
Comparison of LFSR and CA for BIST
Sachin Dhingra, Student member IEEE

Dept. of Electrical and Computer Engineering
200 Broun Hall, Auburn University, AL 36849

Email Address: dhingsa@auburn.edu

ABSTRACT: Built-In Self-Test (BIST), as the name
suggests is a technique in which the circuit is ca-
pable of testing itself. This paper presents two
techniques: Linear Feedback Shift Register
(LFSR) and Cellular Automata (CA), used for test
pattern generation and test response analysis in a
typical BIST circuit. Both LFSR and CA are ana-
lyzed based on their construction and characteris-
tics. A comparison of LFSR and CA is presented
to demonstrate their shortfalls and suitability to
certain applications.

I. INTRODUCTION

Built-In Self-Test is a Design for Testability
(DFT) technique which allows the circuit to test
itself without any external equipment [2]. BIST
implementation requires primarily two compo-
nents: a pseudo-random test patter generator (for
test vector generation) and a data compactor (for
output response analysis) [1]. These components
are mostly implemented using either Linear Feed-
back Shift Registers (LFSRs) or Cellular Automa-
tons (CA).

LFSR is constructed using flip-flops connected as
a shift register with feedback paths that are line-
arly related using XOR gates. An LFSR can be
used for generation of pseudo-random patterns,
polynomial division, response compaction etc.
The CA are very similar to the LFSRs except that
the registers in CA have a logical relationship
with their neighbors only. This leads more ran-
domness in the pattern generated. LFSR is more
popular for implementation of both TPG and
ORA due its compact and simple structure. How-
ever, CA are gaining popularity in many cases
because of their characteristics and ease of modi-
fication.

This paper presents a comparison between LFSR
and CA implementations in BIST. The next Sec-
tion of the paper describes the basics about the
implementation of BIST. LFSR and its character-
istics are discussed in Section III. Section IV
elaborates upon the Cellular Automata. Section V

presents a comparison and analysis of both the
implementations described in Sections III & IV.
This is followed by a brief summary of the paper
and the conclusion.

II. IMPLEMENTATION OF BIST

In order to implement BIST, extra circuitry is
added to an existing circuit to enable it to test it-
self. The circuitry for BIST consists of four mod-
ules: Test Pattern Generator (TPG), Input Isola-
tion Circuitry, Test Controller and Output Re-
sponse Analyzer (ORA). The TPG generates
pseudo-random test patterns to test the Circuit
under Test (CUT). Input isolation circuit isolates
the inputs of the circuit during test mode and ap-
plies the TPG output to the input of the CUT. The
test response of the CUT is analyzed by the ORA.
A test controller is provided to sequence and run
all the BIST operations. The following figure
shows the implementation of BIST.

Figure 1. BIST Implementation

Test pattern generation and Output response
analysis are the two most critical operations of
BIST. Test patterns used in most implementations
are pseudo-random in nature i.e. the random num-
bers are generated algorithmically and are repeat-
able [4]. This is a desired characteristic, as truly
random test patterns will lead to different fault
coverage in every execution [2]. LFSRs are most
commonly used to build TPGs [6] but recently
there has been interest in CA for test pattern gen-
eration. CA generate test vectors which are more
random in nature. Highly random vectors help in
detection of faults such as the stuck-open faults,

delay faults etc. which cannot be easily detected
by vectors generated by LFSR [5].

The ORA cannot test the circuit response for
every test vector due to the volume of the data
required to be compared and stored, so the ORA
compacts the response of CUT to a pass/fail indi-
cation, which is known as the signature of the cir-
cuit [2]. All the techniques used for ORA imple-
mentation perform test data compaction which
leads to a loss of information. In some cases a
fault detected in the output response may get
masked due to compaction of the test response
data, this situation is also known as “Signature
Aliasing” [7]. Signature Analysis is the most com-
monly used method for implementation of ORA.
Signature Analysis essentially uses an LFSR to
divide the output response of a CUT by its charac-
teristic polynomial (described in the next section)
[7]. The remainder of the polynomial division at
the end of the BIST sequence is known as the sig-
nature of the CUT. Difference in the signature of
the CUT and the signature of a good/fault-free
copy of the CUT implies a fault in the CUT. The
following sections describe LFSR and CA, the
two most commonly used circuits for TPG and
ORA implementation in BIST.

III. LFSR

“Linear Feedback Shift Register or LFSR is a
shift register whose input is the result of XOR of
some of its inputs” [8]. There are two ways to im-
plement LFSRs: Internal feedback and External
feedback. These techniques differ in the way
feedback is applied. All the flip-flops that feed an
XOR gate are known as ‘taps’. These taps decide
the patterns generated by the LFSR and hence
define the characteristic polynomial of an LFSR.
In case of an external feedback LFSR the XOR
gates are in the feedback path and the input to the
shift register is the XOR of all the taps. For an
internal feedback LFSR, the feedback from the
last FF is the input to the first FF of the shift regis-
ter and all the taps are XORed with the feedback
to modify the input to the next FF in the shift reg-
ister as illustrated in figure 2 [2]. An internal feed-
back LFSR can also operate at higher speeds
compared to an External feedback LFSR as there
is maximum one XOR gate in any path between
FFs, which is not the case for External feedback
LFSR.

Figure 2. Two types of Linear Feedback Shift

he characteristic p or both types

4” ; n=4

’ (n=4

P*(x) = x P(1/x)

hese primitive pol

Registers

olynomial P(x) fT
of LFSRs shown in figure 1 is:

P (x) = “x0 + x1 + x3 + x

‘n for LFSR in figure 1) is the degree of the
polynomial which is defined by the number of
bits/nodes of the LFSR. Notice that the terms ‘x0’
and ‘xn’ are always present and the remaining
terms indicate the location of the taps in the cir-
cuit. The degree of the polynomial n is equal to
the number of bits in an n-bit LFSR pattern. An
all zeroes state is invalid for an LFSR as the state
would never change if all the bits are ‘0’. There-
fore, the maximum number of unique patterns an
n-bit LFSR can generate = 2n – 1, where n is the
number of bits. Special LFSRs can be constructed
which can generate the all zeroes state also, but
they have a larger area overhead associated with
them, as described in [9]. The characteristic poly-
nomials of an n-bit LFSR which results in the
generation of maximum possible unique patterns
(= 2n – 1) are known as primitive polynomials.
The primitive polynomials are valid for both types
of LFSRs. The reciprocal of a primitive polyno-
mial is also primitive [6], i.e. Reciprocal polyno-
mial P*(x) of primitive polynomial P(x) is also
primitive. P*(x) is defined by the following equa-
tion:

n

T ynomials are used to construct
LFSRs which generate exhaustive pseudo-random
test patterns. LFSRs occupy smaller area com-

Characteristic Polynomial P(x) = 1 + x + x4

FSR is also used in signature analysis. The fol-

pared to a counter, as they use only a few XOR
gates and flip-flops to generate exhaustive pat-
terns. This makes them very attractive for BIST
applications. Different FF outputs can be tapped
to generate a test pattern more than 1-bit wide
(also known as parallel patterns). For practical test
times the test patterns generated by LFSRs are not
more than 22-25 bits wide, so bigger circuits are
partitioned into small sub-circuits of less than 25
primary inputs [2].

L
lowing diagram shows typical signature analyzer
constructed using LFSRs.

FF FF FFFF
XOR

a) Signature Analysis Register

XOR
Output

Response
from CUT

FF FF FFFF
XORXOR

Output
Response
from CUT

b) Multiple Input Signature Register

Figure 3. Signature analyzer using LFSR

s shown in part a) of figure 2 the input to the

ed in

IV. CA

Cellular Automaton (plural: cellular automata)
evolves in steps and the value of a node depends

on the value of its neighbors [11]. A Cellular

A
LFSR is XORed with the output response of the
CUT (this structure is known as a Signature
Analysis Register - SAR). The input polynomial
K(x) is divided by the characteristic polynomial
P(x). At the end of the BIST sequence the LFSR
contains the remainder of K(x)/P(x), denoted by
R(x). R(x) is called the signature of the CUT. The
signature of the CUT is compared with the signa-
ture of a known good circuit. A mismatch indi-
cates a faulty circuit [2]. Part b) of figure 3 shows
multiple outputs of CUT being used to generate
the signature, this structure is also known as a
Multiple Input Signature Register (MISR).
Different flavors of LFSRs can be explor
[10].

Automata (CA) consists of a collection of
cells/nodes formed by flip-flops which are logi-
cally related to their nearest neighbors using XOR
gates [2] [4]. When the value of a node is deter-
mined only by two neighboring cells the CA is
known as one-dimensional linear CA (for the rest
of the text one-dimensional linear CA is referred
as a CA). The logical relations which relate a node
to its neighbors are known as rules and they de-
fine the characteristics of a CA. There are many
rules which can be used to construct a CA register,
the most popular being rules 90 and 150 illus-
trated in figure 4.

Figure 4. Cellular Automata Implementations

he next state x(t+1) of node xi is determined by

K (x)

K (x)

T
t

xi(t+1) = xi-1(t) ⊕ xi+1(t)

xi(t+1) = xi-1(t) ⊕ xi(t) ⊕ xi+1(t)

he current state x(t) of neighboring nodes xi-1 and
i+1 for rule 90 and nodes xi , xi-1 and xi+1 for rule x

150. All the nodes of a CA register do not have to
be implemented with the same rule, different
nodes can employ different rules. The first and the
last nodes of a CA register have only one
neighbor unlike all other nodes which have two,
hence normal rules cannot be applied here. One
solution is to assume that the missing neighbor is
fixed at logic ‘0’ (null boundary condition). The
other solution assumes the last and first nodes to
be neighbors and are connected using normal
rules (cyclic condition) [2]. Connection between
the end nodes (first and last nodes) introduces a
feedback loop in the cyclic boundary condition;
this makes null boundary condition a better choice.
Figure 5 shows the construction of a 4-bit CA reg-

ister using rules 90 & 150 and null boundary con-
dition.

Figure 5. Cellular Automata implementation

A CA register is also known as a Linear Hybrid
Cellular Automata (LHCA) or a L Cellula
A
there are some combinations of rules which pro-

ed by LFSRs,
these properties led to the investigation
tive wa T im-

S [3] and se-
uential faults such as delay faults in combina-

length has to be changed. This is not the
ase with CAs. CAs are logically connected to

]. There is a
reater probability of a missing an error by alias-

rule 90

inear r
utomata Register (LCAR). Similar to LFSRs

duce exhaustive pseudo-random patterns. LHCAs
are capable of generating patterns which are more
random in nature as compared to an LFSR [3].
But LHCAs have larger nodes and require many
more XOR gates as compared to LFSRs. Large
number of XOR gates results in higher area over-
head of LHCAs. In cases where LHCA is used as
a TPG, it is desirable to use a CA for Signature
analysis instead of a LFSR [11].

V. COMPARISON AND ANALYSIS

There are some undesirable properties of the
pseudo-random patterns generat

of alterna-
ys to generate test patterns for BIS

plementation. CA was proposed to solve some of
those issues. This section presents the analysis of
some of those issues and a comparison of LFSR
and CA with respect to those issues.

One of the biggest drawbacks of LFSR is the in-
ability to efficiently generate test patterns which
can detect stuck-open faults in CMO
q
tional circuits [1]. Such faults are detected by
transitions on the inputs of a CUT and hence need
a pair of consecutive input patterns in order to be
detected. This kind of testing is known as two-
pattern testing, described in [1] [5] [12]. The key
characteristic that determines the fault coverage in
two-pattern testing is the measure of randomness
of the test patterns (more random patterns lead to
more transitions). Parallel patterns generated by
LFSRs (using outputs from different nodes of an
LFSR) have a strong correlation between each
other due to the shifting of data [12]. Pattern gen-
eration in CAs does not involve shifting of data

and it has been shown that CAs show a better fault
coverage for two-pattern tests compared to LFSRs
[12] [1]. LFSR and CA are characterized by their
transition matrices, the analysis of these matrices
along with simulations give the measure of the
randomness in the patterns generated [5], these
measures show the higher randomness of patterns
produced by CAs. The stuck-at fault coverage for
both LFSR and CA are comparable. The mathe-
matical explanations, theorems and proofs for all
the comparisons and claims are not discussed in
this paper, but are described in detail in the refer-
ences.

LFSRs have a feedback from their end nodes; this
means a redesign of the LFSR is needed if the
pattern
c
their only to their neighbors and there is no feed-
back for a CA employing the null boundary condi-
tion. Therefore, the pattern length generated by
CAs can be easily changed by cascading the nodes.
The regular structure of the nodes for CA makes
them ideal for CAD tools by providing the much
needed flexibility in design [13]. However, it is
difficult to construct a maximum length sequence
CA as compared to an LFSR which can be con-
structed using the primitive polynomials which
are very well documented [15]. An LFSR can be
implemented using only a few XOR gates
whereas a CA requires at least one XOR gate for
each node. This fact brings up an obvious draw-
back of CA: Higher area overhead involved in
implementation of CA compared to an LFSR. So,
the designer has to pay a penalty on the area over-
head by choosing CA over LFSR.

Signature Analysis based on CA show better re-
sults than LFSR based signature analyzers in
terms of Signature Aliasing [14
g
ing in LFSR compared to CA due to shifting of
data in a LFSR. In case of CA each node value is
a function of the neighboring nodes resulting in a
lower probability of missing an error [11]. More-
over, it is preferable to construct a MISR or a
SAR using CA, if CA is used to generate the test
patterns. The performance of CA based TPGs in
terms of speed of operation is higher than an Ex-
ternal Feedback LFSR based TPG. The presence
of XOR gates in the feedback path of an External

rule 90 rule 150

rule 90

Feedback LFSR and lack of a feedback path in a
null boundary condition CA results in higher op-
erating speed for CAs. The following table lists
the comparisons between LFSR and CA.

Table 1. Comparison of LFSR and CA
Characteristic LFSR CA
Area Overhead Least – very More –

few XOR gates
 XOR

gates are needed
de for every no

Performance Ve in
case of internal

LFSR.

shift register

Good feed-ry Good

feedback

Poor for exter-
nal feedback

 – no
back paths and
maximum one
XOR gate be-
tween nodes

Randomness of
Parallel Patterns

Low – shifting

c
t

H -
of data causes
orrelation be-
ween patterns

igh – No shift
ing of data

Error detection:

stuck-at faults

faults

delay aults

Low – due to
less transitions

Low – due to

High

Higher than
LFSR – more

transitions
Higher than

L

stuck-open

 f

High

less transitions

FSR – more
transitions

CAD friendly No – Requires

tern length

Yes – nodes can
be d

can be easily

redesign for
change of pat-

 cascaded an
pattern length

changed
Signature
Aliasing

L
i

data prevents

ow probabil-
ity

Lower probabil-
ty than LFSR –
No shifting of

masking of error
bits

VI. SUMMARY AND CONC

LFSRs have been well researched and ide a
ompact circuit for applications using polynomial

division and generation of patterns. Their popular-
ity is owed to simple and compact design. For
BIST applications they find use in the pseudo ran-

dom te alysis.

 pp 69-72,

[3]

[5]

[6]

[9]

LUSIONS

 prov
c

st pattern generation and signature an
But research has shown some of the shortfalls of
the LFSR can be overcome by the use of Cellular
Automata. CA use larger nodes as compared to
the LFSR but provide much more random patterns
and can be easily cascaded for design flexibility.
For testing of delay faults and stuck-open faults,
test patterns which are more random in nature
provide better fault coverage, so in many cases
they are being looked upon as the alternatives to
conventional LFSRs for test pattern generation
and output response analysis in BIST.

REFERENCES
[1] S. Zhang, R. Byrne, J.C. Muzio, D.M. Miller,

“Why cellular automata are better than LFSRs
as built-in self-test generators for sequential-
type faults”, IEEE International Symposium
on Circuits and Systems, Vol. 1,
1994

[2] C. Stroud, A Designer’s Guide to Built-In
Self-Test, Kluwer Academic Publishers, Bos-
ton MA, 2002
P.D. Hortensius, R.D. McLeod, W. Pries,
D.M. Miller, H.C. Card, “Cellular automata-
based pseudorandom number generators for
built-in self-test,”
IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, Vol.
8, pp 842 - 859, 1989

[4] M.L. Bushnell, V.D. Agrawal, Essentials of
Electronics Testing for Digital, Memory &
Mixed Signal VLSI Circuits, Kluwer Aca-
demic Publishers, Boston MA, 2000
K. Furuya, E.J. McCluskey, “Two-Pattern test
capabilities of autonomous TPG circuits,”
Proc. of International Test Conference, pp
704 – 711, 1991.
P.H. Bardell, W.H. McAnney, J. Savir, Built-
in test for VLSI: Pseudorandom Techniques,
John Wiley and Sons, New York, 1987

[7] D. Bhavsar and R. Heckelman, “Self Testing
by Polynomial Division,” Proc. IEEE Interna-
tional Test Conference, pp. 208 – 216, 1981.

[8] __, “Linear Feedback Shift Register,”
en.Wikipedia.org
L. Wang and E. McCluskey, “Complete Feed-
back Shift Register Design for Built-In Self-
Test,” Proc. IEEE International Conference
on Computer-Aided Design, pp. 56-59, 1986

[10] L.T. Wang, E.J. McCluskey, “Circuits for
Pseudoexhaustive Test Pattern Generation,”

[12]
f various TPG circuits for use in two-

[13]
.

[14]

Proc. IEEE International Conference on
Computer-Aided Design of Integrated Cir-
cuits and Systems, Vol. 7, pp. 1068 – 1080,
1988

[11] P.D. Hortensius, R.D. McLeod, H.C. Card,
“Cellular automata-based signature analysis
for built-in self-test,” IEEE Transactions on
Computers, Vol. 39, pp. 1273 – 1283, 1990
 K. Furuya, S. Yamazaki, M. Sato, “Evalua-
tions o
pattern testing,” Proceedings of the Third
Asian Test Symposium, pp. 242 – 247, 1994
 C.S. Jr. Gloster, F. Brglez, “Boundary scan
with cellular-based built-in self-test,” Proc
'New Frontiers in Testing' International Test
Conference, pp. 138 - 145, 1988
 D.M. Miller, S. Zhang, W. Pries, R.D.
McLeod, “Estimating aliasing in CA and
LFSR based signature registers,” Proc. of
IEEE International Conference on Computer
Design: VLSI in Computers and Processors,
pp. 157 – 160, 1990

[15] M. Serra, T. Slater, J. C. Muzio & D. M.
Miller, “The Analysis of One Dimensional
Linear Cellular Automata and Their Aliasing
Properties,” IEEE Trans. on CAD, pp. 767-
778, 1990

	I. Introduction
	II. Implementation of BIST
	III. LFSR
	IV. CA
	V. Comparison and Analysis
	VI. Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

