Liaison	Geotech
Booher, Jeff	WYDOT	Member	Structures
Dettloff, Alex	ODOT (Ohio)	Member	Geotech
Fiske, Andrew	WSDOT	Member	Geotech
Gaston, Steve	GDOT	Member	Structures
Guidry, Chris	LaDOTD	Member	Structures
Rauser, Jesse	LaDOTD	Proxy	Geotech
Hagemeyer, David	MoDOT	Member	Structures
Hart, Jennifer	INDOT	Member	Structures
Johnson, Steve	SDDOT	Member	Structures
Lacroix, Jim	VTrans	Member	Structures
Li, Hongfen	SCDOT	Member	Structures
Martinez, Jessica	CDOT	Member	Structures
Nako, Albert	ODOT (Oregon)	Member	Structures
Nop, Michael	IADOT	Member	Structures
Walker, Nick	ALDOT	Member	Structures
Chancellor Davis, Kaye	ALDOT	Proxy	Geotech
Zickler, Andy	VDOT	Member	Structures

Elevator Pitch

1. Revising Section 10 of the AASHTO LRFD BDS to reflect the <u>uncertainty</u> in *site characterization* by accounting for the <u>reliability</u> of different *subsurface investigation and design methods*.

2. Benefits include:

- 1. improved design efficiency
- 2. reduced subjectivity
- 3. more consistent reliability
- 4. adaptable & objective framework for new or different practices (e.g., MWD, AI)
- 5. flexibility to appropriately address diverse design situations
- 3. Code is more complete as most resistance factors will vary based on <u>coefficient of variation</u> for design parameters.
- 4. It will take a conscientious effort to effectively implement but, in the end, designers will be able to achieve more consistent and reliable results.

Motivation

Motivation

FHWA GEC 5 Approach

6

7

Influence of measurement type – s_u

Influence of number of measurements

Summary of Changes to Section 10

- Soil and Rock Properties Site Characterization (10.4), Limit States and Resistance Factors Foundation Design Requirements (10.5) and Micropiles (10.9) are being completely rewritten
- Rewritten 10.5 will incorporate NCHRP downdrag research and liquefaction updates for recently passed AASHTO ballot items
- Spread Footings (10.6), Driven Piles (10.7) and Drilled Shafts (10.8) have tracked changes; repetitive articles removed & consolidated in 10.5
- Changes to 10.7 incorporate FHWA research on large diameter openend piles (LDOEPs)
- Resistance factor tables are moved from 10.5 to article for associated foundation type
- Most resistance factors are specified with curves based on *CV*

Specification of resistance factors

Summary of Changes (cont.)

- Methods for quantifying uncertainty in design parameters are explicitly defined
- New Terminology
 - Design Parameter vs. Critical Design Parameter (y_d or y_i)
 - Direct Measurement (x_d) vs. Indirect Measurement (x_i)
 - Design Area vs. Construction Control Area
 - Coefficient of Variation (CV_y)
 - Uncertainty (σ_y)

Design parameters

- Design parameter:
 - a variable quantity that is a required input for a design or analysis method
- Critical design parameter:
 - design parameter that has consequential influence on <u>both</u> design analyses <u>and</u> satisfaction of relevant limit state

Critical design parameters

- Designation requires consideration of:
 - specific design method used,
 - requirements for the specific limit state being evaluated, and
 - influence of parameter values when varied over plausible range
- Specification identifies design parameters that should often be considered critical design parameters for specific methods

10.7.4.3.2a—Nominal Unit Side Resistance Using α -Method

Where side resistance is determined using the α -method, the nominal unit side resistance, in ksf, shall be taken as:

$$q_s = \alpha \overline{s_u} \tag{10.7.4.3.2a-1}$$

where:

- $\overline{s_u}$ = nominal value of undrained shear strength established according to the provisions of Article 10.4.6 (ksf)
- α = adhesion factor (dim)

Values for α shall be taken to vary with the nominal value of s_u as shown in Figure 10.7.4.3.2a-1. The value of s_u should generally be considered to be a critical design parameter according to the provisions of Articles 10.4.3 and 10.4.6 when applying the method described in this Article.

Conceptual example

Mediu =

Soft

Mediu

Sand

lay

Sand

• Is strength of thin seam of soft clay critical design parameter?

• Deep foundation element extending through seam?

• Retaining structure footing founded above seam?

Design Areas

• Site area over which critical design parameters are relatively consistent

Direct and indirect measurements

• Direct measurements:

evaluate the engineering property or behavior associated with a design parameter without requiring an explicit or implicit transformation

Indirect measurements:

require explicit or implicit transformation to produce an estimate for a design parameter

• New provisions in Section 10 identify measurements that should be considered as direct and indirect measurements

Nominal values for design parameters

- Critical design parameters
 - Direct measurements

$$y = y_d = \overline{x_d} = \frac{\sum x_d}{n_d}$$

• Indirect measurements

$$y = y_i = f(\overline{x_i}) = f\left(\frac{\sum x_i}{n_i}\right)$$

- requires three or more independent measurements
- must be "representative"
- Other design parameters
 - conservatively estimate or establish as for critical design parameters

Coefficient of variation, CV_y

Uncertainty, σ_y

• Direct measurements

$$\sigma_y = \sigma_{y_d} = \sigma_{\overline{x_d}} = \frac{SD_{x_d}}{\sqrt{n_d}}$$

• Indirect measurements

$$\sigma_y = \sigma_{y_i} = \sqrt{C_1^2 + C_2 (\sigma_{\overline{x_i}}^2 + C_3 (\overline{x_i} - C_4)^2)}$$
$$\sigma_{\overline{x_i}} = \frac{SD_{x_i}}{\sqrt{n_i}} \qquad \overline{x_i} = \frac{\sum x_i}{n_i}$$

Example 1 – Direct Measurements

Example 1 – Comp. Strength

Example 1 – Nominal values, uncertainty & CV

• Nominal value:

$$q_{u-1} = \frac{\sum q_u}{n} = 4 \mathfrak{P} \operatorname{ks} \mathfrak{P}_d = \overline{x_d} = \frac{\sum x_d}{q_u - n_d} = \frac{\sum q_u}{n} = 134 \operatorname{ksf}$$
• Uncertainty:

$$\sigma_{q_{u-1}} = \frac{SD_{q_u}}{\sqrt{n}} = \frac{22.4}{\sqrt{18}} \sigma_{\mathfrak{P}} 5 3 \operatorname{dss} f = \sigma_{\overline{q_{ud}}} = \frac{SD_{\mathcal{Q}_{dl}}}{\sqrt{n}\sqrt{n}} = \frac{83.6}{\sqrt{12}} = 24.1 \operatorname{ksf}$$
• Coefficient of Variation:

$$CV_{q_{u-1}} = \frac{\zeta \times \sigma_{q_{u-1}}}{Q_{u-1}} = \frac{\mathfrak{A} \cdot \mathfrak{A} \cdot \mathfrak{A} \cdot \mathfrak{A} \cdot \mathfrak{A} \cdot \mathfrak{A}}{y + 47} = 0.14$$

$$CV_{q_{u-2}} = \frac{\zeta \times \sigma_{q_{u-2}}}{q_{u-2}} = \frac{1.32 \cdot 24.1}{134} = 0.24$$

Resistance factors

23

Example 2 – Indirect Measurements

Example 2 – SPT N-value

Example 2 – Nominal value of ϕ' $N_{1-60} \text{ (blows/ft)}$ $0 \quad 25 \quad 50 \quad 75$ $440 \quad y = y_i = f(\overline{x_i}) = f\left(\frac{\sum x_i}{n_i}\right)$

▲ B-2

o B-3

×B-4 □B-5

35

 \diamond

= 35

X

 \boldsymbol{n}

X

n =

х од

Δ οχ

Δ

0

0

0

° x

0

430

420

410

Elevation (ft) 065 005

380

370

360

350

• Mean value of indirect measurements:

$$\overline{N1_{60-2}} = \frac{\sum N1_{60}}{n} = 39.9 \text{ blows/ft}$$

• Apply transformation:

Table 10.4.6.6.2-1—Effective stress friction angle, ϕ' , in degrees, based on SPT *N*-value corrected for hammer efficiency and normalized to an overburden stress level of 1 atm, *N*1₆₀, in blows/ft (modified after Bowles, 1977).

N1 ₆₀	ϕ'
<4	25-30
4	27-32
10	30-35
30	35-40
50	38-43

$$\rightarrow \phi' = 39 \deg$$

Example 2 – Uncertainty

$$\sigma_{\phi'} = \sqrt{C_1^2 + C_2^2 \sigma_{\overline{N1}_{60}}^2 + C_3^2 (\overline{N1}_{60} - C_4)^2}$$
$$\overline{N1}_{60-2} = \frac{\sum N1_{60}}{n} = 39.9 \text{ blows/ft}$$
$$\sigma_{\overline{N1}_{60}} = \frac{SD_{N1}_{60}}{\sqrt{n}} = \frac{15.8}{\sqrt{35}} = 2.6 \text{ blows/ft}$$

Coefficient	Value	
C_1	2.62 deg.	
<i>C</i> ₂	0.272 deg/blows/ft	
<i>C</i> ₃	0.011 deg/blows/ft	
C_4	30 blows/ft	

 $\rightarrow \sigma_{\phi'} = 2.72 \text{ deg.}$

Example 2 – Coefficient of variation

Anticipated Timeline

- 10.4 and 10.5 draft by the end of 2023
- Section 10 complete draft by COBS Annual Meeting in June 2024
- Examples by Soil Structures Mid-Year Meeting in October 2024
- Section 10 ballot by COBS Annual Meeting in summer of 2025

Thanks for your attention!