Graduate students: Adedotun Banjo, Shreyas Shelke

Undergraduate students: Craige LeGrand, Justin Brouillette, Matt Graves, Troy McCay
Our work: structural composites

Characteristics
• High specific strength & stiffness
• Excellent fatigue and corrosion resistance
• Ability to tailor material properties to specific applications

Material life cycle

Design Manufacturing Use Disposal

Design focus
• Multi-functionality
• Autonomous behavior
Manufacturing

Materials processing
• Hand layup
• Resin Transfer Molding (VARTM)
• 3D printing
• Compression molding
• Polymer synthesis

Characterization
• Mechanical and thermomechanical testing (in collaboration with Center for Polymer and Advanced Composites (CPAC))
• *in situ* strain mapping via Digital Image Correlation (DIC)
Material behavior while in use

Focus on autonomous behavior

Patrick et al., *Nature*, 2016
Strategy: Damage detection via mechanochemistry

Mechanochemistry: Inducing chemical reactions through the use of mechanical energy

Mechanophores: Molecules that undergo chemical reactions upon the application of mechanical force

Force-sensitive spiropyran (SP) mechanophore

Davis *Nature*, 2009

Spiropyran (SP) activation in bulk polymers

- Linear SP-PMA
- Cross-linked SP-PMMA
- Linear SP-PMMA

Damage sensing in PMMA

Celestine et al., Polymer, 2014

Scribed SP-PMMA specimen

Fluorescence image of scribed region

SP-PMMA fracture specimen

Fluorescence image showing activation ahead of crack tip

Fluorescence image sequence from rubber toughened SP-PMMA
Strain and stress mapping via mechanochemistry

Celestine et al., Strain, 2019

Predicted strain and stress from intensity results

Fluorescence

Intensity

Scale bars 0.5 mm

Equivalent Strain

Equivalent Stress

\[\Delta a = 0.4 \text{ mm} \]
Self-sensing: Moving forward

• Demonstrate mechanophore-driven self-sensing in diverse material systems
 ➢ in fiber reinforced composite matrices e.g. epoxy, vinyl esters, nylon
 ➢ in 3D printing filament for strain mapping during printing
 ➢ in nanoparticles

![SEM image of SP-linked rubber nanoparticles](image)
Avg diam: 350 ± 10 nm

• Demonstrate repeatable self-sensing
 • explore new mechanophores with more efficient responses
Goal: Repair damage and restore structural integrity without human intervention

Healing efficiency evaluated based on the recovery of strength, stiffness, fracture toughness or even electrical resistance!
Damage repair via solvent-filled microcapsules

Solvent released into crack plane
Solvent diffuses into and swells matrix
Crack heals as polymer chains move across crack plane

Material System:
PMMA with PMMA-anisole microcapsules

Fracture plane of self-healing PMMA specimen

* Error bars: upper and lower bounds of each variable
Self-healing: *Moving forward*

- **Demonstrate repeatable self-healing via**
 - robust healing material
 - capsule-channel configurations
 - regenerative materials

- **Integrate self-healing and self-sensing**

- **Self-healing 3D printing filament**
 - coat filament with microcapsules
 - load filament with microcapsules

Collaboration with Beckingham Lab, Chemical Engineering

Controlled degradation

Strategy:

- Understand degradation from a mechanics perspective
- Modify composite architecture and material properties to initiate degradation on demand

Collaboration: Agrawal Lab, Aerospace Engineering
Degradation behavior

Mechanical response of nylon composites soaked in DI water

- Significant decreases in strength and modulus
- Contributing factors:
 - time
 - temperature
 - architecture
 - fiber type

Celestine et al., OTC Proceedings, 2018
Controlled degradation: *Moving forward*

- **Investigate effect of**
 - fluid type (e.g. brine, sea water)
 - composite architecture
 - thermal and/or mechanical cycling
 - other external stimuli (e.g. UV) on degradation behavior

- **Model degradation using Continuum Damage Mechanics**
• Recycle old desktop printers for 3D printing

Collected printers are ground to pellet size

Material extruded into filament

Samples printed from recycled material

• Characterize mechanical properties of recycled material

Collaboration: Triggs Lab, Aerospace Engineering
Path forward

Closing the loop

➢ Adaptive composite design by incorporating modeling with experiments

➢ Integrated autonomous systems e.g. SELF-SENSING-HEALING-DEGRADING

➢ 3D printing of self-healing and self-sensing material

➢ Repurposing end-of-lifetime and degraded material

➢ Efficient and sustainable composites and composites manufacturing
Thank you!

Questions?

acelestine@auburn.edu