ELEC 5260/6260 Functions and Subroutines

PROGRAM 1:

To practice writing and using subroutines, write a subroutine that implements the function \(Z = (a_0 \times x_0) - (a_1 \times x_1) \), and a main routine that calls this subroutine.

The values of the four variables \(a_0, a_1, x_0, x_1 \) are to be passed to the subroutine in registers. The address of variable \(Z \) is to be passed to the subroutine in a register.

The “main” program is to call the subroutine two times, once for each of the following sets of data. You may not use “immediate” data – all values are to be read from memory and results are to be stored in memory. The data formats are to be as follows.

- \(x_0 \) and \(x_1 \) are to be 32-bit integers.
- \(a_0, a_1, \) and \(z \) are to be stored using Q24.8 format, i.e. 24 integer bits and 8 fraction bits, stored in a 32-bit word as follows: \(N_{23}N_{22}N_{21}...N_1N_0. N_{-1}N_{-2}...N_{-7}N_{-8} \)

Qn.m format is described on the ARM web page:

For the first call: \(x_0=200, x_1=100, a_0=5.25, a_1=6.75. \)
Store the answer at variable \(z_1 \).

For the second call: \(x_0=300, x_1=200, a_0=3.5, a_1=4.125. \)
Store the answer at variable \(z_2 \).

Define all ten variables in a DATA section, and use a debug initialization file to set the eight “arguments” to the test values indicated above.

You may test this with the simulator, but use of the Discovery board is recommended. Submit a printout of your source program, and a screen image of the Debug window, with the results displayed in a Watch window and/or highlighted (circled) in a Memory window.

(Person 2 on next page.)
PROGRAM 2:

Implement the two functions of Program 1 in the C language. Note that the startup code must be used in this project, even if you did not use it for Program 1.

- Define all data as global variables of type int (integer). However, as in the first program, values of a_0, a_1, z_1, and z_2 should all be in Q24.8 format, thereby allowing integer operations to be used.

- The function to compute $Z = (a_0 \times x_0) - (a_1 \times x_1)$ should be passed values of the four variables a_0, a_1, x_0, x_1. However, instead of passing the address of Z, have the function return the result, to be stored/used by the calling program.

- The main program should call the function at least twice, using the data from Program 1.

Execute the program, and then submit a printout of the program and a screen capture of a Watch window from the debugger, showing all 10 data values.

Answer the following questions.

1. How did the assembly language generated by the C compiler differ from your implementation in Program 1?

2. In the assembly language generated by the C compiler, how did the compiler choose to pass parameters to and from the function that computes Z. (Did it use registers and/or stack?)

3. Describe how the use of the DSP discussed in class might affect your solution to Program 1.